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ABSTRACT. Modify the scatterer configuration of a planar, finite-
horizon Lorentz process in a bounded domain. Sinai asked in
1981 whether for the diffusively scaled variant of the modified
process convergence to Brownian motion still holds. The main re-
sult of the work answers Sinai’s question in the affirmative. Other
types of local perturbations are also investigated: finite horizon
periodic Lorentz process in the half-strip or in the half-plane (in
these models the local perturbation is the boundary condition)
and finally finite horizon, periodic Lorentz process with a small,
compactly supported external field in the strip. The correspond-
ing limiting processes are Brownian motions with suitable bound-
ary conditions and finally the skew Brownian motion on the line.
The proofs combine Stroock-Varadhan’s martingale method ([SV 71])
with those of our recent work ([DSzV 07]).

Subject classification: 37D50 billiards, 60F05 weak theorems

1. INTRODUCTION.
In this paper we consider systems which look like the periodic

Lorentz process on a large part of the plane. Recall that the planar,
periodic Lorentz process is the dynamics of a point particle moving
in the plane with periodically situated, disjoint, convex scatterers re-
moved. The motion of the particle is uniform with specular (i. e. op-
tical) collisions at the scatterers. Throughout the paper we assume
that the horizon is finite that is any ray intersects at least one scat-
terer (and then, in fact, infinitely many of them). We shall use the
abbreviation FHLP for the finite horizon Lorentz process. The sta-
tistical properties of the periodic FHLP are well understood since it
is nothing else than a Z

2-extension of a finite horizon Sinai billiard
given on the two-torus. Therefore the study of statistical properties
of the FHLP is intertwined with those of Sinai billiards. Ergodicity
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of Sinai billiards was established in [S 70], the Central Limit The-
orem and stretched exponential decay of correlations are proven in
[BS 81, BChS 91]. Exponential mixing was proven in [Y 98]. Other re-
sults include the local limit Theorem ([SzV 04]) and the almost sure
invariance principle ([MN 07]). Finally, the fine recurrence proper-
ties of the FHLP studied in a companion paper [DSzV 07] also play
an important role in our analysis.

Of course, an infinite periodic configuration is an idealization and
it is interesting to understand how the theory of periodic FHLP can
be used to study systems which look like a periodic Lorentz process
apart from a compact part of the configuration space. The first re-
sult in this direction was obtained in [L 06] where the recurrence is
proven for finite modifications of FHLP. In this paper we study limit
theorems for local modifications of the FHLP.

Let us formulate our results.
For definiteness, denote by a) Q = ∪∞

i=1Oi the configuration space
of the Lorentz process, where the closed sets Oi are pairwise disjoint,
strictly convex with C3−smooth boundaries; b) by Ω = Q × S+ its
phase space (where S+ is the hemisphere of outgoing unit velocities);
c) by T : Ω → Ω its discrete time mapping (the Poincaré section
map) and finally d) by µ the f -invariant (infinite) Liouville-measure
on Ω. If the scatterer configuration {Oi}i is Z

d-periodic, then the
corresponding dynamical system will be denoted by (Ωper = Qper ×
S+, Tper, µper) and it makes sense to factorize it by Z

d to obtain a Sinai
billiard (Ω0 = Q0 × S+, T0, µ0). The natural projection Ω → Q (and
analogously for Ωper and for Ω0) will be denoted by πq.

In our first theorem Q = Qper outside a bounded domain. Select
an initial point x0 = (q0, v0) ∈ Ω according to a compactly supported
probability measure µ(0), absolutely continuous with respect to the
Liouville measure µ. Then {Tnx0 = (qn, vn)|n ∈ Z} is the Lorentz
trajectory and the resulting configuration process {qn|n ≥ 0} will be
called a finite modification of the FHLP. (For simplicity we can assume
that the unit is chosen so that µ(0) is supported inside the unit torus
and, moreover, Q = Qper outside the unit torus.)

Definition 1. Assume {qn ∈ R
d|n ≥ 0} is a random trajectory. Then its

diffusively scaled variant ∈ C[0, 1] (or ∈ C[0, ∞]) is defined as follows:
for N ∈ Z+ denote WN(

j
N ) =

qj√
N (0 ≤ j ≤ N or j ∈ Z+)

and define otherwise WN(t)(t ∈ [0, 1] or R+) as its piecewise linear,
continuous extension.
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FIGURE 1. A 305 collisions trajectory segment in the
finite modification of the FHLP (it is easily seen that,
outside a bounded domain, the dark scatterers form a
periodic configuration of scatterers)

By general theory, having shown the validity of our results in C[0, 1]
(always weak convergence!) their truth in C[0, ∞] is straightforward.
Theorem 1. For finite modifications of the FHLP, as N → ∞, WN(t) ⇒
WΣ2(t) (weak convergence in C[0, ∞]), where WΣ2(t) is the Brownian Mo-
tion with the non-degenerate covariance matrix Σ2. The limiting covari-
ance matrix coincides with that for the unmodified periodic Lorentz process.

The result of the previous theorem was conjectured by Sinai in
1981 (oral communication). (It had been tested for random walks
with local impurities in [SzT 81].) There exist, however, other com-
pelling mechanisms for local perturbations of periodic FHLP’s and
the aim of our forthcoming theorems is to treat some of them. Of
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course it is impossible to describe the most general perturbation.
Our goal is to illustrate various difficulties appearing in treating var-
ious local perturbations and to introduce techniques to overcome
these difficulties. Other applications of the techniques developed
here can be found in [ChD 08]. For didactic reasons we formulate
theorems in order of increasing difficulty of the proof. In particular
in the proofs of Theorems 1 and 2 we use some estimates which are
non-optimal and which are improved in the latter sections. However
we do it in order to, first, make the proofs of Theorems 1 and 2 more
accessible and, second, show what kind of estimates suffice for the
proof of each result.

For the next two results we consider a FHLP in a horizontal strip
R × [0, 1] (or in the half-strip R+ × [0, 1]). That is we study a peri-
odic configuration of the disjoint convex scatteres in the strip such
that any billiard trajectory intersects one of the obstacles. The nota-
tions we have introduced above have their natural analogues so for
simplicity we do not repeat them here. By introducing coordinates
(z1, z2) in the strip where z1 ∈ R and z2 ∈ [0, 1] , qn = (z1n, z2n) will
be the position of the particle after n reflections.

In the next theorem we consider the half-strip R+ × [0, 1]. The
specular reflection at the vertical boundary piece z1 = 0 will play
the role of the local perturbation (the result is valid independently of
whether we permit some scatterers to intersect this piece or not only
if we exclude the tangency of boundary pieces; in any case, apart
from the 0-th cell the scatterer configuraqtion is periodic).

Theorem 2. Consider a FHLP {z1,n}n≥0 in a halfstrip and let WN(t) ∈
R+ be its diffusively scaled variant. Then, as N → ∞, WN(t) converges
weakly to a non-degenerate Brownian motion reflected at 0.

Next we consider a particle in a whole strip in the presence of a
compactly supported thermostatted field. Namely we assume that
between the collisions the motion of the particle is given by

(1) v̇ = E(q) − (E(q), v)

(v, v)
v.

Theorem 3. Consider a FHLP {z1,n}n≥0 in the strip in the presence of a
small and compactly supported external field E and let WN(t) ∈ R be its
diffusively scaled variant. Then, as N → ∞, WN(t) converges weakly to a
skew Brownian motion.
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FIGURE 2. A 94 collisions trajectory segment of a
FHLP in the presence of a compactly supported exter-
nal field (whose strength is the function illustrated on
top of the figure; observe that, outside a bounded in-
terval, the orbits are linear)

Recall that the skew Brownian Motion is a process ξ(t) such that
|ξ(t)| has the same distribution as the absolute value of usual Brow-
nian Motion and its excursions are positive with probability p inde-
pendently of each other. Thus for p = 1 (p = 0) we get reflected
Brownian motion of R+ (respectively R−) and for p = 1/2 we have
the standard Brownian Motion. The formal definition of the skew
Brownian Motion is given in subsection 2.5 and its properties are
described in [HSh 81].

The object of our last result is a FHLP in the half-plane {z1 ≥ 0}
with specular reflections at the vertical line z1 = 0. In this case we
delete all scatterers intersecting the vertical axis z1 = 0, so for the
resulting configuration space actually there are rays that do not in-
tersect any scatterer (they are situated close to the vertical axis). Nev-
ertheless, their existence — at least in the horizontal direction — only
means a local perturbation and, as we will show, the limit is again a
(reflected) Brownian motion.

Theorem 4. Consider the diffusively scaled variant WN(t) ∈ R+ × R of a
FHLP {qn}n≥0 in a halfplane z1 ≥ 0. Then, as N → ∞, WN(t) converges
weakly to a non-degenerate Brownian motion reflected at the z2-axis.

Theorem 5. Theorems 1–4 remain valid for continuous time.

2. PRELIMINARIES

In this section notions and theorems are collected, which later will
be used or referred to. We also note that we will throughout use
notions and results from our companion paper [DSzV 07]. For the
correspondance of the notations of that work and of the present one,
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let us define the free flight vector κ : Ω → R
d as follows: for x ∈ Ω

let κ(x) = πqT(x)) − πq(x). Then for x ∈ Ω we define

(2) Sn(x) =
n−1
∑
k=0

κ(Tk(x)).

There is also a natural projection πΩper : (Ωper, Tper, µper) → (Ω0, T0, µ0).
Consequently for x ∈ Ω0 we can also denote κ(x) = κ(π−1

Ωper
(x)) and

(3) Sn(x) =
n−1
∑
k=0

κ(Tk
0 (x)).

For later reference we denote
(4) K2 = max

x∈Ω
|κ(x)|.

2.1. Hyperbolicity of the billiard map. For definiteness, let Q0 =

∪p
i=1Oi where the closed sets Oi are pairwise disjoint, strictly con-

vex with C3−smooth boundaries. In Ω0 it is convenient to use the
product coordinates. Recall that

Ω0 = {x = (q, v)|q ∈ Q0, 〈v, n〉 ≥ 0}
where 〈·, ·〉 denotes scalar product, and n is the outer normal in the
collision point. Traditionally for q one uses the arclength parame-
ter and for the velocity the angle φ = arccos 〈v, n〉 ∈ [−π/2, π/2].
In these coordinates the invariant measure is given by the density
1
2l cos φ dq dφ, where l is the overall perimeter of the scatterers. From
our assumptions it follows that 0 < min |κ| < max |κ| < ∞.

For our billiards there is a natural DT0-invariant field Cu
x of un-

stable cones (and dually also a field C s
x of stable ones) of the form

c1 ≤ dφ
dq ≤ c2 (or −c2 ≤ dφ

dq ≤ −c1 respectively) where 0 < c1 < c2 are
suitable constants.

A connected smooth curve γ ⊂ Ω0 is called an unstable curve (or a
stable curve) if at every point x ∈ γ the tangent space Txγ belongs to
the unstable cone Cu

x (or the stable cone C s
x respectively).

For an unstable curve γ (or a stable one) and for any x ∈ γ denote
by JγTn

0 (x) = ||DxTn
0 (dx)||/||dx||, dx ∈ Txγ the Jacobian of the map

f n
0 at the point x. Then the hyperbolicity of the dynamics means that

there are constants Λ > 1 and C > 0 depending on the dynamics,
only, such that for any unstable (or stable) curve γ and every x ∈ γ
and every n ≥ 1 one has JγTn

0 (x) ≥ CΛn (or JγT−n
0 (x) ≥ CΛn

respectively).
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2.2. Standard pairs. Let us start with a heuristic introduction. Sinai’s
classical billiard philosophy ([S 70] reacts to the fact that dispersing
billiards are hyperbolic (a nice property) but at the same time they
are singular dynamical systems (an unpleasant property). Neverthe-
less smooth pieces of unstable (and of stable) invariant manifolds do
exist for expansion prevails partitioning.

Though dispersing billiards are manifestly hyperbolic, they are
not only singular but, added to that, close to the singularities the
derivative of the map also explodes. This circumstance is the most
unpleasant when one aims at proving the distortion estimates, basic
for the techniques. To cope with this difficulty [BChS 91] introduced
the idea of surrounding the singularities with a countable number
of extremely narrow, so-called homogeneity strips, roughly parallel to
the singularities. In these strips the derivative of the map can be
large, but oscillates very little; this fact makes it possible to never-
theless establish the necessary distortion estimates. The boundaries
of these homogeneity strips provide further singularities (causing
further partitioning), the so-called secondary ones in contrast to the
primary singularities (in our case only tangencies). The definition of
homogeneity strips depends on a parameter denoted usually k0. The
larger k0 is, the smaller the neighborhood of (primary) singularities
is where one introduces the homogeneity strips. In certain bounds
(e. g. in the growth lemmas) k0 should be selected sufficiently large.

Let us now give precise definitions. For k ≥ k0 let

Hk = {(r, φ) : π

2 − k−2
< φ <

π

2 − (k + 1)−2},

H−k = {(r, φ) : π

2 − k−2
< −φ <

π

2 − (k + 1)−2},

H0 = {(r, φ) : −(
π

2 − k−2
0 ) < φ <

π

2 − k−2
0 }.

Take L1, L2 � 1 and θ < 1 sufficiently close to 1.
An unstable curve is weakly homogeneous if it does not intersect any

singularity (i. e. neither primary nor secondary one).
A weakly homogeneous unstable curve γ is homogeneous if it sat-

isfies the distortion bound
log JγT0(x)

log JγT0(y)
≤ L1

d(x, y)

length2/3(γ)
x, y ∈ γ

and the curvature bound

∠(γ̇(x), γ̇(y)) ≤ L1
d(x, y)

length2/3(γ)
x, y ∈ γ
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We observe that if the C2 norm of γ is bounded and γ is long in
the sense that either length(γ) > δ0 for some fixed constant δ0 or γ
crosses a whole homogeneity strip, then γ satisfies both the distor-
tion and the curvature bounds.

Let s+(x, y) be the first time Ts
0(x) and Ts

0(y) are separated by a
singularity.

A probability density ρ on a homogeneous unstable curve γ is
called a homogeneous density if it satisfies the density bound

| log ρ(x) − log ρ(y)| ≤ L2θs+(x,y).
We will call the connected homogeneous components of an un-

stable (stable) curve the H-components of the curve. Given γ we let
γn(x) be the largest subcurve of Tn

0 γ containing Tn
0 x and such that

T−n
0 γn(x) does not contain singularities of Tn

0 .
A standard pair is a pair ` = (γ, ρ) where γ is a homogeneous curve

and ρ is a homogeneous density on γ.
Given a standard pair and a measurable A : Ω0 → R we write

E`(A) =

∫

γ
A(x)dx

and length(`) = length(γ).
In this work the precise definition of the standard pairs is not im-

portant but we shall take advantage of their invariance and equidis-
tribution properties listed below and in subsection 2.3.

The fundamental tool used in our work is the so-called growth
lemma. While hyperbolicity of Sinai billiards means that infinitesimal
trajectories diverge exponentially fast, the growth lemma says that
the exponential divergence also holds for most trajectories which are
sufficiently close to each other.

We give two formulations of the growth lemma. The first and
more classical one (statements (a) and (b) below) deals with curves
while the second formulation (statements (c) and (d) below) deals
with standard pairs. Let Ω denote the phase space of one of the sys-
tems appearing in Theorems 1-4.

Let γ be a homogeneous curve and for n ≥ 1 and x ∈ γ let rn(x)
denote the distance of the point Tn

0 (x) from the nearest boundary
point of the H-component γn(x) containing Tn

0 (x).
Proposition 1. (Growth lemma). If k0 is sufficiently large, then

(a) there are constants β1 ∈ (0, 1) and β2 > 0 such that for any ε > 0
and any n ≥ 1

mes`(x : rn(x) < ε) ≤ (β1Λ)nmes(x : r0 < ε/Λn) + β2ε
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(b) there are constants β3, β4 > 0, such that if n ≥ β3| log length(γ)|,
then for any ε > 0 and any n ≥ 1 one has

mes`(x : rn(x) < ε) ≤ β4ε

(c) If ` = (γ, ρ) is a standard pair, then
E`(A ◦ Tn

0 ) = ∑
α

cαnE`αn(A)

where cαn > 0, ∑α cαn = 1 and `αn = (γαn, ραn) are standard pairs
where γαn = γn(xα) for some xα ∈ γ and ραn is the pushforward
of ρ up to a multiplicative factor.

(d) If n ≥ β3| log length(`)|, then

∑
length(`αn)<ε

cαn ≤ β4ε.

(e) For any β3| log(length(`)| ≤ n1 ≤ n2 we have

P`( max
j∈[n1,n2]

rj(x) < δ0) ≤ Constβn2−n1
5

for some β5 ∈ (0, 1).

Parts (a), (b). The restatement in terms of the standard pairs is
taken from [ChD 07]. For part (e) see (e.g [ChD 07], Lemma 3.10).

In order to apply standard pairs to the problem at hand, observe
that the Liouville measure can be decomposed as follows

(5) µ0(A) =

∫
E`α(A)dσ(α)

where σ is a factor measure such that
(6) σ(length(`α) < ε) < Constε.
We shall call measures satisfying (5) and (6) admissible measueres.

2.3. Properties of standard pairs. In the sequel we are still consid-
ering billiards (Ω0, T0, µ0) and functions A : Ω0 → R

d, most fre-
quently with d = 2. Let us introduce the space of functions (over
(Ω0, T0, µ0)) we are to consider. Take θ < 1 close to 1. Let s(x, y)
be the smallest n such that either Tn

0 x and Tn
0 y or T−n

0 x and T−n
0 y

are separated by a singularity. Define the dynamical Hölder space of
functions A : Ω0 → R

H = {A : |A(x) − A(y)| < Constθs(x,y)}.

Let An(x) = ∑
n−1
j=0 A(T j

0x).
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Proposition 2. Let ` be a standard pair, A ∈ H and, for statements (a),
(b) and (d), take n such that | log length(`)| < n1/2−δ. Then the following
statements hold true:

(a) There is a constant such that
∣∣∣∣E`(A ◦ Tn

0 ) −
∫

Adµ0

∣∣∣∣ ≤ Constθn| log length(`)|

(b) Let A, B ∈ H have zero mean. Then
E`(AnBn) = nσA,B + O(| log2 length(`)|)

where
σA,B =

∞

∑
j=−∞

∫
A(x)B(T j

0x)dµ0(x).

(c) Let x be distributed according to ` and wn(t) be defined by

wn

( i
n

)
=

Si√
n

with linear interpolation in between. (Si is the notation for partial sums of
the mean free path from the Introduction). Then, as n → ∞, wn converges
weakly (in C([0, 1] → R

2) to the 2 dimensional Brownian Motion with
zero mean and covariance matrix D2 given by

D2 = µ0(κ0 ⊗ κ0) + 2
∞

∑
j=1

µ0(κ0 ⊗ κn).

(d) There exists positive constants c1, c2 such that for every n and R satis-
fying 1 < R < n1/6−δ we have

P`(|An − n
∫

Adµ0| ≥ R
√

n) ≤ c1e−c2R2 .

(e) There exists positive constants c̄1, c̄2 such that for every n and R satis-
fying 1 < R < n1/6−δ we have

P`(max
j≤n

|Aj − j
∫

Adµ0| ≥ R
√

n) ≤ c̄1e−c̄2R2 .

Parts (a) and (c) are proven in [Ch 99]. For part (b) see Lemma 5.12
of [ChD 07]. (The error estimate of part (b) is not stated explicitly in
[ChD 07] but it can be easily deduced from the proof of Lemma 5.12.)
Part (d) is proven in [ChD 07], Section A.4 for a particular A but the
proof in the general case is exactly the same. Part (e) is proven in
Appendix A of this paper.
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2.4. Tail of return times. The study of the return time to a given
scatterer for FHLP plays an important role in our analysis. In this
subsection we present the estimates needed in our arguments. The
proofs which are slight extensions of the results of [DSzV 07] are
given in the Appendix B. Introduce the following notation: for a
standard pair ` = (γ, ρ) let [`] denote an index m ∈ Z

d such that πqγ
intersects the m-th cell of the configuration space. (If this definition
is not unique, then choose any index with this property.) Fix a small
δ0 > 0.
Lemma 3. (a) Consider planar FHLP. Fix a scatterer S and let Γ be a finite
set of scatterers. Then there exist constants C = C(Card(Γ)) > 0, k0 =
k0(Card(Γ)), ξ such that for any standard pair ` such that πqγ ∩ S 6= ∅,
length(`) ≥ δ0 we have

P`

(
qj 6∈ (S

⋃
Γ) for j = k0 . . . n

)
≥ C

logξ n
.

(b) For a FHLP in a strip or halfcylinder the following is true: for any
standard pair ` such that length(`) ≥ δ0 we have

P`

(
Card(j ≤ n : qj ∈ S) ≤ k0 and qj does not visit the vertical boundary

)
≥ C√

n .

(c) For a FHLP in a strip or halfcylinder the following is true: for any
standard pair ` such that length(`) ≥ δ0 we have

(7) P`(Card(j ≤ n : qj ∈ S) ≤ k0, maxj≤n|qj| > K
√

n

and qj does not visit the vertical boundary) ≤ C√
nK100 .

2.5. Martingale problems. All limiting processes considered in this
paper behave like the Brownian Motion with a specified boundary
condition. Therefore these limiting processes are characterized by
the fact that

(8) φ(W(t)) − 1
2

∫ t

0
∑

ab=1,2
σabDabφ(W(s))ds

is a martingale for a set of the functions dense in the domain of the
generator of the corresponding process. Therefore, for showing the
convergence of a sequence of stochastic processes to such a Brow-
nian Motion, by general theory (cf. [SV 71], [SV 06]) it suffices to
show that the limiting process W(t) of any convergent subsequence
of the processes in question (8) is a martingale for the suitable class
of functions. In fact, these classes of functions are the following:
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• BM in R
2 : C2 functions of compact support (Theorem 1);

• BM in a halfline: C2 functions of compact support satisfying
∂φ
φx (0) = 0 (Theorem 2);

• skew BM: continuous functions of compact support which
admit C2 extensions to (−∞, 0] and [0, ∞) such that

φ′
+(0) = aφ′

−(0)

where a is the skewness parameter (Theorem 3). The mean-
ing of the constant a is the following: if we start the skew
Brownian Motion from 0 then P(W(t) > 0) = 1

a+1 ;
• reflected BM in a halfplane x1 ≥ 0 : C2 functions of compact

support satisfying ∂φ
∂x1

(0, x2) = 0 (Theorem 4).

3. PROOF OF THEOREM 1. TIGHTNESS.
Since any probability measure, absolutely continuous with respect

to the Liouville measure is admissible in the sense of equations (5)
and (6), it suffices to prove Theorem 1 in case the initial conditions
are distributed according to some P`.

We begin the proof with the following result.

Lemma 4. Let ` be a standard pair, and the initial point be distributed
according to `. Then WN(t) is tight in C[0, 1].

Proof. It is sufficient to show that for any standard pair `, for suitable
constants C1, C2 and for N ≥ N0 sufficiently large, for any n ≥ 1 one
has

(9)
max

0≥m≥2n−1
P`

(∣∣∣∣WN
(m

2n

)
− WN

(m + 1
2n

)∣∣∣∣ ≥
1

2n/4

)
≤ C1 exp−(C22n/4).

Indeed, for any given ε, η > 0, by selecting n0 to satisfy ∑n≥n0 2−n/4 <

ε and ∑n≥n0 C1 exp(−C22n/4) < η one can easily bound the modu-
lus of continuity ωWN(δ) for suitable δ ≤ 2 ∑n≥n0 2−n by using the
convergence — uniform in N ≥ N0 — of the series

∑
n

P`

(
max

0≤m≤2n−1

∣∣∣∣WN
(m

2n

)
− WN

(m + 1
2n

)∣∣∣∣ ≥
1

2n/4

)

(cf. [B 68], Theorem 8.2). Further, the event in (9) can be rewritten as

(10) |qm2 − qm1 | ≥
√

m̄L
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where m1 = mN
2n , m2 =

(m+1)N
2n , m̄ = m2 − m1 = N

2n , L = 2n/4.
(Important note: in the whole paper we pretend as if variables like
m1, m2, m̄, etc. were integers, though typically they are not; it is easy
to see that the deviations are negligible whereas keeping track of the
precise error terms would hinder perspicuity of ideas.)

Since
|qm2 − qm1 | ≤ K2m̄,

(10) is only possible if

(11) m̄ >
1

K2
2

2n/2 or in other words N > K−2
2 23n/2.

(Observe that, by the last inequality, for any given N the event in
(9) can only hold for a finite number of n’s, only.) Let τ be the first
time m1 ≤ τ ≤ m2 such that

|qτ | ≥
L
4
√

m̄ + 1

(if there is no such time before m2 we put τ = m2). Based upon
our previous argument the very last inequality can only hold if τ ≥

1
4K2

2K3
2n/2. This inequality ensures that, however short the length of `

be, τ is arbitrary large if n0 is large. Consequently, Propositions 1(d)
and 2(d) will be applicable.

By the definition of τ and by (10), the event in (9) implies that

(12) sup
0≤k≤m̄

|qτ+k − qτ | ≥
L
4
√

m̄.

Consider the Markov decomposition

E`(A ◦ Tτ) = ∑
α

cαE`α(A).

Since τ − m1 ≤ m̄, Proposition 1(d) implies that for any δ̄ slightly
larger than δ

∑
log |length(`α)|>m̄1/2−δ

cα < Const.m̄ exp (−m̄1/2−δ) < Const. exp (−m̄1/2−δ̄).

Since (12) depends only on the unmodified part of the system, we
can apply Proposition 2(e) to each α with log |length(`α)| ≤ m̄1/2−δ

to obtain

P`

(
sup

0≤k≤m̄
|qτ+k − qτ | ≥

L
4
√

m2 − m1

)
≤ C1e−C22

n
4
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as claimed. Indeed, the condition of Proposition 2(e) is not directly
applicable to the value L

4 . However, for bounding

P`

(
max
k≤m̄

|qτ+k − qτ | ≥
L
4
√

m̄
)

it is sufficient to estimate a larger expression by also using (11) as
follows

P`

(
max
k≤m̄

|qτ+k − qτ | ≥ m̄ 1
6−δ

√
m̄
)

≤ C1

[
exp

(
−m̄1/2−δ̄

)
+ exp

(
−c2

(N
2n

) 1
3−2δ

)]
≤ C1 exp

(
−C22 n

4
)

where C2 > 0 is suitably small. The last inequality provides the
sufficient bound.

�

4. PROOF OF THEOREM 1. MARTINGALE PROBLEM.
Here we finish the proof of Theorem 1. Recall that we are assum-

ing that initial conditions are distributed according to some P`.

Proof. Let φ be a smooth function of compact support. Denote n =
Nt and choose a small α > 0. Let L = Nα. Let mp = pL + z (p ∈
Z+)where z will be chosen later. Denote

∆j = qj+1 − qj.

We have
φ

(qmp+1√
N

)
− φ

( qmp√
N

)

=

mp+1

∑
j=mp+1

1√
N

〈
Dφ

( qj√
N

)
, ∆j

〉
+

1
2

mp+1

∑
j=mp+1

1
N

〈
D2φ

( qj√
N

)
∆j, ∆j

〉
+O(LN−3/2).

Next for mp < j ≤ mp+1

Dφ

( qj√
N

)
= Dφ

(qmp−1√
N

)
+

1√
N

j

∑
k=mp−1+1

D2φ

(qmp−1√
N

)
∆k +O(L/N).

Hence

(13) φ

(qmp+1√
N

)
− φ

( qmp√
N

)
=

mp+1

∑
j=mp+1

1√
N

〈
Dφ

(qmp−1√
N

)
, ∆j

〉
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+
1
N


1

2

mp+1

∑
j=mp+1

〈
D2φ

(qmp−1√
N

)
∆j, ∆j

〉
+ ∑

mp−1<k<j

〈
D2φ

(qmp−1√
N

)
∆k, ∆j

〉


+O(L2N−3/2).
We now consider the Markov decomposition

E`(A ◦ Tmp) = ∑
α

cαE`α(A ◦ Tmp−1+mp/2) = T1 + T2

where A = φ
( qm1√

N

)
−φ

( qm0√
N

)
, T1 is the sum over α such that |qmp−1 | ≥

KL and T2 is the sum over α such that |qmp−1 | < KL. To estimate T1
split it T ′

1 + T ′′
1 where T ′

1 contains αs with length(`α) > N−100. Since
in any case the LHS of (13) is O(L/

√
N)

T ′′
1 = O(L/N100.5)

by the Growth Lemma.
Decomposing T ′

1 = T1a + T1b + O(L2N−3/2) according to the lines
in (13) we get

(14) T1a = O
( LθL
√

N

)
.

Indeed, Dφ(
qmp−1√

N ) varies little on each `α. Namely it can be approx-
imated by a constant with error O(θL). Since ∆0 has zero mean (14)
follows by Proposition 2(a) (the factor of L comes since there are L
terms).

To estimate T1b we first observe that by the argument used to prove
(14) we can bound for the contribution of each k, j to T1b by O

(
θ j−k

N

)
.

This shows that the total contribution of terms with k < mp is O( 1
N ).

To estimate the contribution of the remaining terms we can use Propo-
sition 2(b) to obtain

T1b =
L

2N ∑
st

D2
stφ

(qmp−1√
N

)
σ2

st.

Finally, since the summand in T2 is O(L/
√

N), we have

|∑
p
T2(p)| ≤ ConstL√

N ∑
p

P`(|qmp−1 | ≤ KL).

The last sum can be rewritten as follows
ConstL√

N ∑
S

E`(Card(p : qmp−1 ∈ S))
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where the sum is taken over all scatterers within distance KL from
the origin. Now we choose z so that the last sum is not more than its
average over z, thus

∑
S

E`(Card(p : qmp−1 ∈ S))

≤ 1
L ∑

S
E`(Card(j : qj ∈ S)) ≤ ConstL max

S
E`(Card(j : qj ∈ S))

since there are O((KL)2) scatterers within distance O(L) from the
origin.

Lemma 5. There is a constant K̃ such that for all S

E`(Card(j ≤ n : qj ∈ S)) ≤ K̃ log1+ξ N
where ξ is the constant from Lemma 3.

Lemma 5 implies that

|∑
p

E`(T2(p))| ≤ Const L2 log1+ξ N√
N

→ 0.

Thus if W(t) is a limit point of WN(t), then taking the limit in (13) we
get

(15) E`

(
φ(W(t)) − φ(W(0)) − 1

2

∫ t

0
∑
ab

D2
abφ(W(s))σ2

abds
)

= 0.

A similar computation shows that if ψ1 . . . ψm are smooth functions,
then for any s1 < s2 . . . sm < t1 < t2 we have

E`

([
φ(W(t)) − φ(W(0)) − 1

2

∫ t2

t1
∑
ab

D2
abφ(W(s))σ2

abds
]

∏
j

ψj(W(sj))

)
= 0

proving Theorem 1. �

It remains to establish Lemma 5.

Proof of Lemma 5. Define two sequences m1 and n1 as follows. Let
m0 = 0 and let nk be the first time after mk−1 such that rnk(x) ≥ δ0.
Let mk be the first time after nk when qmk ∈ S. Then by the Growth
Lemma we can find K so large that

(16) P`(max
k≤N

(nk − mk−1) ≥ K log N) ≤ 1
N100 .
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Using Lemma 3(a) (with Γ being the modified part) we get induc-
tively

(17) P`(max
k≤b

(mk − nk) ≤ N) ≤
(

1 − C
logξ N

)b

.

Let τ be the first time when mτ − nτ > N. (not visit S for n steps in a
raw). Then (17) implies that

E`(τ) ≤ Const logξ N.
Since

Card(j ≤ n : qj ∈ S) ≤ Kτ log N + N1maxk≤N(nk−mk−1)≥K log N

the lemma follows from (16). �

5. PROOF OF THEOREM 2.
The proof of Theorem 2 is similar to the proof of Theorem 1 except

that now Lemma 3(b) has to be used instead of Lemma 3(a). Ac-
cordingly the claim of Lemma 3 the equation (5) has to be replaced
by

(18) E`(Card(j ≤ n : qj ∈ S)) ≤ K
√

N log N
which is much worse than (5). However now we want to establish
(15) not for all functions but only for the functions in the domain
of the reflected Brownian Motion, that is for functions satisfying
φ′(0) = 0. Accordingly |φ′(

qj√
N )| ≤ Const |qj|√

N . Important conven-
tion: for simplicity of notation in what follows qj as an argument of
the function φ will always denote the horizontal component of the
vector qj. Thus if |qmp(j)| ≤ KL then
∣∣∣∣φ

′
( qj√

N

)∣∣∣∣ ≤ Const L√
N

and
∣∣∣∣φ
(qmp+1√

N

)
− φ

( qmp√
N

)∣∣∣∣ ≤ C L2

N
Therefore we can estimate

|∑
p
T2(p)| ≤ O

(L2

N

)
min

z ∑
S:|q|≤KL

E`(Card(p : qmp ∈ S)).

The last sum is less than its average over z, namely,
1
L ∑

S:|q|≤KL
E`(Card(j : qj ∈ S)) ≤ 1

LO(L)O(
√

N log N)
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where the second factor is due to the fact that there are O(L) scatter-
ers satisfying |q| ≤ KL. Thus

∣∣∣∣∣∑p
T2(p)

∣∣∣∣∣ = O
(L2 log N

N

)

and the result follows.

6. FIRST RETURN MAPS. STATEMENTS

The difference between Theorems 1–2 and Theorems 3–4 is that for
the former ones the terms with |qmp | < KL can be estimated by their
absolute values whereas for the later theorems this is not the case.
For example, in Theorem 3 the skewness parameter a should be cho-
sen carefully to make ∑p T2(p) → 0. Therefore the rough estimates
like (18) are not enough for Theorems 3–4. Below we introduce some
improvements based on a careful study of the first return maps. The
proofs are given in Appendices C and D.

In the theorems below (Ω, f , µ) will either be the Lorentz pro-
cess in the strip in the presence of an external field (Theorem 3) or
the Lorentz process in the halfcylinder obtained by factorizing the
Lorentz process in the half-plane over its group of (vertical) transla-
tional symmetries (Theorem 4).

For a fixed scatterer S = ∂O let T(S) : S × S+ → S × S+ be the first
return map to the scatterer S. A different notation: T[L] be the first
return map to M[L] := π−1(Q ∩ {|x| ≤ L}).

Let Vn(L) denote the number of visits of the Lorentz dynamics to
M[L] up to time n.

Theorem 6. (a) T(S) satisfies the assumptions of [Y 98]. In particular, T(S)

is exponentially mixing.
(b) There are constants C, ᾱ such that for any S and for any δ > 0

E`

(
Card(j ≤ n : qj ∈ S, rj(x) ≤ δ)

)
≤ C

(√
nδ1/3| log δ|ᾱ + log length(`)

)

Theorem 7. (a) T[L] has an SRB measure ν[L] (for the cylinder case ν[L] is
the Liouville measure but in the presence of the field the existence of the SRB
measure is a non-trivial statement). The mixing properties of (T[L], ν[L])
can be summarized as follows.

Let A be dynamical Holder function on M[L] such that
∫

Adν[L] = 0.
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Then there are constants C, c, p such that for any standard pair ` and for
any n ≥ C| log length(`)| we have

∣∣∣E`(A ◦ Tn
[L])
∣∣∣ ≤ C||A||H

(
1 − c

Lp

)n
.

(b) The family
{

Vn(L)
L
√

n

}
is uniformly integrable (both in n and L).

(c) For any A such that ||A||∞ ≤ 1, for any n ≥ Const||A||H and for
any fixed δ > 0 there exist positive constants C, c such that for abitrary
R < n1/6−δ we have

P`

(∣∣∣∣∣
n−1
∑
j=0

A(T j
[L]

x) − nν[L](A)

∣∣∣∣∣ ≥ R
)

≤ Ce−c(R/Lp)2 .

7. PROOF OF THEOREM 3.
Now we describe the modifications needed to prove Theorem 3.

In this case the domain of the generator consists of functions such
that that φ is continuous, the one sided derivatives φ′

±(0) exist and
φ′

+(0) = aφ′
−(0)

where a is the constant to be determined. Namely we want to choose
a so that ∑p T2(p) → 0. Choose a large constant K1 and denote K∗ =

K1K2. where K2 is defined by (4). Given j choose p so that mp ≤ j <

mp+1.
Let

∆̄j = φ

(qj+1√
N

)
− φ

( qj√
N

)
.

We need to bound
∑

j
E`(1|qmp(j) |<KL∆̄j).

We split this sum into two parts.
(I) j − mp(j) < 2K1 log N. There are two possibilities.
(a) |qmp | > 2K∗ log N. The contribution of these terms is small

which can be proved similarly to the treatment of T1 term in The-
orem 1.

(b) |qmp | ≤ 2K∗ log N. The treatment of these terms can be done
similarly to the estimate of T2-terms in Theorem 2 yielding

O
(

log N × log N√
N

×
√

N
L

)

where the first factor appears because there are O(log N) scatterers
in {|q| < 2K1K2 log N)} the second factor appears since ∆̄j = O( 1√

N )
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and for every p there are log N terms. The third factor is an average
number of visits to each scatterer on the mp subsequence (here we
use Theorem 6 and choose z in the definition of p appropriately).

(II) j − mp ≥ 2K1 log N.
Let jk = K12k. Define the following events

Āj = {|qj−K1 log N| > K∗ log N},
Ajk = {|qj−jk | > jkK2 but |qj−jk+1| ≤ jk+1K2},

Aj = {|qj−K1 | ≤ K∗}.
Note, that if K2 is chosen to be larger than the maximal free-flight this
is a complete system of events for 0 ≤ k ≤ log2 log N. Observe that
since φ is not smooth at 0 we cannot use the Taylor decomposition if
|qj| ≤ L however we have

∆̄j = φ′
−(0)

ζ(qj+1, a) − ζ(qj, a)
√

N
+ O

(
1
N

)
if |qj| ≤ K∗,

where
ζ(q, a) =

{
aq if q ≥ 0
q if q < 0

Now we split

∑
j

E`(1|qmp(j) |<KL∆̄j) = ∑
j

E`(1|qmp(j) |<KL1Āj
∆̄j)+

∑
jk

E`(1|qmp(j) |<KL1Ajk∆̄j) + ∑
j

E`(1|qmp(j)|<KL1Aj∆̄j)

= ∑
j
Ēj + ∑

jk
Ejk + ∑

j
Ej.

On the event Āj we surely avoid the perturbation for the whole
K1 log N trajectory segment. Hence for the first term we can apply
the exponential mixing for Sinai billiards to get

∑
j
Ēj = ∑

j
O(θK1 log N) = O(N−100)

provided that K1 is large enough.
Next we estimate ∑j Ejk for a given k. Consider a Markov decom-

position
E`(A ◦ T j−jk) = ∑

α

cαE`α(A).

Let
E ′

jk = ∑
length(`α)>θ jk

cαE`α(1Ajk∆̄j),
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E ′′
jk = ∑

length(`α)≤θ jk

cαE`α(1Ajk∆̄j),

For terms in E ′
jk we have

E`α(∆j) = O(θ jk)

so

|∑
j
E ′

jk| ≤ Const
[

θ jk
√

N
+

1
N

]
∑

j
P`(|qj−jk+1| ≤ K2 jk+1)

Now Theorem 6(b) tells us that the last sum is O(jk
√

N). It follows
that by choosing K1 large we can make ∑jk E ′

jk as small as we wish.
On the other hand

|∑
jk
E ′′

jk| ≤
Const√

N ∑
j

P`(|qj−jk | ≤ K2 jk and rj−jk(x) ≤ θ jk).

Therefore Theorem 6(b) implies that by choosing K1 large we can
make ∑jk E ′′

jk as small as we wish. Thus the main contribution to
∑p T2(p) comes from Ej. In other words we proved that

(19) E`

(
φ

( qn√
N

)
− φ

( q0√
N

)
− 1

2N ∑
j

φ′′
( qn√

N

)
σ2
)

=
φ′
−(0)√

N
E`

(

∑
j

1Aj

(
ζ(qj+1, a) − ζ(qj, a)

)
)

+ o(1), N → ∞, K1 → ∞.

To estimate the last sum we consider the first return map T[K∗] to
|q| ≤ K∗. After reindexing we get

1√
N

Vn(K∗)

∑
j=1

ζ̂(T j
[K∗]

x, a)

where ζ̂ = ζ ◦ TK1+1 − ζ ◦ TK1 . Observe that

1
Vn(K∗)

Vn(K∗)

∑
j=1

ζ̂(T j
[K∗]

x, a)

is uniformly bounded and it converges almost surely to
∫

ζ̂dν[K∗] (see
Theorem 7(c)).

Denote ν̂[K] =
ν[K]

ν[K](M[1])
(this normalization is needed so that the

restriction of ν̂[K̃] to M[K] equals ν̂[K] for K̃ ≥ K). Since {Vn(K)/
√

NK}
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is uniformly integrable it follows that for large N
∣∣∣∣∣

1√
N

E

(Vn(K∗)

∑
j=1

ζ̂(T j
[K∗]

x, a)
)∣∣∣∣∣

≤ 2
∫

ζ̂dν[K∗]E`

(Vn(K∗)√
N

)
= 2

∫
ζ̂dν̂[K∗]E`

(Vn(K∗)

K∗
√

N

)
K∗ν[K∗](M[1]).

Lemma 6. (a) There exists a limit

γ(a) = lim
K∗→∞

∫
ζ̂(·, a)dν̂[K∗].

Moreover there is η > 0 such that γ(a) −
∫

ζ̂(·, a)dν̂[K∗] = O(θKη
∗ ).

(b) There is a constant C such that

ν[K∗](M[1]) ≤
C
K∗

.

γ(a) is an affine function of a because ζ is an affine function of a.
Thus we can choose a so that γ(a) = 0. Then (19) gives

E`

(
φ

( qn√
N

)
− φ

( q0√
N

)
− 1

2N ∑
j

φ′′
( qn√

N

)
σ2
)

= o(1), N → ∞.

Hence any limit process will satisfy

E

(
φ(W(t)) − φ(W(0)) − 1

2

∫ t

0
φ′′(W(s))σ2ds

)
= 0

and we are done as before. It remains to establish Lemma 6.
Proof. It suffices to show that

∫
ζ(TK1 x, a)dν̂[K∗]−

−
∫

ζ(TK1+1x, a)dν̂[K∗+1] = O
(

θKη
∗
)

.

We split the LHS into two parts

I =

∫
ζ(TK1 x, a)dν̂[K∗] −

∫
ζ(TK1+1x, a)dν̂[K∗],

II =

∫
ζ(TK1+1x, a)dν̂[K∗] −

∫
ζ(TK1+1x, a)dν̂[K∗+1].

To estimate I we observe that since ν̂[K∗] is T[K∗] invariant we have

I =

∫ [
ζ(TK1 T[K∗]x, a) − ζ(TK1+1x, a)

]
dν̂[K∗].
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But the integrand is different from zero only for points where Tx 6∈
M[K∗]. Those points are near the boundary of M[K∗] and so by Propo-
sition 2(d).
ν[K∗](Tx 6∈ M[K∗] but ∃j ≤ K∗ + 1 such that T jx or T j(T[K∗]x) visit the modified part)

≤ ConstθKη
∗

For the other orbits we can use the exponential mixing of Sinai bil-
liards to show that∫

1T[K∗]x 6=Tx ζ(TK1 T[K∗]x)dν[K∗](x) ≤ O
(

θKη
∗
)

+ O
(

θK∗
)

and ∫
1T[K∗ ]x 6=Tx ζ(TK1+1x)dν[K∗](x) ≤ O

(
θKη

∗
)

+ O
(

θK∗
)

Therefore
I = O

(
θKη

∗
)

+ O
(

θK∗
)

= O
(

θKη
∗
)

.
Likewise

II =

∫
ζ(TK1+1x, a)1M[K∗+1]−M[K∗]

(x)dν̂[K∗+1] = O
(

θKη
∗
)

proving (a).
To prove (b) let mk0 be the time of k0-th return to M[1] (under T[K∗])

where k0 is the constant of Lemma 3. By parts (b) and (c) of Lemma
3 there are constants c and ε such that

P(mk0 ≥ n) ≥ c√n
for n ≤ εK2

∗. Hence

ν[K∗](M[1]) =
k0

E(mk0)
=

k0
∑

∞
n=1 P(mk0 ≥ n)

≤ k0

∑
εK2∗
n=1 P(mk0 ≥ n)

≤ C
K∗

.

�

8. PROOF OF THEOREM 4.
Here we explain the changes needed to prove Theorem 4. First, the

proof of the tightness given in Section 3 has to be changed because
here we modify the configuration along the line so the particle could
’slide’ along this line for a long time. Thus while the tightness of z1[Nt]√

N
can be proven as before a different argument is needed for z2[Nt]√

N . We
divide the proof into two lemmas. (For simplicity, in this sequel,
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notations of type qj will denote the first component of the vector qj,
and notations of type ∆2j will denote ∆2,j.)

Let

z̄k =
k−1
∑
j=0

∆2j1Mc
[KL]

(qj−L), ¯̄zk =
k−1
∑
j=0

∆2j1M[KL]
(qj−L),

W̄N(t) =
z̄[Nt]√

N
, ¯̄WN(t) =

¯̄z[Nt]√
N

.

Lemma 7. {W̄N(t)} is tight.
Proof. Consider the following function on Ω

A(x) = (q1 − q0)1Mc
[KL]

(q−L).

Taking the Markov decomposition

(20) E`(A ◦ f n) = ∑
α

cαE`α(A ◦ f L)

applying Proposition 2(a) to the long components where A ◦ f L 6= 0
and using Proposition 1(b) to estimate the measure of short compo-
nents we get

(21) E`(A ◦ f n) = O(θL).
Now arguing as in the proof of Proposition 6.1 of [ChD 07] we obtain
the following bounds for n2 − n1 > N3/7.

E`(z̄n1 − z̄n2) = O(L),

E`((z̄n1 − z̄n2)
2) = O(|n1 − n2|),

E`((z̄n1 − z̄n2)
4) = O((n2 − n1)

2).
Indeed the proof of Proposition 6.1 in [ChD 07] relied only on the
equidistibition lemma (Corollary 3.4 of [ChD 07]) and (21) is the ana-
logue of such lemma in our situation. Now tightness can be derived
from the last three estimates the same way Proposition 6.2 is derived
from Proposition 6.1 in [ChD 07]. �

Lemma 8. maxk
| ¯̄zk|√

N converges to 0 in probability.

Proof. Observe that

¯̄zk =
Vk(KL)

∑
j=1

∆2(TLT j
[KL]

x).
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Hence Theorem 7(c) implies

¯̄zk = cLVk(KL) + oP(Lpk1/4+ε)

where
cL =

1
KL

∫

M[KL]

∆2 ◦ TLdµ,

µ is the Liouville measure and we write A = oP(B) if for any ε

P(|A| ≥ ε|B|)
tends to 0 faster than any power of N. Similarly to Lemma 6 we
obtain that there exists the limit

γ = lim
L→∞

cLKL and γ − cLKL = O(θLη
).

Next

Vk(1) =
Vk(KL)

∑
j=1

1M[1]
(T j

[KL]
x)

so using again Theorem 7(c) we get

Vk(KL) = KLVk(1) + oP(LpVk(1)1/2+ε).
Therefore

max
k

∣∣∣∣
¯̄zk√
N

− γ
Vk(1)√

N

∣∣∣∣ → 0

so it remains to show that γ = 0. Let tN be the first time when Vt(1) =
N. Then the foregoing computation shows that

E`( ¯̄ztN ) = N(γ + o(1)).
Next we claim that

(22) P`(tN ≥ N202) = O
(

N−100
)

.

Indeed let t̄1 ≤ t̄2 ≤ · · · ≤ t̄k be the consecutive visits to M[1] such
that rt̄j(x) ≥ δ0. Applying Lemma 12 proven in Appendix C we
prove by induction that

(23) P`

(
max

j≤k
(t̄j − t̄j−1) ≥ n

)
= O

( k√
nlogαn

)
.

(23) with k = N, n = N202 easily implies (22). Since ¯̄ztN is always
O(N) we get

E`( ¯̄zN1tN≤N202) = N(γ + o(1)).
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On the other hand using (20) and (21) we see that

E`(z̄min(tN ,N202)) =
N202

∑
n=0

O
(

θL + P`(n − L ≤ tN ≤ n)
)

= O
(

θLN202 + L
)

= O(L).

Combining this with (22) we get

E`(z̄tN 1tN≤N202) = O(L)

and so

γ = lim
m→∞

E(z2,tm1tm<m202)

m .

By the time reversal symmetry γ = 0. �

The second change comes in the estimate for the expectation of

∑
j

D2φ(qj/
√

N)
√

N
∆2j1|qmp(j) |≤L.

Indeed we have

D2φ(qj/
√

N) ∼ D2φ(0, z2j/
√

N)

but as z2j/
√

N is not constant we can not factor it out like in the proof
of Theorem 1. However we can divide the interval [0, n] into inter-
vals of length δN with small δ and use the tightness proven above to
conclude that D2φ(qj/

√
N) changes little on each interval so it can be

factored out. The rest of the proof is similar to the proof of Theorem
3.

9. CONTINUOUS TIME.
Proof of Theorem 5. We shall show how to extend Theorem 1, other
results are extended in a similar way. Let t j be the time between j-th
and (j + 1)-st collisions and L = µ0(t1) be the mean free path. Let
Tn = ∑

n−1
j=0 tj be the time of the n-th collision. Arguing as in the proof

of Theorem 1 we show that the diffusively scaled version of Tn − nL
converges to a Brownian Motion. In particular for any ε > 0 there
exists R > 0 such that

P`( max
0≤k≤n

|Tk − kL| ≥ R
√

n) ≤ ε.

Thus the continuous time process is obtained from the discrete time
process by the time change s = tL. The result follows. �
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APPENDIX A. MAXIMAL OSCILLATIONS.
Proof of Proposition 2(e). We apply the Reflection Principle (cf. the
Lemma to Theorem 10.1 of [B 68]) to our situation. If the event in
barckets hold, then let j̄ be the first time j ≤ n such that

∣∣∣∣Aj − j
∫

Adµ0

∣∣∣∣ ≥ R
√

n.

Then Proposition 1 gives the decomposition

E`(A ◦ T j̄) = ∑
α

cαE`α(A)

where
∑

length(`α)≤ε

cα ≤ Const.ε n.

Applying Proposition 2(d) to each α with | log length(`α)| < n1/2−δ

we conclude that there are constants C̄1, C̄2, C̄3 and δ̄ > δ such that

P`

(∣∣∣∣An − n
∫

Adµ0

∣∣∣∣ ≥ (R − C̄3)
√

n
)

≥

≥ C̄1P`

(
max
j≤n

∣∣∣∣Aj − j
∫

Adµ0

∣∣∣∣ ≥ R
√

n
)
− C̄2 exp(−n 1

2−δ̄).

Therefore part (e) of Proposition 2 follows from part (d). �

APPENDIX B. RETURN TIMES.
Proof of Lemma 3. (a) Without loss of generality we can assume that
S is in the 0-th cell. Take a standard pair ` with length(`) ≥ δ0. It
suffices to show that if R is sufficiently large and d([`], (S

⋃
Γ)) ≥ R,

then

(24) P`

(
qj 6∈ (S

⋃
Γ) for j = 1 . . . n

)
≥ Const

logα n .

We establish (24) in case Card(Γ) = 1, the general case is similar. For
fixing our ideas we also assume that d([`], S) � d([`], Γ), the other
cases are easier. Take a sufficiently small ε0 > 0. Let τ1 be the first
time τ such that either |qτ | ≥ R1+ε0 or |qτ | ≤ Rε0 . It is proven in
Sections 6 and 7 of [DSzV 07] that for any standard pair ` satisfying
length(`) ≥ δ0 and [`] = R we have

(25) P`

(
|qτ1 | ≥ R1+ε0 and rτ1(x) ≥ R−100

)
≥ ζ
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where 1 − ζ � ε0, and thus ζ can be made as close to 1 as needed by
choosing ε0 small. Define τk as a first time τ after τk−1 when either

|qτ | ≥ R(1+ε0)k or |qτ | ≤ Rε0(1+ε0)
k−1 .

Iterating (25) we get

(26) P`

(
|qτk | ≥ R(1+ε0)k and rτk(x) ≥ R−100(1+ε0)k−1

)
≥ ζk.

Let k̄ be the largest number such that

R(1+ε0)k̄
<

d(Γ, 0)

2 .

Applying (26) with k = k̄ we see that the probability that the particle
moves (

d(Γ,0)
2 )1/(1+ε0) away from the origin without visiting S is at

least c1/ log(d(Γ, 0)).
For crossing the region where the particle can hit Γ we need a more

delicate argument. To do so we define τ̄1 as a first time τ after τk̄ such
that

|qτ̄ | ≥ d1+ε0(Γ, 0)1+ε0 or |qτ̄ | ≤ d1/(1+ε0)3(Γ,0).
Then by the argument of Lemma 6.1(a) of Section 6 of [DSzV 07]

there exists a constant c2 > 0 such that for any standard pair ` satis-
fying

(27) |[l]| ≥
(d(Γ, 0)

2

)1/(1+ε0)

and length(`) ≥ d−100(Γ, 0)

we have
P`

(
|qτ̄1 | ≥ d1+ε0(Γ, 0), rτ̄1(x) ≥ δ0 and τ̄1 − τk̄ ≤ d3(1+ε0)(Γ, 0)

)
≥ c2.

On the other hand, by Theorem 4 of [DSzV 07], for any standard pair
satisfying (27)

P`

(
qj visits Γ before time d3(1+ε0)(Γ, 0)

)
→ 0 as ε0 → 0, d(Γ, 0) → ∞.

Hence if ε0 is sufficiently small, then we can arrange that for a suit-
able c3 > 0

P`

(
|qτ̄1 | ≥ d1+ε0(Γ, 0), rτ̄1(x) ≥ δ0 and qj does not visit Γ before τ̄1

)
≥ c3

Next let τ̄k be the first time τ after τ̄k−1 such that either

|qτ | ≥ d(1+ε0)k
(Γ, 0) or |qτ | ≤ d(Γ, 0).

The argument used to prove (26) shows that for any ` such that
|[l]| ≥ d(1+ε0)(Γ, 0), length(`) > δ0



LIMIT THEOREMS FOR PERTURBED LORENTZ PROCESSES 29

we have
P`(|qτ̄k | ≥ R(1+ε0)k

) ≥ ζk.
Taking k̂ such that

d(1+ε0)k̂
(Γ, 0) = n

we get part (a).
Part (b) is proven in [DSzV 07] in case [`] ∈ S. To get the result in

general, let τ∗ be the first time the particle visits S and observe that
by Theorem 11 of [DSzV 07] P`(rτ∗(x) ≥ δ0) is uniformly bounded
from below so we can apply the result for [`] ∈ S.

The proof of part (c) is similar to the Proof of Lemma 11.1(c) of
[DSzV 07]. �

APPENDIX C. FIRST RETURN TO ONE SCATTERER.
Here we prove Theorem 6.
Let δ0 be sufficiently small . Let τ1 < τ2 < . . . τk . . . be consecutive

visits to S.

Lemma 9. There are positive constants c1, c2 such that if ` is a standard
pair, length(`) ≥ δ0 then

P`(τ1 < c2d2(`, S), rj(x) ≥ min(δ0, d−100(qj, S)) for j ≤ τ1) ≥ c1.

Proof. This follows from the proof of Theorem 10 of [DSzV 07]. �

Lemma 10. There is a constant c3 such that if ` is a standard pair such
that length(`) ≥ d−101(`, S) then

P`(τ1 > n) ≤ c3
d(`, S) + 1√n .

Proof. This follows from the proof of Theorem 8 of [DSzV 07]. �

Lemma 11. There are constants c4, c5 > 0, θ1 < 1 such that for any
standard pair the following holds. Let n̄ be the first positive time when
rτn̄(x) ≥ δ0 then

P`(n̄ − c4| log(length(`)| ≥ n) ≤ c5θn
1 .

Proof. We begin with the case when length(`) ≥ δ0, and assume δ0 <

d−100(x, S). Let k1 be the smallest among the following numbers
• c2d2(`, S)
• τ1(x)
• the first time k when rk(x) < min(δ0, d−100(qk, S)).
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If k1 = τ1(x) we stop otherwise let m1 be the first number after k1
such that rm1(x) ≥ δ0. Let k2 be the smallest among the following
numbers

• m1 + c2d2(xm1 , S)
• m1 + τ1(xm1)

• the first time k after m1 when rk(x) < min(δ0, d−100(qk, S)).
Continue this procedure until qkp ∈ S.

Observe that if δ0 is small enough then our construction implies
that rkp(x) ≥ δ0. Also by Lemma 9

P`(p > n) < (1 − c1)
n.

Next we claim that there are constants c6 > 0, θ2 < 1 such that

(28) P`(Card(i : k j ≤ i ≤ mj, qi ∈ S) > n | p > j) ≤ c6θn
2

To derive (28) we distinguish two cases:
• rk j ≥ exp(−ε|qk j |) where ε is sufficiently small. Since the orbit

can not hit S during next
|qkj |
K2

iterations if
Card(i : k j ≤ i ≤ mj, qi ∈ S) > n

then mj > n +
|qkj |
K2

so the result follows from Proposition 1(e).
• rk j < exp(−ε|qk j |).

– If n > C̄| log rk j(x)|, the result follows from Proposition
1(e).

– If the opposite inequality
(29) n ≤ C̄| log rk j(x)|

holds, then for any δ > 0 we have
P`(δ ≤ rk j < 2δ, rk j < exp(−ε|qk j |) | p > j) ≤

≤ P`(δ ≤ rk j < 2δ, |qk j | <
1
ε
| log δ| | p > j)

Let t be the first time after mj−1 when |qt| ≤ 2
ε | log δ| (it

can be mj−1 itself). By the definition of k j on the event
{|qk j | <

1
ε | log δ|} we have rt > ( 2

ε | log δ|)−100. Now Lemma
10 implies that for any standard pair ` such that d(`, S) <
2
ε | log δ| and length(`) > ( 2

ε | log δ|)−100 we have

P`(τ1 > n) ≤ Const | log δ|
ε
√

n
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and so by Growth Lemma for any n

P`(min
j≤τ1

rj(x) < δ) ≤ Const | log δ|
ε
√

n + nδ.

Choosing n = (| log δ|/εδ)2/3 we obtain:

P`(δ ≤ rk j < 2δ, rk j < exp(−ε|qk j |) | p > j) = O(δ1/3| log δ|2/3).

This can be summed over δi = 1/2i. The desired bound
follows from the fact that the largest possible δ satisfies
δ ≤ rk j ≤ exp(−n/C̄)

Next denote φj(z) = E`(zNj) where

Nj = Card(i : ∃ j̄ ≤ j, k j̄ ≤ i ≤ m j̄ and qi ∈ S).

We claim that there is a constant c̄ such that for |z| ≤ 1
2

[
1 + θ−1

2

]
we

have

(30) |φ1(z)| ≤ 1 + c̄(|z| − 1)

uniformly in `. Indeed (28) shows that φ1 is analytic and uniformly
bounded in any disc of radius less than θ−1

2 . In particular |φ′| ≤ c̄
for |z| ≤ 1

2

[
1 + θ−1

2

]
. Combining this with the fact that |φ1(z)| ≤ 1

if |z| ≤ 1 we obtain the result. Now it is easy to show by induction
that

φj(z) ≤
j

∑
m=1

(1 − c1)
m (1 + c̄(|z| − 1))m .

Hence φ(z) = limj→∞ φj(z) converges in some neighbourhood of 1
proving Lemma 11 if length(`) ≥ δ0. In general case we define k0 = 0
and m0 to be the first time then rm(x) ≥ δ0 and argue as before. �

Lemma 11 implies the exponential mixing via the coupling algo-
ritm of [Ch 06]. This proves Theorem 6(a).

Next we use this lemma to control the returns of short compo-
nents. We need a preliminary result.

Lemma 12. For any standard pair ` such that [`] ∈ S and length(`) ≥ δ0
we have

P`(τn̄ ≥ n) ≤ c7 logα n√
n .
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Proof. We use an idea of [M 04]. By Lemma 11 we can choose a con-
stant C such that P`(n̄ ≥ C log n) ≤ 1

n . Denote τ0 = 0. We need to
show that

P`

(
max

1≤j≤C log n
(τj − τj−1) ≥

n
C log n

)
≤ Const logα n√

n .

To this end we show that for any 1 ≤ j ≤ C log n

P`

(
τj − τj−1 ≥ n

C log n , max
1≤l<j

(τl − τl−1) <
n

C log n

)

≤ Const logα−1 n√
n .

The Growth Lemma (Proposition 1) implies that

P`

(
max
1≤l<j

(τl − τl−1) <
n

C log n but min
0≤i≤τj−1

ri(x) ≤ 1
n100

)
≤ Const

n99 .

Hence if m̄j is the first time m after τj−1 such that rm(x) ≥ δ0, then
there is a large constant c8 such that

P`

(
max
1≤l<j

(τl − τl−1) <
n

C log n but m̄j − τj−1 > c8 log n
)

≤ Const
n99 .

(Here we were using that rτj−1(x) >
1

n100 .) On the other hand

P`

(
m̄j − τj−1 ≤ c8 log n but τj − m̄j >

n
C log n − c8 log n

)
≤ Const(log n)3/2

√
n

by Lemma 10. The result follows. �

Lemma 13.
(a) P`(∃i ≤ n̄ : rτi(x) ≤ δ) ≤ c9δ1/3| log δ|α.

(b) E`(Card(i ≤ n̄ : rτi(x) ≤ δ)) ≤ c10δ1/3| log δ|ᾱ
where ᾱ = α + 1.
Proof. (a) Let β be a parameter to be chosen later. We have
P`(∃i ≤ n̄ : rτi(x) ≤ δ) ≤ P`(τn̄ > δ−β)+ P`(τn̄ ≤ δ−β but ∃m ≤ τn̄ : rm(x) ≤ δ)

≤ Const
[
δβ/2| log δ|α + δ1−β

]

where the first term is estimated by Lemma 12 and the second term
is estimated by the Growth Lemma. Choose β = 2/3. This prove (a).

Now observe that by Lemma 11 it follows that
E`(n̄1Ω) ≤ Constq| log q|
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for any set Ω such that P`(Ω) ≤ q. Hence (b) follows from (a). �

We now prove Theorem 6(b). By Lemma 11 we can assume that
[`] ∈ S and that length(`) > δ0. Let 0 = n̄0, n̄1, n̄2 . . . n̄k . . . be conse-
qutive numbers such that rτn̄k

(x) ≥ δ0.
Using Lemma 3(b) it follows by induction that

P`(max
j≤k

τn̄j − τn̄j−1 ≤ n) ≤
(
1 − c11/

√
n
)k .

Observe that if m(n) is the first number such that τn̄m − τn̄m−1 ≥ n
then Vn − Vδ0n ≤ m

In particular there is a constant c12 such that

P`(Vn − Vδ0n ≥ c12
√

n) ≤ 1
2.

On the other hand if Xj = Card{n̄j−1 < i ≤ n̄j, rτi < δ}, then by
Lemma 13

E`

(
c12

√
n

∑
j=1

Xj

)
≤ c13

√
nδ1/3| log δ|ᾱ.

Next let
φn(δ) = max

[`]∈S,length(`)≥δ0
E`(Vδ

n ).

Then the last two inequalities imply that

φn(δ) ≤ c13
√

nδ1/3| log δ|ᾱ +
1
2φn(δ).

The result follows. �

APPENDIX D. SPECTRAL GAP FOR THE LARGE STRIP.
Proof of Theorem 7. Our proof is a generalization of the proof of the
exponential mixing for Sinai billiards presented in [ChM 06]. The
key technical tool is a so called coupling lemma. Let us present the
statement of that result.

Lemma 14. Given δ0 > 0 there exist C > 0, θ < 1, q > 0 and n ≥ 1 such
that for any pair of standard pairs `1 = (γ1, ρ1), `2 = (γ2, ρ2) supported
on the same scatterer and such that length(` j) ≥ δ0, there exist probability
measures ν1 and ν2 and a constant c ≥ q, and there exist families of stan-
dard pairs {`βj}β and of positive constants {cβj}β : j = 1, 2, satisfying
(i)

E`j(A ◦ f n) = cνj(A) + ∑
βj

cβjE`βj(A) j = 1, 2
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with c ≥ q;
(ii) Let λ denote the Lebesgue measure on [0,1]. There exist a measure pre-
serving map π : (γ1 × [0, 1], ν1 ×λ) → (γ2 × [0, 1], ν2 ×λ) and constants
C > 0 and θ < 1 such that if π(x1, s1) = (x2, s2) then
(31) d( f nx1, f nx2) ≤ Cθn

(iii) For each `βj we can define functions nβj so that

E`βj(A ◦ f nβ j) = ∑
α

cαβjE`αβj(A),

where length(`αβj) ≥ δ0 and for each m > 0

∑
β

cβjP`βj(nβj ≥ m)) ≤ Cθm j = 1, 2.

In [DSzV 07] this lemma was formulated with (iii) replaced by

(̃iii) ∑
β:length(`βj)≤ρ

cβj ≤ Const(δ0)ρ.

For the Poincare map (iii) follows from (̃iii) and the Growth Lemma
(Proposition 1 (b)). In our case (iii) follows from (̃iii) by combining
Proposition 1 (b) and Lemma 11.

As in [ChM 06] we can deduce the exponential mixing by a re-
peated application of Lemma 14. More precisely we have the fol-
lowing statement.

Lemma 15. Suppose that there are constants θ̂, nL, cL such that for any
standard pairs `1 and `2 with length(`j) ≥ δ0 we have

E`j(A ◦ f nL) = ∑
α

cαE`αj(A) + ∑
β

cβjE`βj(A)

where ∑α cα ≥ cL and (`α1 , `α2) satisfy the conditions of Lemma 14, then
for any A ∈ H such that ν[L](A) = 0, for any standard pair ` and for any
n ≥ C| log length(`)| we have

|E`(A ◦ Tn
[L])| ≤ C(A)

[(
1 − c cL

nL

)n
+ θ̂n

]
.

Our goal is to verify the conditions of Lemma 15 with nL = c1Lp1 ,
cL = c2L−p2 (we do not pursue the optimal values of pjs).

Let ε be a small constant. We claim that the conditions of Lemma
15 are verified if γ1, γ2 belong to {|q− L/2| ≤ εL} with ñL = Const(εL)2,
c̃L = c̄ (the tildes mean that this values are only valid not for all curve
but only for curves close to the middle of M[L]). Indeed in the case of
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the non-modified Lorentz process this is proven in [DSzV 07]. How-
ever if ε is sufficiently small then we can make

P`j(qk visits the modified part before Const(εL)2)

as small as we wish due to Proposition 2(d). In particular we can
make this probability smaller than c̄/4 where c̄ is the correspond-
ing constant for the non-modified Lorentz process. This implies our
claim.

Next we prove that there are constants c3, c4 such that for any stan-
dard pairs `1, `2 with length(`j) ≥ δ0 we have

P`j(|qc3 L2 − L/2| ≤ εL, rc3 L2(x) ≥ δ0) ≥
c4
L .

This is achieved in three steps. Let τ̃ be the first time when

|qτ̃ − L/2| ≤ εL
3

then by Lemma 3(b) there exists c5 such that
P`j(τ̃ ≤ c3L2 and qk does not visit the modification for k = 1 . . . τ̃) ≤ c5/L.

Observe that τ̃ can be significantly less than c3L2 but by Proposition
2(c) there exists a constant c6 such that

P`j(|qk − L/2| ≤ 2εL
3 for k = τ̃ . . . c3L2) ≥ c6.

Finally we claim that there is a constant c7 such that
(32) P`j(|qk − L/2| ≤ εL for k = τ̃ . . . c3L2 and rc3L2(x) ≥ δ0)

≥ P`j(|qk − L/2| ≤ 2εL
3 for k = τ̃ . . . c3L2)(1 − c7δ0).

Indeed if |qc3L2−
√

L−L/2| ≤ 2εL/3 then |qc3L2 − L/2| ≤ εL so the re-
sult follows from the Growth Lemma (Proposition 1 (b)). Now part
(a) of Theorem 7 follows from Lemma 15.

Part (b) of Theorem 7 follows from Theorem 6(b) while part (c) can
be deduced from the exponential mixing by the method of [ChD 07],
Section A4. �
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