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1. Introduction.

1.1. Goals of the lectures. The purpose of these lectures is to illus-
trate some ideas and techniques of smooth ergodic theory in the setting
of simple mechanical systems.
Namely we consider either one or several particles moving on a line

either freely or in a field of a force and interacting with each other and
with the walls according to the law of elastic collisions.
The main questions we are going to address are the following.
(1) Acceleration. Is it possible to accelerate the particle so that its

velocity becomes arbitrary large? If the answer is yes we would like to
know how large is the set of such orbits. We would also like to know
how quickly a particle can gain energy both in the best (or worst) case
scenario and for typical initial conditions. We are also interested to
see if the particle will accelerate indefinitely so that its energy tend to
infinity or if its energy will drop to its initial value from time to time.
(2) Transitivity. Does the system posses a dense orbit? That is,

does there exist an initial condition (Q0, V0) such that for any ε and
any Q̄, V̄ there exists t such that

|Q(t)− Q̄| < ε, |V (t)− V̄ | < ε.

A transient system has no open invariant sets. A stronger notion is
ergodicity which says that any measurable invariant set either has mea-
sure 0 or its complement has measure 0. If the system preserves a finite
measure µ and the system is ergodic with respect to this measure then
by pointwise ergodic theorem for µ-almost all initial conditions we have

1

T
mes(t ∈ [0, T ] : (Q(t), V (t)) ∈ A) → µ(A) as T → ∞.

If the measure of the whole system is infinite then we can not make
such a simple statement but we have the Ratio Ergodic Theorem which
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says that for any sets A,B and for almost all initial conditions

mes(t ∈ [0, T ] : (Q(t), V (t)) ∈ A)

mes(t ∈ [0, T ] : (Q(t), V (t)) ∈ B)
→ µ(A)

µ(B)
as T → ∞.

The purpose of the introductory lectures is to introduce several exam-
ples which will be used later to illustrate various techniques. Most of
the material of the early lectures can be found in several textbooks on
dynamical systems but it is worth repeating here since it will help us
to familiarize ourselves with the main examples. The material of the
second part will be less standard and it will be of interest to a wider
audience.

1.2. Main examples. Here we describe several simple looking systems
which exhibit complicated behavior. At the end of the lectures we will
gain some knowledge about the properties of these systems but there
are still many open questions which will be mentioned in due course.
(I) Colliding particles. The simplest model of the type mentioned

above is the following. Consider two particles on the segment [0, 1]
colliding elastically with each other and the walls. Let m1 and m2

denote the masses of the particles. Recall that a collision is elastic if
both energy and momentum are preserved. That is, both

P = m1v1 +m2v2 and 2K = m1v
2
1 +m2v

2
2

are conserved. In particular if P = 0 then 2K = m2v
2
2
m2+m1

m1
and so in

this case (v+2 )
2 = (v−2 )

2. Similarly, (v+1 )
2 = (v−1 )

2, that is, the particles
simply change the signs of their velocities. In the general case we can
pass to the frame moving with the center of mass. The center of mass’
velocity is u = m1v1+m2v2

m1+m2
so in the new frame we have

ṽ1 = v1 − u =
m2(v1 − v2)

m1 +m2
and ṽ2 = v1 − u =

m1(v2 − v1)

m1 +m2
.

In our original frame of reference we have

v+1 = u− ṽ1 =
m1 −m2

m1 +m2

v−1 +
2m2

m1 +m2

v−2

and similarly

v+2 = u− ṽ2 =
m2 −m1

m1 +m2
v−2 +

2m1

m1 +m2
v−1 .

The collisions with the walls are described by the same formulas but we
consider the walls to be infinitely heavy. Thus if the particle collides
with the wall its velocity becomes v+ = 2vwall−v−. In particular, in the
present setting the wall is fixed so the particle’s velocity just changes
the sign.
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Returning to our system introduce

(1.1) qj =
√
mjxj . Thus uj = q̇j =

√
mjvj .

q1

q2

√
m1

√
m2

Figure 1. Configuration space for two points on the segment

The configuration space of the system becomes

q1 ≥ 0, q2 ≤
√
m2,

q1√
m1

≤ q2√
m2

.

This is a right triangle with hypotenuse lying on the line

q1
√
m2 − q2

√
m1 = 0.

The law of elastic collisions preserves

2K = u21 + u22 and P =
√
m1u1 +

√
m2u2.

In other words if we consider (q1(t), q2(t)) as a trajectory of the parti-
cle in our configuration spaces then as the particle reaches hypotenuse
its speed is preserved and the angle which its velocity makes with
(
√
m1,

√
m2) remains the same. Since (

√
m1,

√
m2) iscolinear to the

boundary this see that the tangential component of the particle veloc-
ity is preserved. Since the length of the velocity vector is also conserved
we see that the normal componet of the velocity is reversed. Therefore
the change of velocity satisfies the law of the elastic reflection. Simi-
larly if the particle hits q1 = 0 then u2 remains the same and u1 changes
to the opposite which is again in accordance with the elastic collision
law. Hence our system is isomorphic to a billiard in a right triangle.
A similar analysis can be performed for three particles on the circle

R/Z. In this case there are no walls so the velocity of the mass center
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is preserved. It is therefore convenient to pass to a frame of reference
where this center is fixed at the origin. So we have

m1x1 +m2x2 +m3x3 = 0 and m1v1 +m2v2 +m3v3 = 0.

Figure 2. Configuration space of three points on the
circle using the distance from the first point as coordi-
nates

In coordinates from (1.1) the above relation reads
√
m1q1 +

√
m2q2 +

√
m3q3 = 0 and

√
m1u1 +

√
m2u2 +

√
m3u3 = 0.

Thus points are confined to a plane Π and the particle velocity lies in
this plane. The collisions of the particles have equations qi√

mi
− qj√

mj
= l.

These lines divide Π into triangles. We claim that dynamics restricted
to each triangle is a billiard. Consider, for example, the collision of the
first two particles. Since (

√
m1,

√
m2,

√
m3) is collinear to the plane

P l
12 = { q1√

m1

− q2√
m2

= l} it follows that P l
12 is orthogonal to Π. Next,√

m1u1 +
√
m2u2 is preserved Note that n12 is also colllinear to the

plane P l
12. Denoting by ~n∗

12 the orthogonal projection of ~n12 to Π we
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Figure 3. Impact oscillator (left) and Ulam pingpong
(right) are two systems fitting into our setting

see that

〈~n∗
12, ~u

+〉 = 〈~n∗
12, ~u

−〉
where ~u = (u1, u2, u3). In other words, the tangential componet of the
velocity is preserved and since the lenth of the velocity vector is also
preserved we have an elastic collision.
We can also consider more particles on a line or a circle and show

that that system is isomorphic to a polyhedral billiard.
(II) Particle in a potential. Our second example is a particle

moving on the line under the force created by the potential U(x) = gxα

and colliding elastically with an infinitely heavy plate. We assume that
α > 0 since otherwise the particle can go to infinity after finitely many
bounces. Let f(t) denote the height of the plane at time t. We assume
that f(t) > 0 for all t so that U(x) is defined for all x > f(t) and that
f(t) is periodic. In fact, the case of f(t) = B + A sin t (where A < B)
is already quite interesting. Two cases attracted a particular attention
in the past.
(a) Gravity (α = 1). In this setting the acceleration question can be

posed as follows: how much can one accelerate a tennis ball by periodic
motion of a tennis rocket (of course one needs to be in a good fitness
condition for the infinitely heavy wall approximation to be reasonable).
(b) Impact oscillator (α = 2). In this case one has a particle attached

to a string and colliding with the wall. Apart from an easy mechanical
implementation this system is also related to an interesting geometric
object-outer billiard.
Outer billiards are defined in an exterior of a closed convex curve Γ

on the plane. Given a point A0 ∈ R
2 − IntΓ, there are two support

lines from A0 to Γ. Choose the one for which if one walks from A0

to the point of contact then Γ is to the right of the line. Then we
reflect A0 about the point of contact to get its image A1. Applying this
procedure repeatedly we obtain the orbit of A0 under the outer billiard
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map. Outer billiards were popularized by Moser as they provide simple
illustration to KAM theory.

A0

A1
A2

B0

B1

Figure 4. Outer billiard

We now describe a construction of Boyland [3] which associates to
each outer billiard an impact oscillator. To this end we consider a third
system (see figure 5). Its phase space consists of a pair (Γ0, A0) where
Γ0 is a closed and convex curve and A0 is the point in R

2 − IntΓ0 such
that the supporting line from A0 to Γ0 is vertical. To describe one
iteration of our system one first reflects A0 about the point of contact
to get the pair (Γ0, Ã1) and then rotates the picture counterclockwise
until the second support line becomes vertical. If (Γn, An) is the n-th
iteration of our system then clearly there exists a rotation Rn such
that Γ0 = RnΓn. Then RnAn = fnΓ0

A0 where fΓ0
denotes the outer

billiard map about Γ0. On the other hand between the reflections the
point evolves according to the ODE ẋ = v, v̇ = −x while during
the reflection x is unchanged and v+ + v− = 2vtip where vtip denotes
the velocity of the rightmost point of Γ(t). One can check that the
motion of the tip is given by ẍ + x = r(x(t)) where r(x) is the radius
of curvature of point x. Thus given a curve Γ one can associate to it
an impact oscillator with the wall motion given by f̈ + f = r(f(t)).
Note that in that construct the frequencies of the wall and the spring
are the same. Conversely, given an impact oscillator one can consider
a curve whose radius of curvature is r(f(t)) = f̈ + f but the resulting
curve need not be either close or convex. Thus the class of impact
oscillators is much larger than the class of outer billiards but the later
is an important subclass supplying clear geometric intuition.
While α = 1 and α = 2 are the two most studied cases we will see

that the dynamics for α 6= 1, 2 is quite different. As it was mentioned
above one of the main question is large velocity behavior of the model.
Note that different collisions occur at different heights. However if the
particle’s velocity is high it takes a very short time to pass between
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Figure 5. Outer billiards and Impact Oscillators

max f(t) and min f(t). Since the explicit computations of the height of
the next collision is usually impossible one often considers a simplified
model which is called static wall approximation (SWA). In this model
one fixes a height h̄ and assumes that the next collision occurs at the
time tn+1 = tn + T (vn) where T (vn) is the time it takes the particle
to return to the height h̄. However velocity is still updated as vn+1 =
2ḟ(tn+1)−2ṽn where ṽn is velocity of the particle when it returns to h̄.
By energy conservation ṽn = −vn so SWA takes form

tn+1 = tn + T (vn), vn+1 = vn + 2ḟ(tn+1).

While SWA provides a good approximation for the actual system in
high velocity regime for one or a few collisions, in general, it is not easy
to transfer the results between the original model and SWA. However
the SWA is an interesting system in its own right. In addition, the
SWA and the original system often have similar geometric features and
since formulas are often simpler for the SWA we will often present the
arguments for the SWA. For example, for α = 1 the SWA takes from

(1.2) tn+1 = tn + 2
vn
g
, vn+1 = vn + 2ḟ(tn+1).

This system is the celebrated standard map. Phase portraits of the
map (1.2) for several values of parameters can be found in Section 2.4
of [14]. (1.2) is defined on R × T but it is a lift of T2 diffeomorphism
since the change of v by 2

g
commutes with the dynamics.

(III) Fermi-Ulam pingpong. In model (II) the particle has infin-
itely many collisions with a moving wall because the force make it to
fall down. Another way to enforce infinitely many bounces is to put
the second stationary wall with which the particle collides elastically.
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This model can be thought as a special case of the previous model
where

(1.3) U(x) =

{
0, if x ≤ h̄

∞ if x > h̄

where h̄ is the height of the stationary wall. Pingpong model was intro-
duced by Ulam to study Fermi acceleration. To explain the presence
of highly energetic particles in cosmic rays Fermi considered particles
passing through several galaxies. If the particle moves towards a galaxy
it accelerates while if it goes in the same direction it decelerates. Fermi
argued that head-on collisions are more frequent than the overtaking
collisions (for the same reason that a driver on a highway sees more cars
coming towards her than going in the same direction even though the
effect becomes less pronounced if the car’s speed is 3000 m/h) leading
to overall acceleration. Pingpong was a simple model designed to test
this mechanism. This model was one of the first systems studied by a
computer (first experiments were performed by Ulam and Wells around
1960). Since the computers were very slow at that time they chose wall
motions which made computations simpler, namely, either wall velocity
or interwall distance was piecewise linear. It was quickly realized that
the acceleration was impossible for smooth wall motions. The motions
studied by Ulam and Wells turned out to be more complicated and
there are still many open questions.
All of the above systems can be considered Hamiltonian with poten-

tial containing hard core part (1.3). Accordingly these systems preserve
measures with smooth densities. Consider for example models (II)
and (III). It is convenient to study the Poincare map corresponding to
collision of the particle with the moving wall. One can approximate
the hard core systems by a Hamiltonian system with the Hamilton-
ian Hε =

v2

2
+ U(x) +Wε(x − f(t)) where W (d) is zero for d < ε and

W (−ε) = 1
ε
. One can consider the collision map as the limit of Poincare

map corresponding to the cross section x−f(t) = ε. The map preserve

the form ω = dH ∧dt−dv∧dx. On our cross section we have dx = ḟdt
so the invariant form becomes

(1.4) ω = (v − ḟ)dv ∧ dt.

One can also directly show that the form (1.4) is invariant without
using approximation argument. Consider for example the pingpong
system

tn+1 = tn + T (tn, vn), vn+1 = vn + 2ḟ(tn+1).
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This map is a composition of two maps

t̄n+1 = tn + T (tn, vn), v̄n+1 = vn

and

tn+1 = t̄n+1, vn+1 = v̄n+1 + 2ḟ(t̄n+1).

Accordingly the Jacobian of this map equals to ∂tn+1

∂tn
. We have (see

figure 6)

tn tn + δtn

δhn

Figure 6. Derivative of pingpong map.

δhn = (vn − ḟn)δtn,

(1.5) δtn+1 =
δhn

vn + ḟn+1

=
vn − ḟn

vn+1 − ḟn+1

δhn.

Thus the Jacobian equals to vn−ḟn
vn+1−ḟn+1

proving the invariance of ω.

A similar calculation can be done for the model (II) using the fact
that autonomous Hamiltonian systems preserve the form dv ∧ dx.

2. Normal forms.

2.1. Smooth maps close to identity. Here we discuss the behaviour
of highly energetic particles using the methods of averaging theory. The
following lemma will be useful.

Lemma 2.1. Consider an area preserving map of the cylinder R × T

of the form

Rn+1 = Rn + A(Rn, θn), θn+1 = θn +
B(Rn, θn)

Rn

.
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Assume that the functions A and B admit the following asymptotic
expansion for large R

(2.1) A =

k∑

j=0

aj(θ)

Rj
+O

(
R−(k+1)

)
, B =

k∑

j=0

bj(θ)

Rj
+O

(
R−(k+1)

)

where

b0(θ) > 0 (twist condition).

Then for each k there exists coordinates I(k), φ(k) such that I
R

is uni-
formly bounded from above and below and our map takes form

In+1 = O
(
I−(k+1)
n

)
, θn+1 = θn +

1

In

(
k∑

j=0

cj

Ijn
+O

(
I−(k+1)
n

)
)
.

Remark 2.2. I(0) is called adiabatic invariant of the system. I(k) for
k > 0 are called improved adiabatic invariants.

Proof. We proceed by induction. First, let I = RΓ(θ), φ = Φ(θ) then

In+1 − In = RnΓ
′(θn)

b0(θn)

Rn
+ a0(θn)Γ(θn) +O

(
1

Rn

)
.

So if we let Γ′

Γ
= −a0

b0
that is

Γ(θ0) = exp

[∫ θ

0

−a0(s)
b0(s)

ds

]

then In+1 − In = O(R−1
n ).

Next

φn+1 − φn = Φ′(θn)
b0(θn)

Rn

= Φ′(θn)
b0(θn)Γ(θn)

In
.

We let

Φ′(θ) =
c

b0(θ)Γ(θ)
so that Φ(θ) = c

∫ θ

0

ds

b0(s)Γ(s)
and c =

(∫ 1

0

ds

b0(s)Γ(s)

)−1

.

Note that Γ(1) = Γ(0) so that Γ is actually a function on the circle.
Indeed if Γ(1) < Γ(0) then there would exist a constant ε such that
after one rotation around the cylinder R decreases at least by the factor
(1− ε). So after many windings the orbit would come closer and closer
to the origin contradicting the area preservation. If Γ(1) > Γ(0) we
would get a similar contradiction moving backward in time.
This completes the base of induction. The inductive step is even

easier. Namely if In+1 = In +
â(φn)

Ik+1
n

+ . . . then the changes of variables
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J = I + γ(φ)
Ik

leads to

Jn+1 − Jn =
â(φn) + γ′n(φn)c0

Jk+1
n

so we can improve the order of conservation by letting γ′ = − â
c0
.

Next, if φn+1 − φn = 1
In

∑k−1
j=0

cj

Ijn
+ b̂(φn)

Ik+1
n

then letting ψ = φ+ Ψ(φ)
Ik

we

obtain

ψn+1 − ψn =
1

In

k−1∑

j=0

cj

Ijn
+
b̂(ψn) + Ψ′(φn)c0

Ik+1

allowing us to eliminate the next term if Ψ′ = ck−b̂
c0

where ck =
∫ 1

0
b̂(s)ds.

�

2.2. Adiabatic invariants. It is instructive and useful to compute
the leading terms in several examples.
(I) Fermi-Ulam pingpong. We have

vn+1 − vn ≈ 2ḟ(tn), tn+1 − tn ≈ 2l(tn)

vn

where l(t) is the distance between the walls at time t.We have l = h̄−f
so ḟ = −l̇ and the above equation is the Euler scheme for the ODE

dv

dt
= −v l̇

l
. Thus ldv + vdl = 0

so I = lv is an adiabatic invariant. In fact one can check by direct
computation that letting Jn = (vn + l̇(tn))l(tn) one gets

Jn+1 − Jn = O
(

1

J2
n

)
, tn+1 − tn =

2l2(tn)

Jn
+O

(
1

J2
n

)

so Jn is the second order adiabatic invariant.
(II) Outer billiard. If A0 is far from the origin then A1 is close to

−A0, however |A0A2| = 2|B0B1| there Bj denotes the point of tangency
of AjAj+1 with Γ (see Figure 4) and so |A0A2| ≤ 2diam(Γ). It fact it
is not difficult to see that we get the following approximation when A0

is far from the origin: ~A0A2 ≈ 2~v(θ) where ~v(θ) is the vector joining
two points on Γ whose tangent line have slope θ. Let B0(θ) and B1(θ)
denote the tangency points and let Q be the point such that B1Q has
slope θ while B0Q is perpendicular to B1Q. Note that |B0Q| = w(θ)-the
width of Γ in the direction θ.
Fix a direction θ0 and choose coordinates on the plane so that θ0 is

equal to 0. Let Bj = (xj , yj). Then for θ near 0 we have

xj(θ) = xj(0) + θξj + . . . , yj(θ) = yj(0) + θ2ηj + . . .
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B0

B1 Q

Figure 7. Derivative of the support function.

and so

(x1 − x0, y1 − y0)(sin θ, cos θ) = −|QB1|θ + . . . .

Therefore the equation of motion takes the following form in polar
coordinates (up to lower order terms).

Ṙ = −w′(θ), θ̇ =
w(θ)

R
.

Hence
dR

dθ
= −Rw

′(θ)

w(θ)
or wdR+Rdw = 0.

Accordingly I = Rw is the adiabatic invariant and

θ̇ =
w(θ)

R
=
w(θ)R

R2
=

I

R2
.

In other words I = R2θ̇, that is the angular momentum is preserved
and so the point moves with constant sectoral velocity.
Consider, in particular, the case where Γ is centrally symmetric.

Then w(θ) = 2 supx∈Γ(e
⊥(θ), x) and since R = I

w(θ)
level curves of the

limiting equation are rescalings of the right angle rotation of Γ∗ where

Γ∗ = {D(e)e}e∈S1 and D(e) =
1

supx∈Γ(e, x)
.

Thus if Γ̂ = Int(Γ) then

Γ̂∗ = {e ∈ R
2 : |(e, x)| ≤ 1 for all x ∈ Γ̂}.

Thus for each x ∈ Γ and for all e ∈ Γ∗ we have |(x, e)| ≤ 1 and there is
unique e ∈ Γ∗ with (x, e) = 1. Therefore (Γ∗)∗ = Γ and so each smooth
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convex centrally symmetric curve appears as an invariant curve for
motion at infinity for some outer billiard.

2.3. Systems with singularities. Lemma 2.1 describes the normal
form for smooth maps, so it is not applicable to systems with discon-
tinuities such as Fermi-Ulam pingpongs where l̇ or l̈ has jumps or to
outer billiards about nonsmooth curves such as circular caps or lenses.
It is turns out that for such maps it is convenient to consider the first
return map to a neighbourhood of singularities. In this section we
present the normal form of such first return maps.

Figure 8. Large velocity phase portrait of piecewise
smooth pingpong looks similar for different values of time
so it makes sense to consider the first return map to a
neighbourhood of the singularity.

We assume that the cylinder is divided into a finite union of sectors Sj
so that our map is C∞ in Int(Sj), has C

∞ extension to a neighbourhood
of Sj , and satisfies the asymptotics (2.1) in each sector. We suppose



LECTURES ON BOUNCING BALLS. 15

that the boundaries of Sj are γj and γj+1 where

γj =

{
θ = θj0 +

θj1
R

+
θj2
R2

+ . . .

}
.

By Lemma 2.1 we can introduce in each sector action-angle coordinates
(I, φ) so that the boundaries of the sector become

{φ = 0} and
{
φ = α0 +

α1

R
+
α2

R2
+ . . .

}

and the map takes form

In+1 = In +O
(
I−kn
)
, φn+1 = φn +

1

In

[
k∑

m=0

cm
Imn

+O
(
I−kn
)
]

(we suppress the dependence of αs and cs on j since we will work with
a fixed sector for a while).
Let Πj be the fundamental domain bounded by γj and fγj and let

Fj be the Poincare map Fj : Πj → Πj+1.
It is convenient to introduce coordinates (I, ψ) in Πj where

φ =
(c0
I
+
c1
I2

+ . . .
ck
Ik+1

)
ψ

so that ψ changes between 0 and 1+O(I−(k+1)).We first describe Fj in
the action-angle variables of Sj and then pass to the new action-angle
variables of Sj+1. We have

φn − φ0 =
c0n

I
+
c1n

I2
+ . . .

The leading term here is the first one so that for the first n such that
φn ∈ Sj+1 we have c0n

I
≈ α0 and hence c1n

I2
≈ c1α0

c0I
. Therefore

φn+1 =
c0ψ0

I
+
c0n

I
+
c1α0

c0I
+ . . .

Now the condition

φn−1 ≤ α0 +
α1

I
≤ φn

reduces to

α0 +
α̃1

I
− c0ψ0

I
+ · · · ≤ c0n

I
≤ α0 +

α̃1

I
− c0ψ0

I
+
c0
I
+ . . .

where α̃1 = α1 − c1α0

c0
. For typical ψ0 this means that

n =

[
α0I + α̃1

c1
− ψ0

]
+ 1 =

α0I + α̃1

c1
− ψ0 + 1−

{
α0I + α̃1

c1
− ψ0

}
.
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Then

φn = α0+
α1

I
+c0

(
1−

{
α0I + α̃1

c0
− ψ0

})
= α0+

α1

I
+c0

{
ψ0 −

α0I + α̃1

c0

}
.

Rescaling the angle variable so that it measures the distance from the
singularity ψ̄ = I

c0
(ψn − α0 − α1

I
+ . . . ) we get that Fj has form

Ī = I + . . . , ψ̄ =

{
ψ0 −

α0I + α̃1

c1

}
+ . . .

To pass to action coordinate of Sj+1 we note that

I(j) = Γ(j)(θ)R + . . . , I(j+1) = Γ(j+1)R + . . .

which implies that that the new adiabatic invariant satisfies

J = (1 + λ̃φ+ . . . ).

Thus in terms of the new action-angle coordinates Fj takes the form

Ĵ = I + λψ̄ + . . . , ψ̂ = ψ̄

(to justify the last equation we note that if we just use the Taylor

expansion we would get ψ̂ = σψ̄ and then we get σ = 1 from the
condition that Fj is one-to-one). In terms of the original values of
(I, ψ) in Πj we get

ψ̂ = {ψ − β
(j)
0 I − β

(j)
1 }, Ĵ = I + λ(j)ψ̂.

Note that to find the leading term we used the first order Taylor expan-
sion, To compute 1

I
-term we need to use the second order expansion,

for 1
I2

we need the third order expansion and so on. hence we actually
have

Lemma 2.3. If the orbit does not pass in O(1/I2) neighbourhood of
the singularities then Fj has the following form
(
ψj+1

Ij+1

)
=

(
{ψj − (β

(j)
0 Ij + β

(j)
1 )}

Ij + λ(j)ψj+1

)
+

1

[Ij ]
R2 +

1

[Ij]2
R3 + . . .

where Rj are piecewise continuous and on each continuity domain they
are polynomials in ({Ij}, ψj) of degree j.
We shall say that a map F is of class A if for each k

F

(
ψ
I

)
=

(
ψ
I

)
+L1

(
{ψ}
{I}

)
+

k∑

j=1

1

nj
Pj+1 ({ψ}, {I})+O(n−(k+1))

where L1 is linear, A = dL1 is constant and Pj are piecewise polyno-
mials of degree j.
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Lemma 2.4. A composition of A maps is a A map.

Proof. We need to show that if

Fs(z) = L1,s(z) +
k∑

j=2

1

nj−1
Pj,s(z) for s = 1, 2

where Pj,s are polynomials of degree j then F2 ◦ F1 is also of the same
form. It is sufficient to consider the case where Pj,s have positive
coefficients since in the sign changing case there might be additional
cancellations. Observe that Fs(z) =

∑k
j=1

1
nj−1Pj where Pj are some

polynomials then the degree restriction amounts to saying thatGn(u) =
1
n
Fs(un) is bounded for each u as n→ ∞. But if Gn,1 and Gn,2 satisfy

this condition then the same holds also for their composition. �

Corollary 2.5. The first return map F : Π1 → Π1 is an A map and
the same holds for any power Fm.

Remark 2.6. Corollary 2.5 applies in particular in the case where the
original map is smooth. In that case the coefficients λ(j) vanish so the
linear part is the integrable twist map

(2.2) Î = I, ψ̂ = ψ − β0I − β1.

More generally, λ(j) depend only on the behaviour of the function Γ
near the singularities so the normal form (2.2) holds also in the case
where a0 and b0 from Lemma 2.1 are continuous (even though the
higher order terms may be nontrivial in that case).

We say that the original map f is hyperbolic at infinity if the linear
part L1 of the normal form of the first return map F is hyperbolic
and say that f is elliptic at infinity if L1 is elliptic. Recall that the
ellipticity condition is |Tr(L1)| < 2 and the hyperbolicity condition is
|Tr(L1)| > 2.
One can work out several leading terms in our main examples. Namely

for outer billiard about the semicircle it is shown in [13] that L1 = L2

where

(2.3) L(I, ψ) = (I − 4

3
+

8

3
{ψ − I}, {ψ − I}).

For Fermi-Ulam pingpongs where the wall velocity has one discontinu-
ity at 0 one has [10]

(2.4) L1(I, ψ) = (I +∆

(
{ψ − I} − 1

2

)
, {ψ − I}) where

∆ = l(0)∆l̇(0)

∫ 1

0

ds

l2(s)
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Figure 9. Dynamics of the first return map. Top: hy-
perbolic case. Bottom: elliptic case.
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and l(s) is the distance between the walls at time s.
For example, for motions studied by Ulam and Wells one has l(s) =

b+a({s}−1/2)2.We can choose the units of length so that b = 1, then
l(s) > 0 for all s provided that a > −4. Then ∆(a) = −2a(1+a/4)J(a)
where

J(a) =

∫ 1

0

ds

(1 + a(s− 1/2)2)2
=

2

a+ 4
+





1

2
√

|a|
ln

2+
√

|a|
2−
√

|a|
if a < 0

1√
a
arctan

(√
a
2

)
if a > 0.

One can check that f is hyperbolic at infinity if a ∈ (−4, ac) or a > 0
and f is elliptic at infinity for a ∈ (ac, 0) where ac ≈ −2.77927 . . .

Figure 10. ∆(a) for piecewise linear wall velocity

2.4. Accelerating orbits for piecewise smooth maps. Given an
A map f we say that p = (Ī , ψ̄) is an accelerating orbit if there exist
m, l > 0 such that Lm1 (p) = p+ (l, 0).

Lemma 2.7. [13] Assume that f is elliptic at infinity and has an (m, l)
accelerating orbit such that the spectrum of Lm1 does not contain k-th
roots of unity for k ∈ {1, 2, 3}. Suppose also that F preserves a smooth
measure with density of the form ρ(I, ψ) = Iρ0(ψ)+ρ1(ψ)+o(1). Then
f has positive (and hence infinite) measure of orbits such that In → ∞.

Proof. Consider a point {IN , ψN} in a small neighborhood of {Ī+Nl, φ̄}
and study its dynamics. For n ≥ N , we will denote {In, ψn} the point
F (n−N)l(IN , ψN). Set Un = In−(Ī+nL), υn = ψn−ψ̄. We can introduce
a suitable complex coordinate zn = Un + i(aUn + bυn) such that DF l

becomes a rotation by angle 2πs near the origin where s 6∈ 1
k
Z for

k ∈ {1, 2, 3}. In these coordinates F l takes the following form in a
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small neighborhood of (0, 0)

(2.5) zn+1 = ei2πszn +
A(zn)

N
+O(N−2)

where
A(z) = w1 + w2z + w3z̄ + w4z

2 + w5zz̄ + w6z̄
2.

Lemma 2.8. (a) We have that Re(e−i2πsw2) = 0.
(b) There exists ǫ > 0 and a constant C such that if |zN | ≤ ǫ, then

for every n ∈ [N,N +
√
N ]

|zn| ≤ |zN |+ CN−1.

Part (b) is the main result of the lemma. Part (a) is an auxiliary
statement needed in the proof of (b). Namely, part (a) says that a
certain resonant coefficient vanishes (this vanishing is due to the fact
that f preserves a measure with smooth density).
Before we prove this lemma, let us observe that it implies that for

sufficiently large N , all the points |zN | ≤ ǫ/2 are escaping orbits. In-

deed by [
√
N ] applications of lemma 2.8 there is a constant C such

that
|zl| ≤

ǫ

2
+ CN− 1

2

for every l ∈ [N, 2N ]. It now follows by induction on k that if l ∈
[2kN, 2k+1N ] then

|zl| ≤ ǫk
where

ǫk =
ǫ

2
+

C√
N

k∑

j=0

(
1√
2

)j

(N has to be chosen large so that ǫk ≤ ǫ for all k). This proves
lemma 2.7. �

Proof of lemma 2.8. Let n̄ = n−N. For n̄ ≤
√
N equation (2.5) gives

(2.6) zn = ei2πn̄szN +
1

N

n̄−1∑

m=0

ei2πmsA(ei2π(n̄−m−1)szN+n̄−m) +O(N− 3

2 )

In particular for these values of n we have

zn = ei2πs(n−N)zN +O
(

1√
N

)
.

Substituting this into (2.6) gives

zn = ei2πn̄szN +
1

N

n̄−1∑

m=0

ei2πmsA(ei2π(n̄−m−1)szN ) +O
(

1

N

)
.
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To compute the sum above expand A as a sum of monomials and
observe that

n̄−1∑

m=0

ei2πms
(
ei2π(n̄−m−1)szN

)α (
e−i2π(n̄−m−1)sz̄N

)β

is bounded for α + β ≤ 2 unless α = β + 1 (that is α = 1, β = 0).
Therefore

(2.7) zn = ei2πn̄szN

(
1 + w̃2

n̄

N

)
+O

(
N−1

)

where w̃2 = e−i2πsw2.
Consider now the disc DN around 0 of radius N−0.4. LetW (z) denote

the density of invariant measure in our complex coordinates. Then by
(2.7)

Area(F n̄DN )

Area(DN)
=
(
1 + 2Re(w̃2)

n̄

N

)
+O

(
N−0.6

)
.

On the other hand there exists z ∈ DN such that denoting z′ = F n̄z
we have

Area(F n̄DN)

Area(DN)
=

1 +W (z)/N

1 +W (z′)/(n̄+N)
+O

(
N−2

)
= 1 +O

(
N−1.4

)

since W (z)−W (z′) = O (N−0.4) . Comparing those two expressions for
the ratio of areas we obtain that Re(w̃2) = 0.
This proves part (a) of Lemma 2.8. Part (b) now follows from (2.7).

�

Corollary 2.9. mes(E) = ∞ for the following systems:
(a) outer billiards about circular caps with angle close to π;
(b) Ulam pingpongs with ∆ ∈ (2, 4).

Proof. For part (a) observe that map (2.3) has accelerating orbit (0, 7
8
)

and for part (b) observe that map (2.4) has accelerating orbit (0, 1
2
+ 1

∆
).

�

Problem 2.10. Does map (2.4) have stable accelerated orbits for all
∆ ∈ (0, 4)?

2.5. Birkhoff normal form. Here we discuss the normal form of an
area preserving difffeomorphism near a periodic point.
Consider an area preserving map f of R2 which has an elliptic fixed

point p such that in suitable complex coordinates z near p our map has
the following form

f(z) = e2πiαz +O(z2).
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Lemma 2.11. Suppose that e2πikα 6= 1 for k = 1, 2, . . . 2s. Then there
exists a local diffeomorphism h such that h ◦ f ◦ h−1 has form

rn+1 = rn +O(r2sn ), φn+1 = φn + α +
s−1∑

j=1

cjr
2j
n +O(r2sn ).

Proof. If suffices to prove that one can reduce f to the following form

rn+1 = rn +

s−1∑

j=1

djr
2j+1
n +O(r2sn ), φn+1 = φn + α+

s−1∑

j=1

cjr
2j
n +O(r2sn )

since than area preservation would imply that dj ≡ 0 since otherwise
the orbits will go either further away from 0 or closer to 0 with each
iteration contradicting area preservation.
So we would like to conjugate f to

g(z) = e2πiαz +

2s−1∑

k=2

Gk(z) +O(z2s)

by the map

h(z) = z +

2s−1∑

k=2

Hk(z) +O(z2s)

where Gk and Hk are polynomials of degree k in z, z̄. Expanding the
equation h ◦ f = g ◦ h into Taylor series we get

Hk(e
2πiαz, e−2πiαz̄) + Ak = e2πiαHk(z, z̄) +Bk +G(z, z̄)

where Ak and Bk denote the terms which are determined by the lower
order coeffcients of H and G respectively. If

Hk =
∑

l1+l2=k

hl1,l2z
l1 z̄l2 , Gk =

∑

l1+l2=k

gl1,l2z
l1 z̄l2

when we get

hl1,l2
[
e2πiα(l1−l2) − e2πiα

]
= gl1,l2 + cl1,l2

where cl1,l2 are determined by Ak and Bk. Hence if l1 − l2 6= 1 then we
can choose gl1,l2 = 0 and take

hl1,l2 =
[
e2πiα(l1−l2) − e2πiα

]−1
cl1,l2.

On the other hand if l1 − l2 = 1 then we are forced to take gl1,l2 =
−cl1,l2. Hence f is conjugated to g(z) = e2πiαzγ(r2) + O(r2s). Writing
γ(u) = a(u)e2πib(u) we obtain the result. �
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3. Applications of KAM theory.

3.1. Introduction. In this section we review some applications of
Kolmogorov-Arnold-Moser theory to bouncing balls. Our overview will
be brief since this material is pretty standard and can be found in sev-
eral textbooks. However I would like to emphasize that the brvity of
this section does not reflect the importance of this material. In fact,
KAM theory is the prime tool for showing lack of acceleration and/or
ergodicity. The rest of the course will be devoted to discussing a rele-
tively small class of systems where KAM is not applicable with the goal
of developing the tools to handle such systems.

A0

B0

A1

Figure 11. The outer caustic has the property that any
tangent line to the table cuts off the segment which is
divided into two equal pieces by the tangentcy point.

For one and a half degrees of freedom systems invariant curves pro-
vide an easy obstruction to transitivity since the orbit can not pass
from one component of R2 − γ to another. One example where it is
easy to visualize the invariant curves is given by outer billialrds. In
this case the invariant curves are called outer caustics. A curve S is an
outer caustic for the outer billiard about a curve Γ if for any tangent
line to Γ the points of intersection of that line with S are equidistant
from the tangency point. Parametrize Γ by the arclength s and let
A(s) denote the area cut from S by the tangent line emanating from
Γ(s). We claim that A(s) does not in fact depend on s. Indeed let

|A0Â0| = δs then up to higher order terms we have
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A0

Â0

C

B̂0

B0
A1

Â1

−

+

Figure 12. Area property of the outer caustics

|A0B0| ≈ |Â0B̂0| ≈ |A0C| ≈ |Â0C| ≈ |A1C| ≈ |Â1C|
and

∠A0CÂ0 ≈ ∠A1CÂ1 ≈ κδs

there κ denotes the curvature at the tangency point. Accordingly

∂A
∂s

= |A0B0|2κ− |A1B0|2κ = 0.

Therefore given a curve S we can easily given a curve S we can easily
construct a curve Γ such that S is an outer caustic for Γ by fixing a
paprameter a, considering all segments which cut area a from S and
taking the midpoints of those segments. It is more difficult to find outer
caustics for a given billiard table Γ. For this we need a full strength of
the KAM theory. In particular we need to assume that Γ is sufficiently
smooth. We saw in Section 2 that some smoothness is needed but the
exact trashhold is currently unknown.

Problem 3.1. Suppose that Γ is piecewise smooth and the first k
derivatives at the break points coincede. For which k must Γ have
invariant curves near infinity?

3.2. Theory. Two classical results about invariant curves are Twist
Theorem and Small Twist Theorem of Moser.

Proposition 3.2 (Moser Small Twist Theorem). Let Q : R+ → R+

be a C5-function. Then for any numbers a, b such that Q′(r) 6= 0 for
r ∈ [a, b] for any K there is ε0 such that if Fε are exact mappings of
the annulus R+ × S1 of the form

Fε(r, φ) = (r + ε1+δP (r, φ), φ+ α + εQ(r) + ε1+δR(r, φ))

where
||P ||C5([a,b]×S1) ≤ K, ||R||C5([a,b]×S1) ≤ K

then for ε ≤ ε0 Fε has (many) invariant curve(s) separating [a, b]× S1

into two parts. In fact, the set of invariant curves has positive measure.
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Proposition 3.3 (Moser Invariant Curve Theorem). Let Q : R+ → R+

be a C5-function. Then for any numbers a, b such that Q′(r) 6= 0 for
r ∈ [a, b] there is ε0 such that if F is an exact mapping of the annulus
R+ × S1 of the form

F (r, φ) = (r + P (r, φ), φ+Q(r) +R(r, φ))

where

||P ||C5([a,b]×S1) ≤ ε0, ||R||C5([a,b]×S1) ≤ ε0

then F has (many) invariant curve(s) separating [a, b] × S1 into two
parts. In fact, the set of invariant curves has positive measure.

A classical application of KAM theory is stability of nonresonant
elliptic periodic points.

Lemma 3.4. Suppose that p is an elliptic periodic point of an area
preserving diffeomorphism f with multiplier e2πα such that e2πkα 6= 1
for |k| ≤ 4 and such that the Birkhoff normal form is non-degenerate.
Then f has a positive measure set of invariant curves near p.

Proof. This follows from Lemma 2.11 and Proposition 3.3. �

3.3. Applications. Here we describe some applications of the KAM
theory to bouncing balls.
(I) Pingpongs.

Corollary 3.5. Consider Fermi-Ulam pingpong with wall motion of
class C6. Then there are KAM curves for arbitrary high velocities. Ac-
cordingly all orbits are bounded.

Proof. This follows from Proposition 3.2 and the normal form obtained
in Section 2. �

Corollary 3.6. Consider pingpongs where the wall motion has one
discontinuity and the system is elliptic at infinity. Then there is a con-
stant C such that for all sufficiently large v there is a positive measure
set of orbits such that

v̄

C
≤ v(t) ≤ Cv̄.

Proof. The map (2.4) has periodic orbit (1
2
, 0). The non-degeneracy of

the Birghoff normal form is checked in [10]. For the orbits constructed
with the help of Lemma 3.4 the adiabatic invariant l(t)v(t) will change
little so the oscilations of ln v(t) are of constant order. �

Problem 3.7. Is Corollary 3.6 valid for systems with several velocity
jumps?
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We shall see later that the result of Corollary 3.6 is false for pingpongs
which are hyperbolic at infinity. In that case the system may even be
ergodic so that almost every orbit is dense.
(II) Balls in a potential. Consider a moving in a potential U(x) =

gxα and colliding elastically with infinitely heave wall. Suppose that f
is C6 and periodic.

Corollary 3.8. If α > 1 and α 6= 2 then there are KAM curves for
arbitrary large velocities. In particular, all orbits are bounded.

Proof. To simplify the formulas we consider the SWA

tn+1 = tn + T (vn), vn+1 = vn + 2ḟ(tn+1).

An easy calculation using energy conservation shows that

T (v) ∼ cvσ, T ′(v) ∼ cσvσ−1, T ′′(v) ∼ cσ(σ − 1)vσ−2

where σ = 2
α
− 1.

Consider first the case α > 2. Take v̄ ≫ 1 and suppose that v0 ∼ v̄.
Rescaling un = vn

v̄
we get

tn+1 ≈ tn + cv̄σuσn, un+1 − un =
2ḟ(tn)

v̄
.

Since σ > 1 the change of u is much smaller than the change of t and
so we can use Proposition 3.2.
Next, consider the case 1 < α < 2. Set zn = vn−v0

vσ−1 . The map takes
form

tn+1 − tn ≈ α0 +Kzn + . . . , zn+1 − zn =
2ḟ(tn+1)

vσ−1
.

Therefore the statement follows from Proposition 3.3. �

One can ask what happens for other values of α. Surprisingly for
α = 1 one can have a positive measure set of escaping orbits. The
proof of that given by Pustylnikov uses KAM theory. It relies on the
following non stationary extension of stability of elliptic periodic orbits.

Theorem 3.9. Let fn(z) be a family of real analytic area preserving
maps defined near the origin and converging to a limiting value f so
that

∑
n ||fn − f || ≤ ∞. Suppose that 0 is an elliptic fixed point for f

with multiplier e2πα satisfying e2πikα 6= 0 for k ∈ {1, 2, 3, 4}. and that
the corresponding Birkhoff normal form is nondegenerate. Consider a
recurrence zn = fnzn−1. Then there is a positive measure set of initial
conditions z0 such that zn is bounded.
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The proof of Theorem 3.9 proceeds along the line of the proof of
Lemma 3.4. We refer the reader to [20] for details.
We now show how this theorem can be used to construct escaping

orbits. Consider a two parameter family of SWA

tn+1 = tn +
2vn
g
, vn+1 = vn + 2Aḟ(tn+1).

Here Af(t) is the height of the ball at time t and g is the gravity
strengh.
Consider the orbits where the rocket always hit the ball at the same

height. Thus tn+1 = tn mod 1, 2vn
g

= l. Next

df =

(
1 0

2Af̈ 1

)(
1 2

g

0 1

)

so that Tr(df) = 2+ 4Af̈(t)
g

. Projecting our orbit to the torus we obtain
a fixed point which is elliptic provided that

(3.1) −1 <
Af̈(t)

g
< 0.

The original orbit on the cylinder is accelerating if

(3.2) ḟ(t) > 0

Next, if we have an accelerating orbit for the SWA, Theorem 3.9 allows
to infer stability of the original system. Let us show that we can find the
periodic point in our two parameter family of the toral maps satisfying
(3.1) and (3.2). Indeed, the periodicity condition amounts to

(3.3) ḟ(tn) =
lg

2A

If A, g ≫ 1 then we can arrange tn ≈ t̄ for any t̄ such that ḟ(t̄) > 0.

Next, in view of (3.3) condition (3.1) amounts to −2
l
< f̈(t̄)

ḟ(t̄)
< 0.

Take an interval (t1, t2) such that ḟ(t1) = ḟ(t2) = 0 and ḟ(t̄) > 0 for

t̄ ∈ (t1, t2). Since
∫ t2
t1
f̈(t̄)dt̄ = 0 the second derivative changes sign on

(t1, t2) and so we can find t̄ satisfying −1 < f̈(t̄)

ḟ(t̄)
< 0 as needed.

The case α = 2 was investigated by Ortega ([19]). He showed that
if the periods of the wall and the string are incommensurable then the
averaging prevails and there are KAM curves. In the commensuarable
case both KAM curves and positve measure of escaping sets are possi-
ble. For example, in the case of outer billiards all orbits are bounded.

Corollary 3.10. If Γ is C6 and strictly convex then all orbits are
bounded.
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Proof. The result follows from the normal form obtained in Section 2
and Proposition 3.2. �

Problem 3.11. Show that the result is not correct if Γ has points with
zero curvature.

Finally in case α > 1 one can always construct a Cantor set of
escaping orbits. In fact, it is shown in [8] that HD(E)=2.

Conjecture 3.12. If α < 1 then mes(E) = 0.

We will see in Section 6 that this conjecture is true for very week
potentials, that is, for α≪ 1.

4. Recurrence.

4.1. Poincare Recurrence Theorem. In this section we describe
applications of ergodic theory to the dynamics of bouncing balls.
As it was mentioned before dynamical systems theory strives to de-

scribe a long time behavior of a given system. In particular, one can
ask if (q(t), x(t)) come close to its initial values for arbitrary large t.
A general result in this direction is the Poincare Recurrence Theorem
given below.

Theorem 4.1. Let T be a transformation of a space X preserving a
finite measure µ. Then for each set A almost all points from A returns
to A in the future.

Proof. Let B = {x ∈ A : T nx 6∈ A ∀n > 0}. Then T nB ∩ B = ∅
and so T kB ∩ T k+nB = T k(B ∩ T nB) = ∅. Thus for each N the sets
B, TB . . . TN−1B are disjoint and therefore

µ(∪N−1
n=0 B) = Nµ(B) ≤ µ(X).

Since N is arbitrary we have µ(B) = 0. �

Poincare Recurrence Theorem need not hold for infinite measure
preserving transformations such as m→ m+1 on Z. One can however
show that the above map is an only obstacle to Poincare recurrence.
Namely, let T be a transformation of a metric space X preserving an
infinite measure µ such that measure of any ball is finite.

Theorem 4.2. X can be represented as a disjoint union X = C ⊔ D
where
(i) D = ∪n∈ZT nB and B is wondering in the sense that T nB∩B = ∅

for n 6= 0;
(ii) C satisfies the Poincare Recurrence Theorem in the sense that

for any set A ⊂ C almost all points from A visit A.
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In abstract ergodic theory C is called conservative part of X and
D is called dissipative part of X. However in the setting of smooth
dynamical systems this terminology is misleading since D need not be
dissipative in the sense that Jac(f) < 1 as the above example of the
shift on R shows. Therefore we adopt the terminology of probability
theory. That is, we call C recurrent part of X and D transient part
of X. If C = X we say that the system is recurrent, if D = X we say
that the system is transient.
Introduce coordinates (b,m) on D where b ∈ B, m ∈ Z and the point

(b,m) corresponds to Tmb. Then the map takes form

(b,m) → (b,m+ 1),

that is the dynamics on D is isomorphic to the shift on the integers.

Proof. Pick a reference point a. Let

B1 = {x ∈ B(a, 1) : T nx 6∈ B(a, 1) for n > 0}.
For k > 1 let

Bk = {x ∈ B(a, k)−
(
∪k−1
j=1 ∪∞

m=−∞ TmBj

)
: T nx 6∈ B(a, k) for n > 0}.

Let B = ∪∞
k=1Bk. Note that the orbits of Bk for different k are disjoint

by construction. Next we claim that T nBk ∩Bk = ∅ for n 6= 0. Indeed
if x ∈ Bk and T nx ∈ Bk then T nx ∈ B(a, k) by the definition of Bk.
Thus n can not be positive by the definition of Bk. Also n can not be
negative since in that case T−n(T nx) = x ∈ B(a, k) contradicting the
definition of Bk. Thus n = 0 as claimed.

Next let D =

∞⋃

n=−∞
T nB and C = X−D. Let A ⊂ C. Then A =

∞⋃

k=1

Ak

where Ak = A ∩ B(a, k). Note that by definition of Bk the first return
map Rk is well defined on B(a, k)−Bk. Applying Poincare Recurrence
Theorem to Rk we see that almost all points from Ak visit Ak, so A
satisfies Poincare Recurrence Theorem as claimed. �

In the setting of bouncing balls the system has nontrivial transient
component if the set

E = {(t0, v0) : vn → ∞}
has positive measure. More generally we have the following.

Lemma 4.3. Let T : X → X preserve an infinite measure µ. Suppose
that there is a set A such that µ(A) <∞ and an invariant set B such
that all points from B visit A. Then B ⊂ C. In particular if almost all
points from X visit A then T is recurrent.
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Proof. Let S ⊂ B. For x ∈ B let r(x) = min(k ≥ 0 : T−kx ∈ A) so

that T r(x)x ∈ A. Let Ŝk = ∪x∈S:r(x)≤kT r(x)x. It is sufficient to show that

almost all points from Ŝk visit Ŝk infinitely often since if T nx ∈ Ŝk then
T n−jx ∈ S for some j ≤ k. Note that Ŝk ⊂ A∩B. By assumption almost
all points in T (A∩B) visit A and so the first return map R : Ŝk → Ŝk
is well defined. Applying Poincare Recurrence Theorem to (Ŝk, R) we
obtain our claim. �

Lemma 4.3 implies that E is indeed the transient part of the phase
space since the compliment of E is ∪NZN where

ZN = {(t0, v0) : lim inf vn ≤ N}
and all points from ZN visit {v ≤ N + 1}.
While the proof of Lemma 4.3 is very easy there is no general recipe

for finding the set A and sometimes it can be tricky. In this section
though we present a few examples there the construction of A is rela-
tively simple.

Corollary 4.4. mes(E) = 0 for the following systems

(a) Fermi-Ulam pingpongs there l and l̇ are continuous and l̈ has
finitely many jumps;
(b) outer billiards around lenses.

Proof. In both cases the return map F : Π1 → Π1 has the following
form

(I, ψ) → (I, {ψ − a0I − a1}) +O(1/I)

(see remark 2.6). That is, after one rotation the adiabatic invariant
changes by O(1/I). Therefore each unbounded orbit visits the set

A = ∪k
{
|I − 3k| < 1

2k

}
.

Since µ(A) <∞ the statement follows from Lemma 4.3. �

Problem 4.5. Do above systems have escaping orbits? In fact even
the existence of unbounded orbits is unknown.

4.2. Background from ergodic theory. To proceed further we need
to recall some facts from ergodic theory. Let T : X → X be a map
preserving a measure µ. A set A is called invariant if T−1A = A and it
is called essentially invariant if µ(T−1A∆A) = 0. T is called ergodic
if for any T invariant set we have µ(A) = 0 or µ(Ac) = 0. Next suppose
that µ is a probability measure.
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Lemma 4.6. The following are equivalent:
(a) T is ergodic;
(b) If B is an essentially invariant set then µ(B) = 0 or µ(Bc) = 0;
(c) If A is a set of positive measure then µ(∪∞

n=1T
nA) = 1;

(d) If A and B are sets of positive measure then there exists n > 0
such that µ(T nA ∪ B) > 0,
(e) If φ : X → R is a measurable function such that φ(Tx) = φ(x)

almost everywhere when there exists a constant c such that φ = c almost
everywhere.

Proof. (a) ⇒ (b). Let CN = ∪∞
n=NT

−nB. Then since µ(T−n1B∆T−n2B)
it follows that µ(CN) = µ(B) for all N. On the other hand CN are
nested. Let C = ∪∞

N=0CN . Then µ(C) = µ(B). Since T−1CN = CN+1

we have T−1C = C so µ(C) = 0 or µ(C) = 1 and hence µ(B) = 0 or
µ(B) = 1.

(b) ⇒ (c). Let B =
⋃

n

T nA. Then T−1B ⊃ B, so by measure preser-

vation, B is essentially invariant and since µ(B) ≥ µ(A) it follows that
µ(B) = 1.

Exercise 4.7. Prove that (c) ⇒ (d) and (d) ⇒ (a).

(b) ⇒ (e). Suppose that (b) holds and let φ be a T -invariant function.
Then for each t we have µ(x : φ(x) > t) = 0 or 1. Let

c = sup(t : µ(x : φ(x) > t) = 0).

Then for each ε

µ(x : c− ε < φ(x) < c+ ε) = 1

and so φ(x) = c almost everywhere.
(e) ⇒ (b). If B is an essentially invariant set let φ = 1B. Then φ = c

almost everywhere. Clearly c is either 0 or 1. �

In this and the following sections we will use the following results.

Theorem 4.8. (Ergodic Theorem) (a) If φ ∈ L1(µ) then for almost
every x the following limits exist

φ±(x) = lim
N→∞

1

N

N−1∑

n=0

φ(T±nx).

Moreover for almost every x, φ+(x) = φ−(x) := φ̄(x) and∫
φ̄(x)dµ(x) =

∫
φ(x)dµ.

(b) If T is ergodic then φ(x) =
∫
φ(x)dµ(x) almost everywhere.
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Theorem 4.9. (Maximal Ergodic Theorem) Let

Eα = {x : sup
N≥1

1

N

N−1∑

n=0

φ(x) > α}.

Then

αµ(Eα) ≤ ||φ||L1.

Lemma 4.10. (Rokhlin’s Lemma) If T : X → X is an aperiodic
transformation then for each n, ε there is a set B such that B, TB, . . . , T n−1B

are disjoint and µ

(
X −

n−1⋃

j=0

T jB

)
≤ ε.

4.3. Ergodicity and recurrence. Next we consider skew product
maps TΦ : (X × R) → (X × R) given by TΦ(x, y) = (Tx, y + Φ(x))
preserving measure dν = dµdx. Denote τm(x, y) = (x, y +m).

Lemma 4.11. (Atkinson, [1]) Suppose that T is ergodic. If Φ ∈ L1(µ)
then TΦ is recurrent if µ(Φ) = 0 and transient if µ(Φ) 6= 0.

Proof. Suppose that µ(Φ) 6= 0. If C was nontrivial there would exist R
such that ν(CR) > 0 where CR = C ∩ {|y| ≤ R}. Then almost all points
from CR would return to CR infinitely often. However by Pointwise
Ergodic Theorem yn → ∞ giving a contradiction.
Our next remark is that TΦ commutes with translations. Hence if

(x, y) ∈ C then for each ỹ (x, ỹ) = τỹ−y(x, y) ∈ C. Therefore C and D
are of the form

C = C̃ × R and D = D̃ × R

where C̃ and D̃ are T -invariant. Thus either C̃ or D̃ has measure 0.
We now consider the case µ(Φ) = 0. Assume that C̃ = ∅ so that D =

X×R.We shall show that this assumption will lead to a contradiction.
We have that almost all (x, y) with |y| ≤ 1 visit {|y| ≤ 2} only finitely
many times. Indeed, the set

B = {(x0, y0) : |yn| ≤ 2 infinitely often}
is TΦ invariant and all points from B visit A = {|y| ≤ 2|} so if µ(B) > 0
TΦ would have a nontrivial recurrent part by Lemma 4.3.
Hence for almost all x the set Mx = {n : |Φn| ≤ 1} is finite where

Φn(x) =
∑n−1

j=0 Φ(T
jx). Let AN = {x : Card(Mx) ≤ N}. Pick N such

that µ(AN) > 1/2. Take n≫ N. Consider

Yn(x) = {y : ∃j ∈ [0, n− 1] : T jx ∈ AN and Φj(x) = y}.
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By ergodic theorem applied to the indicator of AN for large n we have
Card(Yn(x)) ≥ n

2
and for each ȳ ∈ Yn(x) we have

Card

{
y ∈ Yn : |y − ȳ| < 1

2

}
≤ (N + 1)

since otherwise taking a point from this set with minimal j will lead
to a contradiction with the definition of AN . It follows that

max
j≤n

|Φj(x)| ≥ max
j≤n,T jx∈AN

|Φj(x)| ≥
n

8(N + 1)
.

On the other hand by ergodic theorem
Φj(x)

j
→ 0 as j → ∞ and hence

maxj≤n |Φj(x)|
n

→ 0 as n→ ∞ contradicting the last displayed inequality.
�

As an application of Lemma 4.11 consider SWA to an impact oscil-
lator with

ḟ(t) =

{
1 if {t} ≤ 1

2

−1 if {t} > 1
2

.

Choose h̄ = 0. Then f(v, t) = (t̄, v+ ḟ(t̄)) where t̄ = t+ T
2
and T is the

period of the spring. Therefore f is recurrent if T is irrational.
On the other hand if h̄ 6= 0 then Lemma 4.11 is not directly applicable

since t̄ = t+ T
2
+ 2h̄

v
+ o(1/v) weakly depends on v. To include this case

we need another lemma. Let S(x, y) = (T (x, y), y+φ(x, y)) be the map
which is well approximated by a skew product at infinity. We assume
that S is defined on a subset Ω ⊂ X × R given by y ≥ h(x). We also
assume that there exist a map T : X → X and a function Φ : X → R

such that T preserves measure µ and that for each k and each function
bounded measurable function h supported on X × [−M,M ] we have

||h ◦ Skm − h ◦ T kΦ||L1(ν) → 0 as m→ ∞
where Sm = τ−m ◦ S ◦ τm and dν = dµdx.

Lemma 4.12. Assume that
(i) T is ergodic;
(ii) µ(Φ) = 0;
(iii) S preserves a measure ν̃ having bounded density with respect

to ν;
(iv) there exists a number K such that φ||L∞(µ) ≤ K.
Then S is recurrent.

Proof. Let Ȳ = X × [0, K] where K is the constant from condition
(iv). By Lemma 4.11 TΦ is conservative and hence the first return map
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R : Ȳ → Ȳ is defined almost everywhere. By Rokhlin Lemma applied
to R there exists a set Ωε and a number Lε such that ν(Ωε) < ε and

ν({(x, y) ∈ Ȳ : T jΦ(x, y) 6∈ Ωε for j = 0, 1 . . . Lε − 1}) < ε.

It follows that there exists mε > 1/ε such that ν(Aε) < ε where

Aε = {(x, y) ∈ τmε Ȳ : Sj(x, y) 6∈ τmεΩε for j = 0, 1 . . . Lε − 1}.
In addition we have ν̃(Aε) < Cε and ν̃(τmεΩε) < Cε. Let

A =
⋃

n

(
τm

1/n2
Ω1/n2 ∪A1/n2

)
.

Then ν(A) <∞. Note that every unbounded orbit crosses τm
1/n2

Ω1/n2

for a sufficiently large n and so it visits A. Therefore S is recurrent by
Lemma 4.3. �

Lemma 4.12 shows recurrence of impact oscillator SWA for all h̄. It
also implies recurrence of Fermi-Ulam pingpongs in the case where l̇ has
one discontinuity and the corresponding map is hyperbolic at infinity.
This follows from the normal form at infinity derived in Section 2 and
the ergodicity of hyperbolic sawtooth map proved in Section 5.

4.4. Proof of the Maximal Ergodic Theorem. We need the fol-
lowing result called maximal inequality. Give a function ψ ∈ L1(µ)
define

S̃0 = 0, and for k > 0, S̃k =
k∑

n=1

ψ◦T n, ψ∗
N = max

0≤k≤N
S̃k, PN = {x : ψ∗

N > 0}.

Lemma 4.13. For all positve N
∫

PN

ψ(x)dµ(x) > 0.

Proof. We have that

ψ∗
N(Tx) = max

1≤k≤N+1

k∑

n=2

ψ(T nx).

Thus

ψ∗
N (Tx) + ψ(x) = max

1≤k≤N+1

k∑

n=1

ψ(T nx).

Since on PN ψ∗
N = max1≤k≤N S̃k it follows that on PN

ψ∗
N (Tx) + ψ(x) ≥ ψ∗

N (x).
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Thus
∫

PN

ψ(x)dµ(x) ≥
∫

PN

ψ∗
N(x)dµ(x)−

∫

P ∗
N

ψ∗
N(x)dµ(x)

=

∫

PN

ψ∗
N (x)dµ(x)−

∫

X

ψ∗
N(x)dµ(x)

≥
∫

X

ψ∗
N (x)dµ(x)−

∫

X

ψ∗
N(x)dµ(x) = 0

where the second line follows since ψ∗
N = 0 on P c

N and the third line
follows since φ∗

N ◦ T is non negative. �

Proof of Theorem 4.9. Let ψ = φ− α. Then

PN = {x : max
k≤N

1

k

k∑

n=1

φ(T nx) > α}.

Taking N → ∞ in Lemma 4.13 we obtain the statement required. �

4.5. Ergodic Theorems for L2-functions. Let

I = {φ ∈ L2(µ) : φ(Tx) = φ(x)}.
By coboundary we mean a function of the form ψ(x)− ψ(Tx) for an
L2 function ψ. Let B denote the closure of the space of coboundaries.

Lemma 4.14. B⊥ = I.
Proof. If ψ ∈ B⊥ then 〈ψ(x), ψ(x)− ψ(Tx)〉 = 0. Accordingly

|ψ(x)ψ(Tx)dµ(x)| = ||ψ||L2 =
√

||ψ||L2||ψ ◦ T ||L2.

By Cauchy Schwartz inequality this is only possible if ψ(Tx) = cψ(x).
Since ||ψ ◦ T ||L2 = ||ψ||L2 c = ±1. Now it is evident that

〈ψ(x), ψ(x)− ψ(Tx)〉 = 0

iff c = 1, that is ψ ∈ I. �

Proposition 4.15. If φ ∈ L2(µ) then

1

N

N−1∑

n=0

φ(T nx) → φ̄ := πIφ as N → ±∞

almost everywhere and in L2.
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Proof. The statement is obvious if φ ∈ I, so we amy assume that φ ∈ B.
If φ(x) = ψ(x)− ψ(Tx) then

1

N

N−1∑

n=0

φ(T nx) =
ψ(x)− ψ(T nx)

N
→ 0 in L2.

Also by Chebyshev inequlity

µ(ψ(T nx) > εN) ≤ ||ψ||L2

ε2N2

so ψ(x)−ψ(Tnx)
N

→ 0 almost everywhere as well. For general φ ∈ B, given
ε, we can find φ̃, ψ such that

φ(x) = φ̃(x) + ψ(x)− ψ(T nx)

and ||φ̃||L2 ≤ ε. Then

φ̂±(x) = lim sup
N→±∞

∣∣∣∣∣
1

N

N−1∑

n=0

φ(T nx)

∣∣∣∣∣ = lim sup
N→±∞

∣∣∣∣∣
1

N

N−1∑

n=0

φ̃(T nx)

∣∣∣∣∣ .

Thus by Maximal Ergodic Theorem

µ(φ±(x) ≥ δ) ≤ ||φ̃||L1

δ
≤ ||φ̃||L2

δ
=
ε

δ
.

Since ε is arbitrary φ̂± = 0 so

1

N

N−1∑

n=0

φ(T nx) → 0

almost everywhere. The argument for L2-convergences is similar. �

Exercise 4.16. Prove Theorem 4.8 for L1 functions.

Hint. Take φ(n) ∈ L2 such that ||φ(n)−φ||L1 ≤ 1
n
and show that φ̄(n)

form a Cauchy sequence. Thus there is a function φ̄ such that φ̄(n) → φ̄
in L1. Show that

1

N

N−1∑

n=0

φ(T nx) → φ̄(x)

almost everywhere.

Remark 4.17. Ergodic Theorem for L2 functions will be sufficient for
all applications given in these lectures.

Corollary 4.18. If φ̄ is constant almost everywhere for a L2-dense set
of functions then T is ergodic.
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Proof. If

πIφ =

(∫
φ(x)dµ(x)

)
1

for a dense set of functions then by continuity it holds for all functions.
Thus I consists only of constants and hence T is ergodic. �

4.6. Ergodic decomposition. Let T be a map of a separable metric
space X preserving a measure µ. Let I be the algebra of T invariant
sets. Define a family of measures µx by condition µx(φ) = E(φ|I)(x).
Proposition 4.19.

(a)

∫
µx(φ)dµ(x) =

∫
φ(x)dµ(x).

(b) µx is T -invariant for almost every x.
(c) µx is ergodic for almost every x.

Proof. (a) follows from the Law of Total Expectation. (b) and (c)
follow from the formula µx(φ) = [πI(φ)](x) and Proposition 4.15. �

4.7. Proof of Rokhlin Lemma.

Proof of Lemma 4.10. We first prove the result in case T is ergodic.
Choose a set A with µ(A) < ε/n. Let R(x) be the first return time to
A. Let

B = ∪j∈A,j<R(x)/nT jx.
Clearly B, TB . . . T n−1B are disjoint. On the other hand denoting
Am = {x ∈ A : R(x) = m} we get

X − ∪n−1
j=0T

jB ⊂ ∪∞
m=1cup

n
k=1T

m−kAm

so

µ
(
X − ∪n−1

j=0T
jB
)
≤

∞∑

m=1

n∑

k=1

µ(Tm−kAm) ≤
∞∑

m=1

nµ(Am) < nε

completing the proof for ergodic transformations.
In the non-ergodic case the same argument works provided that we

can find A with

(4.1) µ
(
x : µx(A) >

ε

2n

)
<
ε

2
.

Take A with µ(A) <
ε2

4n
. Then (4.1) follows from Proposition 4.19(a)

and Markov inequality. �



38 LECTURES ON BOUNCING BALLS.

5. Statistical properties of hyperbolic sawtooth maps.

5.1. The statement. We saw in Section 4.3 that ergodicity of hyper-
bolic sawtooth maps implies the recurrence of a large class of Fermi-
Ulam pingpongs in case velocity has one discontinuity. The required
ergodicity is established in this section. In fact, following Chernov [6]
we consider a wider class of maps. Let T be a piecewise linear auto-
morphism of T2. Let S+ and S− denote the discontinuity lines of T and
T−1 respectively. Denote Sn = T n−1S+, S−n = T−(n−1)S−. We assume
that
(i) A = dT is constant hyperbolic SL2(R)-matrix.
(ii) S± are not parallel to eigendirections of A.

Theorem 5.1. [6] T is ergodic.

In fact, we derive stronger statistical properites of our map T. These
results are not needed to establish the recurrence of pingpongs but the
techniques introduced here could be used to study several classes of
bouncing ball systems.
Recall that a map T preserving a probability measure µ is called

mixing if for any L2 functions φ1, φ2,

(5.1) ρφ1,φ2(n) → 0 as n→ ∞
where

ρφ1,φ2(n) =

∫
φ1(x)φ2(T

nx)dµ(x)−
∫
φ1(x)dµ(x)

∫
φ2(x)dµ(x).

Exercise 5.2. (a) T is mixing if (5.1) holds for a dense set of functions
φ1, φ2.
(b) T is mixing if for each pair of measurable sets A1, A2

µ(A1 ∩ T−nA2) → µ(A1)µ(A2).

(That is, it suffices to check (5.1) for φi = 1Ai
.)

Thus mixing gives, in particular, that for any measurable set A we
have µ(A∩ T−nA) → µ2(A). Thus if A is invariant then µ(A) = µ2(A)
and, hence, mixing implies ergodicity.
In case T is a (piecewise smooth map) of a manifold we say that T

is exponentially mixing if for some α > 0 there are constants K > 0
and θ < 1 such that

(5.2) |ρφ1,φ2(n)| ≤ Kθn||φ1||Cα||φ2||Cα.

Exercise 5.3. Show that if for some r

|ρφ1,φ2(n)| ≤ K̃θ̃n||φ1||Cr ||φ2||Cr
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then (5.2) holds. That is, if (5.2) holds for some α then it holds for all
α (with K and θ depending on α).

Hint. Approximate Cα functions by Cr functions.

Exercise 5.4. Suppose that T is a smooth linear hyperbolic map of
T2. That, is Tx = Ax mod 1 where A ∈ SL2(R) and |Tr(A)| > 2.
(a) Show that T is exponentially mixing.
(b) Show that given an arbitrary positive sequence ζn → 0 where

exists a continuous (but not Holder continuous) function φ such that
|ρφ,φ(n)| > ζn for infinitely many n.

Hint. Consider the Fourier series of φ.

Theorem 5.5. Under the assumptions (i) and (ii) above T is expo-
nentially mixing.

By the foregoing discussion exponential mixing implies mixing which,
in turn, implies ergodicity. Thus Theorem 5.1 follows from Theo-
rem 5.5. However our proof of Theorem 5.5 relies on Theorem 5.1
so we begin with the proof of Theorem 5.1.

5.2. The Hopf argument. The proof relies on the Hopf argument.
To explain this argument we consider first the case where T is smooth,
that is fx = Ax mod 1 and A ∈ SL2(Z). Denote

W s(x) = {y : d(T nx, T ny) → 0 as n→ +∞},

W u(x) = {y : d(T−nx, T−ny) → 0 as n→ +∞}.
It is easy to see that W ∗(x) = {x + ξe∗}ξ∈R where es and eu are con-
tracting and expanding eigenvectors of A.
Let R0 be the set of regular points, that is, the points such that

for any continuous function Φ we have Φ+(x) = Φ−(x). By Pointwise
Ergodic Theorem R0 has full measure in T2. For j > 1 we can define
inductively

Rj = {x ∈ Rj−1 : mes(y ∈ W u(x) : y 6∈ Rj−1) = 0 and mes(y ∈ W s(x) : y 6∈ Rj−1) = 0}.
Then we can show by induction using Fubini Theorem that Rj has full
measure in T2 for all j.
For x ∈ R0 and Φ ∈ C(T2) let Φ̄(x) denote the common value of

Φ+(x) and Φ−(x). By Corollary 4.18 it suffices to show that Φ̄(x) is
constant almost everywhere for every continuous function Φ.
We say that x ∼ y if for all continuous Φ we have Φ̄(x) = Φ̄(y).

Note that if x, y ∈ R0 and y ∈ W s(x) then for all Φ ∈ C(T2) we have
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Φ−(x) = Φ−(y) and so x ∼ y. Similarly if x, y ∈ R0 and y ∈ W u(x)
then x ∼ y, . Given x ∈ R2 and ρ ∈ R+ let

Γρ =
⋃

y∈Wu
ρ (x)

W s(y), Γ̃ρ =
⋃

y∈R1∩Wu
ρ (x)

(W s(y)
⋂

R0).

Then if ρ is large then Γρ = T2 and by Fubini theorem mes(Γρ−Γ̃ρ) = 0
so Φ̄(z) = Φ̄(x) for almost all z. Therefore Φ̄ is constant almost surely
and hence T is ergodic.

5.3. Long invariant manifolds and ergodicity. The Hopf argu-
ment has been expanded in several directions. Already Hopf realized
that the same argument works for nonlinear systems provided that the
stable and unstable foliations are C1. This condition however is too
restrictive. Versions of the Hopf argument under weaker conditions
have been presented by Anosov, Pesin, Pugh-Shub, Burns-Wilkinson.
We need a version of the Hopf argument for systems with singularities.
The approach to handle such systems is due to Sinai and it has been
extended by Chernov-Sinai and Liverani-Wojtkowski. The proof given
here follows the presentation of [7]. A slightly different argument can
be found in [17].
The difficulty in the nonsmooth case is that it is no longer true that

W ∗(x) coincides with W̃ ∗(x) = {x + ξe∗}. Indeed if y ∈ W̃ s(x) and x
and y belong to the same continuity domain then d(Tx, Ty) = 1

λ
d(x, y)

where λ is the expanding eigenvalue of A. However if Tx and Ty are
separated by a singularity then Tx and Ty can be far apart. In fact,
there might be points which come so close to the singularities that
W s(x) is empty. This is however, an exception rather than a rule. Let

ru(x) = max{δ : W̃ u
δ (x) ⊂ W u(x)}, rs(x) = max{δ : W̃ s

δ (x) ⊂W s(x)}.
Lemma 5.6.

mes{x ∈ T
2 : ru(x) ≤ ε} ≤ Cε, mes{x ∈ T

2 : rs(x) ≤ ε} ≤ Cε.

Proof. We prove the second statement, the first one is similar. Note
that {rs(x) ≤ ε} =

⋃
n Sn(ε) where

Sn(ε) =
{
x : d(T nx, S−) ≤

ε

λn

}
.

Since our system is measure preserving

mes(Sn) = mes
{
x : d(x, S−) ≤

ε

λn

}
≤ C̄

ε

λn
. �

The proof of Theorem 5.1 relies on a local version of this result.
Namely, the following statement holds.
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Lemma 5.7. Pick y, δ and k such that d(T jW̃ u(y), S−) ≥ ε for j =
0 . . . k. Then

mes{x ∈ W̃ u
δ (y) : rs(x) ≤ ε} ≤ Cθkε.

A similar statement holds with s and u interchanged.

We first show how Lemma 5.7 can be used to derive Theorem 5.1
and then present the proof of the lemma.
Pick k such that

(5.3) Cθk < 0.001.

We first establish local ergodicity. Namely let M be a connected com-
ponent of continuity for T k and T−k. We shall show that almost all
points in M belong to one equivalence class. This will imply that ev-
ery invariant function is constant on M, that is, any invariant set is
a unions of continuity domains. Then we conclude the global ergod-
icity by noticing that there are no nontrivial invariant sets which are
union of continuity components because the boundary would be a col-
lection of line segments and this boundary can not be invariant since
the segments in Sn have different slopes for different n.
Let us prove local ergodicity. To simplify the exposition we will refer

to W̃ u leaves as horizontal lines and to W̃ s leaves as vertical lines.
Take a rectangle U ⊂ Int(M). It is enough to show that all points are
equivalent. Given N consider all squares with sides 1

N
and centers in(

0.1Z
N

)2 ∩ U.
We say that a points z in a square S is typical if z ∈ R2 and both

W u(z) and W s(z) cross S completely.
Note that all typical points in S are equivalent. Indeed denote

Σ(z) = ∪x∈Wu(z)W
u(x).

Note that if z1, z2 ∈ S then by Lemma 5.7 and (5.3), Σ(zj) ∩ S
has measure at least 0.999mes(S) and by the Hopf argument almost
all points in Σ(zj) are equivalent to zj . Also by Lemma 5.7 the set
of typical points in S has measure at least 0.998mes(S). Since for two
neighbouring squares we have mes(S1∩S2) = 0.9mes(S1) it follows that
all typical points in neighbouring squares are equivalent. Therefore all
typical points in all squares in Int(M) are equivalent. On the other
hand by Lemma 5.6 for almost all x ∈ R2 we have ru(x) > 0 and
rs(x) > 0 so such x is typical for sufficiently large N. Local ergodicity
follows and Theorem 5.1 is proved.
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Figure 13. Each square intersect its neighbours by 0.9
of their area

A B C

Figure 14. A is typical in S, B is not typical in S but
it is typical in a nearby square, C is not typical in any
square

z

Figure 15. Hopf brush Σ(z)

5.4. Growth Lemma. It remains to prove Lemma 5.7. To this end
fix a curve γ ⊂ W̃ u(x). Due to singularities T n(x) consists of many
components. Let rn(x) be the distance from x to the boundary of the
component containing x. We claim that there are constants θ < 1 and
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Ĉ > 0 such that

(5.4) P(rn ≤ ε) ≤ 2

(
θn

|γ| + Ĉ

)
ε.

(5.4) implies Lemma 5.7 since it implies that

P(Sn) ≤ 2

(
θn

|γ| + Ĉ

)
ε

λn
.

Summing this for n ≥ k we obtain the statement of Lemma 5.7.

Figure 16. The complexity is determined by the largest
number of lines passing through one point since one can
always take δ so small that any curve of length less than
δ can not come close to two intersection points

The proof of (5.4) relies on complexity bound. Let κn(δ) be the
maximal number of continuity components of T n an unstable curve
of length less than δ can be cut into. Set κn = limδ→0 κn(δ). For
the case at hand there is a constant K such that κn ≤ Kn since the
singularities of T n are lines and there at most Kn possibilities for their
slopes. Accordingly there exist numbers n0, δ0 such that κn0

(δ0) ≤
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2λn0. Replacing T by T n0 we can assume that this inequality holds for
n0 = 1 (clearly it is sufficient to prove (5.4) for T̄ = T n0 in place of T ).
Given a curve γ we define r̄n(x) as follows. Tγ is cut into sev-

eral components. Some of them can be longer than δ0. Cut each long
component into segments of length between δ0/2 and δ0. For each of
the resulting curves γj consider Tγj and repeat this procedure. Let
r̄n(x) be the distance to the boundary of the new components. Thus
r̄n(x) ≤ rn(x). In fact, r̄n equals to rn if each continuity component
has width less than δ0 so we can think of r̄n as the length of continuity
components then we partition T2 into the strips of width δ0 and regard
the boundaries of the strips as ”artificial singularities”.

Figure 17. Dynamics of components. The vertical seg-
ments are “artificial singularities”.

It suffices to prove (5.4) with rn replaced by r̄n. To this end let

Zn = sup
ε>0

mes(x ∈ γ : r̄n(x) ≤ ε)

ε
.

Then Z0 = 2
|γ| . We claim that there are constants θ < 1, C > 0 such

that
Zn+1 ≤ θZn + C.

Indeed r̄n+1(x) is less than ε if either r̄n(x) <
ε
λ
or T n+1x passes near

either genuine or artificial singularity. In T n+1x passes near a genuine
singularity then T nx is ε

λ
close to the preimage of singularity. Since

each curve is cut into at most κ1(δ0) components, we conclude that
each component of T n contributes by less than

κ1(δ0)mes
(
x : rn(x) ≤

ε

λ

)
≤ κ1(δ0)

λ
Zn.

On the other hand for long curves the relative measure of points with
small r̄n+1 is less than C(δ0)ε so their contribution is less than C(δ0)ε|γ|.
The result follows.
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5.5. Weak Mixing. In fact, the argument used to prove Theorem 5.1
can be used to obtain a stronger result.

Theorem 5.8. T × T is ergodic.

Proof. The proof of Theorem 5.1 was based on the fact, that T is a
piecewise linear map satisfying the Growth Lemma and the transver-
sality of singularity set to the stable and unstable directions. The map
T × T has the same properties. Indeed let Γ1 × Γ2 be a product of un-
stable curves in T2 × T2. Defining as before rn(x, y) the distance from
(T nx, T n) to the boundary of the component of T nΓ1×T nΓ2 containing
that point we have rn(x, y) = min(rn(x), rn(y)) and so

P(rn(x, y) ≤ ε) ≤ P(rn(x) < ε)+P(rn(y) < ε) ≤ 2θn
(

1

|Γ1|
+

1

|Γ2|
++2Ĉ

)
ε

proving the Growth Lemma for T × T . Now the proof of ergodicity of
T × T proceeds along the same line as the proof of ergodicty of T. �

5.6. Mixing and equidistribution. Here we derive Theorem 5.5 from
the following statement. Fix a small constant δ̄.

Proposition 5.9. Let Γ be a horizontal segment of length δ̄. Then for
any φ ∈ Cα(T2) we have

∣∣∣∣
1

δ̄

∫

Γ

φ(T nx)dx−
∫

T2

φ(z)dz

∣∣∣∣ ≤ Cθn||φ||Cα.

This proposition claims that images of horizontal curves of large size
become equidistributed. To obtain Theorem 5.5 we need to bootstrap
this result to small horizontal curves.

Proposition 5.10. There is a constant K > 0 such that if Γ is an Γ
be a horizontal segment of length less than δ̄, then for any φ ∈ Cα(T2)
for any n > K| ln |Γ|| we have

∣∣∣∣
1

|Γ|

∫

Γ

φ(T nx)dx−
∫

T2

φ(z)dz

∣∣∣∣ ≤ Cθn−K| ln |Γ||||φ||Cα.

Proof of Theorem 5.5. Let φ1, φ2 ∈ Cα(T2). Partition T
2 into squares

of small size δ. Let φ̄ be an approximation to φ1 which is constant on
the elements of our partition. Denote by φ̄j the value of φ̄ on the square
Sj. Note that ||φ1 − φ̄||∞ ≤ ||φ1||Cαδα. Let Γj(h) denote the horizontal
section of Sj at height h. Then
∫

T2

φ1(z)φ2(T
nz)dz =

∫

T2

φ̄(z)φ2(T
nz)dz +O (δα||φ1||Cα||φ2||Cα)
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=
∑

j

φ̄j

∫

Sj

φ2(T
nz)dz +O (δα||φ1||Cα||φ2||Cα)

=
∑

j

φ̄j

∫ δ

0

(∫

Γj(h)

φ2(T
nx)dx

)
dh+O (δα||φ1||Cα||φ2||Cα)

=
∑

j

[
φ̄jδ

2

∫

T2

φ2(z)dz

]
+O (δα||φ1||Cα||φ2||Cα)+O

(
||φ1||Cα||φ2||Cαθn−K| ln δ|) .

=

∫

T2

φ1(z)dz

∫

T2

φ2(z)dz+O (δα||φ1||Cα||φ2||Cα)+O
(
||φ1||Cα||φ2||Cαθn−K| ln δ|) .

Choosing δ so that | ln δ| = n
2K

completes the proof of Theorem 5.5. �

5.7. Another growth lemma. To derive Proposition 5.10 from Propo-
sition 5.9 we need another Growth Lemma. Recall that the first Growth
Lemma (formula (5.4)) tells us that if we start from a horizontal seg-
ment of short length δ then the probability that rn(x) is small becomes
small for n ≥ K| ln δ|). Thus on average most points belong to long
components most of the time. Here we discuss the exceptional points
which stay in short components for a long time. Let Γ be a segment
of length δ. Fix ñ ≥ K| ln δ|. We define a piecewise constant function
n̄ : Γ → N such that

n̄ ≥ ñ, T n̄Γ =
⋃

j

Γj and |Γj| = δ̄.

n̄ will be defined inductively. Namely, let {Γj0} be the components of
T ñΓ. Call Γj0 long if its length is at least 2δ̄. Each long component
will be further decomposed as Γj0 = Lj ⊔ (⊔kΓjk)⊔Rj where |Γjk| = δ̄
and Lj and Rj are neighbourhood of the left and right endpoints of Γj0
with

δ̄

2
≤ |Lj| ≤ δ̄,

δ̄

2
≤ |Rj| ≤ δ̄.

On ∪jkΓjk we let ñ = n̄. Let Γ̃ be a component where n̄ has not yet been

defined (thus Γ̃ = Γj0 where |Γj0| < 2δ̄ or Γ̃ = Lj or Rj for some long

component Γj0) consider TK| ln |Γ̃||Γ̃ and trim their long components
as before. On the long components of the resulting set we set n̄ =
n1 + K| ln |Γ̃|| while points which stay in the short components on
both attempts will be iterated once more. This procedure is continued
inductively. The second growth Lemma says that for most ponts we
stop after a relatively short time.

Lemma 5.11. P(n̄ > ñ+ k) ≤ Cθk.
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Before giving the proof of Lemma 5.11 we show how it helps to derive
Proposition 5.10.

Proof of Proposition 5.10. We apply Lemma 5.11 with ñ = K| ln δ|.
Let {Γj}j∈J be all components where n̄ ≤ K ln |δ|+n

2
. Let nj denote the

value of n̄ on T−n̄Γj. Then

1

|Γ|

∫

Γ

φ(T nx)dx =
∑

j∈J

|Γj|
|Γ|

[
1

|Γj|

∫

Γj

φ(T n−njy)dy

]
+O

(
||φ||P

(
n̄ >

K ln |δ|+ n

2

))

=
∑

j∈J

|Γj|
|Γ|

[∫

T2

φ(z)dz +O
(
||φ||θ(n−K| ln δ|)/2)

]
+O

(
||φ||P

(
n̄ >

K ln |δ|+ n

2

))

=

∫

T2

φ(z)dzP

(
n̄ ≤ n+K| ln δ|

2

)
+O

(
||φ||θ(n−K| ln δ|)/2)+O

(
||φ||P

(
n̄ >

K ln |δ|+ n

2

))

=

∫

T2

φ(z)dzO
(
||φ||θ(n−K| ln δ|)/2)

where the first equality is obtained by changing variables, the second
uses Proposition 5.9, the third follows from the definition of J and the
fourth follows from Lemma 5.11. �

5.8. Trying to succeed. We derive Lemma 5.11 from the following
more general result. Let J be a N valued random variable and T =∑J

j=1 kj where kj are N valued random variables. Let Fj be a filtration

such that k1, . . . kj are Fj-measurable and as well as sets {J = j}.
Lemma 5.12. Suppose that there are constats K > 0, p < 1, θ < 1
such that

(5.5) P(J = j + 1|Fj) ≥ p,

(5.6) P(kj+1 = k|Fj) ≤ Kθj .

Then P(T = l) ≤ K̃θ̃l.

Proof. We use moment generating functions. Let

Φj(z) = E
(
zk1+...kj1J≥j

)
.

We claim that there exist numbers r > 1, ζ < 1 such that

(5.7) Φ1(z) and Φ2(z)converge for 0 < z ≤ r

(5.8) For j > 2, Φj(z) < ζΦj−2(z) for z ≤ r.

(5.8) implies that

Φ2l+1 ≤ ζ lΦ1(z), Φ2l+2 ≤ ζ lΦ2(z)
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and so
∑

lΦl(z) converges for z ≤ r. But then E(zT ) ≤∑l Φl(z) is also
finite proving Lemma 5.12. It remains to establish (5.7) and (5.8).
The fact that Φ1(z) is bounded for z < r < θ−1 follows from (5.6).

Next

Φj(z) = E
(
zk1+···+kj−11J>j−1E

(
zkj |Fj−1

))
.

We claim that given δ we can take r so close to 1 that

(5.9) E
(
zkj |Fj−1

)
≤ 1 + δ.

Hence

Φj(z) ≤ (1 + δ)E
(
zk1+···+kj−11J>j−1

)
.

Next

E
(
zk1+···+kj−11J>j−1

)
= E

(
zk1+···+kj−21J≥j−2E

(
zkj−11J 6=j−1|Fj−2

))
.

We claim that there is a constant ζ̄ < 1 such that if r is sufficiently
close to 1, then

(5.10) E
(
zkj−11J 6=j−1|Fj−2

)
≤ ζ̄ .

Taking δ so small that ζ := ζ̄(1 + δ) < 1 we obtain (5.8). Also (5.9)
implies that Φ2(z) ≤ (1 + δ)Φ1(z) proving (5.7).
It remains to prove (5.9) and (5.10). Since the LHSs of (5.9) and

(5.10) are increasing in z it sffices to consider z = r. Then
(5.11)

E
(
rkj |Fj−1

)
= 1 +

∂

∂z
E
(
zkj |Fj−1

)
(z = z̃)(r − 1) for some z̃ ∈ [1, r].

By (5.6)
∂

∂z
E
(
zkj |Fj−1

)
(z) ≤ K

∑

l

lθl

is bounded for z ≤ r < θ−1. Therefore the second term in (5.11) can
be made as close to 1 as we wish by taking r close to 1. This proves
(5.9). The proof of (5.10) is similar except that we use that

E
(
zkj−11j 6=J−1|Fj−2

)
≤ 1− p

due to (5.5). �

5.9. Equidistribution and coupling. The main step in proving Propo-
sition 5.9 is the following.

Lemma 5.13. Let Γ1 and Γ2 be two segments of length δ̄ then
∣∣∣∣
1

δ̄

∫

Γ1

φ(T nx)dx− 1

δ̄

∫

Γ2

φ(T nx)dx

∣∣∣∣ ≤ Cθn||φ||Cα.



LECTURES ON BOUNCING BALLS. 49

Proof of Proposition 5.9. We claim that for any ε > 0 we can de-
compose T2 = (⊔jSj) ⊔ Z where Sj are rectangles of width δ̄ and
mes(Z) < ε. Indeed let ∆̄ be a vertical rectange of small length η and
let τ be a first return time to ∆ by the horizontal flow. Then τ → ∞
as η → 0. Cutting each piece of time τ orbit into segments of length δ̄
we obtain the required partition. Let Hj be the height of Sj and Γj(h)
be the vertical segment in Sj at height h. Then

∫

T2

φ(z)dz =

∫

T2

φ(T nz)dz =
∑

j

∫ Hj

0

(∫

Γj

φ(T nx)dx

)
dh+O (ε||φ||∞)

∑

j

∫ Hj

0

(∫

Γ

φ(T nx)dx

)
dh+O (θn||φ||Cα) +O (ε||φ||∞)

where the last step relies on Lemma 5.13. Since ε is arbitrary the result
follows. �

Note that the above proof shows in particular that for each ε we can
find rectangles {Sj} so that the following decomposition holds

(5.12)

∫

T2

φ(z)dz =
∑

j

∫ Hj

0

(∫

Γj

φ(x)dx

)
dh+O (ε||φ||∞) .

This decomposition proves very convenient in the study of statistical
properties of T.
Next we describe the idea of the proof of Lemma 5.13 in the smooth

case. We have

1

|Γj|

∫

Γj

φ(T nx)dx =
1

|T n/2Γj|

∫

Tn/2Γj

φ(T n/2y)dy.

Note that T n/2Γj are segment of length λn/2δ̄. Since both of the seg-
ments are in T2 the distance between their starting points in O(1).

Hence we can represent T n/2Γj = Γ̃j + Γ̂j where |Γ̃j| = O(1) and Γ̂2

is a projection of Γ1 along es. Denoting this projection by π we have
d(y, πy) = O(1) and hence

d
(
T n/2y, T n/2πy

)
= O

(
λ−n/2

)
.

Thus∫

Γ̃2

φ(T n/2y2)dy2 −
∫

Γ̃1

φ(T n/2y1)dy1 =

∫

Γ̃1

[φ(T n/2y1)− φ(T n/2πy1)dy1]

= O
(
λ−αn/2||φ||Cα

)
.
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On the other hand ∫

Γ̃j

φ(T n/2yj)dyj = O(||φ||∞).

Dividing by δ̄λn/2|T n/2Γj | we obtain the required estimate.
In the nonsmooth case the structure of T n/2Γj is more compicated

but we still can split T n/2Γj into pieces which are close to each other.
This is content of the following result.

Lemma 5.14. (Coupling Lemma) There exists a measure preserving
map π : Γ1 → Γ2 (coupling map) and a function R : Γ1 → N

(coupling time) such that
(a) There is a constant η such TR(x)x and TR(x)π(x) belong to the

same stable manifold of length less that η and so for n > R(x)

d(T nx, T nπx) ≤ ηθn−R(x).

(b) P(R ≥ k) ≤ Cθk.

5.10. Coupling, separating, recovering. Here we describe an algo-
rithm for constructing the coupling map π. This will be done recur-
sively. Namely, given Γ1,Γ2 as in the Coupling Lemma we define a
time of the first attempt k1 : Γ1 ∪ Γ2 → N. The coupling map will be
defined on a subset L1 ⊂ Γ1 so that on L1 we have R(x) = k1. We will
arrange that

(5.13) |L1| ≥ p.

In addition if L2 = πL1 then

T k1(Γ1 − Li) = ∪jΓ̃ij
so that |Γ̃ij| = δ̄ and

(5.14) PΓ1
(k1 = k) = PΓ2

(k1 = k) ≤ Cθk.

Then we will try recursively to couple Γ̃1j to Γ̃2j and so on.
(5.13) shows that repeating the above procedure repeatedly we can

define π alomost everywhere. Also (5.13) and (5.14) allow to apply
Lemma 5.12 to get an exponential tail bound on the coupling time.
it remains to describe one step of our proceudre verifying (5.13) and
(5.14). The coupling algorithm relies on the following estimate.

Lemma 5.15. If δ̃, η̃ are sufficiently small than there is a constant
N = N(δ̃, η̃) such that for each pair Γ1,Γ2 with |Γ1| = |Γ2| = δ̄ there are

segments L̂1 ⊂ Γ1, L̂2 ⊂ Γ2 and N̄ < N such that T N̄ L̂i are horizontal
segments of length δ̃, T N̄ L̂2 is a vertical projection of T N̄ L̂1 and the
distance between T N̄ L̂1 and T N̄ L̂2 is less that η̃.
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During one run of our algorithm π will be defined on a subset L1 ⊂
L̂1. But first we explain how to define k1 on Γ1 − L̂1. We will use the
following fact.

Lemma 5.16. Let G1, G2 be unions of horizontal segments of the same
total length such that

PGi
(r(x) < ε) ≤ Zε

where PGi
is the uniform distribution on Gi and r(x) is the distance

from x to the boundary of the segment containing x. Then there is a
function k : G1 ∪G2 → N such that T kGi =

⋃
j Gij, |Gij| = δ̄ and

PG1
(k(x) = k) = PG2

(k(x) = k) ≤ Cθk−K lnZ .

The proof of Lemma 5.16 is similar to the proof of Lemma 5.11 so it
is left to the reader.
Next we consider L̂1. We want to set π = T−N̄ π̃ where π̃ : T N̄ l̂1 →

T N̄ L̂2 is a vertical projection. However, y and π̃y need not belong to
the same stable manifold. The obstacle is existence of a number n such
that T ny and T nπ̃y are separeted by a singularity. In that case

d(T ny, S̃) ≤ ηλ−N , d(T nπ̃y, S̃) ≤ ηλ−n.

So at time n we remove the points falling into ηλ−n neighbourhood
of S̃ as well as its vertical projection. On the removed set we define
separation time s(x) as follows. Consider a component of the set
removed at time n. If this component is longer than λ−2n then we let
s(x) to be equal to n on that component. Otherwise an endpoint b of
this component has been removed at a erlier time and we let s = s(b)
on this component. Note that by construction and (5.4)we have

(5.15) P(s = k) ≤ C̄θ̄k.

Also if η̃ ≪ δ̃ then (5.4) show sthat the set where π = T−N̄ π̃ (that is
the set of points which are not removed due to a close approach to the
singular set) has a relatively large measure in L1 proving (5.13).

It remains to define k on L1 − L̂1. This will be done using Lemma
5.16 pairing the points having the same separation time. Note that by
our construction all componets where s = s̄ have length at least λ−2s̄,
so letting ρ(x) = k(x)− s(x) be the recovery time we get

(5.16) P(ρ(x) > ks(x) + l) ≤ C̄θl.

(5.15) and (5.16) give (5.14) for the separated points since

P(k(x) > k) ≤ P

(
s(x) >

k

2K

)
+ P

(
ρ(x) ≥ Ks(x) +

k

2

)
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and both terms have exponentially small probability. It remains to
prove Lemma 5.15.

Proof of Lemma 5.15. We begin with a simplifying remark. The state-
ment requires that N be uniform in Γ1,Γ2 but we note that it suffices
to prove it for fixed Γ1,Γ2 (but for all sufficiently small δ̃, η̃). Indeed

take
˜̃
δ > δ̃, ˜̃η < η̃. Then if the statement holds for (Γ1,Γ2,

˜̃
δ, ˜̃η) then

it also holds for (Γ′
1,Γ

′
2, δ̃, η̃) provided that (Γ′

1,Γ
′
2) is sufficiently close

to (Γ1,Γ2). Since the set of pairs is compact we can choose a finite
subcover achived the required uniformity.
Let

Σj =
⋃

y∈Γj

W s
η̃/3(y).

Note that Σj has a positive measure in T
2, hence Σ1×Σ2 has a positive

measure in T2 × T2. By ergodicity of T × T given a set Ω ∈ T2 × T2

almost every point almost every point in Σ1×Σ2 visits Ω with frequency
mes(Ω). Let

Ωk = {(x1, x2) : T2×T
2 : d(x1, x2) ≤

η̃

3
and T−k is continuous in B(xi, 2δ̃)}.

Note that if η̃, δ̃ are small than mes(Ωk) ≥ η2/10. By the foregoing
discussion given ε there is N such that

mes ((y1, y2) ∈ Σ1 × Σ2 : Card(n ≤ N : (T ny1, T
ny2) ∈ Ωk) ≤ N

mes(Ωk)

2
) ≤ ε

Next by the growth lemma given ε̂ there eixsts δ̂ so small that

mesΣ1×Σ2
((y1, y2) : rn(x1) < δ̂ or rn(x2) ≤ δ̂) < ε̂mes(Σ1 × Σ2)

where xi = π̃yi. So if

n̂(y1, y2) = Card(n ≤ N : rn(x1) ≥ δ̂ and rn(x2) > δ̂)

then E(n̂) ≥ (1− ε̂)N. Since n̂ ≤ N

P

(
n̂ < N

(
1− η2

100

))
≤ 100ε̂

η2

which can be made as small as we wish by choosing ε̂ small. Note
that if d(T ny1, T

ny2) < η̃/3 then d(T nx1, T
nx2) < η̃. Therefore given

if N is sufficiently large and ε, ε̂ are sufficiently small then there exist
(x1, x2) ∈ Σ1 × Σ2 and N̄ < N such that

d(T N̄x1, T
N̄x2) < η̃, rN̄−k(xi) > δ̂ and T−k is continuous on B(xi, δ)

for i ∈ {1, 2}. The continuity condition implies that

rN̄(xi) ≥ rN̄−kλ
k ≥ δ̃
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if k is sufficiently large. Therefore Γ1 and Γ2 contain two segments such
that their T N̄ image has length at least 2δ̃ and the distance between
their centers is at most η̃. If η̃ < δ̃ (which can be assumed without loss
of the generality) we can trim those segments so that one is a vertical
projection of the other proving the lemma. �

6. The Central Limit Theorem for Dynamical Systems.

6.1. Estimating error in Ergodic Theorem. If T is an ergodic map
of a space M equipped with a probability measure µ then the Ergodic
Theorem says that for φ ∈ L1(µ) we have

SN(x)

N
→
∫

M

φ(x)dµ(x) where SN (x) =

N−1∑

n=0

φ(T nx).

The next natural question is the rate of convergence.
To formulate the question more precisely we need to recall some

facts from probability theory. Let S be a Polish metric space, Sn be a
sequnce of S valued random variables and S be an S valued random
variable. We say that SN converges to S in distribution (written as
SN ⇒ S) if for any bounded continuous function Φ we have

E(Φ(SN )) → E(Φ(S)).

In case S = Rd the following statements are equivalent

• SN ⇒ S
• For each ξ ∈ Rd E(eiξSN ) → E(eiξS)
• Define FS(s) = P(S(1) ≤ s1, S(2) ≤ s2, . . . S(d) ≤ sd) and and
let FSN

(s) be a similar expression for SN then for all continuity
points of FS we have limN→∞ FSN

(s) = FS(s).

Given a number σ > 0 let N (σ2) denote the normal random variable
with zero mean and standard deviation σ. Thus

P(N ≤ s) =

∫ s

−∞

1√
2πσ

e−u
2/2σ2du and E

(
eiξN

)
= e−σ

2ξ2/2.

In case of independent random variables the fluctuations of ergodic
sums are of order

√
N and the limiting distribution is normal. One can

ask if the same is true in the dynamical systems setting. In many cases
where one has exponential divergence of nearby trajectories the answer
is YES. However one needs to impose some regularity requirement on
φ. Without smoothness assumptions, Exercise 5.4(b) shows that one a
function φ such that E(S2

N ) ≫ N.
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Theorem 6.1. Let T be as in Theorem 5.1 and φ ∈ Cα(T2) be a
function with zero mean. Suppose that x is uniformly distributed on
T
2. Then

SN√
N

⇒ N (σ2)

where

(6.1) σ2 =
∞∑

p=−∞

∫

T2

φ(z)φ(T pz)dz.

In other words,

P

(
SN√
N

≤ s

)
→
∫ s

−∞

1√
2πσ

e−u
2/(2σ2)du.

The assumption that φ has zero mean does not cause any loss of
generality since we can always replace φ by φ̄ = φ−

∫
T2 φ(z)dz.

6.2. Bernstein method. By the foregoing discussion we need to show
that

(6.2) E

(
eiξSN/

√
N
)
→ e−σ

2ξ2/2.

Before proving (6.2) for toral maps let us recall how (6.2) is es-
tablished for independent random variables. Namely, suppose for a
moment that SN =

∑N−1
n=0 Xn where Xn are indendent identically dis-

tributed random variables with zero mean and standard deviation σ.
We have

E

(
eiξSN/

√
N
)
=
[
E

(
eiξX/

√
N
)]N

.

Next

E

(
eiξX/

√
N
)
= E

(
1 +

iξX√
N

− ξ2X2

2N

)
+ o

(
1

N

)
= 1− ξ2σ2

2N
+ o

(
1

N

)
.

Raising this expression to the N -th power we obtain (6.2) in the case
of indendent identically distributed random variables.
In the dynamical system case this method can not be applied di-

rectly since φ(T nx) are not independent for different n. However, mix-
ing shows that φ(TNx) and φ(T n+jx) are weakly dependent for large
j. One useful technique for handling weakly dependent random vari-
able is Bernstein big block small block method which we now describe.
Choose α1 < α2 <

1
4
and divide [0, N ] into big blocks of size Nα2 sep-

arated by small blocks of size Nα1 starting from a small block. Thus
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we let

˜̃Sj =

Nα1 j+Nα2(j−1)∑

n=(Nα1+Nα2 )(j−1)+1

φ(T nx), S̃j =

(Nα1+Nα2)j∑

n=Nα1 j+Nα2(j−1)+1

φ(T nx),

S̃ =
∑

j

S̃j ,
˜̃S =

∑

j

˜̃Sj .

Thus ˜̃S is the contribution of small blocks while S̃ is the contribution
of big blocks. The idea is that the contribution of the small blocks is

negligible since the number of terms in ˜̃S is O (N1−α2+α1) while the
contribution of different big blocks is almost independent since the
blocks are far apart. Let us give the detailed argument. First we

dispose of ˜̃S. We have

E

(
˜̃S
2
)

=

∗∗∑

n1,n2

∫

T2

φ(T n1x)φ(T n2x)dx =

∗∗∑

n1,n2

∫

T2

φ(x)φ(T n2−n1x)dx

=

∗∗∑

n1,n2

O
(
θ|n2−n1|) = O

(
N1+α1−α2

)

where
∑∗∗ denotes the sum over the small blocks. Thus

E



(

˜̃S√
N

)2

 = O

(
Nα1−α2

)

and so
˜̃S√
N

⇒ 0.

Exercise 6.2. If S ′
N ⇒ S, S ′′

N ⇒ 0 then S ′
N + S ′′

N ⇒ S.

Accordingly it is enough to prove the CLT for S̃. Due to the decom-
position (5.12) we may assume that x is chosen uniformly on a segment
Γ of length δ̄. Let mj be the center of j small block. Let Γjk denote
the components of Tmj+1Γjk. We have

EΓ (ψ ◦ Tmj+1) =
∑

k

ckEΓjk
(ψ)

where ck = PΓ(T
mj+1x ∈ Γjk. Denote Qj =

∑(j)Φ(T nx) where
∑(j)

means the sum over the j-th big block. Condier the characterisitc
fuctions

γj(ξ) = EΓ

(
exp

(
j∑

l=1

iξQl√
N

))
for j > 1 and γ0(ξ) = 1.
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We have

γj+1(ξ) =
∑

k

ckEΓjk

(
exp

([
j∑

l=1

iξQl√
N

]
+
iξQj+1√

N

))

=
′∑

k

ckEΓjk

(
exp

([
j∑

l=1

iξQl√
N

]
+
iξQj+1√

N

))
+O

(
N−100

)

where
∑′

k denotes the sum over the components with |Γjk| ≥ N−100.

Choose xk ∈ T−mj+1Γjk and let qk =
∑j

l=1Ql(xk). Note that if x̃k ∈
T−mj+1Γjk then d(Tmj+1xk, T

mj+1x̃k) ≤ 1 and so

d(T nxk, T
nx̃k) ≤

1

λmj+1−n ≤ 1

λN
α1/2

.

Since φ ∈ Cα(T2) we have

(6.3)
∑

l

[Ql(x̃k)−Ql(xk)] = O
(
λ−αN

α2
)

and so

γj+1(ξ) =
′∑

k

cke
iξqk/

√
N
EΓjk

(
eiξQj+1/

√
N
)
+O

(
N−100

)
.

Now as in the independent case we can use a decomposition

eiξQj+1/
√
N = 1 +

iξQj+1√
N

− ξ2Q2
j+1

2N
+O

( |Qj |3
N3/2

)
.

Lemma 6.3. (a) EΓjk
(Qj+1) = O (N−100) .

(b) EΓjk
(Q2

j+1) = Nα2σ2 + o(1).

Lemma 6.3 implies that
(6.4)

EΓjk

(
eiξQj+1

)
= 1− Nα2−1σ2ξ2

2
+O

(
1

N

)
+O

(
EΓjk

(∣∣Q3
j+1

∣∣
N3/2

))
.

Next

EΓjk

(
|Qj+1|3

)
≤ Nα2EΓjk

(
|Qj+1|2

)
= O

(
N2α2

)

so the last term in (6.4) is O
(
N2α−3/2

)
and so it is negligible. Using

again (5.4) and (6.3) we see that

′∑

k

cke
iξqk/

√
N = γj(ξ) +O

(
N−100

)
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so that

(6.5) γj+1(ξ) = γj(ξ)

(
1− Nα2−1σ2ξ2

2

)
+O

(
1

N

)
.

Iterating this relation N
Nα1+Nα2

times we obtain

(6.6) E

(
eiξS̃/

√
N
)
≈
(
1− Nα2−1σ2ξ2

2

)N1−α2

≈ e−σ
2ξ2/2

as needed.

Exercise 6.4. Show that (6.5) implies (6.6).

6.3. Moment estimates.

Proof of Lemma 6.3.

(a) EΓjk
(Qj+1) =

bj+1∑

aj+1

EΓjk
(φ ◦ T n) = O

(
||φ||CαNα2θN

α2
)

where [aj , bj ] is the j-th big block.

(b) EΓjk

(
Q2
j+1

)
=

bj+1∑

n1,n2=aj+1

EΓjk
((φ ◦ T n1)(φ ◦ T n2)).

We begin with an a priori bound

(6.7) EΓjk
((φ ◦ T n1)(φ ◦ T n2)) = O

(
θ|n2−n1|) .

To check (6.7) we assume without the loss of the generality that n2 >
n1. Let n3 =

n1+n2

2
. We have

EΓjk
(ψ ◦ T n3) =

∑

s

csEΓjks
(ψ)

where Γjks are the components of T n3Γjk. By the Growth Lemma we
have

EΓjk
((φ ◦ T n1)(φ ◦ T n2)) =

′∑

s

csEΓjks
((φ ◦ T−r)(φ ◦ T r)) +O(e−εr)

where p = n2−n1

2
and

∑′
s means the sum over components which are

longer than e−εr. Choosing xs ∈ T−n3Γjks we get that on Γjks

φ(T−px)φ(T px) =
[
φs +O

(
λ−αp

)]
φ(T px)

where φs = φ(T−rxs). Thus

EΓjk
((φ ◦ T n1)(φ ◦ T n2)) =

′∑

s

csφsEΓjks
(φ ◦ T p) +O

(
e−εp

)
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and if εK < 1 then Proposition 5.10 gives EΓjks
(φ ◦ T p) = O(θp) com-

pliting the proof (6.7). Now to finish the proof of part (b) it remains
to show that for a fixed p

(6.8) EΓjk
((φ ◦ T n)(φ ◦ T n+p)) →

∫

T2

φ(z)φ(T pz)dz

as n → ∞. Let φp(x) = φ(x)φ(T px). The LHS of (6.8) is EΓjk
(φp ◦

T n). Thus if φp were Holder then the result would follow directly from
Proposition 5.10. However φp is not Holder since T p is not smooth.
Fortunately, φp can be well approximated by Holder functions. Given
ε let

φp,ε =
1

πε2

∫

B(x,ε)

φp(y)dy.

Then φp,ε is uniformly Lipshitz

|φp,ε(x′)− φp,ε(x
′′)| ≤ C

ε2
d(x′, x′′).

On the other hand if T p is continuous on B(x, ε) then

(6.9) |φp,ε(x)− φ(x)| ≤ Krεα.

Thus

EΓjk
(φp ◦ T n) = EΓjk

(φp,ε ◦ T n) + EΓjk
([φp − φp,ε] ◦ T n) = I + (II).

I =

∫

T2

φp,ε(z)dz +O

(
θn

ε2

)

since φp,ε is Lipshitz. Next, due to (6.9) we have

(6.10) (II) ≤
p−1∑

k=0

PΓjk
(rn+k ≤ ε) +Kpεα ≤ Cpε+Kpε

α.

Choose ε so that θn = ε3 then both error terms are small.
Combining (6.10) with decomposition (5.12) we see that

∫

T2

φp,ε(z)dz =

∫

T2

φp(z)dz +O(pε+ εα)

so (6.8) follows. �

6.4. The case of zero variance. Theorem 6.1 is only intersting if the
variance given by formula (6.1) is non-zero. Indeed if σ2 is zero then
the Theorem just says that

√
n is a wrong scaling for ergodic sums.

Here we show that σ2 = 0 only in exceptional cases. Namely we prove
the following result.
Let Pk denote the partition into domains of continuity of T k and

P̃k = Pk ∨ P−k.
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Proposition 6.5. Suppose that for some k̄ A is Lipshitz on each el-
ement of P̃k̄ and that σ2 = 0. Then there exists k0 and a function B
which is Lipshitz on each element of P̃k0 such that

(6.11) φ(x) = B(x)− B(Tx).

Corollary 6.6. If there is a periodic point p of period N such that

N−1∑

n=0

φ(T np) 6= 0

then σ2 > 0.

Proof. If σ2 = 0 then
∑N−1

n=0 φ(T
np) = B(p)− B(TNp) = 0. �

The proof of Proposition 6.5 consists of several steps.

Lemma 6.7. If σ2 = 0 then (6.11) admits an L2 solution.

Proof.

||Sn||2L2 =

n−1∑

k1,k2=0

µ(φ(T k1x)A(T k2x)) =

n−1∑

k=0

σn,k

where σn,k denotes the sum of the terms with the smallest index k.
Thus

σn,k =

n−1−k∑

j=−(n−1−k)
µ(φ(x)φ(T jx)) = σ2 +O

(
θn−k

)
= O

(
θn−k

)

since σ2 = 0. Hence

||Sn||2L2 =
n−1∑

k=0

σn,k =
n−1∑

k=0

O
(
θn−k

)
= O(1).

Therefore {Sn} is weakly precompact. Let B = w−limSnj
for some

subsequence nj . Then

B(x) = φ(x) + w− lim
nj→∞

Snj
(Tx)− w− lim

nj→∞
φ(T njx).

By mixing for each H ∈ L2 we have

lim
n→∞

µ(H(φ ◦ T n)) = µ(H)µ(µ) = 0.

That is w−limn→∞ φ(T nx) = 0 and so B(x) = φ(x)+B(Tx) as claimed.
�
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Lemma 6.8. (a) For almost all x1 ∈ T2, for almost all x2 ∈ W s(x1)
we have

(6.12) B(x2)− B(x1) =

∞∑

n=0

[φ(T nx1)− φ(T nx2)].

(b) For almost all x1 ∈ T2, for almost all x2 ∈ W u(x1) we have

(6.13) B(x2)− B(x1) =
∞∑

n=1

[φ(T−nx1)− φ(T−nx2)].

Proof. We prove (a). The proof of (b) is similar.
We have

B(x2)−B(x1) =

N−1∑

n=0

[φ(T nx1)− φ(T nx2)]− B(TNx2) +B(TNx1).

Given m we can choose B̄m,
¯̄Bm such that B = B̄m + ¯̄Bm, B̄m ∈

C(T2), || ¯̄Bm||L2 ≤ 2−m. Next choose εm such that if d(y1, y2) < εm
then |B(y2)− B(y1)| < 2−m. Now take N̄m such that λ−N̄m < εm. Set
x2(t, x1) = x1 + tes. Then

mes

(
(t, x1) : |B(T N̄mx1)− B(T N̄mx2(t, x1))| <

(
9

10

)m
+

(
1

2

)m)

≤ mes

(
(t, x1) : | ¯̄Bm(T

N̄mx1)− ¯̄Bm(T
N̄mx2(t, x1))| <

(
9

10

)m)

≤ 2
(1/2)m

(9/10)2m
= 2

(
50

81

)m
.

Therefore for almost all x1 ∈ T2 for almost all x2 ∈ W s(x1) there exists
m̄ such that for m > m̄

|[B(x2)− B(x1)]−
N̄m−1∑

n=0

[φ(T nx2)− φ(T nx1)]| ≤
(

9

10

)m
+

(
1

2

)m
.

Taking m→ ∞ we obtain the claimed result. �

Let

D = {x ∈ T
2 : for a. e. x̄ ∈ W s(x) (6.12) holds and for a. e. x̄ ∈ W u(x) (6.13) holds}.

D̃ = {x ∈ D : for a.e. x̄ ∈ W s(x) ∪W u(x) x̄ ∈ D}.
Choose k0 so large that if Γ is a horizontal curve of length δ with
d(Γ, ∂P̃k0) ≥ 3δ then

mes(x ∈ Γ : rs(x) ≥ 3δ) ≥ 0.99δ
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and if Γ is a vertical curve of length δ with d(Γ, ∂P̃k0) ≥ 3δ then

mes(x ∈ Γ : ru(x) ≥ 3δ) ≥ 0.99δ.

Let Π be a rectangle containing in one element of P̃k0. Divide Π into
squares of size 1/N. Let DN be the set of points x in D̃ ∩ Π such that
both W s(x) and W u(x) fully cross the square containing x. Consider
two points x1, x2 ∈ DN . Assume for a moment that x1, x2 belong to
the same row and that the 1/N ≤ d(x1, x2) ≤ 2/N. Let

ΓN (xj) =
⋃

y∈Ŵ s(xj)∩D̃:ru(x)≥3/N

(W u
3/N (y) ∩D),

where Ŵ s(xj) is the part of W s(xj) containing inside our row. By our
choice of k0, ΓN(x1) ∪ ΓN(x2) has large measure. In particular, there

exist yj ∈ Ŵ s(xj)∩D̃ such that y2 ∈ W u(y1), and (xj , yj) satisfy (6.12).
We claim that (y1, y2) satisfy (6.13). Indeed since yj ∈ D there exists
y3 such that (y1, y3) and (y3, y2) satisfy (6.13) but then (y1, y2) also
satisfy (6.13). Since

B(x2)−B(x1) = [B(x2)−B(y2)] + [B(y2)−B(y1)] + [B(y1)−B(x1)]

we conclude from (6.12) and (6.13) that |B(x2)−B(x1)| ≤ C/N. Taking
arbitrary x1, x2 ∈ DN which are in the same row we can find x1 =
z0, z1, z2 . . . zl = x2, such that 1/N ≤ |zj − zj−1| ≤ 2/N and l ≤
N |x2 − x1|+ 1. Accordingly

|B(x2)−B(x1)| ≤
l∑

j=1

|B(zj)−B(zj−1)| ≤
Cl

N
≤ C(|x2 − x1|+

1

N
).

Hence if x1, x2 ∈ D are in the same row and |x2 − x1| ≥ 1/N then

(6.14) |B(x2)− B(x1)| ≤ C̄|x2 − x1|.
A similar conclusion holds if x1 and x2 at the same column. For general
x1, x2 we can find z such that x1 and z are at the same row and x2 and
z are at the same column and write

B(x2)− B(x1) = [B(x2)−B(z)] + [B(z)− B(x1)]

to conclude that (6.14) holds for arbitrary x1, x2 ∈ Π ∩ D with |x2 −
x1| ≥ 1/N. Next if x1, x2 ∈ D̃ then for large N we will have xj ∈ DN

and |x2 − x1| ≥ 1/N so (6.14) holds for all x1, x2 ∈ D̃ ∩ Π. In other
words B can be modified on the set of measure 0, so that it becomes
Lipshitz on Π and (6.11) holds almost everywhere. Covering every

element of P̃k0 by rectangles we see that there exists a version of B
which is Lipshitz on each element of P̃k0 such that (6.11) holds almost
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everywhere. But then by continuity it should hold everywhere. The
proof of Proposition 6.5 is complete.

6.5. Convergence to Brownian Motion. Theorem 6.1 concerns the
distribution of Sn for fixed n. Sometimes we would like to know a
joint distribution of several Snj

at the same time, for example, we may
wish to compute P(maxn≤N Sn ≤ L). Such questions are addressed by
Functional Central Limit Theorem. Recall that a random process
B(t) is called a Brownian Motion with variance parameter σ2 if B
has continuous paths, B(0) = 0 and given 0 = t0 < t1 < t2 · · · < tk,the
increments B(tj+1) − B(tj) have normal distribution with zero mean
and varaince σ2(tj+1 − tj) and are independent of each other.
In the setting of Theorem 6.1 let BN (t) = SNt√

N
if Nt is integer with

linear interpolation in between.

Theorem 6.9. As N → ∞, BN (t) converges to the Brownian Motion
with variance parameter σ2 given by (6.1).

According to [2] to show that BN (t) ⇒ B(t) we need to check two
things.
First, we have to establish the convergence of finite dimensional dis-

tributions. That is, for each 0 = t0 < t1 < t2 < . . . tk

(B(t1)− B(t0),B(t2)− B(t1), . . .B(tk)− B(tk−1)) ⇒ (N1,N2 . . .Nk)

where N1,N2 . . .Nk are indepepndent normal random variables with
zero means and variances σ2(t1 − t0), σ

2(t2 − t1), . . . , σ
2(tk − tk−1).

Second, we need to prove tightness, that is, to show that for each
ε > 0 there exists a compact set Kε ⊂ C[0, 1] such that P(BN (t) ∈
Kε) > 1− ε for large N.
Let Nj = Ntj . To check the convergence of finite dimensional distri-

butions we need to show that
(6.15)

E

(
exp

[∑

m

ξm(SNm − SNm−1
)

])
→ exp

[
−σ

2

2

∑

m

ξ2m(tm − tm−1)

]
.

But the proof of (6.15) is similar to (6.6) so it can be left to the reader.
To prove tightness we need an auxillary result.

Lemma 6.10.

E((SN2
− SN1

)4) ≤ L(n2 − n1)
2.

Proof. We have

(SN2
− SN1

)4) =

N2∑

n1,n2,n3,n4=N1

φ(T n1x)φ(T n2x)φ(T n3x)φ(T n4x).
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To estimate the expectation of the above expression we may assume
without the loss of the generality that n1 ≤ n2 ≤ n3 ≤ n4. We claim
that

(6.16) E(φ(T n1x)φ(T n2x)φ(T n3x)φ(T n4x)) = O(θp)

where p = max(n4 − n3, n2 − n1). Indeed if p = n3 − n3 then the proof
of (6.16) is similar to the proof of (6.7). If p = n2−n1 then we use the
same argument for T−1. �

Define KL =
{
ψ ∈ C[0, 1] : ψ(0) = 0 and for all l ≥ L, k ≤ 2l :

∣∣∣∣ψ
(
k + 1

2l

)
− ψ

(
k

2l

)∣∣∣∣ < 2−l/8
}

Exercise 6.11. Show that KL is compact in C[0, 1].

Thus it reamins to show that if L is large than P(BN ∈ KL) is close
to 1. Let nk,l(N) = kN

2l
. Then

P

(∣∣∣∣BN
(
k + 1

2l

)
− BN

(
k

2l

)∣∣∣∣ ≥ 2−l/8
)

= P

(∣∣Snk+1,l(N) − Snk,l(N)

∣∣ ≥
√
N2−l/8

)
≤

E

(∣∣Snk+1,l(N) − Snk,l(N)

∣∣4
)

N2/2l/2
≤ C

N2/22l

N2/2l/2
= C2−3l/2.

Accordingly

P

(
∃k ≤ 2l :

∣∣∣∣BN
(
k + 1

2l

)
− BN

(
k

2l

)∣∣∣∣ ≥ 2−l/8
)

≤ C2−l/2

and

P

(
∃l ≥ L, ∃k ≤ 2l :

∣∣∣∣BN
(
k + 1

2l

)
− BN

(
k

2l

)∣∣∣∣ ≥ 2−l/8
)

≤ C̃2−l/2

proving tightness. This completes the proof of Theorem 6.9.

7. Invariant comes and hyperbolicity.

7.1. Dimension 2. In Sections 5 and 6 we saw that in order to ensure
strong stochasticity we need to construct a cone family K(x) such that
this family is invariant: df(K(x)) ⊂ K(x) and df expands the cones,
that is, there is a constant λ > 1 such that for all v ∈ K(x) we have
||df(v)|| ≥ λ||v||. Here we shall show that in the area preserving case
the mere existence of invariant comes implies expansion. We begin
with the following elementary fact.

Lemma 7.1. If L ∈ SL2(R) has positive elements then it is hyperbolic.
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This result is quite intuitive. If L has positive elements then the angle
between Le1 and Le2 is less than π

2
and since due to area preservation

||Le1||||Le2|| sin∠(Le1, Le2) = 1

there should be some expansion. The analytic prove is also easy. If

L =

(
a b
c d

)
then ad = 1 + bc > 1 and so a+ d ≥ 2

√
ad > 2.

The above proof does not show where the expanding direction is
located. There is another argument which is equally simple but has
an advantage that it works for products of different matrices. This
argument is based on the classical notion of Lyapunov function. Let
φ0 be the angle which vector (x0, y0) makes with x axis and φ1 be
the angle which vector (x1, y1) = L(x0, y0) makes with x axis. Then
φ1 = g(φ0) for a continuous function g satisfying 0 < g(0) < g(π

2
) < π

2
.

By the intermediate value theorem there exists φ such that g(φ) = φ
and hence (x1, y1) = λ(x0, y0). To estimate λ let Q(x, y) = xy. Then

Q(x1, y1) = λ2x0y0 = x1y1 = acx20 + bdy20 + (ad+ bc)x0y0

> (ad+ bc)x0y0 = (1 + 2b0c0)x0y0.

It follows that λ >
√
1 + 2bc > 1.

The previous argument shows that Q increases after the applica-
tion of L. The same argument works for compositions. Namely, if
L1, L2 . . . Ln are positive SL2(R) matrices and

vn = Ln . . . L2L1v0

then

||vn|| ≥ 2
√
Q(vn) ≥ 2Q(v0)

n∏

j=1

Λj

where Λj = (1 + 2bjcj).
To get a coordinate free interpretation of this result suppose that

f :M2 →M2 preserves a smooth measure given by µ(A) =
∫∫

A
ω and

that there is a family of cones K(x) such that along an orbit xn = fnx0
we have df(K(xn)) ⊂ Kn+1. Choose a basis in TxM so that

K(x) = {e = α1e1 + α2e2 : α1 > 0 and α2 > 0}

and ω(e1, e2) = 1. Then df can be represented by an SL2(R) matrix

and by the above inequality we have ||dfn(v0)|| ≥ 2
√
Q(v0)

∏n−1
j=0 Λj

where Λj = 1 + 2bjcj.
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7.2. Higher dimensions. Here we present a multidimensional version
of this estimate which is due to Wojtkowski. Consider a symplectic
space (R2d, ω). Let V1 and V2 be two transversal Lagrangian subspaces
(ω|Vj = 0). Than each vector v ∈ R2d has a unique decomposition
v = v1 + v2, vj ∈ Vj. Let Q(v) = ω(v1, v2). We can choose frames in V1
and V2 so that if u1 = (ξ1, η1), u2 = (ξ2, η2) where ξj ∈ V1, ηj ∈ V2 then
ω(v1, v2) = 〈ξ1, η2〉 − 〈ξ2, η1〉. Then Q((ξ, η)) = 〈ξ, η〉. Define

K = {v : Q(v) ≥ 0}.
Let L be a symplectic matrix. We can write L in the block form

with respect to the decomposition R2d = V1 ⊕ V2 as L =

(
A B
C D

)
.

The symplecticity condition amounts to the equations

A∗D − C∗B = I, A∗C = C∗A, D∗B = B∗D.

One important case is L̃ =

(
I R
P C

)
. Then we have

P ∗ = P, R∗S = S∗R and S − PR = I.

The last two equations give

R∗S −R∗PR = R∗ that is (S∗ − R∗P )R = R∗.

But S∗ − R∗P = (S − PR)∗ = I. Therefore the symplecticity of L̃
amounts to

(7.1) R∗ = R, P ∗ = P, S − PR = I.

We say that L is monotone if LK ⊂ K and strictly monotone if LK ⊂
Int(K) ∪ {0}.
Lemma 7.2. If L is monotone then LV1 is transversal to V2 and LV2
is transversal to V1.

Proof. Suppose to the contrary that there is 0 6= v1 such that Lv1 ∈ V2.
Take v2 ∈ V2 such that ω(v1, v2) > 0. We have

ω(v1, v2) = ω(Lv1, Lv2) = ω(Cv1, Bv2).

Take vε − v1 + εv2. Then vε ∈ K for ε > 0. On the hand

Q(Lvε) = 〈εBv2, Cv1 + εDV2〉 = −εω(v1, v2) + ε2ω(Bv2, Dv2)

is negative for small positive ε giving a contradiction. �

Lemma 7.2 implies that A is invertible, so we can consider L̂ =(
A 0
0 (A∗)−1

)
. Note that L̂ preserves Q since

Q(L̂v) = 〈Aξ, (A∗)−1η〉 = Q(v).
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We shall use a decomposition L = L̂L̃ where L̃ =

(
I R
P A∗D

)
for

some matrices P and R.

Theorem 7.3. L is monotone iff Q(Lv) ≥ Q(v) for all v ∈ R2d.
L is strictly monotone iff Q(Lv) > Q(v) for all 0 6= v ∈ R

2d.

Proof. We prove the first statement, the second is similar.
Clearly, if L increases Q and v ∈ K then Q(Lv) ≥ Q(v), so Lv ∈ K.
Conversely, suppose K is monotone. Since L̂ preserves Q, we need

to show that Q(L̃v) ≥ Q(v). Due to (7.1) we have

L̃(ξ, η) = (ξ +Rη, Pξ + η + PRη)

so

(7.2) Q(L̃(ξ, η))−Q(ξ, η) = 〈Rη, η〉+ 〈Pζ, ζ〉
where ζ = ξ +Rη. Since Q(L̃(ξ, 0)) = 〈Pξ, ξ〉 so P ≥ 0. Our next goal
is to show that R ≥ 0. To this end consider an eigenvector Rη = λη.
Take ξ = aη. Then (ξ, η) ∈ K if a > 0. On the other hand

Q(L̃(ξ, η)) = (a + λ)〈η, η〉+ (a + λ)2〈Pη, η〉.
Therefore Q(L̃(ξ, η)) < 0 for a = −λ− ε. Hence −λ < 0, that is λ > 0.

This proves that R ≥ 0. Now (7.2) gives Q(L̃(ξ, η)) ≥ Q((ξ, η)) as
claimed. �

This proves shows in particular that if L is monotone then it is
strictly monotone iff P > 0 and R > 0, that is, iff L(Vj) ⊂ Int(K)∪{0}.
Next let L1, L2 . . . Ln be a sequence of monotone maps. Pick c so

that ||v|| ≥ c
√
Q(v). Let vn = Ln . . . L2L1v0. Then for v0 ∈ Int(K) we

have

||vn|| ≥ c
√
Q(vn) ≥ c

√
Q(v0)

n∏

j=1

Λj

where Λj = Λ(Lj) and Λ(L) = minv∈Int(K)

√
Q(Lv)
Q(v)

.

To compute Λ(L) we shall use a decomposition
(
R−1/2 0
0 R1/2

)(
I R
P I + PR

)(
R1/2 0
0 R−1/2

)
=

(
I I
K I +K

)

where K = R1/2PR1/2 = R1/2(PR)R−1/2. Note that PR = A∗D− I =
C∗B. Choose an orthogonal matrix F such that F−1KF is diagonal.
Then

(7.3)

(
F−1 0
0 F−1

)(
I I
K I +K

)(
F 0
0 F

)
=

(
I I
T I + T

)
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where T = F−1KF is diagonal and Sp(T ) =Sp(C∗B). We can also
assume by choosing F appropriately that the diagonal elements of T
are increasing. Denoting byM the RHS of (7.3) we have Λ(M) = Λ(L).
On the other hand

Q(Mv) = 〈ξ, η〉+ 〈η, η〉+ 〈T (ξ + η), (ξ + η)〉

=

d∑

j=1

[
tjξ

2
2 + (1 + 2tj)ξjηj + (1 + tj)η

2
j

]

∑

ηj≥0

[(√
tjξj −

√
1 + tjηj

)2 (√
1 + tj +

√
tj
)2
ξjηj

]

+
∑

ηj<0

[(√
tjξj +

√
1 + tjηj

)2 (√
1 + tj −

√
tj
)2
ξjηj

]

≥ m(L)
∑

j

ξjηj = m(L)Q(v)

where

m(L) = min
j
(
√

1 + tj −
√
tj)

2 = (
√
1 + t1 −

√
t1)

2

and t1 ≤ t2 ≤ · · · ≤ td are the eigenvalues of T. The equality is achieved
if ξj = ηj = 0 for j ≥ 2 and

√
t1ξ1 =

√
1 + t1η1.

Next, suppose that f : M → M is a symplectic map and there is
a transverse family of Lagrangian subspaces V1(x), V2(x) and an orbit
xn = fnx such that df(K(xn)) ⊂ K(xn+1) where K(x) are the conses
associated with the pair (V1(x), V2(x)). Let Q be the associated qua-

dratic form and take small c so that ||v|| ≥ c
√
Q(v). Choose frames so

that

ω((ξ1, η1)(ξ2, η2)) = 〈ξ1, η2〉 − 〈ξ2, η1〉.

Let df : TxM → TfxM have block form df =

(
A(x) B(x)
C(x) D(x)

)
. Let

(7.4) Λ(x) = min
t∈Sp(C∗B)

(
√
t +

√
1 + t).

Then for x ∈ K(x0) we have

(7.5) ||dfn(v0)|| ≥ c

(
n−1∏

j=0

Λ(xj)

)
√
Q(v0).
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7.3. Lyapunov exponents. Now we pass from the individual orbits
to typical ones. Recall that given a diffeomorphism f : M → M, a
point x and a vector v in Tx, one can define the forward and backward
Lyapunov exponents

λ±(x, v) = lim
n→±∞

1

n
ln ||dfn(x)(v)||.

If f preserves a probability measure µ then, by Multiplicative Ergodic
Theorem, for µ−almost all x λ±(x, v) exist for all v and they can take
at most dim(M) different values.
In fact, there exists a splitting TxM = ⊕s

j=1Ej and numbers λ1 >
λ2 > λs such that if v = vi1 + vi2 + . . . vik where i1 < i2 < · · · < ik and
0 6= vik ∈ Eik then λ+(x, v) = λi1 and λ−(x, v) = λik . If µ is ergodic
then λj are constant almost surely.
In case µ is a smooth measure and λj 6= 0 almost surely (in which

case we say that the system has non-zero Lyapunov exponents or that
it is (nonuniformly) hyperbolic) there are strong methods to control the
statistical properties of f. In particular Pesin theory guarantees the ex-
istence of stable and unstable manifolds tangent to E− = ⊕λj<0Ej and
E+ = ⊕λj>0Ej respectively. (Pesin theory was extended to systems
with singularities by Katok-Strelcyn [16]. The main idea is to show
that most orbits do not come to close to the singularities in the spirit
of Lemma 5.6 of Section 5.) Also taking Σ(x) = ∪y∈Wu(x)W

s(x) we
obtain a set of positive measure and if x ∈ R2 then almost all points
in Σ(x) have the same averages for all continuous functions. There-
fore the systems with non-zero exponents has almost countable many
ergodic components, that is M is a disjoint union M = ∪Bj where Bj

are invariant and f restricted to Bj is ergodic. In case they hyperbol-
icity comes from invariant cones as we describe below Chernov-Sinai-
Wojtkowski-Liverani theory provides sufficient conditions for ergodic-
ity. Namely one needs to ensure appropriate transversality conditions
between the singularity manifolds and stable/unstable manifolds of f.
Unfortunately those transversality conditions are not easy to verify in
practise so the ergodicity is not yet proved in all the examples where
we can ensure nonzero exponents.
Returning to the computations of the Lyapunov exponents let us

consider the setting of 2d dimensional symplectic manifold. In this
case one can show that (Ej)

⊥ =
∑

i 6=s−j Ei and so dim(Ej) = dimEs−j.
Therefore in order to prove that the system has nonzero exponents it
suffices to check that

(7.6) dim(E+) ≥ d.
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Suppose now that at each point there are transversal Lagrangian
subspaces V1(x), V2(x) such that df is monotone with respect to the
cone KV1,V2. Let Λ(x) be defined by (7.4). In order to establish (7.6)
we consider the smallest j such that dim(E−

j ) > d where

E−
j = Ej ⊕ Ej+1 ⊕ Es.

Lemma 7.4. If µ is ergodic then λj ≥
∫
ln Λ(x)dµ(x).

Proof. Let D = {(ξ, ξ)}ξ∈Rd where we use the coordinates of Theo-
rem 7.3. Then E−

j ∩ D contains a nonzero vector v. For this vector
λ+(x, v) ≤ λj. On the other hand in view of (7.5) and the Pointwise
Ergodic Theorem we have

λ+(x, v) ≥ lim
n→∞

1

n

∑

j

ln Λ(f jx) =

∫
ln Λ(x)dµ(x).

�

In general it is possible to have Λ(x) ≡ 1 (consider for example the
map (I, φ) → (I, φ+ I)). Let

G = {x : Λ(x) > 1} = {x : df(x) is strictly monotone}.
Consider now the smooth invariant measure

µ(A) =

∫

A

ω ∧ · · · ∧ ω.

Note that µ need not be ergodic.

Corollary 7.5. If almost all points visit G then the system has nonzero
Lyapunov exponents.

Proof. We apply Lemma 7.4 to each ergodic component of G. The
assumption that ν(G) > 0 for each ergodic component implies that∫
ln Λ(x)dν > 0. �

7.4. Examples. Here we present several examples of systems possess-
ing invariant cones. We discuss two dimensional examples in more
detail since the computations are simpler in that case.
(I) Dispersing billiards. Consider a particle moving in a domain

with piecewise concave boundaries. Let s be the arclenth parameter
and φ be the angle with the tangent direction.

Lemma 7.6. df has the following form in (s, φ) variables



κ0τ + sinφ0

sin φ1

τ

sinφ1
κ0κ1τ + κ1 sinφ0 + κ0 sinφ1

sin φ1

κ1τ + sinφ1

sinφ1






70 LECTURES ON BOUNCING BALLS.

Figure 18. Two tables with nonzero Lyapunov expo-
nents: dispersing billiard on the left and Bunimovich
stadium on the right

where κ0 (κ1) is the curvature of the boundary at the initial (final) point
and τ is the flight length.

Note that f preserves the form ω = sinφds ∧ dφ. The above matrix
has all elements positive therefore df increases the quadratic form Q =
sinφdsdφ. Moreover the product of the off diagonal terms with sinφ1

is uniformly bounded from below so Λ(s, φ) is uniformly bounded away
from 1.

Proof. We compute ∂s1
∂s0
, the other terms are similar. Consider figure

19. Let |AB| = δs0. We have

|CB| ≈ sinφ0δs0, |DE| = |BC|, |EF | ≈ τ sin∠FBE,

∠BFE ≈ κ0δs0, |DG| ≈ δs1 ≈
|DF |
sinφ1

.

�

For dispersing billiards we have κ0 > 0, κ1 > 0. Another way to
make all elements of df positive is to have κ0, κ1 negative but require
that

τ ≥ sinφ0

|κ0|
+

sinφ0

|κ0|
.

The billiards satisfying the above condition are called defocusing. Per-
haps the most famous example of the defocusing billiard is Bunimovich
stadium.
Ergodicity of dispersing billiards is shown in [24]. Ergodicity of Buni-

movich stadium is shown in [4]. Further properties of dispersing and
defocusing billiards are discussed in [7].
(II) Dispersing pingpongs. Consider pingpong whose wall motion

satisfies f̈(t) < 0 at all points of continuity.
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G

A B

C

D

E

F

v(A)

v(B)

Figure 19. Computing
∂s1
∂s0

Lemma 7.7. In (t, v) variables the derivative takes form



vn − ḟn

vn + ḟn+1

− Ln

v2n(vn + ḟn+1)
vn − ḟn

vn + ḟn+1

f̈n+1 1− Lnf̈n+1

v2n(vn + ḟn+1)




where Ln is the distance traversed by the particle between n-th and
(n+ 1)-st collisions.

Note that the off diagonal entries of the above matrix are negative
so the form Q = −dtdv is increasing.
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Proof. Let us compute ∂vn+1

∂tn
. Referring to figure 6 we have

δhn = (vn − ḟn)δtn, δtn+1 =
δhn

vn + ḟn
, δḟn+1 = f̈n+1δtn+1.

This proves the formula for ∂vn+1

∂tn
. Together with (1.5) this completes

the estimate of t derivatives. v derivatives are computed similarly. �

(III) Balls in gravity field. Consider two balls on the line moving
in a gravity field and colliding elastically with each other and the fixed
floor. Let m1 be the mass of the bottom ball and m2 be the mass of the
top ball. It is convenient to use h and z as variables where h = h1 is the
energy of the bottom ball and z = v2− v1 is the relative velocity of the
second ball. We consider the balls at the moments when the bottom
particle collides with the floor. During the collisions of the bottom ball
with the floor our variables change as follows (h̄, z̄) = F1(h, z) where

F1(h, z) = (h, z + c
√
h) and c =

√
8

m1

.

Next we consider the collision between the walls. Using the formulas
of Section 1 we find that the changes of energy and velocity are the
following

z̄ = −z, v̄ = u+
2m2

m1 +m2

z

where u is velocity of the first ball at the moment of collision. Accord-
ingly

h̄ = h+
2m1m2uz

m1 +m2
+

2m1m
2
2z

2

(m1 +m2)2
.

To find u note that u = v1 − τg where τ is the time between collisions
of the first ball with the floor and with the second ball. Next, τ = −x

z
where x is the height of the second ball when the first one hits the
floor. Therefore uz = v1z + gx. The energy of the system is

E = h+
m2(v1 + z)2

2
+m2gx. Thus v1z+gx =

E

m2

− h

m1

− h

m2

− z2

2
.

Accordingly h̄ = b− h− az2 where b = 2m1E
m1+m2

and

a =
m1m2

m1 +m2
− 2m1m

2
2

(m1 +m2)2
.

Therefore if the ball returns to the floor after the collision we have

(h̄, z̄) = F1 ◦ F2 where F2(h, z) = (b− h− az2,−z).
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We assume that m1 > m2 so that a > 0. Note that

dF1 =

(
1 0
c

2
√
h

1

)
, dF2 =

(
−1 −2az
0 −1

)
= −I ×

(
1 2az
0 1

)
.

Both (
1 0
c

2
√
h

1

)
, and

(
1 2az
0 1

)

have positive elements so they are monotone with respect to Q = dhdz
while −I is Q-isometry. Also note that d(F2 ◦F k

1 ) is strictly monotone
for each k and since starting from any initial condition we will eventu-
ally have a collision between the balls, Corollary 7.5 implies that this
system has nonzero Lyapunov exponents.
Ergodicity of two balls in gravity under the condition m1 > m2 is

proved in [17].
On the other hand if m1 = m2 then the particles just exchange their

energy during the collisions so the function I = min(h1, h2) is the first
integral of this system. One can also show [5] that for m1 < m2 elliptic
islands are present so the system is not ergodic.
One can also construct multidimensional examples satisfying the

above criteria. In particular n particles of the line in gravity field
have nonzero exponents provided that m1 > m2 > · · · > mn when
the particles are numbered from the bottom up. The monotonicity of
this system was proved in [26] while [23] showed that the conditions of
Corollary 7.5 are satisfied for this system. One can also consider non-
linear potentials. [27] shows that the following conditions are sufficient
for nonzero Lyapunov exponents
(i) m1 > m2 > · · · > mn; (ii) U

′(q) > 0; (iii) U ′′(q) < 0.

Figure 20. Wojtkowski wedge

Another example is the particle in gravity field moving in a two
dimensional domain whose boundary consists of two concave broken
lines meeting at a right angle. It is shown in [28] that this system has
nonzero Lyapunov exponents.

Problem 7.8. Show ergodicity of the last two examples.
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Henri Poincaré, 10 (2009) 357–375.
[14] J. Guckenheimer, P. Holmes Nonlinear oscillations, dynamical systems, and

bifurcations of vector fields, Appl. Math. Sciences 42 (1990) Springer-Verlag,
New York, xvi+459 pp.

[15] P. Holmes The dynamics of repeated impacts with a sinusoidally vibrating

table, J. Sound Vibration 84 (1982) 173–189.
[16] A. Katok, J.-M. Strelcyn Invariant manifolds, entropy and billiards; smooth

maps with singularities, Lect. Notes in Math. 1222 (1986) Springer-Verlag,
Berlin.

[17] C. Liverani, M. Wojtkowski Ergodicity in Hamiltonian Systems, Dynamics
Reported 4 (1995) 130–202.

[18] J. Moser Stable and random motions in dynamical systems, Ann. Math. Stud-
ies 77 (1973) Princeton University Press, Princeton, N. J. viii+198 pp.

[19] Ortega R. Asymmetric oscillators and twist mappings, J. London Math. Soc.
53 (1996), no. 2, 325–342.

[20] L. D. Pustylnikov Stable and oscillating motions in nonautonomous dynamical

systems–II, Proc. Moscow Math. Soc. 34 (1977), 3–103.
[21] L. D. Pustylnikov Poincare models, rigorous justification of the second law

of thermodynamics from mechanics, and the Fermi acceleration mechanism,

Russian Math. Surveys 50 (1995) 145–189.
[22] M. Shub Global stability of dynamical systems, Springer-Verlag, New York,

1987. xii+150 pp.



LECTURES ON BOUNCING BALLS. 75

[23] N. Simanyi The characteristic exponents of the falling ball model, Comm.
Math. Phys. 182 (1996) 457–468.

[24] Ya. G. Sinai Dynamical systems with elastic reflections. Ergodic properties of

dispersing billiards, Russ. Math. Surv. 25 (1970) 141–192.
[25] S. TabachnikovGeometry and billiards, Student Math Library 30 (2005) AMS

Providence RI.
[26] M. Wojtkowski A system of one dimensional balls with gravity, Comm. Math.

Phys. 126 (1990) 507–533.
[27] M. Wojtkowski A system of one dimensional balls in external field, Comm.

Math. Phys. 127 (1990) 425–432.
[28] M. Wojtkowski Hamiltonian systems with linear potential and elastic con-

straints, Fund. Math. 157 (1998) 305–341.


