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Multimedia flood
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Cn u rd ths?

If you answered yes to the above question, then
you have grasped what we are trying to do here,
but for images. In the example above, we have
compressed the sentence “can you read this?” to
“cn u rd ths?,” which amounts to a reduction of
six characters, 33% fewer characters than in the
original sentence, but without compromising its
meaning.
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Problem

where rank(A) = n < m.

We can do something similar for images by way of the following
algebraic trick. Suppose that you have the system of linear equations
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Problem
It is a fact that there are an infinite number of solutions to equations
of the type depicted below, provided A is full-rank as in our case.

This is what we can exploit to compress an image I. Suppose that we
can somehow convert I into a vector b and that for some ad hoc
matrix A we can find a vector x0 such that the number of non-zero
entries of x0, from now on written as ||x0||0, is a lot smaller than the
number of non-zero entries of vector b, ||x0||0 < ||b||0 in our new
notation. Then if we store or transmit x0 instead of b we would have
compressed image I.
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Results
- Fine tuning and speedup of Orthogonal Matching Pursuit (OMP)

- Efficient QR implementation of OMP

- Comparison with SolveOMP, a publicly available OMP solution

- DCT+Haar compression vs DCT, Haar compressions

- PSNR, SSIM, and MSSIM error estimation and bit-rate vs distortion

- 1D vs 2D bases comparison

- Quantization and distortion estimate
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“Sparsity” equals compression
We can then think of signal compression in terms of our
problem

If x is sparse, b is dense, store x!
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Definition of “sparse”
- The l0 “norm”:

||x||0 = # {k : xk ≠ 0}

- (P0):   minx ||x||0  subject to  ||Ax - b||2 = 0

- (P0
ε):   minx ||x||0  subject to  ||Ax - b||2 < ε

Observations: In practice, (P0 
ε) is the working

definition of sparsity as it is the only one that is
computationally practical. Solving (P0 

ε) is NP-hard [2].
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Some theoretical results
Definition: The spark of a matrix A is the minimum
number of linearly dependent columns of A. We write
spark(A) to represent this number.

Theorem: If there is a solution x to Ax = b, and
||x||0 < spark(A) / 2, then x is the sparsest solution.
That is, if y ≠ x also solves the equation, then
||x||0 < ||y||0.

Observation: Computing spark(A) is combinatorial,
therefore hard. Alternative?
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Some theoretical results

Lemma: spark(A) ≥ 1+1/µ(A).

Theorem: If x solves Ax = b, and ||x||0 < (1+µ(A)-1)/2,
then x is the sparsest solution. That is, if y ≠ x also solves
the equation, then ||x||0 < ||y||0.

Observation: µ(A) is a lot easier and faster to compute,
but 1+1/µ(A) far worse bound than spark(A), in general.

Definition: The mutual coherence of a matrix A is the
number
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Finding sparse solutions:OMP
Orthogonal Matching Pursuit algorithm:
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Finding sparse solutions:OMP
Orthogonal Matching Pursuit algorithm:
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Finding sparse solutions:OMP
Orthogonal Matching Pursuit algorithm:
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Finding sparse solutions:OMP
Orthogonal Matching Pursuit algorithm:
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One more theoretical result

Theorem: For a system of linear equations Ax = b (A an n
by m matrix, n < m, and rank(A) = n), if a solution x exists
obeying ||x||0 < (1+µ(A)-1)/2, then an OMP run with
threshold parameter ε0 = 0 is guaranteed to find x exactly. 
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Implementation Fine Tuning
My initial OMP implementation wasn’t optimized for
speed. I made some improvements:

The core of the algorithm is found in the following three
steps. Modifying the approach to each of them cut
execution times considerably.
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Implementation Fine Tuning,
Round 1: ompQRf

The first improvement came from computing
norm(rk-1) |cos(θj)|, where θj is the angle between aj and
rk-1. This number reflects how good an approximation to the
residue zj aj is, and it is faster to compute than ε(j).

We also kept track of the best approximant during the
“Sweep” so that “Update Support” is done in a more efficient
way compared to what we had done in ompQR.

Finally, we sweep only on the set of columns that have
not been added to the support set, resulting in further time
gains on the “Sweep” step when k > 1.
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Implementation Fine Tuning,
Round 2: ompQRf2

The “Update Provisional Solution” involves an l2 minimization
that corresponds to a least squares approximation. The
preferred method of choice in this case is a QR
decomposition of the restricted system.

We implemented this part of the algorithm by taking
advantage of previous QR steps as opposed to compute
each time a brand new QR decomposition of the updated
matrix that resulted from increasing the support set Sk.
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Implementation Fine Tuning,
Round 3: ompQRf3

Finally, we heed the advice of Matlab to allocate some
variables for speed, this change saves time too:

Runtimes for 'experiment.m’ (k = 2)

ompQR 617.802467 seconds
ompQRf 360.192118 seconds, 1.715 speedup
ompQRf2 308.379138 seconds, 1.168 speedup
ompQRf3 298.622174 seconds, 1.032 speedup

Total speedup from ompQR to ompQRf3: 2.068
(Matlab version 2010b)
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Implementation and Validation
In light of the theoretical results, we can envision the
following roadmap to validate an implementation of OMP.

- We have a simple theoretical criterion to guarantee both
solution uniqueness and OMP convergence:

If x is a solution to Ax = b, and ||x||0 < (1+µ(A)-1)/2,
then x is the unique sparsest solution to Ax = b and OMP
will find it.

- Hence, given a full-rank n by m matrix A (n < m), compute
µ(A), and find the largest integer k smaller than or equal
to (1+µ(A)-1)/2. That is, k = floor((1+µ(A)-1)/2).
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Implementation and Validation
- Build a vector x with exactly k non-zero entries and
produce a right hand side vector b = Ax. This way, you
have a known sparsest solution x to which to compare the
output of any OMP implementation.

- Pass A, b, and ε0 to OMP to produce a solution vector
xomp = OMP(A,b,ε0).

- If OMP terminates after k iterations and ||Axomp - b|| < ε0,
for all possible x and ε0 > 0, then the OMP implementation
would have been validated.

Caveat: The theoretical proofs assume infinite precision.



4/17/12 Ph.D. Final Oral Exam 22

Validation Results
We ran two experiments:

1) A ∈ R100x200, with entries in N(0,1) i.i.d. for which
µ(A) = 0.3713, corresponding to k = 1 ≤ Κ.

2) A ∈ R200x400, with entries in N(0,1) i.i.d. for which
µ(A) = 0.3064, corresponding to k = 2 ≤ Κ.

Observations:
- A will be full-rank with probability 1.
- For full-rank matrices A of size n x m, the mutual
coherence satisfies µ(A) ≥ √{(m - n)/(n⋅(m - 1))}. That
is, the upper bound of Κ = (1 + µ(A)-1)/2 can be made
as big as needed, provided n and m are big enough.
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Validation Results
For each matrix A, we chose 100 vectors with k non-zero
entries whose positions were chosen at random, and
whose entries were in N(0,1).

Then, for each such vector x, we built a corresponding
right hand side vector b = Ax.

Each of these vectors would then be the unique sparsest
solution to Ax = b, and OMP should be able to find them.

Finally, given ε0 > 0, if our implementation of OMP were
correct, it should stop after k steps (or less), and if
xOMP = OMP(A,b,ε0), then ||b - AxOMP|| < ε0.
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Validation Results
k = 1
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Validation Results
k = 1



4/17/12 Ph.D. Final Oral Exam 26

Validation Results
k = 1
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Validation Results
k = 1
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Validation Results
k = 1
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Validation Results
k = 2
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Validation Results
k = 2
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Validation Results
k = 2
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Validation Results
k = 2
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Validation Results
k = 2
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Reproducing Paper Results

[1] A. M. Bruckstein, D. L. Donoho, and M. Elad, From sparse solutions of
systems of equations to sparse modeling of signals and images, SIAM
Review, 51 (2009), pp. 34–81.

For the first portion of our testing protocol, we set to
reproduce the experiment described in section (3.3.1) of [1],
limited to the results obtained for OMP.

Ax = b, where A is 100 x 200, each column i.i.d. N(0,1), and
x has k non-zero entries chosen at random and i.i.d. N(0,1).

Repeat 100 times, for each k = 1 to 70, the following
experiment and count the number of successes:
With b having been set to Ax, does xomp = omp(A,b,1e-5)
converge to x within the given tolerance?
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Reproducing Paper Results

SolveOMP is SparseLabʼs implementation of OMP (http://sparselab.stanford.edu/)
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Image Compression: setup
We need a matrix A, and we consider the basis of
Discrete Cosine Transform waveforms, and the basis
generated by the Haar wavelet. JPEG, JPEG2000 inspired.

DCT Haar
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Image Compression: setup

How to linearize a matrix?

We are going to partition an image in smaller
square sub-matrices to be linearized.
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Image Compression: setup
Consider the matrix A = [ DCT1 Haar1 ], where DCT1 is the
basis of 1-dimensional DCT waveforms, and Haar1
is the basis of 1-dimensional Haar wavelet waveforms.

DCT1 Haar1
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Image Compression: setup
Consider the matrix A = [ DCT2,3 Haar2,3 ], where DCT2,3 is the
basis of 2-dimensional DCT waveforms, and Haar2,3
is the basis of 2-dimensional Haar wavelet waveforms.

DCT2 Haar2
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Image Compression: images
We selected 5 natural images to test the compression
properties of A, and compare to compression via DCT or
Haar alone, i.e. B = [DCT], or C = [Haar]

StreamPeppers

Boat ElaineBarbara
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Normalized bit-rate

To study the tradeoff between error and compression,
we need to introduce a measure of how many bits it
takes to store our image. If our image I is composed
of M sub-images Ij, and each can be represented by xj,
where j = 1,..., M. Then the normalized bit-rate is

nbr(I,A,ε) = ∑ ||xj||0/(n1 n2),

where each sub-image Ij is of size n1 n2.
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Image Compression: Barbara
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Image Compression: Boat
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Image Compression: Elaine
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Image Compression: Peppers
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Image Compression: Stream
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Error Estimation
Peak Signal-to-Noise Ratio (PSNR):

PSNR = 20 log10(MAXX / √MSE), (units in dB)

with MAXX = 255, and MSE = ∑i,j (X(i,j) - Y(i,j))2 /nm.

Structural Similarity (SSIM), and Mean Structural
Similarity(MSSIM) indices:
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Error Estimation: PSNR
Ideal error distribution. Consider an LxL image that has
been linearized to a vector b of length L2. Assume that
the OMP approximation within ε has distributed the error
evenly, that is, if y = Axomp

|| Axomp - b ||2 < ε ⇔ || y - b ||22 < ε2

           ⇔ ∑j = 1,...,L
2 (yj - bj)2 < ε2

           ⇔ L2 c2 < ε2

           ⇔ c < ε/L

That is, if we want to be within c units from each pixel, we
have to choose a tolerance ε such that c is equal to ε/L.
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Image Compression: PSNR
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Image Compression: PSNR
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Image Compression: MSSIM



4/17/12 Ph.D. Final Oral Exam 52

Image Compression: MSSIM
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Error Comparison
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Error Comparison: Barbara
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Error Comparison: Boat
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Error Comparison: Elaine
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Error Comparison: Peppers
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Error Comparison: Stream
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Visual overview: Boat
ε = 200, c = 25
PSNR = 25.2711 dB
MSSIM = 0.6006
n-bit-rate = 0.0217 bpp
Termination: ||.||2
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Visual overview: Boat
ε = 64, c = 8
PSNR = 31.7332 dB
MSSIM = 0.8222
n-bit-rate = 0.0710 bpp
Termination: ||.||2
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Visual overview: Boat
ε = 32, c = 4
PSNR = 36.6020 dB
MSSIM = 0.9214
n-bit-rate = 0.1608 bpp
Termination: ||.||2
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Visual overview: Boat
δ = 0.92
PSNR = 34.1405 dB
MSSIM = 0.9355
n-bit-rate = 0.1595 bpp
Termination: ||.||ssim
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Visual overview: Barbara
ε = 32, c = 4
PSNR = 36.9952 dB
MSSIM = 0.9447
n-bit-rate = 0.1863 bpp
Termination: ||.||2
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Visual overview: Barbara
δ = 0.94
PSNR = 32.1482 dB
MSSIM = 0.9466
n-bit-rate = 0.1539 bpp
Termination: ||.||ssim
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1D vs 2D basis comparison
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1D vs 2D basis comparison
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1D vs 2D basis comparison
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1D vs 2D basis comparison
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1D vs 2D basis comparison
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Quantization
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Quantization



4/17/12 Ph.D. Final Oral Exam 72

Quantization
Instantaneous rate

Normalized average
rate

Distortion measure

Normalized average
distortion
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Quantization
Transform encoding

T’ = aA

x0 = Tb = OMP(aA, b, ε0)

b = aA x0 = T’ Q’Q x0

α = QT

β = T’Q’

d(β(α(b)),b) = ?
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Quantization
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Histogram and coefficient
distribution

2D basis elements with c = 1/8
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Histogram and coefficient
distribution

2D basis elements with c = 1/8
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Histogram and coefficient
distribution

2D basis elements with c = 1/8
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Histogram and coefficient
distribution

2D basis elements with c = 1/8
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Histogram and coefficient
distribution

2D basis elements with c = 1/8



4/17/12 Ph.D. Final Oral Exam 80

Histogram and coefficient
distribution

2D basis elements with c = 1/8
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PSNR vs bit-rate

Comparison between our work and published results
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Future Work

- Fast algorithm for DCT+Haar?

- γ functions for quantizer in the DCT+Haar setting

- Complete theory for Gabor systems and other matrices
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Thank you!
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