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MULTILOG LAW FOR RECURRENCE.

DMITRY DOLGOPYAT, BASSAM FAYAD, AND SIXU LIU

ABSTRACT. A classical Borel Cantelli Lemma gives conditions for deciding whether
an infinite number of rare events will almost surely happen. In this article, we propose
an extension of Borel Cantelli Lemma to characterize the multiple occurrence of events
on the same time scale. Our results imply multiple Logarithm Laws for recurrence
and hitting times, as well as Poisson Limit Laws for systems which are exponentially
mixing of all orders. The applications include geodesic flows on compact negatively
curved manifolds, geodesic excursions, Diophantine approximations and extreme value
theory for dynamical systems.
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1. INTRODUCTION

The study of rare events constitutes an important subject in probability theory. On
one hand, in many applications there are significant costs associated to certain rare
events, so one needs to know how often those events occur. On the other hand, there
are many phenomena in science which are driven by rare events including metastability,
anomalous diffusion (Levy flights) and traps for motion in random media, to mention
just a few examples.

In the independent setting there are three classical regimes. For the first two, consider
an array {QF}7_, of independent events such that p, = P(2¥) does not depend on k.
Let N,, be the number of events from the n-th array which have occurred. The first
two regimes are:

(i) CLT regime: np, — oo. In this case N, is asymptotically normal.

(ii) Poisson regime: np, — A. In this case N,, is asymptotically Poisson with param-
eter .

For the third, Borel Cantelli regime we consider a sequence {€2,} of independent
events with different probabilities. The classical Borel Cantelli Lemma says that infin-
itely many €2,s occur if and only if Z P(Q,) = 0.

n

A vast literature is devoted to extending the above classical results to the case where
independence is replaced by weak dependence. In particular, there are convenient
moment conditions which imply similar results for weakly dependent events. One im-
portant distinction between the Poisson regime and the other two regimes, is that the
Poisson regime requires additional geometric conditions on close-by events to extend
the statement to the dependent case. Without such conditions, one can have clusters of
rare events where the number of clusters has Poisson distribution while several events
may occur inside each cluster. We refer the reader to [4] for a comprehensive discussion
of Poisson clustering.

THE MULTIPLE BOREL CANTELLI LEMMA. In the present paper, we consider a regime
which is intermediate between the Poisson and Borel Cantelli. Namely we consider
a family of events (0} which are nested: QF < QF for p; < py and for large n,
P(Q27) ~ o(p) for some function o(p). Let N" be the number of QF k < n which has
occurred. We fix a sequence p,, such that ncr(pn) —0asn— © and r € N, and ask if
infinitely many events

no_
an—r

occur. Even if the events 27 are independent for different p, the variables N;;ll and
N/ZZ are strongly dependent if n; and n, are of the same order. On the other hand if
ng » ny then those variables are weakly dependent since conditioned on N2 3 0 it is
very likely that all the events Qk occur for k > n;. Using this, one can show under
appropriate monotonicity assumptlons (see [118]) that N}' = r infinitely often if and

only if
2]%
ZIP’ ot = r) = 0.
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Under the condition no(p,) — 0 it follows that in the independent case

P(NT =)~ —(”05’;")>r.

Therefore, under independence, infinitely many N} = r occur if and only if
ZQMTUT (pQM) = 0.
M

The multiple Borel Cantelli Lemma was extended to the dependent setting in [1]. How-
ever, the mixing assumptions made in [1] are quite strong requiring good symbolic
dynamics which limits greatly the applicability of that result. In the present paper we
present more flexible mixing conditions for the multiple Borel Cantelli Lemma. Our
conditions are similar to the assumptions typically used to prove Poisson limit theorems
for dynamical systems. The precise statements of our abstract results will be given in
Sections 2 and 3. Here we describe sample applications to dynamics, geometry, and
number theory.

MuLTILOG LAW FOR RECURRENCE. Let f be a map preserving a measure u. Given
two points z,y let ' (x,y) be the r closest distance among d(z, f¥y) for 1 < k < n.In

particular, dg)(x, y) is the closest distance the orbit of y comes to z up to time n. It
is shown in [61] that for systems with superpolynomial decay for Lipschitz observables,

Ind
for all x and p-almost all y lim M =9 where d is the local dimension of
n—o nn
at x provided that it exists.

Under some additional assumptions, one can prove a dynamical Borel Cantelli Lemma
which implies in particular that, if u is smooth then for all x and almost all y we have

e s [Indi(z,9)| = flon 1
0 Inlnn d

In Section 4 we extend this result to r > 1, for systems that have multiple exponential
mixing properties. For example, if f is an expanding map of the circle, we shall show
that for Lebesgue almost all x and y we have

. |lnd$f)(x,y)| —Inn 1
lim sup = —.
P00 Inlnn r

The smoothness assumption on the invariant measure, the Lebesgue typicality assump-
tion on z and the hyperbolicity assumption on f are all essential. Namely, if y is an
invariant Gibbs measure which is not conformal, A is the Lyapunov exponent of p, then
we show in Section 6 that for p almost all x and y and for all r e N|

Ind" —1
hmsup!n (z,y)|—Inn _ o

noo 4/2(Inn)(Inlnlnn)  dvdr
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for some o > 0 which will be given in (6.4). We shall also show that there is Gs—dense
set ‘H such that for all z € H, Lebesgue almost all y and all » > 1, we have
| In dg)(x, y)| —1nn

lim sup =1
P00 Inlnn

Finally if the expanding map is replaced by a rotation 7T, then we have (see Theorem
4.7 below) that for almost all (x,y, «) it holds that

|nd(z,y)] — Inn B {1 ifr=1,

lim sup

M0 Inlnn if r>1.

1
2
RECORDS OF GEODESIC EXCURSIONS. Consider a hyperbolic manifold Q of dimension
d + 1 which is not compact but has finite volume. Such manifold admits a thick-
thin decomposition. Namely Q is a union of compact part and several cusps. A cusp
excurston is a maximal time segment such that the geodesic stays in a cusp for the
whole segment. Let

HY(T) > HY(T) > ... H(T) > ...

be the maximal heights achieved during the excursions which occur before time 7" placed
in the decreasing order. Sullivan’s Logarithm Law is equivalent to saying that for almost
every geodesic

_ HO(T) 1
(1.1) hrTnjolip T =g
The proof of (1.1) relies on Sullivan’s Borel-Cantelli Lemma and it actually also shows
that for almost every geodesic

lim sup HO) - élnT = 1
T—oo InInT d
We obtain a multiple version of this result by showing that for almost every geodesic
lim sup HOD) - élnT = i
Toon InlnT rd

MuLTIPLE KHINCHINE GROSHEV THEOREM. Let ¢ : R — R be a positive function
(in dimension 1 we also assume that 1 is monotone). The classical Khinchine Groshev
Theorem ([69, 93, 132]) says that for almost all v € R? there are infinitely many solutions
to

(1.2) [k, o) +m| < (|k]|e) with ke Z4me Z
if and only if

o0]

(1.3) D r(r) = o,

r=1
In particular the inequality
1
In |k|(Inln |k|)*

K] |Ch, ) +m| <
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where |k| = /> k2, has infinitely many solutions for almost every « if and only if
s < 1. We now replace the above inequality by

1

1.4 d <
(14 Gk, 0) + 1] <

and say that « is (r,s) approximable if there are infinitely N for which (1.4) has r
positive solutions (that is, solutions with k; > 0). (Our interest in smallness of

(1.5) k| (k, o) + m)

is motivated by [46] where the discrepancy of Kronecker sequences with respect to
convex sets is studied. Indeed the set of k where (1.5) is small are small denominators
of the discrepancy and they determine its growth rate.) We show in Section 9 that
almost every a € R is (7, s) approximable if and only if s < %

The layout of the paper is the following. In Section 2 we describe an abstract result
on an array of rare events in a probability space which ensures that for a given r, r
events in the same row happen for infinitely many (respectively, finitely many) rows.
In Section 3 this abstract criterion is applied in the case of rare events that consist of
visits to a sublevel set of a Lipschitz function by the orbits of a smooth exponentially
mixing dynamical systems. The results of Section 3 are then used to obtain MultiLog
Laws in various settings. Namely, Section 4 studies hitting and return times for multi-
fold exponentially mixing smooth systems. Section 8 treats similar problems in the
configuration space for the geodesic flows on compact negatively curved manifolds.
Geodesic excursions are discussed in Section 7, and Diophantine approximations are
treated in Section 9. The MultiLog Law for non-conformal measures is discussed in
Section 6. As it was mentioned, the regime we consider is intermediate between the
Poisson and Borel-Cantelli. Section 5 contains an application of our results to the
Poisson regime. Namely we derive Poisson distribution for hits and mixed Poisson
distribution for returns for exponentially mixing systems on smooth manifolds. Section
10 describes the application of our results to the extreme value theory for dynamical
systems. Each section ends with some notes where the related literature is discussed.

Some useful auxiliary results are collected in the appendices.

2. MuLTIPLE BOREL CANTELLI LEMMA.

2.1. The result. The classical Borel Cantelli Lemma is a standard tool for deciding
when an infinite number of rare events occur with probability one. However in case
an infinite number of events do occur, the Borel Cantelli Lemma does not give an
information about how well separated in time those occurrences are. In this section we
present a criterion which allows to decide when several rare events occur on the same
time scale. The criterion is based on various independence conditions between the rare
events.

Definition 2.1. Consider a probability space (2, F,P). Given r € N* and a family
of events {ngn}(n,k)eN2;1<ksm we let N7 be the number of times k < n such that Q’;n
occurs.
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Remark 2.2. In all our applications it will be the case that
(2.1) Q) < Q0 if p1 < p2
however, part of our results will not require this condition.

Our goal is to give a criterion that allows to tell when almost surely Nj; > r will hold
for infinitely many n. For this, we introduce several conditions quantlfylng asymptotic
independence between the events Q’;n. The statement of the conditions requires the
existence of:

e an increasing function o : R, — R,

e a sequence ¢, — 0,

e a function s : N © such that s(n) < (Inn)?

e a function § : N © such that en < 5(n) < n(l —q)/(2r) for some 0 < ¢ < 1, and
some 0 < e < (1—gq)/(2r),

for which the following holds.
For an arbitrary r-tuple 0 < ky < ko --- < k, < n we consider the separation indices

Sep,,(k1,..., k) = Card{j € {0,...7 =1} : kj;1 — k; = s(n)}, ko:=0,
Sepn(kl,... y) = Card{je{0,...r — 1} : k.1 — k; = 5(n)}, ko :=0.
(M1), If 0 < ky < ko < ...k, <n are such that Sep,,(k,...,k.) = r then

o(pn)" (1 —¢e,) <P (ﬂ Qﬁi) < o(pn) (14 ¢&,).

(M2), There exists K > 0 such that if 0 < k; < ks < ...k, < n are such that
Sep,,(k1, ..., k) =m < r, then

n lnn)lo()r
(M3), TO< ky <ky< - <k, <l <ly<--- <l aresuch that 2° < k, < 27! 2/ <
lg <27t for 1 < a,B <r,j—i>0for some constant b > 1, and such that

S/CE)QiJrl(kl, ey kr> =T, §3Y)2j+1(l1, RPN lr) =7, [1 — kr > §(2j+1)’

then
P ([ﬂ Qﬁ;] N [ﬂ %D < o(pai)o(p) (1 + ).

Definition 2.3. For r € N*, we say that the events of the family {Q’;n}(n7k)eN2;1<k<n
are 2r-almost independent at a fized scale if (M1); and (M2); are satisfied for every

€ [1,2r]. We say that Q) are 2r—almost independent at all scales if (M1)z, (M2); are
satisfied for 7 € [1,2r], and (M3); is satisfied for 7 € [1,7].
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Theorem 2.4. Given a family of events {an}(n’k)el\ﬁ;lskgn, define

a0
Z pZJ

a , < oo, (2. olds, an nk)eN2:1<k<n are 2r—almost independent at a
If S 2.1) hold dQ’;n(J A<k< 2r—almost ind dent at
fized scale, then with probability 1, we have that for large n, N <.
, = 00, an nk)eN2:1<k<n are 2r—almost independent at all scales then
b) If S d {Q Yompenzi<i< 2r—almost independent at all scales th
with probability 1, there are infinitely many n such that N = 1.

Observe that since p, is decreasing and o is an increasing function we have that

20+l 201
Z O_T(pn)nr—l < (2j+10_(p2j))7“ < 92r Z O_r(pn)nr—l
n=27 n=2i—1

when (2.1) holds. Hence, the convergence of S, is equivalent to the convergence of

Z 0" (pn)n

Remark 2.5. An analogous statement has been obtained in [1] under different mizing
conditions.

2.2. Estimates on a fixed scale. For m € N let

Uy = {(ky, ..., k) such that 2™ < ky < ky < -+ < ky < 27" and Sepymss (k1, . . . ky) =
Ap ={30 <ky < -+ <k <2™' st QFe happens for any a € [1,7]},

Dy = {3 (k1 ..., k) € Uy s.t. Qe

Pom+1

happens for any a € [1,r]}.

The goal of this section is to prove the following estimates from which it will be easy
to derive Theorem 2.4.

Proposition 2.6. Suppose
(2.2) no(p,) -0 as n— .

If {an}(n,k)eNz;KKn are 2r—almost independent at a fixed scale, then there exists con-
stants C, ¢ > 0 such that

(2.3) P(Ap) < C (270 (pymer)" +m™"0)

(2.4) P(D,,) = (2™ (pgm+1)" —m 1)

If {Qﬁn}(n7k)eN2;1<k<n are 2r—almost independent at all scales, then for m’ > m+1 we
have a sequence 0, — 0 such that if m" —m = b (given in (M3),)

(2.5) P(D,, N D,y) < (P(D,,) + m ') (P(D,y) + m' ) (1 +6,,)

r},
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We start with some notations and a lemma. For n € N*, for kq,..., k. < n, define

r
Kiyeershkr . ﬂ kj
Apn T Qpn'
7j=1

With these notations

k1, kr
(2.6) Ay = U A vobr,
O<ki<ko<--<k,<2m+l
— kl:--~7kr
(2.7) D= |J Apk
(k17~~~7kr)€um

Lemma 2.7. Fiz 0 < a; < ay < 2. If (M1), and (M2), hold then there exists two
sequences 0,, — 0, 1, — 0 such that

P(Algi,...,kr) _ ((a2 — a1)no(p,))"

~10
7! )

(2.8) (14 6,) +n,(Inn

arn<k)<ko<---<kr<aon

For as —a; = %, there exists constant ¢, such that

(2.9) >, P(Ap) = en(no(pa))".

ayn<ky<ko<---<kr<agn

Sep,, (ki,...kr)=r

Proof. For m < r, denote

Spy = > P(Ak1 k)

ajn<k]<kg<--<kr<agn

Sep,, (k1,...kr)=m

Note that S, includes % (1 + 4/,) terms for some sequence 8, — 0 as n — o0, hence

(M1), yields .

(o) 1, g,

rl

(2.10) S, =

where 6] — 0 as n — 0.
For m < r, Sy, includes O (n™s"~™(n)) terms. Hence (M2), gives

(2.11) S < Cnmsr_m(m)% — 1 (no(py))™ (Inn) ™"

for some sequence 7, — 0. Combining (2.10) with (2.11) we obtain (2.8). The proof
of (2.9) is similar to that of (2.10), except that the number of terms is not anymore
equivalent to £n"(1+4,) but just larger than % (% —r8(n))” which is larger than 2‘1:!7%,
due to the hypothesis §(n) < n(1 —q)/(2r).
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Proof of Proposition 2.6. First, (2.3) follows directly from (2.6) and (2.8). Next, define

{kl 7777 kT}7&{k,1 7777 k;'}

From (2.7) and Bonferroni inequalities we get that

(2.12) Ly — Jp <P(Dy) < I,
Now, (2.9) implies that
(2.13) Ly = ;2™ V6 (pomsr )

On the other hand, since
..... Bkl A1k (R k)
p2m+1 ﬂA ’

Pom+1 P2m+1
we get that
C Z Z p27n+1 7
l=r+1ki<---<k

and (2.8) then implies that
(2.14) T < Co(2U VMG (pymin )" 4 m10).

Combining (2.12), (2.13) and (2.14), and using the assumption (2.2) we obtain (2.4).
Finally, observe that

P(D,, " D) < Z ]P)(A];;;;l.;f'r A Aig;/,lr ).

But since m/ > m + 1 implies that I, — k, > §(2™'+1), (M3), then yields
b [ Kty [T
P(AgL mAlm,+l)<IP’(A1 JP(AS 7 ) (1 + em),

Pom+1

D
so that using (M1), and summing over all (kq,..., k) € U, (l1,...,1,) € Uy we get
that

P(Dyy A Do) < I Lo (1 + £10)
and (2.5) then follows from (2.12), (2.13) and (2.14). O]

2.3. Convergent case. Proof of Theorem 2.4 (a). Suppose that S, < co. Then by
monotinicity of o(p,), we have that no(p,) — 0. By (2.3) of Proposition 2.6 we have
that >, P(A,,) < . By Borel-Cantelli Lemma, with probability one, 4,, happen
only finitely many times. Observe that for n e (2™,2™*'] {N? > r} c A,, because
Qp, < Qp, for n = 2™ due to (2.1). Hence with probability one {N}' > r} happen
only finitely many times. =
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2.4. Divergent case. Proof of Theorem 2.4 (b). Suppose that S, = c0. We give a
proof under the assumption (2.2). The case where (2.2) does not hold requires minimal
modifications which will be explained at the end of this section.

Claim 2.8. Let Z, = Z lp,,. Then there exists a subsequence {Z,,} such that a.s.

iy
E(Zy,)

— 1.

Since E(Z,,) — o0, due to (2.4), the claim implies that, almost surely, Z,, — o0. That

is, with probability one infinitely many of D,, happen. Note that D,, < {N 2m+11 >},
which completes the proof of Theorem 2.4 (b) in case (2.2) holds.
Proof of Claim 2.8. We first prove that (2.4) and (2.5) imply that
Z
"  _,1in L?
E(Z) in L7,
or equivalently that
Var(Z,)
2.15 — 0.
(2.15) E2(Z,)
Note that
(2.16)  Var(Z,) = > P(Dy) = >, P(Dy)* +2) [P(D; 0 D;) — P(D;)P(D;)] .
m=1 m=1 1<j

By (2.5) for each § there exists m(0) > b such that if i > m(d), j — i = m(d) then
(2.17) P(D; nD;) —P(D;)P(D;) < 6P(D;)P(D;) + 2i 'P(D;) + 25 °P(D;) + 2(ij) ™.
Split (2.16) into two parts:
(a) Due to (2.17), the terms where i = m(d), j —i = m(d) contribute at most
> [0P(D,)P(D;) + 20 '°P(D;) + 25 ""P(D;) + 2(ij) "] < 6(E(Z,))*+8E(Z,)+8.
i=m(8),j—i=m(5)

(b) The terms where i < m(d) or 7 — i < m(J) contribute at most
Z (D)) = [2m(0) + 1]E(Z,,).

Since E(Z,,) — 0, the case (a) dominates for large n giving
, Var(Z,)
lim sup ————5 <.
nn (B(Z,))?
Since 0 is arbitrary, (2.15) follows.
Let ny, = inf{n : (E(Z,))? = k*Var(Z,)}. Then by Chebyshev inequality
1
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0 0
Thus Z P(|Z,, — E(Z,,)| > SE(Z Z TER Therefore, by Borel-Cantelli
k=1 k=1
Lemma, with probability 1, for large k, |Z,,, —E(Z,, )| < 0E(Z,,). Hence TN la.s.,
k E(Zn,)
ng
as claimed. m

It remains to consider the case where (2.2) fails. After passing to a subsequence, we
choose a decreasing sequence v, such that 6(p,) := v,0(p,) satisfies lim na(p,) = 0
n—0oo

0
and Y (2/6(py))" = 0.
j=1
Next, we define for each n € N and for each k < n, a sequence of events {Ql;n}kgn
as follows: If Q’;n does not occur then Q';n does not occur and, conditionally on Q’;n

occurring, Q';n occurs with probability v, independently of all other events (all other
QF with different & or different n).
The events {Q’;n}(mk)eNz;ngn thus satisfy (M1),, (M2),, and (M3), the same way

as the events {QF }, penzi1<n<n, With this difference that o(py,) is now replaced with
e ¢]

7(pn).t Since condition (2.2) is satisfied by &(p,), and since Z(2j5'<,02j))r = o0, we get
j=1

that, with probability one, more than r events among the events {ngn}kgn occurs for

infinitely many n. By definition, this implies that with probability one, more than r

events among the events {Q’;n} k<n occurs for infinitely many n. The proof of Theorem

2.4 (b) is thus completed. o

2.5. Prescribing some details. In the remaining part of Section 2 we describe some
extensions of Theorem 2.4(b).

Namely, we assume that (27 = U Qg’i and there exists a constant € > 0 such that for
i=1
each i, P(Q") > £P(Q2}). We also assume the following extension of (M1),: for each
(k1,...,k.) with Sep,,(k1,..., k) = r and each (iy,...,1.) € {1,...,p}"

(T, [Hmﬁm] (1-c)<P (ﬂ Q) < [H P(Q’;::"w] (1+ e
j=1 j=1 J=1
and the following extension of (M3),: for each 0 there is b = b(J) such that letting
§(n) = dn we have that for each (k1,..., k), (I1,...,l,) with
Sepyiii (kiy .o k) =7, Sepyssi(ly,... L) =7, L —k =82, j—i=b
and for each (iy,42,...,4.), (J1,72-.-7r) € {1,...,p}"
—_—~ r o r l pi

a=1 B=1

INote that the events {Q’;n} will not satisfy (2.1) even if the events {QF } satisfy it, but in this part
of the proof of Theorem 2.4 (b) condition (2.1) is not needed.
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< [H P(QIZQZ’“)] [HP(lei}jﬂ)] (1 + ).
a=1 B=1

Theorem 2.9. % If S, = o, and M)k, (M2)y as well as @k fork =1,...,2r
are satisfied, then for any iy, is...i, and for any intervals Iy, Iy ... 1. < [0, 1], with
probability 1 there are infinitely many n such that for some ki(n), ka(n) ... k.(n) with
kj(n)

=€ I, Q7 occur.

The proof of Theorem 2.9 is similar to the proof of Theorem 2.4(b). Without the loss
of generality we may assume that /; does not contain 0. Then we consider the following
modification of D,,

5 ko
Dm = {327” < ]{31 < - < kfr < 2m+1 such that W € Iom

Qe happens and oy — by > 527, 0 < a <7~ 1},

Arguing as in Proposition 2.6 we conclude that @ml and @mQ are asymptotically in-
dependent (in the sense of (2.5)) if my > my + p and p is so large that 277 ¢ I, for
a =1,2...r. The rest of the proof is identical to the proof of Theorem 2.4(b).

2.6. Poisson regime.

Theorem 2.10. Suppose that (M1), and (M2), hold for all v and that lim no(p,) = A.
n—ao0

Then N converges in law as n — o0 to the Poisson distribution with parameter A.
Proof. We compute all (factorial) moments of the limiting distribution. Let X denote

the Poisson random variable with parameter \. Below ( T ) denotes the binomial

|
coefficient —— . Since (see e.g. [126] formula (3.4) in section 7.3)

(m — )]
s((%)- B rap,

k1<ko<--<kr<n

Lemma 2.7 implies for each r

n )\T
(218) e (V) -5-5((7)):
n—oo r rl r
Since this holds for all r we also have that for all 7, lim E((N})") = E(X"). Since the
n—a0

Poisson distribution is uniquely determined by its moments the result follows. O

Similarly to Borel-Cantelli Lemma, we also have the following extension of Theo-
rem 2.10 in the setting of §2.5. Denote N;* the number of times event Q’;n’ occurs with

3 P nﬂ’
k/n e I. Write N™" := Ny
2This result is not used in the present paper, so it can be skipped during the first reading. In a followup
work, we shall use Theorem 2.9 to obtain some analogues of the Functional Law of Iterated Logarithm
for heavy tailed random variables.
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Theorem 2.11. Suppose that (7\2?) and (M2),. hold for all r and that
lim nP(Q)) = \;.

n—o0

Then {N*}7_, converge in law as n — <o to the independent Poisson random variables
with parameter ;.

Moreover if Iy, I, ... I, are disjoint intervals then {NZZ}, it=1...p, j=1...8
converge in law as n — oo to the independent Poisson random variables with parameter

il

Proof. 1t suffices to prove the second statement. The proof is similar to the proof of
Theorem 2.10. Namely, similarly to (2.18) we show that for each set 7;; € N we have

e (T10)) =T -T1=(()

Z?] 1’7]

where &;; are independent Poisson random variables with parameters \;|/;|. O

2.7. Notes. The usual Borel Cantelli Lemma is a classical subject in probability. There
are many extensions to weakly dependent random variables, see e.g. [140, §12.15],
[135, §1]. The connection between Borel-Cantelli Lemma and Poisson Limit Theorem
is discussed in [51, 57]. The multiple Borel Cantelli Lemma for independent events
is proven in [118]. [1] obtains multiple Borel Cantelli Lemma for systems admitting
good symbolic dynamics. Extending multiple Borel Cantelli Lemma for more general
sequences allows to obtain many new applications, see Sections 4—10 of this paper. We
note that separation conditions similar to our have been used in [40, 130] to obtain the
Poisson Law.

3. MULTIPLE BOREL CANTELLI LEMMA FOR EXPONENTIALLY MIXING
DYNAMICAL SYSTEMS.

3.1. Good maps, good targets. Let f be a transformation of a metric space X
preserving a measure p. Given a family of sets 2, < X, p € R}, we will, in a slight
abuse of notations, sometimes call {2, the event 1Qp and Q’; the event 1q, o . We will
take o(p) = p(€2,).

To deal with multiple recurrence and not just multiple hitting of targets, we need to
consider slightly more complicated events.

Given a family of events 2, in X x X, let Q’; < X be the event

={z: (z, fFr) e Q,}.

We will take 5(p) = (1 x 1)(Q,).
From now on we will always assume that if p’ < p, then

Qpr (= Qp, Qpl (@ Qp.
For ¢ : X* — R, k € N*, we denote

pH(e) = e m)dp(@n) - dpla).
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Given a sequence {p,}, we recall that N} denotes the number of times k < n such
that QF (or QF ) occurs. We want to give conditions on the system (f, X, u) and
on the family {Q]pgn}(nJ{;)eNQ;lgkgn or {Qﬁn}(nJg)eNQ;lgkgn, that imply the validity of the
dichotomy of Theorem 2.4 for the number of hits N . For this, we take

0
S, = 3 (27v,)’
j=1

where v; = o(po;) if we are considering targets of the type Q’; and v; = (py) if we
are considering targets of the type Q’;.

The independence conditions (M1),, (M2),, (M3), will be satisfied due to mixing
conditions on the dynamical system (f, X, ), and to some regularity and shrinking
conditions on the targets that we now state.

Definition 3.1 ((r + 1)-fold exponentially mixing systems for r > 1). Let B be a space
of real valued functions defined over X", with a norm | - ||g. Forr > 1, we say that
(f, X, 1, B) is (r + 1)-fold exponentially mizing, if there exist constants C > 0,L > 0
and 0 < 1 such that
(Prod) [A1As]z < CfA1s[ Az,

(Gr) Ao (ff,..., f*)|s < CL¥=0% | Alg,
(EM), If 0 = ko < k1 < ... < k, are such that ¥j € [0,7 — 1], kj11 — k; = m, then

[ A o) - [ Ao o) dutan)| < o LAl

Xrt

Given a system (f, X, i, B), we now define the notion of simple admissible targets

for f.

Definition 3.2 (Simple admissible targets). Let Q,, p € R%, be a decreasing collection
of sets in X for which there are positive 0, T such that for all sufficiently small p > 0
(Appr) There are functions A;, AT+ X — R such that A;f e B and

(i) A% < 2 and |AZ|s < p7;

(ii) A; < ].Qp < A;,

(i) p(AF) — p(A7) < a(p)*7,
where a(p) = 1(£2,).

Let {p,} be a decreasing sequence of positive numbers. We say that the sequence

{Q,,} is a simple admissible sequence of targets for (f, X, u,B) if there exists u > 0
such that

(Poly) pnzn""  o(pn) Zn"",
and
(Mov) VR,3C : Yke (0,RInn), u(Q,, n f*Q,) < Co(p,)(Inn)=100r.

Remark 3.3. Note that properties (Appr)(ii) and (iii) imply that
AY) = 1) < ()" () — (A;) < pu(€2).
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A useful situation where one can verify these properties is the following.

Lemma 3.4. Suppose that f is Lipschitz and B is the space of Lipschitz functions. We
have that (Prod) and (Gr) hold with L being the Lipschitz constant of f. Moreover, if
there exist constants £,& > 0 and ® : X — R a (uniformly) Lipschitz function® such
that for any interval J € R,

plfa: @(x) € J}) € (|71 [J[]
and two (uniformly) Lipschitz functions ay and as : R — R such that for some o,/ > 0
we have

as(p) — ar(p) € [p*, 9]
then (Appr) holds for the targets

Q, = {®(2) € [a1(p), az(p)]} -

The same result holds if B is the space of C° functions or the space of compactly sup-
ported C?® functions with s > 0 arbitrary.

The proof of Lemma 3.4 relies on simple approximation of characteristic functions
by Lipschitz functions.

Proof. We will construct A} that satisfies (i), (i) and (i) of (Appr), with u(A;)
replaced by p(€2,). The construction of A7 is similar. Note that o(p) = pu(Q,) €
[0, p™].

Define a family of smooth function ¢+ : R* — [0, 2] such that for v > w and € > 0
and x € R (we are not interested in the form of ¢)* outside this domain) we have

1, for z € [u,v]
+ _ ) I
¥ (uv,6,7) = { 0, forxé¢lu—cv—u)v+e(v—u)

and for which there exist constants n > 0 and C' > 0 such that that for any vy and for
R*>R,, :={v—u=wvye > 1y}, we have that

[¥" ler R,y < Crg ",
where C'(R,,) refers to the C' norm in the region R,,.
Define now AY : X — R : z— 9" (a1(p), az(p), p°, @(2)), where b > 1 will be chosen
later. It is clear that A is Lipschitz and that 1o, < A7. On the other hand [A7 [, < 2
and |Af [z < C(®)p~**", and (i) holds for 7 = ban+1. We turn now to (iii). We observe

that with J; = [a1(p)—p’(az2(p)—ai(p)), a1(p)] and Jo = [az(p), az(p)+p’(az(p)—ar(p))],

u(A) = plle,) < 2u({@(x) € 1 L Jo})
4pt (o),
Hence, if b is chosen sufficiently large we have p > 0 sufficiently small that (A7) —
u(le,) < o(p).

The fact that the same results hold if B is the space of C* functions or the space of
compactly supported C* functions with s > 0 arbitrary, is a simple consequence of the
approximation of Lipschitz functions by smooth functions. 0

N

3The typical situation for using Lemma 3.4 will be with ® () defined by some distance d(zq, z).
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To deal with recurrence, the following definition is useful.

Definition 3.5 (Composite admissible targets). Let Qp be a decreasing collection of
sets in X x X satisfying the following conditions for some positive constants C',n, T and
for all sufficiently small p > 0,
(Appr) There are functions /_1;, /_l; : X x X — R such that fl;i eB and
(i) | A < 2 and |Af s < p7;
i) A> <1 < AF;
(gii; Fgr anyﬂ ;ixed ;,

a(p) —a(p)'*" < JA;(x,y)du(y) < fA;(ZE, y)du(y) < a(p) +a(p)'*,

(iv) For any fized y, fAj(x,y)d,u(x) < Ca(p).

The sequence Qpn 1s said to be composite admissible if

(Poly) pnzn"" a(pn) =n"",
and there is a constant a > 0 such that for any ki1 < ko
(Sub) QA QF o ROk

and

(Mov) Vk # 0, u(Qipn) < C(Inn) 10007,

Observe that integrating condition (Appr)(iii) with respect to = we obtain for each
n # 0,

(3.1) Cu (QZ) < i (A;(:E, f'z)) < p (A;r(x, f'z)) < Cu (QZ) :

The typical composite targets we will deal with are of the type d(x,y) < por d(z,y) <
v(z)p, where y(x) is related to the local dimension of a smooth measure at the point .
We state here a general Lemma that guarantees the admissibility of such targets. The
statement is a bit technical but if we keep in mind that the function ®(z,y) is usually
defined by a distance, then the hypothesis of the Lemma become natural. The proof of
the Lemma is very simple and follows a similar scheme of the proof of Lemma 3.4 for
simple targets.

Lemma 3.6. Suppose that f is Lipschitz and B is the space of Lipschitz functions.

Suppose there ezists constants C,£,,.§" > 0 and ® : X x X — R a (uniformly)

Lipschitz function such that
(hl) V(z,y) e X x X, ®(x
(h2) For any interval J €

(715,11 ,/

(h3) Foranyze X, p({ye X : ®(z,y) e J}) = a(J)(1 + O(|J|%)).

If two (uniformly) Lipschitz functions a; and ay : R — R are such that for some

a, o >0

y) < CO(y, z).
R, a(J) == (px p)({(z,y) e X x X : ®(z,y) € J}) €

ax(p) — ai(p) € [p*, p™]
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then (Appr) holds for the targets

Qp = {2(x,y) € [a1(p), az(p)]}
The same result holds if B is the space of C* functions or the space of compactly sup-
ported C° functions with s > 0 arbitrary.

Proof. The proof is very similar to that of Lemma 3.4. We just explain the differences.
Note that 7 (p) = (1 x 1)(,) € [p°, p*¢].
We introduce A : X x X — R : (x,y) — ¢ (a1(p), az(p), o, ®(x,y)), where 17 is as
in the proof of Lemma 3.4. Properties (7) and (¢7) hold as in the proof of Lemma 3.4.
We turn now to (ii7). We fix 2 € X, and observe that with I = [a;(p), az(p)] and

;fﬁ - la1(p) — p*(az(p) — ai(p)), ar(p)]. Jo = [az(p), az(p) + p*(az(p) — a1(p))] we have

JAZ(:c,y)du(y) —pu({ye X:@(x,y)el}) <2u({ye X : ®(z,y) € J1 U Jo})

<a(p)?

if b is sufficiently large due to (h2) and (h3). Applying (h2) and (h3), we also see that
u({y e X : @(x,y) e I}) — 5(p)| = O(a(p)""")

for some 7 > 0. This proves (Appr)(7ii).
Finally, fix y € X and observe that (k1) implies

J A (o, y)dule) < © f A (g, 2)dp(x) < 205(p),

which proves (Appr)(iv). O
3.2. Multiple Borel-Cantelli Lemma for admissible targets. The goal of this sec-
tion is to establish the following Theorem that gives conditions on the system (f, X, p1)
and on the family {Qﬁn}(n’k)eNQ;lgksn (or {Q’;n}(mk)eNz;Kkgn), that imply the validity of
the dichotomy of Theorem 2.4 for the number of hits N . Recall that

"
S, = > (2v))
j=1

where v; = o(py;) if we are considering targets of the type QF and v; = & (po) if we
are considering targets of the type Q’;.

Theorem 3.7. Assume a system (f, X, u,B) is (2r + 1)-fold exponentially mizing.*
Then

a) If {Q,,} is a sequence of simple admissible targets as in Definition 3.2, then the
events of the family {Q’p“n}(mk)eNz;Kkgn are 2r—almost independent at all scales.

b) If {Q,,} is a sequence of composite admissible targets as in Definition 3.5, then the
events of the family {Q’;n}(nk)eNz;lgkgn are 2r—almost independent at all scales.

Hence, Theorem 2.4 implies

“Part a) holds for 2r-fold exponentially mixing systems, as shown by the first part of Proposition 3.9.
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Corollary 3.8. If the system (f, X, u,B) is (2r + 1)-fold exponentially mizing, and if
{Q,,.} (or {,,}) are as in Definition 3.2 (or Definition 3.5), then

(a) If S, < oo, then with probability 1, we have that for large n N} <.
(b) IfS, = oo, then with probability 1, there are infinitely many n such that Ny =T

In fact Theorem 3.7 is a direct consequence of the following Proposition. We accept
a convention that (EM), for £ < 0 is an always satisfied.

Proposition 3.9. Given a dynamical system (f, X, pu,B) and a sequence of decreasing
sets {§),,} such that (Prod), (Poly), and (Appr) hold, then with the function o(-) :=
w(€2.), and

(i) If (EM),_y holds, then (M1), is satisfied with the function s : N O: s(n) = Rlnn,
where R is sufficiently large (depending on r, the system and the targets).

(i) If (Gr), (Mov) and (EM),_o hold, then (M?2), is satisfied.

(111) If (Gr) and (EM), hold, then for arbitrary ¢ > 0, (M3), is satisfied with 5(n) =
en.

Similarly, given a dynamical system (f, X, pn,B) and a sequence of decreasing sets
{Q,,} such that (Prod), (Poly) and (Appr) hold, then, with the function o(-) := p x
p(€2.):

(i) If (EM), holds, then (M1), is satisfied with the function s : N ©: s§(n) = Rlnn,
with R sufficiently largeﬂependmg on r, the system and the targets).

(ii) If (Gr), (Mov), (Sub) and (EM),_; hold, then (M?2), is satisfied.

(111) If (Gr) and (EM), hold, then for arbitrary e > 0 (M3), is satisfied with 5(n) =
en.

Proof of Proposition 3.9. We use C' to denote a constant that may change from line to
line but that will not depend on p,, €2, , €2,., the order of iteration of f, etc.

Proof of (i) For Q, , we prove (M1), in case k; 41 —k; > VRInn, where R is a sufficiently
large constant. Indeed, using (Appr) and (EM), , we get

u<fp%xﬁm><u(fpmu%m)< i (A;,) + CpyrroVRne
1=1 i=1

i=1

< (1(2,) + Cp(Q,)"7) + CpyrgY B,

which yields the RHS of (M1),, due to (Poly) if R is sufficiently large. The LHS is
proved similarly. B
For ), , we approximate 1g by AT apply (Appr), (EM), to the functions

B;n(ffm e 7xr> = A;n(xoﬂfl) e A;n(l’(), IT)7

Pn>

Bp_n(x())”' 7’737‘) = ‘/len(’xo?xl) Apn(x()ax’r‘)

and get

(ﬂ an> < 5_ pn)+co_(pn)l+n) _|_C«pn—r7'9flnn
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which yields the RHS of (M1), due to (Poly) if R is taken sufficiently large. The LHS
is proved similarly.

Proof of (ii). For Q,, , it is enough to consider the case Sep(k1, ..., k,) = r—1 otherwise
we can estimate all 1o, o f% with k; — k;_1 < s(n), except the first, by 1.

So we assume that 0 < k; — k;_; < Rlnn and k; — k;—; > Rlnn for ¢ # j. Since
(M1), was proven under the assumption that min;(k; —k;—1) > VRInn we may assume
that k; — k;_; < v/RInn. Note that by (Appr) and Remark 3.3

,LL (A;rn (A;rn © fk)) - M (1Qf7n (1QPn © fk)) < 4,[,6 (A;rn - 1QPn) g 4C’u(Qp”)1+n'

Therefore (Mov) implies :
1 (A;n (A;n o fkfkj‘l)) < Cu(Q,,)(In n) 000",

Take B = AY (Al o fhi=hi-1) we get using (EM),_, and (Poly) that

' (H 1o, (f’“@) - (H A (fw) o ( [T 4. (") B<f’““‘"”>>

i=1 i=1 i#j—1,j
< [ (A;_n)r—l ,LL(B) + Cpn—rTL\/ﬁlnneRlnn < OM(Qpn>r_1(ln n)—lOOOr
proving (M2),. B
For §,,, we approximate 1g by A;rn. Consider
Br(x(], X1, Ljtl, , Tr)

=1q, (wo,71) - 1q, (o, xj—l)lgsjé;kj—l (zj-1)1a,, (To, Tj41) -~ 1a,, (2o, 2/,

~

Br(x()y o Lj—1, L1, 7xr)

= /_1;" (o, 21) - - 'A;L (o, $j—1)A;_pn(xj—la fkj_kj*l%—l)/_l;n (20, Tj41) - - - A}, (w0, 27).

Since (Appr), (Mov) and (Sub) hold, we obtain from (EM)__,

Iz (h QIZi) < W <Br(aj, o Ry, fRivig ,fk'r'x))

(bt mon o)
< (' (B,) + Cp, "TLYRmngRInn

Integrating with respect to all variables except for zy and z;_;, then using (Appr)(iv)
when integrating along z, for any fixed value of z;_;, then finally integrating along
xrj_1, we get
r B _ _ r—1 = —
W(By) < (@(pn) +(pn)™")" 1 (AL, (x, fo 75 12))
which by (3.1) gives

W (By) < (5(pn) +(pa)+")" Ol F7)

Therefore, (M2), follows from (Mov), provided R is sufficiently large.
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Proof of (iii) Fix a large Constant b that will be given below. Consider first simple

targets €2, . Denoting B(x H A+ (fFex) for 20 < ky < - < k, < 2"*!, we obtain

from (Prod), (Gr), (Appr), (Poly) and (EM)_, that | B||p < CL™"" . Thus

<< i)
()

— (B(:c) (H Al (f’%)>> <u(Byn (43,) + 0L g g
B=1

Applying already established (M1), to estimate u(B), and observing that the second

term is smaller than C'(L™)¥22799¥¢ which is thus much smaller than the first
when b is sufficiently large, we finally get (1/3),.
Next, we analyze €, . Consider

B*(gj7x1’x2. (H 191;(1 ) <H 19 ; x , g )
By (Appr) and (EM), and the already established (M1),, we get

i N Q’;;ﬂ%) B*(w, ", ... "))

1<

(H Ay (@, frox) )(5(p21)+5(P2j>1+n) + CL™ " py " py 0%

Using (M1), again we observe that

1 (1_[ A (=, f’“w)) < C (a(py) + 3 (p))",

a=1

which allows to conclude the proof of (M3), in the case of Q,, . O

Remark 3.10. In fact, analyzing the proof of Theorem 3.7 we see that the composite
targets (Appr)(iii) could be replaced by a weaker condition: there is a function o,(p)
such that C~'o"(p) < 0.(p) < Co™(p) and

e2) [ (H A a, yj)éhb(@/j)) () = o(p)(1 + O0"(p),

(3.2b) J .

P ( A (x, yj)du(yj)> du(r) = o.(p)(1 + O(a"(p)).

j=1

[ S—
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We shall call the composite targets satisfying (Mov), (Sub), (Poly) as well as (Appr)
with condition (iii) replaced by (3.2a)—(3.2b) weakly admissible.

3.3. Notes. There is also a vast literature on Borel-Cantelli Lemmas for dynamical
systems starting with [123]. Some representative examples dealing with hyperbolic sys-
tems are [5, 35, 56, 68, 71, 73, 74, 80, 88, 102] while [29, 30, 88, 95, 96, 97, 108, 136] deal
with systems of zero entropy. The later cases are more complicated as counterexamples
in [55, 64] show. Survey [7] reviews the results obtained up to 2009 and contains many
applications, some of which parallel the results obtained in Sections 4-9 of the present
paper. We refer the reader to Appendix A for more background on multiple exponential
mixing and for examples of dynamical systems which enjoy this property. We note that
limit theorems for smooth systems which are only assumed to be multiply exponentially
mixing (but without any additional assumptions) are considered in [21, 33, 133]. [61]
obtains a Logarithm Law for hitting times under an assumption of superpolynomial
mixing which is weaker than our exponentially mixing assumption. We note that in
our approach the exponential rate of mixing is crucial for verifying the condition (M 3),
pertaining to interscale independence. Therefore it is an open problem to ascertain if
similar results hold under weaker mixing assumptions.

4. MurTiLoG LAWS FOR RECURRENCE AND HITTING TIMES

In this section we apply the results of Section 3 to obtain MultiLog Laws for mul-
tiple exponentially mixing diffeomorphisms and flows. We will assume that f is a
smooth diffeomorphism of a compact d—dimensional Riemannian manifold M preserv-
ing a smooth measure p. From now on, we take B in Definition 3.1 to be the space of
Lipschitz observables defined over M?*!,

4.1. Results. Let (f, M, ) be a smooth dynamical system. Let d (x,y) be the r-th
minimum of

d(xmfy)a e ,d(ﬂf, fny)

The following result was obtained for a large class of weakly hyperbolic systems as a
consequence of dynamical Borel-Cantelli Lemmas

ndP(z,2)] 1

. [nd)(z,y)] 1
4.1b 1 el et K24 R
(4.1b) msup —— d

In particular, the following results are known.

Theorem 4.1. (a) If a smooth system (f, M, 1) has superpolynomial decay of correla-
tions for Lipschitz observables, that is,

1(A(z) B(f*2)) = i(A)p(B)| < a(n) | Al ip| By where Vs lim n*a(n) = 0,

0

then for all x (4.1b) holds for a.e. y. If in addition, f has positive entropy, then (4.1a)
holds for a.e. x.
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(b) 1If, in addition, f is partially hyperbolic then for all x and a.e. y

. IndP(z,y)| — ilnn 1
4.2 1 = —.
(42) l?f(gp Inlnn d

In part (a), (4.1a) is proven in [128, Theorem 1] and (4.1b) is proven in [61, Theorem
4]. Part (b) is proven in [44, Theorem 7].

Question 4.2. Suppose that (f, p) is exponentially mixing then (4.2) holds for all z and

a.e. y.

MUuULTILOG LAW FOR RECURRENCE AND FOR HITTING TIMES. The goal of this section
is to obtain an analogue of of (4.2) for multiple hits as well as for returns for multiple
exponentially mixing systems as in Definition 3.1.

Definition 4.3. Given a smooth system (f, M, p), define

ndy (z,y)| - 11 1
QTI{m:fora.e. Y, limsup|n (z,9) a it :

n—s00 Inlnn rd

N> Inlnn T rd

) Ind" (z,z)] — L1 1
QTz{x:limsup|n (z,2)] gt )

Theorem 4.4. Suppose that (f, M, ju,B) is (2r + 1)-fold exponentially mizing.” Then
(a) (Gr) = 1; (b) p(Gy) = 1.

FAILURE OF THE MULTILOG LAWS FOR GENERIC POINTS. Naturally, one can ask if
in fact, G, equals to M. If » = 1 the answer is often positive (see Theorem 4.1(b)). It
turns out that for larger r the answer is often negative.

Definition 4.5. Given a function ¢ : N — N* define

Indy(x,y)| - tlnn 1
Hz{x:fora.e. Y, forallr)l:limsup‘n (z.9) i ,

>0 Inlnn d
y In d\;)
He=<Lx: fOTGZZ?“Zl:limsupM:oo .
n—>c0 ((n)

Theorem 4.6. Suppose that the periodic points of f are dense. Then
(a) If Gy = M, then H contains a Gs dense set.
(b) For any ¢ : N — N*, H. contains a G5 dense set.

Thus for r > 2 topologically typical points do not belong to G, or G,.

FAILURE OF THE MULTILOG LAWS FOR NON MIXING SYSTEMS. THE CASE OF TORAL
TRANSLATIONS.
Theorem 4.6 emphasizes the necessity of a restriction on z in Theorem 4.4.

®As seen from Proposition 3.9, part (a) holds for 2r-fold exponentially mixing systems.
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In a similar spirit, we show that the mixing assumptions made in this paper are
essential. To this end we consider the case when the dynamical system is (7, T%,\)

where T}, is the translation of vector av and ) is the Haar measure on T¢.
Define

1 dglr) ) - ll 1
E =<z forae. y, 1imsup| ndn (z,y)| — glnn =3,
n—o0 Inlnn 2d

_ nd? (z,z)| — 11 1
& = x:limsup|n (z, )] a B _ .
>0 Inlnn d
Theorem 4.7. For M\-a.e. o€ T¢, the system (T,, T \), satisfies
a) N(G1) =1 and (&) =1 forr = 2;
b) E =M forallr > 1.

The proof requires different techniques from the rest of the results of this section,
that are related to homogeneous dynamics on the space of lattices, so it will be given
in Section 9 after we introduce the necessary tools.

THE CASE OF FLOWS. Here we describe the analogue results of Theorems 4.4 and 4.6
for flows. Let ¢ be a smooth flow on a (d + 1) dimensional Riemannian manifold M
preserving a smooth measure . ~
Observe that if ¢'(y) is close to x for some ¢, then the same is true for ¢'(y) with
t close to t. Thus we would like to count only one return for the whole connected
component lying in the neighborhood of . Namely, for some fixed p > 0, for ¢ > 0,
let [t;,¢] denote the consecutive time intervals such that ¢'y € B(x, p) for t € [¢;,¢]].

Let #; be the argmin of d(z, ¢'(y)) for ¢ € [t;,t7]. Let d(z,y) be the r—th minimum
of

(4.3) d(@,¢"(y)), ..., d(z, " (y)), tr<n<tra.

Theorem 4.4 and Theorem 4.6 have the following counterpart in the case of flows.
Note that the dimension of the manifold in the case of flows is d + 1.

Theorem 4.8. Suppose that the smooth system (¢, M, p,B) is (2r+1)-fold exponentially
mizing. Then
a) u(G,) = 1;
b) u(Gr) = 1.

If, in addition, periodic points of ¢ are dense then
c)If Gy = M then H contains a Gs dense set;

d) For any ¢ : N — N* H, contains a G5 dense set.

4.2. Slowly recurrence and proof of Theorem 4.4. Since p is a smooth measure,
there is a smooth function y(z) such that

(4.4) n(B(z,p)) = y(@)p" + O (p™),

where the constant in O (p?*!) is uniform in z.
Given x € M, let

(45) Qm,p = {y : d(l‘,y) < p}
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and®

(46) y = {0.0) s dlo) < =B

(@)
We use the notation QF , for the event 1, o f%. We also recall the notation Q’; =
{x: (z, fFz) € Q,}. We also keep the notation o (p) = u(s,), and 5(p) = (p x u)(£2,).
For s > 0, we let p, = n~"/¢In"*n, and recall that N, denotes the number of times

k < n such that QF (or QF ) occurs.
By compactness, there exists a constant ¢ > 0 such that

{(2,y) 1d(z,y) <c7'p} = Qp = {(z,y) 1 d(z,y) < cp}.
Thus the statement of Theorem 4.4 becomes equivalent to the following :

(a) If s > %l, then for p-a.e. x, we have that for large n, Nj! <.
(b) If s < 4, then for p-a.e. z, there are infinitely many n such that Ny =

With the notation S, = 230:1 (29v;)" where v; = o(py) (in the €, ,, case) or v; =
(pi) (in the Q,, case), we see from (4.4) that S, = oo if and only if s < 5.

Hence Theorem 4.4 follows from the alternative of Corollary 3.8, since (f, M, i, B) is
(2r 4+ 1)-fold exponentially mixing, provided we establish the following.

Proposition 4.9. (a) For p-a.e. x the targets {$,,,} are simple admissible targets.
(b)The targets {2,,} are composite admissible targets.

The rest of this section is devoted to the
Proof of Proposition 4.9.
Observe first that with the definition of p, and (4.4), we have that (Poly) and (Poly)
hold for every x for the target sequences {€2,,, } as well as for the sequence {Q,,}.
We proceed with the proof of (Appr) and (Appr) and (Sub) properties.

Lemma 4.10. For each x, the targets Q. , satisfy (Appr). The targets Q, satisfy (Appr)
and (Sub).

Proof. For the targets 2, ,, the statement follows from Lemma 3.4 by taking ®(y) =
d(x,y) (that is a Lipschitz function), a;(p) = 0 and as(p) = p.

For the targets (2,, we use Lemma 3.6. We take ®(z,y) = d(z,y)y(x)V4, ai(p) = 0
and as(p) = p. We check (h1) since vy(z)/v(y) is bounded for (z,y) € X x X. Property
(h2) is obvious. As for (h3) it follows from the definition of vy(z) in (4.4).

Finally, for any ki, ks, when z € QF 1 QF we have

2p - ap
(v(@)) Ve (y(frra))Hd”

for some a > 0. Hence Q8 n QF> < f~MQk2~F1  which is (Sub). Lemma 4.10 is proved.
0J

d(f"x, f2r) < d(x, o) + d(z, f72r) <

OIn the definition of the composite target ©,, we include the factor (y(x))~ /% because we want that
for every z, Slgp (z,y)du(y) be essentially the same number to be able to check (Appr)(iii) for these
targets.
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Next we prove of the (Mov) (for a.e. x) and (Mov) properties. For this we state a
Lemma on recurrence for the multiple mixing system (f, M, p) that is of an independent
interest. We first introduce two definitions.

Definition 4.11 (Slowly recurrent points). Call x slowly recurrent for the system
(f, M, u) if for each A, K > 0, there 3pg such that for all p < po for alln < K|lnp| we
have

p(B(x, p) 0 " B(x, p)) < p(B(z, p))|In p| .

Definition 4.12 (Slowly recurrent system). Call the system (f, M, u) slowly recurrent
if for each A > 0 dpy such that for all p < po for all n € N* we have

p{x:d(z, f'z) < p}) < [np| ™,
Lemma 4.13. Suppose that (f, M, pu,B) is 2-fold exponentially mizing. Then

i) (f, M, p) is slowly recurrent.
i1) Almost every point is slowly recurrent.

As a consequence, we have that

(a) For p-a.e. x, the targets b, satisfy (Mov).
(b) The targets 2, satisfy (Mov).

Proof. Take B = A% If k = Bln|Inpl, take p = | In p|~“. By 2-fold exponential mixing,
we get

(4.7) p(x:d(z, ffe) < p) < ple:d(z, ffz) < p)
< (A2, f50)) < C (6% + 5 + 50%) < [T g4,

provided p is sufficiently small.
Now fix any 1 < £ < Bln|lnp|. Denote ||f||; = maxen |Df(2)|. Assume that z
satisfies d(x, f¥z) < p, then for any [ we have that

d(f R (), ) < | FIET

If we take L = [4BIn|Inp|/k] + 1 we find that

d(z, f"r) < >0 fIFe < o,

I<L-1

provided p is sufficiently small. But kL > Bln|In/p|, hence (4.7) applies and we get

plx : d(z, ffr) < p) < ple:d(e, fPa) < /p) < [Inp| ™4,

proving i).
We proceed now to the proof of i7). Define for j, k € N*

H;(z) := p(B(x, 1/29) n f7FB(x,1/2%)).
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Note that

f Hyp(w)du(z) = f f 1o1/21d(@, 9) Lo (e, £9)du(e)duly)
< j f Lo, y) Lo 1/00-11(y, fy)dpa() dpa(y)

< Cu(B(x,1/29) f Lio.1/20-11d(y, fry)dp(y)

where we used that u(B(y,1/27)) < Cu(B(x,1/27)) for any z,y € M. Part i) then
implies that for sufficiently large j it holds that

| Histoaute) < a2y
For such j we get from Markov inequality
p(z:3ke(0,K5]: Hip(z) > p(B(x,1/27))574) < Kj2.

Hence Borel Cantelli Lemma implies that for almost every x there exists j such that

H; () < u(B(x,1/27))j74 for every j = j and every k € (0, Kj], which implies ii).
Finally, (a) and (b) clearly follow from i) and @) respectively. Lemma 4.13 is thus

proved. O

With Lemmas 4.10 and 4.13, the proof of Proposition 4.9 is finished. ]

Proof of Theorem 4.4. Theorem 4.4 directly follows from Proposition 4.9 and Corollary
3.8. O

4.3. Generic failure of the MultiLog Law. Proof of Theorem 4.6.

Proof. To prove part a), we first prove that periodic points belong to #H,. By assump-
tion, for any x € M and almost every v,

- |1ndg)($,y) —Lnn 1
4.8 1 e -,
(48) linjololp Inlnn d

Since d\/’ (x,y) = dg)(:c, y), it follows that for any x € M, any r > 1, and almost every
Y

- |nd(z,y)| — lnn 1
4. 1 d <-.
o e 7
To prove the opposite inequality let
Indy) — 1
Hmpr = x:ﬂy—open,ﬂ(y)>1_1: Vyey,|n (z,y)| dnm>1_1
) ! Inlnm d 1

We have that

. |1nd£f)(x,y)|—%llnn 1
x: forae. y, forallr=>1:limsup > — = Hontr-
N0 Inlnn d I>1r21 mel
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But H,,;, is an open set. Hence we finish if we show that for any fixed r and [,
U, Hum,» contains the dense set of periodic points.

Let & be a periodic point of period p. Take U to be some small neighbourhood of z
and denote by A the Lipschitz constant of f? in U.

By (4.8), there exists n > exp oexp(A + pr) and Y such that () > 1 — , such that
for every y € ), there exists k € [1,n] satisfying

RONES

L\

1

2

=

Then

=

Az, [*Py) = APz, [Py < AT (1)

n

Hence for y € Y and m = n + p(r — 1), we have that
1

1NZ /1 \a = /1\a/ 1 \a
di)(z,y) <A (= — <|{= — )
n Inn m Inm

because we took n = exp o exp(A+pr). Hence & € H,, 1, and the proof of (a) is finished.
We now turn to the proof of (b). Given any function ¢ : N — N*, define

Ay = {z: |IndY (z, )| > m¢(m)}.

Observe that H; < M, U,, Ami. But A, is open and | J,, Ay, clearly contains the
periodic points. Part () is thus proved. O

S
o~

4.4. The case of flows. Proof of Theorem 4.8. The proof proceeds in the same
way as for diffeomorphisms with minimal modifications that we now explain. First, we
need to modify the targets

Q,, ={y:3se[0,1],d(z, $°y) < p},

and

QP = {(:L‘,y) 13s€0,1],d(x, ¢y) < 7(;))1“}

where v(z) = })i_r)r(l) 11(Qs,)/p". Consider the targets

Q=0 p, QZ ={z: (z,¢"x) € Q,}

for N* and let o(p) = pu(Qp2), 7(p) = (1 x p1)(£2p).

To prove a) and b) of Theorem 4.8 we can apply Corollary 3.8 to the smooth system
(¢, M, 1, B) and to the targets Q3 , and Q;}. For this, we just need to see that the
targets are admissible targets. This can be checked as in the proof of Proposition 4.9,
with very minor differences. Let us check for instance that (Sub) holds for QZ. Note

that when z € le ) QZQ for ny < ngy, we have some sy, s9 € [0, 1] such that

n1+S1 p N2 1TS52 p
d(l‘,Qb + ZE) < W, d($,¢ + l’) < W
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Hence

A6, 7)< max (67| crd(97 07 )

2p - ap
(y(x) Ve = (y(¢ra)) /e

for some a > 0. It follows that le nQe c ng_”lQZ;_”l, which is (Sub). 7 As for the

proofs of (Mov) and (Mov), they are obtained as in the case of maps via the notion
of slow recurrence. We say that a point x is slowly recurrent for the flow if for each
A, K > 0, there 3pg such that for all p < py for all n < K|In p| we have

1 (Qap 0 Q) < () p| .

Similarly we say that the flow is slowly recurrent if for each A > 0 3py such that for
all p < pg for all n € N* we have

< max [¢°|o
se[—1,1]

w () <| In p| ™.

The same proof of Lemma 4.13 then shows that if the system (¢, M, u, B) is exponen-
tially mixing, it holds that p-a.e. point is slowly recurrent for the flow, and that the
flow is slowly recurrent. Properties (Mov) and (Mov) are immediate consequences.
The proof of part ¢) and part d) also proceeds in the same way as for maps. Namely
we first see that periodic orbits of the flow belong to H, and #, and then use the
genericity argument. o

4.5. Notes. Many authors obtain Logarithm Law (4.1b) for hitting times as a conse-
quence of dynamical Borel-Cantelli Lemmas. See [35, 44, 60, 80] and references wherein.
[61] also studies return times. We note that [61] works under much weaker conditions
than those imposed in the present paper, however, his results are valid only for r =1
(the first visit).

[88, 94, 99| study the recurrence problem when the limsup in (4.1b) is replaced by
liminf. In particular, [99] proves that for several expanding maps the

(1)
lim inf nan \TY) dn”(2,y)
n—oo Inlnn

exists for almost all y.

Theorem 4.7 shows that some systems may satisfy logarithmic laws for » = 1 that
are the same as in the exponentially mixing case, but fail to do so for » > 2. Logarithm
Laws for unipotent flows were obtained in [9, 10, 65, 88]. It is not known which kind
of MultiLog Laws hold for such flows.

7" When s5 — s1 < 0, we modify Q, by Qp = {(aj,y) :3se[-1,1],d(z, ¢°y) < W} and get Q’p“ 1)

QZZ c ¢*”1§~2ng”1, which gives (M2), by a same argument of Proposition 3.9(ii).
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5. POISSON LAW FOR NEAR RETURNS.

In this section we suppose that p is a smooth measure and that (f, M, u,B) is an 7-
fold exponentially mixing system for all . In the previous section we verified properties
(M1), and (M2), for the targets €, , given by (4.5), for almost every x, and for the
targets 2, given by (4.6). Moreover, we have that })iir(l) p~%a(p) = v(x) and ,l)ii% p~la(p) =

1, where o(p) = pu(Q,x), (p) = (1 x p)(Q,). Accordingly Theorem 2.10 gives the
following.

Theorem 5.1. (a) For almost all x the following holds. Let y be uniformly distributed
with respect to . The number of visits of {f*(y)}repirp-a) to B(x,p) converges to a
Poisson distribution with parameter 7y(z) as p — 0. Moreover letting n = 7p~¢ we

have the sequence

(5.1 i (ey) d@y)  d)(y)
p Y p ) Y p )
converges to the Poisson process with measure ~y(x)Tdt* dt.

(b) Let x be chosen uniformly with respect to p. Then the number of visits of { f*(2)}repi rp-a

to B <x, 1/+<>> converges to a Poisson distribution with parameter 7 as p — 0.
~yl/d(x

Proof. All the results except for Poisson limit for (5.1) follows from Theorem 2.10. To
prove the Poisson limit for (5.1) we need to check that for each choice of 1|7 < rf <r; <
ry < ---<r; <r! the number of times k € [1,7p~?] where d(z, f*y) € [r;p, r;-rp] are
converging to independent Poisson random variables with parameters

-t

wmjfnm4w=v@wUﬁW—wﬂﬂ-

But this follows from Theorem 2.11. The latter theorem can be applied since (M1),
follows from Property (Appr) of the targets
Q' = {y : d(z, f*y) € [ri p,rif pl}
that holds due to Lemma 3.4. O
There are two natural questions dealing with improving this result. In part (a) we
would like to specify more precisely the set of x where the Poisson limit law for hits

holds. In part (b) we would to remove an annoying factor v'/¢(x) from the denominator.
Regarding the first question we have

Conjecture 5.2. If f is exponentially mizing then the conclusion of Proposition 5.1(a)
holds for all non-periodic points.

Regarding the second question we have the following.

Theorem 5.3. Let x be chosen uniformly with respect to p. Then the number of visits
of {/*(2)}reprrp-ay to B(x, p) converges to a mizture of Poisson distributions. Namely,
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for each |

p—0 [!

In other words to obtain the limiting distribution in Theorem 5.3 we first sample
z € M according to the measure p and then consider Poisson random variable with
parameter 7y(z).

2)7)!
(5.2) lim p(Card(n ~d(z, frr) < p)=1) = JM e_W(Z)TMdu(z).

Corollary 5.4. If f preserves a smooth measure and is r-fold exponentially mizing for
Lipschitz observables for all r = 2 then
(a) For almost all x we have that if 7-(y) is an the first time an orbit of y enters
B(z,€) then for each t
lim p(y = 7o (y)e? > t) = e V@1
(b) If T-(x) is the first time the orbit of x returns to B(x,e) then

lim p(x : To(2)e? > t) = J e Y@t 2).
M
Proof. This is a direct consequence of Theorems 5.1(a) and 5.3. For example to get
part (b), take [ = 0 in (5.2). O
Proof of Theorem 5.3. Consider the targets
Qp(w,y) = {(z,y) € M x M : d(x,y) < p}

and let Qf = {z : (z, f*z) € Q,}. Note that (M2), for Q% implies (M2), for QF. However,

(M1), is false for targets Q’; We now argue similarly to the proof of Theorem 3.7 to
obtain that for separated tuples ki, ko, ..., k.,

(53) u<rww)=ﬂ{h¢ummau+dn»

Namely, note that

J 1o (zo,21) ... 1 (20, z;)dp(zo)dp(z1) . . . dp(z,)

=fmwwwmwww=MM+ow»f¢uwwm»

M
Thus approximating 1f2p by A;—r satisfying (Appr), and applying (EM), to the functions
E:(I()v e, Ty) = A+($0,9€1) A+($oy$r)
BP_(ZEO,"‘ 7x7‘) = (I’O,Il) (ZU(),[E'T)
we get that if k1 — k; > R|In p| for all O <j<r-—1, then

2 (ﬂ Q];J) S p <B;($07 fklea e 7fer0)> S <B:(‘T0> T ,237«)> + Op—r09R|lnp|
j=1

< (pd+cvpd(1+77))7“f ")/T(Z>d,u(2) + Cpfra'eR\lnp\,

M
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and, likewise,

o (ﬂ Qﬁ]) > (pd o de(lJrn))rf ’yT(z)d,u(z) _ Cpfra'eR\lnp\.
j=1

M

Taking R large we obtain (5.3).
Summing (5.3) over all well separated couples with k; < 7p% and using that the
contribution of non-separated couples is negligible due to (M2), we obtain

i ) ( N,;:T,m ) () = JM Ar:!z) (=)

Nyro = Card{k < 7p~*: d(z, fFz) < p}.
Since the RHS coincides with factorial moments of the Poisson mixture from (5.2), the
result follows. O

where

5.1. Notes. Early works on Poisson Limit Theorems for dynamical systems include
[36, 42, 81, 82, 83, 124]. [31, 75, 79, 125] prove Poisson law for visits to balls centered
at a good point for nonuniformly hyperbolic dynamical systems and show that the
set of good points has a full measure. [44] obtains Poisson Limit Theorem for partially
hyperbolic systems. Some of those papers, including [28, 44, 75, 78] show that in various
settings is the hitting time distributions are Poisson for all non-periodic points (cf. our
Conjecture 5.2). The rates of convergence under appropriate mixing conditions are
discussed in [2, 3, 76]. The Poisson limit theorems for flows are obtained in [116, 120].
Convergence on the level of random measures where one records some extra information
about the close encounters, such as for example, the distance of approach is discussed in
[44, 58, 59]. A mixed exponential distribution for a return time for dynamical systems
similar to Corollary 5.4 has been obtained in [38] in a symbolic setting. For more
discussion of the distribution of the entry times to small measure sets we refer the
readers to [37, 87, 129, 143] and references wherein. We also refer to Section 10 for the
related results in the context of extreme value theory.

6. GIBBS MEASURES ON THE CIRCLE: LAW OF ITERATED LOGARITHM FOR
RECURRENCE AND HITTING TIMES

6.1. Gibbs measures. The goal of this section is to show how absence of the hy-
pothesis of smoothness on the invariant measure p may also alter the law of multiple
recurrence and hitting times.

For simplicity we consider the case where f is an expanding map of the circle T and
i is a Gibbs measure with Lipschitz potential g. Adding a constant to g if necessary
we may and will assume in all the sequel that the topological pressure of g is 0, that is

(6.1) Plo) = | gd+ hu(7) =0,

This means (see [131] for background on Gibbs measures) that for each € > 0 there
is a constant K such that if B,(x,¢) is the Bowen ball

B(x,e) = {y : d(f*y, ffx) <ecfor k=0,...,n—1},
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then
Kl MMBalre) K.
exp [ (Xh2o 9(f2))]
We denote
(6.2) fu=Tnlf",
A = A(u) the Lyapunov exponent of
l TL
A= limn|(f— qudu>0
n—:00

and by d the dimension of the measure p

d = lim 2AUB(E0)

5—0 Ind
We know from [110] that the limit exists for y-a.e. = and
§gdu
= hy(f)/A = —

where the last step relies on (6.1).
We say that p is conformal if there is a constant K such that for each z and each
0<r<l,
B(xz,r
K< Hi—ég—)l <K.
It is known (see e.g. [121]) that p is conformal if and only if g can be represented in
the form

g=tfu—=Pf)+g—gof
for some Holder function g and ¢ € R.
Denote

(6.3) U(x) = g(z) + dfu(),

then we have {¢du = 0 under the assumption P(g) = 0. Define 0 = o(u) by the
relation

(6.4) ot — J¢2du+2§:1f¢(w0f”) dp

The goal of this section is to prove the following

Theorem 6.1. (a) If p is conformal then Theorems 4.4 and 4.6 remain valid with d
replaced by d.

(b) If v is not conformal then for p almost every x and p x p almost every (x,y), it
holds that

(6.5) lim sup nd ()| - alnn __
' now /2(Inn)(Inlnlnn) dvd\’
(6.6) lim sup | Ind; (. )| - im0

n—x 4/2(Inn)(Inlnlnn) CdydA
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6.2. Preliminaries on expanding circle maps and their Gibbs measures. Here
we prepare for the proof of Theorem 6.1 by collecting some facts on expanding maps of
the circle and their Gibbs measures.

We first check multiple mixing for such maps.

Recall we take B = Lip. Let us denote by | - |Lip the Lipschitz norm

for ¢ € B.

Proposition 6.2. For each Gibbs measure i, the system (f, T, u,B) is r-fold exponen-
tially mixing for any r = 2.

This fact is well known but for the reader’s convenience we provide the argument in
in §A.2.

In the rest of the argument it will be important that if x4 is a Gibbs measure then
there are positive constants a, b such that for all sufficiently small p and for all x,

(6.7) p* < u(B(x,p)) < p".
We also need the fact that Gibbs measures are Alhfors regular, that is there is a
constant R such that for each x, p we have

(6.8) 1 (B(z,4p)) < Ru(B(z, p)).

We recall the proofs of (6.7) and (6.8) in §B.2.
We also need a lemma on the fluctuations of the local dimension of Gibbs measures
for expanding circle maps.

Lemma 6.3.
(a) o(p) = 0 if and only if pu is conformal.
(b) If o > 0 then for u almost every x

: |Inp(B(z,6))|—d|lnd| o . [Inu(B(z,9))|—d|nj| o
lim sup = —, limin = ——.
-0 4/2[Ind|(InIn|In ) VAT 500 4 /2]Ind|(Inln | In 8]) VA

The proof of this lemma is also given in Appendix B.

6.3. The targets. Given x € M, let

Qup={y: dlz,y) <pb, Q= {(z,y):dz,y) <p}.

We use the notation Q'; , for the event 1o, o f*. We also recall the notation Q’; =
{z : (z, fFx) € Q,}. In the sequel we will always assume that {p,} is a sequence such
that p, > n™ for some u.

We caution the reader that the targets Qp are not admissible targets in the non-
conformal case, so we need to use a roundabout approach, different from Section 4, for
proving Theorem 6.1(b).

On the other hand, we will need a modification of the argument of Lemma 4.13
to show that for any Gibbs measure p and for p-a.e. x € M, the targets ., are
admissible for (f, M, u,B). The difference with the case of smooth measures, is that



MULTIPLE BOREL CANTELLI LEMMA IN DYNAMICS 35

it does not hold anymore that u(B(y,1/27)) < Cu(B(x,1/27)) for any x,y € M, while
this was used in the proof of Lemma 4.13.

Lemma 6.4. For any Gibbs measure i, for pi-a.e. x € M, the targets €1y ,, are admis-
sible for (f, M, u,B).

Proof. Due to (6.7) and (6.8), all the properties of admissible targets except for (Mov)
are obtained exactly as in the smooth measure case. To prove (Mov), we modify the
argument of Lemma 4.13 to overcome the fact that it does not hold anymore that
w(B(y,1/27)) < Cu(B(z,1/27)) for any z,y € M.

In fact we can prove more than (Mov) in this context of expanding circle maps.
Namely we can show that for a.e. z and all k£

(6.9) p(B(z,p) 0 fEB(x, p)) < p(B(z, p)*".

We consider two cases.

(I) & > €|Inp| where ¢ is sufficiently small (see case (II) for precise bound on ¢).
Take A} such that A =1 on B(x,p), { Ardp < 2u(B(z, p)) and |Af| L, < Cp~™ for
some 7 = 7(u). Let p = p” where o is a small constant. Then (A.3) gives

u(Ba.p) 0 £ Bla.p) < [ 4747 o )y

< 4u(B(x, p)) (B, p)) + 200"~ u(B(x, p)) < Cu(B(z, p)) (p"" + /f““é‘p’”>

for some 0 < f < 1. Taking ¢ small we can make the second term smaller than pl™ 61/2

which is enough for (Mov) in view of already established (Poly). Note that no restric-
tions on x are imposed in case (I).

(IT) k < €| In p|. In this case for a.e. x the intersection B(xz,p) n f~*B(x, p) is empty
for small p due to the Proposition 6.5 below. 0

Proposition 6.5. ([15, Lemma 5]) Let T : X — X be a Lipschitz map with Lipschitz
constant L > 1 on a compact metric space X. If ju is an ergodic measure with h, (1) > 0.
Then for almost every x, there ezists po(x) > 0 such that for all p < po(x), and all
0 <k < 5|Inp|, we have T™"B (z,p) n B (z,p) = &.

The case of composite targets Qp is more complicated, except for the conformal case.
In the conformal case, the following Lemma is obtained exactly as in Proposition 4.9
that dealt with the smooth measure case, so we omit its proof.

Lemma 6.6. If 1 is conformal, then the targets ), defined by (4.6) are weakly admis-
sible in the sense of Remark 3.10.

6.4. The conformal case.

Proof of Theorem 6.1 (a). We take p, = n~/4In"*n. Due to Lemmas 6.4 and 6.6, the
targets targets €, ,, are admissible for y-a.e. x € M and the targets (2, are composite
weakly admissible. Consequently, the proof of Theorem 6.1 (a) follows exactly as that
of Theorems 4.4 and 4.6 corresponding to the smooth measure case. 0
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6.5. The non conformal case. Proof of Theorem 6.1 (b). The proof of Theorem
6.1 (b) relies on the liminf in Lemma 6.3(b).

6.5.1. The iterated logarithm law for hitting times : Proof of (6.6) of Theorem 6.1 (b).
For € > 0 and ¢ > 0 arbitrary let

(6.10) Pn = pn(c) = nl—l/dexp (—C\/Z(lnn)(ln Inln n)) :

9F(0) = 0%exp <(1 +¢) %\/2|ln(5| (lnln|ln(5|)> :

I2e(n) = 02 (pulc)).

then

It (n) = %exp ((—cd +(1+ 5)\/% + m) \2Inn(lnln lnn))

for some n,, — 0 as n — 0.
The liminf in Lemma 6.3, has the following straightforward consequences, for any
e > 0 and for p almost every x:

There exists n(z) such that for n > n(z),
(6.11) 1 (L) < 02,(n).

For a subsequence n; — o0 we have

we have

(612) /‘L (Q%ﬂnl) > 196_,6(”1)
0 ¢]

Now it follows that for any r > 1, S, = 2 (QkM(Qx,ka))r is finite if ¢ > (1 + €)==2

dvdx

and is infinite if ¢ < (1 — &) 75 Hence (6 6) follows from Proposition 6.2, Lemma 6.4
and Corollary 3.8 ]

6.5.2. The iterated logarithm law for return times: Proof of the upper bound in (6.5).
Now we turn to the proof of

\lnd,(f)(:c,x)\—%llnn o

6.13 lim su < .
(6.13) s v/2(Inn)(InInlnn) dvdA

Since d. (x,z) = dg)(x, x), we only need to show (6.13) for r = 1.
Denote

1 o
Tn = 1/dexp{ (1+2€)dm\/2(lnn)(lnlnlnn)}.

Let N, = 2%, Similarly to Section 2 it is enough to show that for almost all z, for all
sufficiently large k£ we have that

d(z, f"z) = ry, form =1,..., Nj.

Proposition 6.5 allows us to further restrict the range of m by assuming m > &ln Ny,
where ¢ is sufficiently small.
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We say x € T is n—good if p (B(x,r,)) < 97 (r,). Fix ko and let
A = {x : x is n—good for n = Ny, but d(x, f"x) < ry, for some m = Eln Ny, ..., Ni}.
Let X, = {xj,k}?;1 to be a maximal ry, separated set of Ny—good points. Thus if x is
Nj, good then there is j such that x € B(z,;,7n,). Therefore if f™x € B(z,ry,) then
f"x e B(xjk,2ry,). Fix a large K, for m < K'In Ny, (6.9) is telling us that
p(B(@jp: 2rn,) 0 f "Bk, 2rn,)) < Kp(B(xjk, 2r,)) '
while for m > K In N, we get by exponential mixing that
p (B(jp: 2rn,) 0 "Bk, 2rn,)) < Kp(Bljx, 27, )%
Summing those estimate for we obtain

Ny
> Bk 2ry) 0 fT Bk 2r,)) < Kp(B(wj, 2ry, ))e "V
m=élnNk
for some k = k(£) > 0. Since B(xj,7n,/2) are disjoint for different j, by (6.8) we
conclude that
Z H (B<xj7k7 QrNk)) < RZ K (B(‘rj,ku TNk/Q)) < R
J J
It follows that
p(Ay) < KRe V¥,

Now the result follows from the classical Borel Cantelli Lemma.

6.5.3. The law of iterated logarithm for return times: Proof of the lower bound in (6.5).
Here we prove that

Indy)’ -1
(6.14) lim sup ndy (2, 0)] — glun > 7
n-x 4/2(Inn)(Inlnlnn) dvdA

Suppose p to be a fixed point of f. Take the Markov partition P, of T such that if
P, € P,, then f*(0P,) = p. Denote P,(z) = {P, € P, : x € P,}, two sequences k;(z)
and n;(z), j € N such that ko(x) = no(z) =0,

nj(x) = min{n > kj_1(z)* : o (Pa(2)) = 02 (| Pu()])}

and 5
ki(r) = ————.
B
Let
Aj = {z: Card {kj_1(z) < k < kj(z) : ffre P, (2)} =r}.
Then

' |lnd$f)(:n,a:)|—élnn o
lim sup >
n-x 4/2(Inn)(Inlnlnn) dvdA
if = belongs to infinitely many A;s.
Denote by PP (-|-) the conditional probability and F; = B (Py,, -+, Pk,) be the o
algebra generated by the itineraries up to the time k;. We will use the following Lévy’s
extension of the Borel-Cantelli Lemma.

(1 —2e¢)
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Theorem 6.7. ([140, §12.15]) [fZ]P’(AjH\}"j) = o a.s. then A; happen infinitely

J
many times almost surely.

Hence (6.14) follows from the lemma below.

Lemma 6.8. There exists ¢* > 0, such that for almost all x there is jo = jo(x) such
that P (A;j1|F;) = ¢* for all j = jo.

Proof. For any Q < T, Py € Py,

p (SN P)) (@ P
e (f*(Pe)) 11(P)
by bounded distortion property. Note that
p (Aji1 0 Py (@)
1 (Pry(o) (@)

1 (fk(Q N Pk)) =

P (A;1|F) () = > O (£ (Ajar 0 Py (2)))

By construction
FRE (Ajr 0 Py (2))
is the set of points y € T which visit P, () at least r times before time

Fra(@) = ya(x) — k().
By Lemma 6.4 for almost all z the targets P, ., () satisfy (M1), and (M2), for all r.

Since by construction lim ,u(Pnj (x))k;(z) = 2 we can apply Theorem 2.10 to get
j—®©
22"

P (A1l F5) () = O™ (£ (Aja 0 Poy)) > Co Y e

k=r

= c*.

proving the lemma. 0

6.6. Notes. The fact that return times for the non-conformal Gibbs measures are dom-
inated by fluctuations of measures of the balls has been explored in various settings
[24, 25, 32, 38, 77, 85, 119, 127, 137]. In particular, [72] obtains a result similar to
our Lemma 6.3 in the context of symbolic systems. The papers mentioned above deal
with either one dimensional or symbolic systems. In higher dimensions even the leading
term of In u(B(z,r)) is rather non-trivial and is analyzed in [14], while fluctuations are
determined only for a limited class of systems [111]. Thus extending the results of this
section to higher dimension is an interesting open problem.

7. GEODESIC EXCURSIONS.

7.1. Excursions in finite volume hyperbolic manifolds. Let Q be a finite volume
non-compact (d + 1)-dimensional manifold of curvature —1. Let SQ denote the unit
tangent bundle to Q. For (¢,v) € SQ, let v(t) = v(q,v,t) be the geodesic such that
7(0) = ¢q, ¥(0) = v. We call g* the corresponding geodesic flow, that is ¢*(v(0),4(0)) =
(7(t),%(t)). ¢' preserves the Liouville measure p. Fix a reference point O € Q and let
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D(q,v,t) = dist(O,~(t)). According to Sullivan’s Logarithm Law for excursions [135]
for p-a.e. (q,v) € SQ, it holds that

. D(g,v,T) 1
7.1 1 — =,
= A G
In fact, the Borel Cantelli Lemma of [135] also shows that

D(q,v,T) -+ InT 1

7.2 li d = -.
(7-2) T T d

Here we present a multiple excursions version of (7.2). Recall ([17, Proposition D.3.12])

that @ admits a decomposition Q = K U (U C; ) where K is a compact set and C;

are cusps. Moreover each cusp is isometric to V; x [L;, 00) endowed with the metric

dz? + dy?

Y2
where Vj is a compact flat manifold and dz is the Euclidean metric on V;. Cusps are
disjoint, so that a geodesic cannot pass between different cusps without visiting the
thick part K in between. We note that® for each gy = (29, 10) € C; there is a unique
geodesic ({x = xp}) which remains in the cusp for all positive time. We will call this
geodesic the escaping geodesic passing through (zg, yo). Let h(q,v,t) = 0if v(q,v,t) € K
and h(q,v,t) = Iny(t) if v(q,v,t) = (z(t),y(t)) € C;. It is easy to see using the triangle
inequality that there exists a constant C' such that

|D(q,v,t) — h(g,v,t)| < C.

A geodesic excursion is a maximal interval I such that +(¢) belongs to some cusp C; for
all t € I. Then, h(l) = max h(q,v,t) is called the height of the excursion I. For every
€

triple (q,v,T) we can order the heights of the excursions that correspond to maximal
excursion intervals included inside (0,7") starting from the highest one

H(1)<QJU7T> = H(2)(Q7U7T) =2 H(T)((quaT) s
Note that (7.2) is implied by

d82: 5 .CIZEV}, yE[Lj,OO)

HY(q,v,T) -+ InT 1

7.3 Ii . d = —.

(7.3) o TSEIZO InlnT d
Here we prove the following multiple excursions version of (7.3).

Theorem 7.1. For a.e. (q,v) and all r we have

’ H"(q,v,T) -1 InT 1
lmTSI_lEo InlnT ord

We also have the following byproduct of our analysis.

8We identify hereafter each cusp C; with V; x [L;, ).
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Corollary 7.2. There is a constant a; such that for each b the following holds. Suppose
that (q,v) is uniformly distributed on SQ. Then the number of excursions in the cusp
C; which finished before time T and reached the height % + b is asymptotically Poisson
with parameter a;e”®.

In other words, for every r > 1, we have
InT = (ae ™)
. (r) . 1 o —dh
(7.4) qlggou(ﬁﬁ- (q,v,T)<7+h)—§ ML exp (—age ™).

In particular, taking r = 1 in (7.4) we obtain

Corollary 7.3. (Gumbel distribution for the maximal excursion) If (q,v) is uniformly

distributed on SQ. Let Hi(l)(q,v, T) denote the maximal height reached by v(q,v,t) up
to time T inside cusp C;. Then

InT
dim g (Hfl)(q,U,T) —— < h) = exp (—ae™ ™).
7.2. MultiLog law for geodesic excursions. In this section we prove Theorem 7.1.
We first need to discuss the probability of having an excursion reaching a given level.
To this end let II be the plane passing through v and the escaping geodesic. In this
plane the geodesics are half circles centered at the absolute {y = 0}. The half circle
(geodesic) given by (z — z0)? + y* = R? reaches the maximum height of In R + O(1).
Let n* be the first integer moment of time after the beginning of the excursion. Then
the y coordinate of (n*) is uniformly bounded from above and below so the radius of

P
the circle defining the geodesic is given by R = y('n ) where 6 is the angle with the
sin
escaping geodesic. It follows that the condition R > Ry is equivalent to the condition
sin§ < Y2

Ry

Definition 7.4. Given H we consider the set A; g which consists of points (q,v) € C;
such that

(i) The first positive time t(q,v) such that the backward geodesic v(q,v, —t) exits the
cusp satisfies t(q,v) € [0,1];

(ii) The angle v makes with the escaping geodesic at q is less than e,

The above discussion implies that for (q,v) € C; satisfying (i) and (ii), the geodesic
starting at (¢, v) will exit the cusp in backward time less than 1 and will do an excursion
in future time up to height h > H, consuming for this a time comparable to h. Moreover
condition (ii) on the angle is a necessary and sufficient condition for the excursion to
reach height H.

We also introduce

(7.5) Ay = UAi,H.

It is a basic fact (e.g. see the proof of Theorem 6 in [135])
(7.6) w(Aig) = aie”™ (1 + o(1)).
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To prove Theorem 7.1 we define for every k > 0
(7.7) Q=g " A ).

By a slight abuse of notation, we still denote the event Lok by Q’; . We also keep the
notation o(p) = p(€2,).
For s > 0, we let p, = n~Y%In"*n, and recall that N;Ln(q, v) denotes the number of
times k € [1,n] such that QF occurs (i.e. (¢,v) € QF ).
Theorem 7.1 becomes equivalent to the following:
(a) If s > %, then for p-a.e. (g,v), we have that for large n, NJ! <.

(b) If s < %l, then for p-a.e. (q,v), there are infinitely many n such that Ni > r?

Observe that by (7.6), we have that
(7.8) n(Q,,) e [CInt In"*n,Cn~tIn—* n

With the notation S, = 372 (2/v;)" where v; = 0(py) we see from (7.8) that
S, = o if and only if s < %. We want thus to apply Corollary 3.8, but first we need
to verify its conditions.

The system (g*, SQ, u, B) is r-fold exponentially mixing for every r > 2 in the sense
of Definition 3.1. Indeed (Prod) an (Gr) are clear, while (EM), follows from Theorem
1.1 of [19] (see also Theorem 1.2 of [103]) and Remark A.1 and Theorem A.2 of our
appendix.

To apply Corollary 3.8, we also need the admissibility of the targets.

Proposition 7.5. The family of targets {€2,,} is admissible as in Definition 3.2.
Before we prove Proposition 7.5, we first complete the

Proof of Theorem 7.1. From the equivalence stated in (a) and (b) above, and since by
Proposition 7.5 the targets {€2,,} are admissible, the limsup of Theorem 7.1 follows
from Corollary 3.8 and the fact that S, = o if and only if s < %l. O

Proof of Proposition 7.5. First, the definition of p, and (7.8) imply (Poly). Next, the
first time ¢(q,v) = 0 such that (g, v, —t) exits the cusp is Lipschitz in (¢, v). Also, the
angle U(q,v) that v makes with the escaping geodesic at ¢ is also a Lipschitz function
of (g,v). We conclude that (Appr) for the targets {€2,} follows from Lemma 3.4 with
O(q,v) = V(q,v), ai1(p) = 0 and az(p) = p, modulo a very simple modification in the
proof of Lemma 3.4 to account for the benign extra condition that ¢(q,v) € [0, 1].

It remains to prove (Mov). We denote A}, = g " Ag. (Mov) is an immediate conse-
quence from the following quasi-independence result on the excursions. Similar quasi-
independence results are obtained in [135, 122], and we will give a proof adapted to our
setting for completeness.

Lemma 7.6. There is a constant K such that for each H > 0 and each ny < ns,
(A A A2) < K (Ag)®.

9We introduce a factor 1/2 to make sure the last excursion that starts before n/2 finishes before n.
Here, we are using the control on the excursion time that is comparable to the excursions height
Inn « n/2.
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Up to proving Lemma 7.6, we finished the proof of Proposition 7.5. U
The rest of this section is devoted to the

Proof of Lemma 7.6. Let Ay = I Ay where I denotes the involution I(g,v) = (¢, —v).
Given nq,n define

Brna=1{r:9g"ve Ay, g"zv e Au, "z ¢ K forng <n < n}.

Thus B, » consists of points which enter a cusp at time n;, reach the height H, and
then exit the cusp at time n. We have that A7} = U B n,n- Note that n —ny > H.
n>n
Fix a small 6 and let By, » = UzeBH,nl,ﬁ W (z, (56_1ﬁ) , where W" (z, p) denotes the
local unstable cube containing = of lengt}} p. Note that if y € By, 7 then g™y e Ag_4
for some n; € [ng — 1, ny + 1] and g™y € Ay _; for some 7y € [n— 1,72+ 1]. In particular
for each ny the sets {Bpn, 7 }as=n, have at most 3 intersection multiplicity and hence

(7.9) Y 1By n) < 3pu(Ap_1).
Since BHM,;L N A = & if n = ne, we have for ny > ny
(7.10) A 0 A < D i (B 0 Al
ni<n<ng

We claim that for some constant C' > 1 for each n; < n < ns

(7.11) 1 (B n 0 AR) < Cua(Brr o) i(Ag).-

Now, (7.6), (7.9), (7.10) and (7.11), imply the estimate of Lemma 7.6.

It remains to establish (7.11). To this end, fix a large H and partition a small
neighborhood U of Aj into unstable cubes of size § (these are nice unstable cubes
around points that are close to the compact region K). For H > H, let

BH,nl,ﬁ = U Wu(gﬁx7 (5)

:DEBHYnlyﬁ
where W (y, d) is the element of the above partition containing y. Note that
(712> BH,nl,ﬁ - giﬁBAH,nl,T_L - BNH,nl,T_L’
Thus
1 (B 0 AR) < (g_ﬁBHﬁuﬁ s A?f) = p (BH,m,ﬁ N A}‘{*)

where n* = ny — n > 0. We thus finish if we show that
(7.13) (Bt 0 A3 ) < Cpu(Bra )i Arr).

Indeed (7.12) and (7.13) imply (7.11). By construction, By, » is partitioned into nice
unstable cubes of size §. It suffices to show that for any such cube W we have

(7.14) (A% W) < Cem
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where p(+|-) denotes the conditional expectation. Let @ = U U W?(g'z, ), where
zeW |t|<s

W? (y,0) denotes the local stable leaf containing y of length §. Note that if § is suf-

ficiently small then due to the local product structure, for each point y € @) there is

unique z € W and t € [—6, 6] such that y € W*(g'x, ). In addition if ¢"*z € Apy then

gy € Ay_1. Since the measure of @ is bounded from below uniformly in W < U, it

follows that
(AL W) < u(Ay_11Q) = —M( (Q1)ﬁ )

This establishes (7.14) and, hence (7.13) completing the proof of Lemma 7.6. O

< ep(Ap_1) < ce ™.

7.3. Poisson Law for excursions. Proof of Corollary 7.2. Here we take

Pr 1= nVe,

We fix h € R and fix a cusp index i¢. With the sets A; i defined as in Definition 7.4,
consider the targets

Q=9 A mpa

i,0n
As in the proof of Theorem 7.1, we have that {Q} , } satisfies the assumptions (M1),
and (M2), for all r. Moreover, by (7.6)

lim nju(,,) = ae” ™.
n—aoo

Therefore Corollary 7.2 follows from Theorem 2.10. O]

7.4. Notes. The logarithm law for the highest excursion was proven in [135]. The
extensions for infinite volume hyperbolic manifolds is studied in [134]. Corollary 7.3
for surfaces is obtained in [86] where the authors also consider infinite volume surfaces.
Papers [12, 52] obtain stable laws for geodesic windings on hyperbolic manifolds. Those
papers are relevant since the main contribution to windings comes from long excursions,
so the proofs of stable laws and of the Poisson laws for excursions are closely related,
see e.g. [48, 50]. In case the hyperbolic manifold under consideration is the modular
surface, the length of the n-th geodesic excursion is approximately equal to the size of
the n-th convergent of the continued fraction expansion of the geodesic endpoint [70],
therefore the multiple Borel-Cantelli Lemma in that case follows from the results of [1].

Several authors discussed extended Logarithm Law for excursion to other homoge-
neous spaces. Namely, [102] studies partially hyperbolic flows on homogenous spaces
and presents applications to metric number theory, cf. Section 9 of the present paper.
Logarithm Law for unipotent flows is considered in [9, 10, 65, 88]. In the next section
we obtain MultiLog Law for certain diagonal flows on the space of lattices.

8. RECURRENCE IN CONFIGURATION SPACE.

8.1. The results. In this section we return to the study of compact manifolds, but we
treat targets which have more complicated geometry than the targets from Section 4.
We will see that a richer geometry of targets leads to stronger results.
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Let Q be a compact manifold of a variable negative curvature and dimension d + 1.
Denote S Q for the unitary tangent bundle over Q, 7 : SQ — Q the canonical projection,
¢ the geodesic flow on SQ preserving the Liouville measure .

Fix a small number p > 0. Given a point a € Q and (¢, v) € SQ, let t; be consecutive
times where the function ¢ — d(a,m(¢"(¢,v))) has a local minima such that d; :=

d(a, (4% (q,v)) < p. Let dg)(a, (g,v)) be the r-th minima among the numbers {d;};,<,.
Theorem 8.1. (a) For each a € Q and almost every (q,v) € SQ,

-~ md(a,(qv)| ~ tln 1
lim sup = —.
00 Inlnn rd

(b) For almost every (q,v) € SQ,

mdi(g. (g )| -t 1
lim sup = —.
n—00 Inlnn rd

Note that in contrast with Section 4 there are no exceptional points for hitting. We
also obtain a Poisson limit theorem. Denote

) ={qe Q:d(a,q) < p},
) ={(¢q,v) € SQ :d(a,q) < p,ve 5,0},
QavP: U ¢tBP<a)7

te[0,e]

Q, = {((a,u),(q,v)) € SQ x SQ:3s€(0,e],d(a,m(¢°(q,v))) < p}.

The following fact proven in Appendix C will be helpful in our argument.

B,(a
Bp(a

Lemma 8.2. The following limits exist and does not dependent on a € Q:
(8.1) v = lim () / (2p%)
The following will be a byproduct of our analysis and the proof will be given in §8.3.

Corollary 8.3. For each a € Q, for every T > 0, for every r = 1, we have

r—1

1 LT -7 (77_)1
(@) timp((,0) € SQ:d) (0, (g.0)) < p) P i

r—1
! ’ (07
)t ((g0) € 5Q: ) fa,a,0)) < ) = ;)6 o)

8.2. MultiLog Law. Proof of Theorem 8.1. We fix r € N and consider the sys-
tem (f,SQ,u,Lip), where f = ¢° for a small ¢ > 0. We note that it follows from
[112][Theorem 2.4], [44][Theorem 2|, Remark A.1 and Theorem A.2 that (f, SQ, u, Lip)
is r-fold exponentially mixing for every r > 2 as in Definition 3.1.

For k # 0, we keep the notations Q’;’p for the event 1q, , © f* and Q’; for the

event {(q,v) : ((¢,v), f¥(q,v)) € Q,}. We also keep the notation o(p) = u(f,,) and

a(p) = (1 x ) ().
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For s > 0, we let p, = n~"?In"*n, and recall that N, denotes the number of times
k < n such that QF (or QF ) occurs.
The statement of Theorem 4.4 becomes equivalent to the following :
(a) If s > %, then for p-a.e. (¢,v), we have that for large n, NJ! <.
(b) If s < %, then for p-a.e. (g,v), there are infinitely many n such that N’ > r.

With the notation S, = 317, (2/v;)" where v; = 0(py) (in the Q, ,, case) or v; =
1

(pos) (in the Q,, case), we see from (8.1) that S, = oo if and only if s < .
Hence Theorem 8.1 follows from Corollary 3.8, provided we establish the following.

Proposition 8.4. (a) For any a € Q, the targets {Q,,,} are simple admissible targets
as in Definition 3.2.
(b) The targets {§1,. } are composite admissible targets as in Definition 3.5.

The rest of this section is devoted to the

Proof of Proposition 8.4. Properties (Prod) and (Gr) are clear. Note that Q,, is a
sublevel set of a Lipschitz function

h(q,v) = min d(a,7¢°(q,v))
s€[0,e]

so (Appr) follows as in Lemma 3.4. To prove the first part of Proposition 8.4, it only
remains to check (Mov). That is, we need to prove the following Lemma.

Lemma 8.5. There existsn > 010 and to > 0 such that for any a € Q and p sufficiently
small,

(8-2) #(Qmp N ¢_tQa,p) < U(Qam)an

for all t > t.

Recall that S,Q is the unit tangent bundle at the point ¢. Denote A.(q) = U »°5,9,
s€[0,¢]
which is an embedded submanifold with boundary in SQ of dimension d + 1.

Lemma 8.6. We let v be the restriction of p on A.(q). For each a € Q

(8.3) v (A(q) 0 ¢7'Q,) < Cp"v(A(q)).

Lemma 8.5 follows from Lemma 8.6 by integration on ¢ € B,(a).

Introduce X(t,q,¢) := ¢'A.(q). Note that (¢, ¢, ) is an embedded submanifold on
SO of dimension d + 1.

The proof of the following result is given in the Appendix C.

Lemma 8.7 (Geometry of expanded spheres in the configuration space). We have that
7 XN(t,q,6) = Q is a local diffeomorphism. Moreover for the inverse map
dr=': SQ — S%(t,q,¢) the norm ||dx=Y|| is uniformly bounded.

101y fact, it can be seen from the proof that 1 can be taken to be d, that is, we have quasiindependence
in Lemma 8.5 1(Qq, N ¢ Q0 ) < Cu(,p)?
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Proof of Lemma 8.6. By elementary geometry and the bounded distortion property
(8.4) v(A:(g) N (b_tQa,p) < Cp_ly(E(t’ q,€) N ng(a)).

By Lemma 8.7, ||d7~!]|| is uniformly bounded. Note that 73(¢,a,¢) is an annulus
whose boundaries are spheres of radii ¢ and ¢ + ¢ respectively. Note those spheres are
perpendicular to the geodesics emanating from ¢. Since the width of annulus is equal
to € and does not depend on ¢, taking a maximal 1-separated set in the sphere of radius
of t + (¢/2) and considering associated Voronoi cells we see that (¢, ¢q,¢) can be cut
into several disjoint piece X;(t) satisfying that for each j, 7X;(¢) is contained in a ball
of radius €5 (independent of ¢ and ¢) and contains a ball of radius £/2. Decreasing e if
necessary we obtain that the intersection 7¥;(t) N By,(a) has only one component and
since dr—! is bounded we get that

v(Z5(t) 0 Bay(a)) < Clea)p™ v (Z5(1)) -
Summing over j in (8.4) we obtain (8.3) which finishes the proof of Lemma 8.6. O

The proof of Proposition 8.4 (a) is thus completed.
Now we turn to the proof of Proposition 8.4 (b). The task is to verify the conditions

(Appr), (Mov) and (Sub) for the targets Q, defined in Section 8.1. The proof of (Appr)
and (Sub) is obtained from Lemma 3.6 exactly as in the proof of Lemma 4.10 that

treats the case of the composite targets of Section 4.2. It is left to verify (Mov). Take

k
z; € Q, B, = B(x;,p), 1 <1< k such that Q = UBi and k = O(p~%). By (8.2), for

=1

t >t
n(€) < Z,: {(q,v) €S5Q:3s€e0,e],d (g, 7(¢" (g, v))) < W,q € BZ}
< 2 {(g,v) € SQ:3s€0,e],d (z;,m(¢° " (q,v))) < cp,q € B}
<

Z u(Qxi’cp)Hn < Z de(Hn) < Cp.

This completes the proof of Proposition 8.4 and finishes the proof of Theorem 8.1. [J

Y

FIGURE 1. Proof of Lemma 8.6
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8.3. Poisson regime. Proof of Corollary 8.3. Part (a) follows from Theorem 2.10,

since conditions (M 1), and (M2), are satisfied for all r, due to the results of §8.2.
The proof of part (b) follows the same argument as the proof of Theorem 5.3 except

that now (M1), is satisfied since the RHS of (5.3) takes form p?\ because A defined by

(8.1) does not depend on a. O
8.4. Notes. In [117], Maucourant proved that for all a € Q and almost every (g,v) €
SQ
1 t
hmsup! nd(a,m(¢"(g,v)))| _ 1
t——+00 lnt d

[106] generalized Maucourant’s result to study a shrinking target problem for time h
map. The shrinking target problems for sets with complicated geometry is discussed in
(62, 63, 65, 88, 89, 90].

Concerning Poisson Limits we note that visits to sets with complicated geometry
naturally appears in Extreme Value Theory, see Section 10 for details. [141] provided
a general conditions for the number of visits to a small neighborhood of arbitrary
submanifold to be asymptotically Poisson.

9. MUuLTIPLE KHINTCHINE-GROSHEV THEOREM.

9.1. Statements.

HOMOGENOUS APPROXIMATIONS. For z € R?, we use the notation |z| = 4/ 22,

Definition 9.1 ((r,s)-approximable vectors). Given a = (aq,...,aq) € RY, s > 0,
¢ >0, let Dy(a, s, c) be the set of k = (ki, ..., kq) € Z¢ such that
<N and3ImeZ: —1 “ <
k| and Im e Z : ged(ky, ..., kq,m) and |k|* |(k, ay + m)| o N (o V)"

Call « (r, s)-approximable if for any ¢ > 0, Card(Dy(«, s,¢)) = 2r for infinitely many
Ns.

Theorem 9.2. If s < 1/r then the set of (r,s)-approzimable vectors o € T¢ has full
measure. If s > 1/r then the set of (r, s)-approzimable numbers has zero measure.

Remark 9.3. Observe that an equivalent statement of Theorem 9.2 is to replace 2r
with v in the definition of (r,s) approxzimable vectors provided we restrict to k € Z¢
such that ki > 0. This unll be the version that we will prove in the sequel.

INHOMOGENEOUS APPROXIMATIONS.

Definition 9.4 ((r, s)-approximable couples). Given o = (ay, ..., a4) € R and 2 € R,
s>0andc >0, let Dy(a, z,8,¢) be the set of k = (ki,...,kq) € Z¢ such that
c
k| < N and 3 Z: k| k, < —————.
k| and Im € Z : |k|* |z + {k,a) + m| o N {nIn N)*

Call the couple (o, z) (r, s)-approximable if for any ¢ > 0, Card(Dy(«, 2, 8,¢)) = r for
infinitely many Ns.
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Theorem 9.5. If s < 1/r then the set of (r,s)-approzimable couples (a,z) € R4 x R
has full measure. If s > 1/r then the set of (r,s)-approzimable couples (o, z) € RY x R
has zero measure.

EXTENSIONS. One can extend the above results to general Kintchine Groshev 0 — 1
laws for Diophantine approximations of linear forms. For example

Definition 9.6 ((r, s)-simultaneously approximable vectors). Given a = (ayq,...aq) €
R, s> 0, c>0, let Dy(a, s,c) be the set of k € Z* such that

k<N andImeZ: ged(k,my,...,mg) =1
c
(InN)a(Inln N)a
Call v (7, s)-simultaneously approximable if for any ¢ > 0, Card(Dy(a, s,¢)) = for
infinitely many N s.

and for alli =1,...,d, ki |ka; +my| <

Theorem 9.7. If s < 1/r then the set of (r, s)-simultaneously approzimable vectors
a € T? has full measure. If s > 1/r then the set of (r,s)-simultaneously approzimable
numbers has zero measure.

We omit the proof of Theorem 9.7 since it is obtained by routine modification of the
proof of Theorem 9.2.

9.2. Reduction to a problem on the space of lattices. Let M be the space
of d + 1 dimensional unimodular lattices. We identify M with SLgy1(R)/SLas1(7Z).
Denote Haar measure on M by u. Define

~(1dg 0
Aa—(a 1).

For t € R, we consider g; € SLg1(R)
2—t
(91) gt = 2—t
2dt

For a lattice £L < M., we say that a vector in £ is prime if it is not an integer
multiple of another vector in L.

Given a function f on R?*! we consider its Siegel transform S(f) : M — R defined
by

(9.2) SHLY= > fle.

eeL, e prime
For a > 0, let ¢, be the indicator of the set!!
E.:={(z,y) e R x R | 21 > 0, ]| € [1,2], |z|’|y| € [0,a]} .

Hwe added 21 > 0 in the definition of E, since we will restrict to vectors k € Z% with k; > 0.
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Fix s = 0,¢ > 0. For M € N*, define
c

(9.3) vi= M M) b, :=S8(¢,).

For t > 0, we then define
A(M) = {aeT?: d,(gA,) =1}

It is readily checked that a € A;(M) if and only if there exists k = (ki, ..., kq) with
ki =0, and 2! < |k| < 2! such that
c
M(In M)s

If o is such that ®,(g;A,) < 1 for every t € N, then we get that « is (7, s)-
approximable if and only if there exists infinitely many M for which there exists
0<t <ty<.. <t <M satisfyingwe [;_; Ay, (M).

But in general, for o and ¢ < M such that « € A;(M), there may be multiple solutions
k such that 2! < |k| < 2'! for the same ¢. Since in Theorem 9.2 we are counting all
solutions we have to deal with this issue.

The following proposition proven in §9.3 shows that for a.e. a, multiple solutions do
not occur.

(9.4) Im, ged(ky,.. kaym) =1, [k|*k a)+m| <

Proposition 9.8. For almost every a, we have that for every M sufficiently large, for
every t € [0, M], it holds that ®,(g:As) < 1

Hence, Theorem 9.2 is equivalent to the following.

Theorem 9.9. Ifrs < 1, then for almost every a € T¢, there exists infinitely many M
for which there exists 0 <ty <ty < ... <t, < M satisfying

ae () Ay (M)
j=1

If rs > 1, then for almost every a € T?, there exists at most finitely many M for
which there exists 0 < t; <ty < ... <t, < M satisfying

ae A, (M).
j=1

9.3. Modifying the initial distribution: homogeneous case. We transformed our
problem into a problem of multiple recurrence of the diagonal action g; when applied
to a piece of horocycle in the direction of A, : @ € T?. But this horocycle is exactly the
full strong unstable direction of the rapidly mixing partially hyperbolic action g;. Due
to the equidistribution of the strong unstable horocycles, it is thus possible and much
more convenient to work with Haar measure on M instead of Haar measure on A, for
ae T
Hence, we define
Bi(M) :={LeM:d,(qL) > 1},
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where we recall that v := m, ®, := S§(¢,), and ¢, is the indicator of the set

B, ={(z,y) e R x R | x1 > 0, || € [1, 2], [z|]y| € [0,1]}.
Our goal becomes to prove the following.

Proposition 9.10. For p-almost every L € M, we have that for every M sufficiently
large, for every t € [0, M], it holds that ®,(g:L) < 1.

Theorem 9.11. Ifrs < 1, then for p-almost every L € M, there exists infinitely many
M for which there exists 0 < t; <ty < ... <t, < M satisfying

Le()B,(M).
j=1

If rs > 1, then for p-almost every L € M, there exists at most finitely many M for
which there exists 0 <ty <ty <...<t. < M satisfying

Le (B, (M).
j=1

Proof that Proposition 9.10 and Theorem 9.11 imply Proposition 9.8 and Theorem 9.9.
Recall that for M € N we defined v = g7z Fix 7> 0 and define dF as in (9.7)

but with (1 +n)c and (1 — n)c instead of c. Next, define for 3 € R¢

_ Id
o5,

B 0
DB:(O 1)7

Rupp = DphjA,.

and for B € SL;(R) we define

and finally

Fix 0 < ¢ « n. If B is distributed according to a smooth density with respect to
Haar measure on SL4(R) in an e neighborhood of the Identity, £ is distributed in some
e neighborhood of 0 in R? with a smooth density according to Haar measure of T¢, and
« is distributed according to any measure with smooth density with respect to Haar
measure on T?, then the lattice /~\a7 3, is distributed according to a smooth density in M
with respect to the Haar measure . Moreover, because Ag forms the stable direction
of g; and because Dpg forms the centralizer of g;, we have that if M is sufficiently large,
then

O, (gihapp) =1 = P,(q0s) =1 = O (ghapp) > 1.

This shows that Proposition 9.8 and Theorem 9.9 follow from Proposition 9.10 and
Theorem 9.11 respectively. ]
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9.4. Rogers identities. The following identities (see [114, 139]) play an important
role in our argument. Denote

o0
c; =((d+ 1)—1, cy = ((d+ 1)_2’ where ((d + 1) = Z n—(d+D)
n=1

is the Riemann zeta function.
Let f, f1, f» be piecewise smooth functions with compact support on R4*!,
Let

F(Ly= Y, fle)y F(L)= > filer) fa(e2).

eeL, prime e1#teq€L, prime

F is the Siegel transform of f that we denoted S(f).

Lemma 9.12. We have

(a) fMF<£>du<£>=c1 f (@),

Rd+1

(b) J/vt F(L)du(L) = CQJ fi(z)dx fa(x)dx.

Rd+1 Rd+1

9.5. Multiple solutions on the same scale. Proof of Proposition 9.10. Recall
that v = m

Lemma 9.13. There exists a constant C' > 0, such that for every M, for everyt e R,
1t holds that

1 (®,(g:L) >1) < CAM 2 (In M) ™%,
For K > 0, apply the lemma for M = 2% and sum over all t € [0, M], then
p (3t <25, @4, (g:L£) > 1) < 160727 K.

The straightforward side of Borel Cantelli lemma gives that for almost every L, for K
sufficiently large, for any t < 2%, ®,,(g,L) < 1. For the same £, it then holds that for
M sufficiently large, for any t < M, ®,(¢g:L) < 1.

To finish the proof of Proposition 9.10 we give

Proof of Lemma 9.13. Since g; preserves Haar measure on M it suffices to prove the
lemma for t = 0. But the condition &; > 0 implies that

R -0 = Y bleddle)= Y dule)dulen).

e1#e2€L prime e1 #tegel prime

It then follows from Rogers identity (b) of Lemma 9.12 that

1 (@, (L) >1) <E (L) — D,(L)) < ¢y ( . QSV(u)du)z <CAEM2(InM)™. O
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9.6. Proof of Theorem 9.11.

We want to apply Corollary 3.8. For the system (f, X, u) we take (g1, M, ), where
p is the Haar measure on M. For the targets, we take 2, = {£ : ®,(L£) > 1} and
QZ = g-+2,. Note that by the invariance of the Haar measure by g, we have that
1(2,) = u(§2,) for any t.

For s € N, we define the sequence py; := . The conclusions of Theorem 9.11

M(In M)?
will then follow from the conclusion of Corollary 3.8 applied to N é‘l/{l , where N7 is the
number of times ¢ < n such that Q) occurs.

Indeed, if we recall the definition of

0
S, =3, (2'v;) . vy =0lpw), olp) = ()
j=1
we see that S, = oo if and only if rs < 1.

This being said, to be able to apply Corollary 3.8 and finish, we still need to check
the conditions of Definition 3.1 and Definition 3.2 for the system (g;, M, 1, B) and for
the family of targets given by €2, and the sequence py;. (EM), follows from Theorem
1.1 of [19], Remark A.1 and Theorem A.2. And the approximation condition (Appr)
can be checked as follows. Indeed we have:

CrAM. There exists o > 0 such that, for every p > 0 sufficiently small, there exists
A7, AT e Lip(M) such that

(i) |AF | < 2 and |AF |Lip < p~°
(ii) A <lg, < A+
(iii) ( ») — (A, ) < p?

Clearly the claim implies (Appr) since 1(£2,) = O(p).

Proof of the claim. Recall that ®, = S(¢,), where ¢, is the indicator of the set £, =
{(z,y) e R x R | 21 > 0,|z| € [1,2],]z]|%y| € [0, p]}. We will construct A} that satisfies
(4), (i7) and (iii) with p(A;) replaced by u(lg,). The construction of A7 is similar.
Pick f* e Lip(R4*L, [0, 2]) such that for some o > 0
o |/ ip < p7™7
e Forze E, ff(z) =1
o For z¢ E, 0, f*(2) = 0.
As the consequence S(f*) € Lip(M) and ®, < S(f"), and using Rogers identity of
Lemma 9.12(a) (applied to the Siegel transform of the characteristic function of the set
E, .0 — E,) we get for p sufficiently small an open set £, = M such that u(€,) < p?
(P1) For L ¢ &,,if S(f) > 0, then ¢, > 1.
(P2) 1 My = (£ S() < 2}, then [S(F) hipigy <
Let now u : R — [0, 1] be some increasing C* function such that u(x) = 0 for x <0
and u(x) =1 for x > 1.
Finally, introduce A} : M — R such that for £ e M

AJ(L) = u(S(f)(L))
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We now check that A7 satisfies the requirements of the claim.

Since u € C*(M,[0,1]) we get that A¥ € Lip(M) and |A} |, < 2. To prove the
Lipschitz bound, observe that for £ ¢ M, we have that A} (L) = 1, while for £ € M,
we have (P2). Hence |Af|Lp < p~27. This proves (i) of the claim. To see (ii), just
observe that

(L) =21 = S(fM)L) =21 = AJ(L) =1
We turn to (zii). If £ ¢ &,, then by (P1)
AN(L)>0 = S(f)L)>0 = Q,(L) =1 = AJ(L) =1

Since u(€,) < p* and |AT |, < 2, we get that u(A}) — pu(le,) < p* and (iii) is proved.

O
Next we show now how Rogers identity of Lemma 9.12(b) implies (Mov). Define
E’ = {(x,y) eR!xR |z, > 0,277z € [1,2], |z|%|y| € [0, V]}
and let ¢ be the indicator function of £]. Then
WO 090 <E@,2,00) = | Y ale)dleddn(o)
M ey£terel prime
where the contribution of e; = —e; vanishes because the contribution of any pair (eq, e2)

where not both e;; and ey are positive is zero. Applying Lemma 9.12 (b) we get that
N(Qp M g—TQp) < C“(Qp)Q

which is stronger than the required (Mov).
Finally, the condition (Poly) clearly holds for the sequence py; = Tmans due to

Lemma 9.12 (a). O

9.7. The argument in the inhomogeneous case. The proof of Theorem 9.5 is very
similar to that of Theorem 9.2, and below we only outline the main differences.

Let M be the space of d + 1 dimensional unimodular affine lattices. We identify M
with SLgy1(R) x R /STy (Z) x Z3Y where the multiplication rule in SLg,q(R) x
R4 is defined as (A4,a)(B,b) = (AB,a + Ab). We denote by ji the Haar measure on
M.

For o € R? and z € R, we define
(9.5) Aoz = (A, (0,...,0,2))

Given a function f on R we consider its Siegel transform S(f) : M — R defined
by

(9.6) S(NIL) =) fle).
eeL
Note that, unlike our definition of the Siegel transform in the case of regular lat-
tices, we do not require in this affine setting that the vectors e in the summation be
prime. This is because in this affine setting, when a vector k € Z¢ contributes to the
Diophantine approximation counting problem there is no reason for the multiples of &
to contribute.
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For a > 0, let ¢, be the indicator of the set'?

E,:={(z,y) e R" x R | |z] € [1,2], |z|*|y| € [0,a]}
Fix s > 0,¢ > 0. For M € N*| define
Is ~ ~
9.7 =— &,:=5(¢,).
For t = 0, we then define
Ay(M) = {(o,2) e REX R : D, (g, ) = 1}

It is readily checked that (o, z) € A;(M) if and only if there exists k = (ki,. .., kq)
such that 2! < |k| < 2!™! and that
_°
M(In M)s

If o is such that (fD,,(gtAmz) < 1 for every t € N, then we get that (a, 2) is (r,s)-
approximable if and only if there exists infinitely many M for which there exists 0 <

Im, k|42 + (ko) +m| <

t <ty <...<t, <M satisfying (o, z) € ﬂ /L],(M).
j=1

But in general, for o and t < M such that («,z) € A,(M), there may be multiple
solutions k such that 2! < |k| < 2/*! for the same ¢. As in the case of Theorem 9.2 we
have to deal with this issue.

The following proposition shows that almost surely on (a, z), multiple solutions do
not occur. Its proof is based on Rogers identity for the second moment of the Siegel
transforms.

Proposition 9.14. For almost every (o, z) € IRNd x R, we have that for every M suffi-
ciently large, for everyt e [0, M], it holds that ®,(g\,.) <1

Hence, Theorem 9.5 is equivalent to the following.

Theorem 9.15. If rs < 1, then for almost every (o, z) € T¢ x T, there exists infinitely
many M for which there exists 0 <t <ty < ... <t, < M satisfying

ae ) A, (M)
j=1

If rs > 1, then for almost every («,z) € T¢ x T, there exists at most finitely many
M for which there exists 0 < t; <ty < ... <t, < M satisfying

ae (A, (M).
j=1

12Note that we do not ask in this affine setting that 1 > 0 in the definition of E, since the symmetric
contributions of —k for every k € Z¢ that contributes to the Diophantine approximation counting
problem in the homogenous case of Theorem 9.2 do not appear in the inhomogeneous Diophantine
approximation problem of Theorem 9.5.
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9.8. Modifying the initial distribution: inhomogeneous case. Since the horo-
cycle directions of A, ., (a,z) € T% x T account for all the strong unstable direction

of the diagonal flow ¢; acting on M , we can transform the requirement of Proposition
9.14 and Theorem 9.15 into a problem of multiple recurrence of the diagonal action g,
when applied to a random lattice in M.
We define 3 o )
B(M):={LeM:d,(q:L) =1}

Our goal becomes to prove the following.

Proposition 9.16. For ji-almost every ~£~ € .A:Z, we have that for every M sufficiently
large, for every t € [0, M], it holds that ®,(g;L) < 1

Theorem 9.17. Ifrs < 1, then for ji-almost every L € ./\/l there exists infinitely many
M for which there exists 0 <t <ty <...<t. <M satisfying

Le (B, (M)
j=1

If rs > 1, then for pi-almost every EN € ./\7 there exists at most finitely many M for
which there exists 0 <t; <ty < .. M satisfying

Le

'D* Py

Il
—_

By, (M).

9.9. Proofs of Proposition 9.16 and Theorem 9.17. Again, the proofs of Propo-
sition 9.16 and Theorem 9.17 are very similar to the proofs of their counterpart in the
homogeneous case, Proposition 9.10 and Theorem 9.11.

Similarly to the homogeneous case, we want to apply Corollary 3.8. For the system
(f, X, ) we take (gl,./\/l i), where [i is the Haar measure on M. For the targets, we
take Q, = {£ : ®,(£) = 1}. Observe that from the invariance of the Haar measure by
g: we have that [L(QZ) = 1(2,) for any t.

The only difference in the proof of Proposition 9.16 and Theorem 9.17 compared to
that of Proposition 9.10 and Theorem 9.11, is in the application of Rogers identities
to prove Proposition 9.16 as well as in the proof of (Mov) that is part of the proof of
Theorem 9.17.

We explain this difference now.

In fact, Rogers identities are slightly simpler in the affine case, where there is no need
to pay a special attention to the multiples of a vector in the affine lattice. Recall (9.6)
Rogers identities for affine lattices (read [114])

BSU) - | S

s = ([ s + [ po

(The idea behind the proof for the second moment identity is that the linear functionals
on the space of continuous functions on R x R4 that are SLy 1 (R) x R4 invariant
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can be identified to invariant measures on R41 x R%*! by the action of SLy 1 (R) x R4L,
But the orbits of the latter action decompose into pairs of independent vectors and pairs
of equal vectors.)

Now for the proof Proposition 9.16, we have that

i (éV(Z) > 1) <E (éz(ﬁ) - éy(é)) < < » éy(u)du>2 < CAM™(In M)~

and Proposition 9.16 then follows by a Borel Cantelli argument exactly as in the regular
lattices case.
For the proof of (Mov) in the affine case we write for 7 > 1

E} = {(z,y) e R* xR | 277|z| € [1, 2], |=|"]y| € [0, ]}

and for ¢] the indicator function of E7, observe that

(€ N g--,) <E <§)p p© gr f 2 ¢p e1)dp (e dﬂ(£)

eg, 616[:

S dlendedntd) = ([ dwaa) <@,

eg;éeleﬁ
which is stronger than the required (Mov). O

9.10. Multiple recurrence for toral translations.

Proof of Theorem 4.7. PROOF OF PART (a). We begin with several reductions. Let
z =x—y. Then d(x,y + ka) = d(z, ka)). Accordingly denoting dq(f)(z, a) to be the r-th
smallest among {d(z, ka)}}Zy we need to show that for almost every (z,a) € (T4)?
have

|lncz7(11)(z,oz) —ilnn 1

. li [
(98) H SEEO Inlnn d’

' ndy(z,0) —ilnn 1
9.9 1 d = — f = 2.
(99) H :EEO Inlnn 2d’ orr

Next we claim that it suffices to prove (9.9) only for r = 2. Indeed, since CZS") is non
decreasing in r, (9.9) with r = 2 implies that for r > 2,

5(r) 1
|Indy’(z,a)| — 51lnn - i
2d

lim sup 0
N0 nlnn

To get the upper bound, suppose that dﬁf)(z, a) < €. Then there are 0 < k1 < ky < n
such that k;a € B(z,¢). Let k = ko — ky. Then

ks + sa € B(z, (1 4 2s)e)
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for s =1,--- ,r —2. Thus cfE:)_l)n(z,a) < (2r — 1)62,(12)(2,@. Taking limit superior, we
obtain that if (9.9) holds for r = 2 then it holds for arbitrary r. In summary, we only
need to show (9.8) and

|lnci7(12)(z,oz)|—llnn 1

9.10 li d = —.
( ) H SEg; Inlnn 2d

The proofs of (9.8) and (9.10) are similar to but easier than the proof of Theorem
9.5 so we only explain the changes. First, it is suffices to take limit superior, for n of
the form 2™ since for 2V -1 < n < 2™ we have

A (z,0) < dD(z,0) < dS)_i (2, ).
Let vy; = M~° for a suitable s and
(9.11) E,={e=(,¢") e R xR :||']| < v,e" € (0,1]}.
Then a direct inspection shows that

) (QM[\mz) = r,

where S is defined by (9.6), gm = g—m/a for g given by (9.1), and /A\mz is defined by
/A\aﬁz = (Aa, (2,0)) for

A Idd (0%

Ao - ( ! 1) .

Recall M denoted by the space of d + 1 dimensional unimodular affine lattices
and [ the Haar measure on M. As in the proof of Theorem 9.5 one can show that
S(l )(gMAa .) = r infinitely often for almost every (z, ) if and only if S(1 )(gME)

dég)f(z,a) <vy < S( By,

r 1nﬁn1tely often for almost every £ € M. Thus we need to show that for almost every

LeM

. i 1
(9.12) S(lEVM)(QMﬁ) > 1 infinitely often if s < 7
~ ~ 1
(9.13) S(lEUM)(gM'Q > 1 finitely often if s > oL
~ ~ 1
(9.14) S(lEVM)(gME) > 2 infinitely often if s < 5
) ) 1
(9.15) S(lEVM)(gM‘C) 2 finitely often if s > %

To prove (9.12)—(9.15), we need the following fact.
Lemma 9.18. (a) ji ( (1p,) = 1) — el + O(v2)),
(b) v < <S(1E ) > 2) < .
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Before we give the proof of the lemma, we see how it allows to obtain (9.12)—(9.15)
and finish the proof of part (a) of Theorem 4.7.
Indeed, Lemma 9.18 shows that

1 1
Z,u( El,M_l)_OO<:’>S <o Z,u( EVM)>2>—OO<:>8 < o

From there, (9.12)-(9.15) follow from the the classical Borel Cantelli Lemma, that
is, from the case r = 1 in our Theorem 2.4.'* For this, denote ®, = S(1g ), and
observe that the verification of the conditions of Definitions 3.1, and Definition 3.2 for

the targets Q, = {£ : ®,(L) = 1} is very similar to the proof of Theorem 9.5 so we
omit it.

Proof of Lemma 9.18. we get by Rogers
E(®,) = cq?, E(®2—3,) = (cdyd)z.
It follows that
i(d, =2) <E(®2 - d,)/2 < Cv*

proving the upper bound of part (b).
In addition

so that
(9.16) (@, =1) =E(®,) —E($,14,,) = ca’ + O (v*9).

This proves part (a).
To prove the lower bound in part (b) we need the following estimate. Denote Lpime
the set of prime vectors in £ for £Le M = SLi1(R)/SLgs1(Z). Let

_ 1
Bi={(,¢)eR{xR:|¢f [—” 5] "< =
1 {(e,e)e X €| € TG , e 00

; 1
A= {E e M : Card (Lprime N El) = Card (Lypime N Ea) = 1}.
Craim. We have

(9.17) p(A) = e,

Assume the claim holds. Denote Z = (z,0). For £ € A, the fundamental domain of
R*1/L can be chosen to contain

= 1
Es={(,)eR*xR:|¢| < L, le"] < — ¢
100 100

13We note that in case r = 1 Theorem 2.4 is a minor variation of standard dynamical Borel Cantelli
Lemmas such as e.g., the Borel Cantelli Lemma of [102].
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We thus have
u ((ﬁ +2): Card ((ﬁ +3)n E) > 2) > 1 (A) <Card ((c +3)n E) > 2|A>

> p(A)ulz € By) = dv™.

This gives the lower bound in part (b) of Lemma 9.18. To complete the proof, we now
give the

Proof of the claim. We consider the cases d > 1 and d = 1 separately.
In case d > 1, denote V; = S(15) for j = 1,2. By Rogers identities,

1 1 ?
E(0,) = 1—Ocdz/d, E (U3 —W,) = (Tocdyd) :
Thus arguing as in the proof of (9.16) we conclude that
1
(9.18) Wy =1) = 1—OCdVd +0 (V).

Rogers identities also give
E(U(Ty — ¥y)) = O (v*%).
Hence
(9.19) 1 (Card(ﬁprime N E) = 1 and Card (Eprime A (EQ\El)) > 1) =0 (1/2‘1) .

Combining (9.18) and (9.19) we obtain (9.17) for d > 1.
In case d = 1 we still have E(¥;) = cv + O(v?). On the other hand, for d = 1 we

have Card (‘Cprime N Eg) < 1 since £ is unimodular. Thus
E(U;) = (0 = 1) = u(¥y =1 and Uy — Uy = 0) = cv. 0

This completes the proof of Lemma 9.18 and thus of part (a) of Theorem 4.7. O

PROOF OF PART (b). It is clear that for any r, if £ is not empty then it is equal to M.
The fact that & = M implies that £ = M for all r is exactly similar to the implication
of (9.9) from (9.10), so we just focus on showing that £& = M. Adapting the beginning
of the proof of part (a) to the current homogeneous setting, we see that what we want
to prove boils down to showing that for almost every £ e M

1

(9.20) S(1g,, )(Gn,L) = 1 infinitely often if s < 7
1
(9.21) S(1g,, )(gnL) = 1 finitely often if s > 7

where E,, is as in (9.11), and S designates the Siegel transform as in (9.2). By Rogers
identity, Lemma 9.12(a), we have that E (S(1g, )) = en™*% hence (9.20) and (9.21)
follow by classical Borel Cantelli Lemma (see for example the Borel Cantelli Lemma of
[102]) or by the case r = 1 of our Theorem 2.4 .

This completes the proof of Theorem 4.7. 0
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9.11. Notes. A classical Khintchine-Groshev Theorem is given by (1.2)—-(1.3). A lot
of interest is devoted to extending this result to « lying in a submanifold of R? (see e.g.
[13, 18]). The applications of dynamics to Diophantine approximation are based on Dani
correspondence [39]. In particular, [101] discusses Khintchine-Groshev type results on
manifolds using dynamical tools. The use of Siegel transform as a convenient analytic
tool for applying Dani correspondence can be found in [114]. Surveys on applications
of dynamics to metric Diophantine approximations include [16, 20, 47, 53, 54, 66, 98,
104, 115]. Limit Theorems for Siegel transforms are discussed in [8, 11, 22, 48, 49].

10. EXTREME VALUES.

10.1. From hitting times to extreme values. Here we describe applications of our
results to extreme value theory.

Let (f, M, 1) be as in Definition 3.1. Recall that the sets G, and H are introduced in
Defenitions 4.3 and 4.5 respectively. Recall also that under the conditions of Theorems
4.4 and 4.6 u(G,) = 1 and H contains a residual set.

Given a function ¢ and a point y € M, let gbg)(y) be the r-th minimum among the
values {¢(f/y)}j_;.

Theorem 10.1. (a) Suppose [ is (2r+1)-fold exponentially mixing preserving a smooth
measure (. Then

(i) There is a set G of full measure in M such that if ¢ is a function with a unique
non degenerate minimum at x € G, then for almost every y e M,

(P - ew)| - 2mn
lim sup ol = —.
n—o0 nlnn rd

(i) If Gi = M and the periodic orbits of f are dense, then there is a dense Gs set
H < M, such that if ¢ is a function with a unique non degenerate minimum at x € H,
then for almost every y e M,

‘ln ( SP@) - gb(m))‘ —2lnn o

li = —.
118;11) Inlnn d

(b) If f is an expanding map of T and p is a non-conformal Gibbs measure of di-
mension d, X is the Lyapunov exponent of u, then there is a set G, with p(G,) = 1,
such that if ¢ is a function with a unique non degenerate minimum at x € G,, then for
p—almost every y e M,

) ’hl ( Dly) - ¢($)>‘ —iln o,
1m su = >

s v/2(Inn)(InInlnn) dvd\
where o given by (6.4).

(¢) Part (a) remains valid for the geodesics flow on a compact (d + 1)—dimensional
manifold Q and functions ¢ : Q@ — R which have unique non-degenerate minimum at
some point on Q. (In this case ¢,.(y) is the r-th local minimum of the map t — ¢(q(t))
where (q(t),v(t)) is the geodesic starting at q with velocity v.)
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(d) For toral translations we have that for almost all o and almost all y we have

hmem(%%ﬁM@)ﬁmn{

n—>00 Inlnn

ifr=1,
ifr = 2.

QI alro

Proof. At a non-degenerate minimum x we have that for y close to x
(10.1) K~ d*(2,y) < ¢(y) — ¢lx) < Kd*(z,y)

so part (i) of (a) holds for z € G, and part (i7) of (a) holds for z € H as defined
in Theorems 4.4 and 4.6. Part (b) follows from Theorem 6.1. Part (c) follows from
Theorem 8.1, and part (d) follows from Theorem 4.7. O

Theorem 10.2. Under the assumptions of Theorem 10.1(a) or Theorem 10.1(d) there
is a set of points x of full measure such that if ¢ has a non-degenerate minimum at x
then the process

D) —o@) o) —dx) o (y) — b()
p : p - 7

with n = [tp~¢] converges as p — 0 to the Poisson process on Rt with measure
fy((b)T%ltg_ldt, where y(¢) > 0 depends on x and ¢.

PRI

Proof. Note that (10.1) does not provide enough information to deduce the result from
(5.1) of Theorem 5.1. However, for any choice of r{ <rf <ry <ry <---<r; <rf,
consider the targets

(10.2) O = {y: oly) — ¢(x) € [ p% ) p*]}
that satisfy

" d
)=o) [ Gt ar

J

liny T Q™) = (o) ((r])

—~——

Conditions (M1), and (M2), from §2.5 can easily be checked for the targets Q™7 using
the results of Section 3. Since (Mov) for targets (10.2) follows from (Mov) for balls,
only (Appr) needs to be checked but the latter follows immediately from Lemma 3.4.
We can thus apply Theorem 2.11 and conclude the Poisson limit. 0

Next, we consider functions of the form

(10.3) W(y) = ——— +(y), where ¢<0 and o e Lip(M).
d*(z,y)
Theorem 10.3. Let f be (2r + 1)-fold exponentially mizing. Then

(a) There is a set G or full measure such that if 1 satisfies (10.3) with z € G then for
almost all y

I In Wff’(y)! —Zlnn S
im sup = —.
N0 Inlnn rd
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(b) There is a G5 set H such that if ¢ satisfies (10.3) with x € H then for almost all y

L ) - s s
im sup = —.
N0 Inlnn d

(c) If x € G then
P (y) pre (y) | P (y)

9 P

C C C

—d
,... where n=Tp

converges as p — 0 to the Poisson process on RY with measure me(m)t*(d/s)*ldt.

The proofs of the above results is similar to the proofs of Theorem 10.1 and 10.2 so
we will leave them to the readers.
The next result is an immediate consequence of Theorems 10.2 and 10.3(c).

Corollary 10.4. (a) (FRECHET LAW FOR SMOOTH FUNCTIONS) If f is (2r + 1)-fold
exponentially mizing, ¢ is a smooth function with non-degenerate minimum at some
x € G then there is 0 = o(x) such that for each t > 0
lim pu(y : ¢ (y) > n~¥%) = e~
n—oo
(a) (WEIBULL LAW FOR UNBOUNDED FUNCTIONS) If f is (2r+1)-fold exponentially
mizing, ¢ is given by (10.3) with x € G then there is 0 = o(x) such that for each t > 0

d/s

Lim pu(y - ¢ (y) > —n =) = e

10.2. Notes. A classical Fisher—Tippett—Gnedenko theorem says that for independent
identically distributed random variables the only possible limit distributions of nor-
malized extremes are the Gumbel distribution the Fréchet distribution, or the Weibull
distribution. Corollaries 7.3 and 10.4(a) and (b) provide typical examples where one can
encounter each of these three types. We refer to [109] for the proof of Fisher-Tippett—
Gnedenko theorem as well as for extensions of this theorem to weakly dependent random
variables. The weak dependence conditions used in the book have a similar sprit to our
conditions (M1) and (M2). More discussions about relations of extreme value theory to
Poisson limit theorems in the context of dynamical systems can be found in [58]. The
book [113] discusses extreme value theory for dynamical systems and lists various appli-
cations. One application of extreme value theory, is that for non-integrable functions,
such as described in Theorem 10.3 above, the growth of ergodic sums are dominated
by extreme values, see [1, 26, 41, 91, 92, 118] and references wherein.

APPENDIX A. MULTIPLE EXPONENTIAL MIXING.

A.1. Basic properties. Let f be a smooth map of a compact manifold M preserving
a smooth probability measure p. In the dynamical system literature, for r > 1, f is
called (r + 1)-fold exponentially mixing if there are constant s, C' and 6 < 1 such that
for any C* functions Ag, Ay, ..., A, for any r tuple ky < ks < --- < k,

[TT Ao ) =TT [ sl < coTT14,
j=0 j=0 j=0

(A1)

Cs,
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where m = min(k; — kj_1) with ky = 0.
j

In this paper we need to consider a larger class of functions, namely we need that
there are constants s, C' and 6 < 1 such that for any B € C*(M"™!) we have
(A.2)

\ f Blwo, foao, - - , ¥ ao)dpu(ze) — f Blag, - ,an)dulxo) - dule,)| < C.0™ | Bl

In this section we show equivalence of (A.1) and (A.2). We use the following fact.

Remark A.1. If (A.1) holds for some s then it holds for all s (with different §). The
same applies for (A.2).

Indeed suppose that (A.2) for some C* functions. Pick some a < s. We claim that
it also holds for C** functions. Indeed pick a small € and approximate a C'* function B
with | Bl|ce = 1 by a C* function B, so that (assuming that m is large)

|B = Blco<e™™™, |B

os < essm

Then
JB(%afklwoa s frrag)dp(ag) = Jg(xt)akao’ < frrao)dp(xo) + O (€750
— JB(Z‘O, T1, .. @y )dp(wo)dp(ay) . . dp(z,) + O (e7°™) 4+ O (™e™)

— JB(xO, 1, ...y )dp(zo)dp(zr) . .. dp(z,) + O (€7°) + O (§™e™™).

and the second error term is exponentially small if ¢ is small enough. The argument
for (A.1) is identical.
We now ready to show that (A.1) implies (A.2).

Theorem A.2. Suppose that (A.1) holds and s is sufficiently large. Then (A.2) holds.

Proof of Theorem A.2. Since B € C*(M"1) it also belongs to Sobolev space H*(M"*1).
Hence we can decompose
B =) by
A

where ¢, are eigenfunctions of Laplacian on M"! with eigenvalues A\* and [¢, |2 = 1.
The eigenfunctions ¢, are of the form

gb)\(xnyla s 7xT) = ij('r])
j=0

where Apptp; = Cfv,b] and \? = Y] ; CJQ Recall that by Sobolev Embedding Theorem for
compact manifolds, H*(M) < C*~2-1¢(M) for any € > 0. Since ;]

ms = (¢ we have

d
1Vjller < Culf < C A" i u>1+ 3
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It follows from (A.1) that if ¢ # 1 then

‘fﬁbk(l’, fk1x7 ceey fer>d,u(x) — ﬁ f¢jdﬂ < C)\u(r-&-l)em.
j=0

Therefore
UB(zc, £, (o) — [ Bl a)dutan) - duer)
< CO™ D LX) < CO™||B||grucrsn agrsy.-
By
This proves the result if s > (1 + %) (r + 1). O

A.2. Mixing for Gibbs measures.

Proof of Proposition 6.2. The proof consists of three steps.
Step 1. By the same argument as in [138, Proposition 3.8|, we have that for ¢ €

Lip(T), ¢, € L*(n),
(A-3) U‘Qﬁlth © f”)du - J&ldﬂfﬁzdﬂ' < OWlHLip”%HLlén, n = 0.

Step 2. We proceed to show inductively that for each » > 0 and v; € Lip(T) for
1=1,...,r

(A1) U (H gio f’“) - H [ it

where m = min (k;41 — k;), ko = 0.
léigr—l( 1+ z)> 0

< Céml_[ il ip,
i=1

By invariance of p we may assume that k; = 0. Applying (A.3) with I
Uy = H%— o fRimk2 wwe get

(e (o) [ (1)

<H Y; 0 fki)
i=2 I

| (Hm o f’”) au
=2
we obtain (A.4).

Step 3. Applying the same argument as in proof of Theorem A.2 we get (EM),. O

< Cémel HLip

i=1

Applying inductive estimate to
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A.3. Examples of exponentially mixing systems. There are many results about
double (=2-fold) exponential mixing. Many examples of those systems are partially
hyperbolic. In particular, they expand an invariant foliation W#* by unstable manifolds.
The next result allows to promote double mixing to r fold mixing.

Theorem A.3. ([44, Theorem 2]) Suppose that for each subset D in a single unstable
leave of bounded geometry'* and any Hélder probability density p on D we have

| Aot - | ad

for A e C?. Then f is r-fold exponentially mixing for all r > 2.

< CO"| Al

cs|plce

Examples of maps satisfying the conditions of Theorem A.3 include expanding maps,
volume preserving Anosov diffeomorphsims [23, 121], time one maps of contact Anosov
flows [112], mostly contracting systems [27, 43|, partially hyperbolic translations on
homogeneous spaces [100], and partially hyperbolic automorphisms of nilmanifolds [67].

We also note the following fact.

Theorem A.4. A product of exponentially mizing maps is exponentially mizring.

The proof of this theorem is very similar to the proof of Theorem A.2 so we leave
it to the reader. We also note that instead of direct products one can also consider
certain skew products (so called generalized T,T~! transformations) provided that the
skewing function has positive drift. We refer the reader to [45] for more details.

Another source of exponential mixing is spectral gap for transfer operators (cf. §A.2
as well as [121, 138]). This allows to handle non-uniformly hyperbolic systems admitting
Young tower with exponential tails [142] as well as piecewise expanding maps [138].

We note that the maps described in the last paragraph do not fit in the framework of
the present paper due to either lack of smoothness or lack of smooth invariant measure.
It is interesting to extend the result of the paper to cover those systems as well as some
slower mixing system and this is a promising direction for a future work.

APPENDIX B. GIBBS MEASURES FOR EXPANDING MAPS ON THE CIRCLE

B.1. Some notation. Recall that we assume P(g) = 0, so we have

(B.1) I (Ba(,2)) = 3. (') + O(1).

Denote
ro = sup{r | B(z.r) © By(r.2)}, 7 = inf{r | B(z.r) > By(z.2)}.
>

r>0
By bounded distortion property, there exist constants Cy > 0 and « > 0 such that if
d(f™y, f*z) < e then

(Coexpe®)™' < DI W) < Cpexpe®.

~[Df(a))]

14yWe refer the reader to [44] for precise requirements on D since those requirements are not essential
for the present discussion.
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Recalling (6.2)

exp [(TLZ_: fu(fjl')> — 5a] d(g;ﬂ) <d(f"x, ffy) < Coexp [(nz—: fu(sz)) n ga] d(z,y).

i=0
Hence

eCytexp [(—Eh(f%)) — 50‘] <rp < Tp < eChexp [(—Sfu(fjx)> + a“] .
It follows that B B
(B.2) Inr, = z—fu(fjx) +0(1), In7, = niol —fu(fz) + O(1).

Next define
N(r) =max (n: B(z,r) < By(z,¢)), N(r)=min(n: B(z,7) > B,(z,¢)).
Then, similarly to (B.2) we obtain

N(r)-1 N(r)—1
(B.3) mr= 3 —f(fn) +0M) = D) ~fu(fi) +O).
B.2. Proof of (6.7) and (6.8). Note that
(B4) #(Br@)(2,€)) < u(B(x,7)) < i(Bny (@, €)).

Since f is uniformly expansing there is a positive constant C' such that for each x

1/C < fu(z) < C. Accordingly

N(r)
C

On the other hand, since P(g) = 0, [121, Chapter 3] shows that there is a function a
Holder function g(x) such that § = g + h — ho f for a Holder function h and moreover

Z eI — 1.
fly)==

In particular, §(y) is negative and, since it is continuous, there are constants Ci>é>0
such that for any = € T we have g(z) € (—C}, —£). Using the estimate

(B.5) g)

<|lnr| < CN(r), < |lnr| < ON(r).

we conclude that for some constant Cy > 0 we have for every v € T,

N—
(BG) — OlN 02 Z < —éN + 02

n=0

Combining (B.1), (B.4), (B.5) and (B.6) we obtain (6.7).
Next (B.3) shows that N(47’) N(r) = O(1). Now (6.8) follows from (B.1) and (B.4).
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B.3. Proof of Lemma 6.3(b). Observe that (B.1) (B.2) give

n—1 n—1

Inpu (By(z,e))—dInr, = Z O(f)+0(1), Inp(Bu(z,e))—dInF, = Z U(fz)+0(1)

where 1 is defined by (6.3).
By Law of Iterated Logarithm [84],
S0 ¥(f)

lim su w =0, liminf—=—/——m———"=—¢
n—>oop V2nlnlnn ’ n—0 A/2nInlnn '
Since B(z,r,) < By(x,e) < B(x,T,)
| B(z,T —d|InT | B —d|!
g 10 B [ dlar] g (Blo,r) | - dlnr)

n—00 V2ninlnn n—00 V2nlnlnn

Using (B.2) again, we conclude that for every sufficiently small ¢, there exists n(J) and
k independent of § and n(d) such that 7, <0 < r,. Then

1 o)) = dlnr, _
o <ty AP 0D =l i (550Dl
50 \/2n(0) Inlnn(d) 50 £/2n(8) InIn n(6)
< limsup ABE@ )| — d[InFay|

50 £/2n(8) In1nn(J)

It follows that all inequalities above are in fact equalities. In particular,

SNUYICES R TU
50 £/2n(8) Inln n(6)

On the other hand by (B.2) and the ergodic theorem we see that for p-a.e. x € T,

Inr, Inr,|(Inln|Inr, )

it holds that lim [In 7 = A. For such z we have lim [In7|(InIn | In 7y ) = \. Since
n—w N n—00 nilnlnn

rn/C < 6 <1, we have

9) Inlnn(d) 1

6—»0 |ln6| (Inln|né)) /X

Multiplying the last two displays we obtain for u-a.e. x € T

: [Inp(B(z,0)) —d[Ind| o
lim sup —
50 4/2[Ind|(JInln|Ind|) RVON

and likewise
|Inp(B(x,0))| —d|Ind| o

lim inf = —

-0 4/2/Ind|(|Inln|Ind]) VA
This proves part (b) of Lemma 6.3. O
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B.4. Proof of Lemma 6.3(a). Suppose that o = 0. Since we also have that {¢du = 0
[121, Proposition 4.12] shows that ¢ is a Coboundary, that is, there exists a Holder

function n such that ¢ (z) = n(x) —n(fzx). Thus Z U(fFx) = n(z)—n(f"z) is uniformly

bounded with respect to both n and . Recalhng the definition of ¥ we see that in this

case X
dlg(ffr) = —[d) fu(ka)] +0(1).
k=0 k=0

Now (B.1) and (B.2) show that p is conformal. O

APPENDIX C. GEODESIC FLOWS: GEOMETRY OF TARGETS IN THE
CONFIGURATION SPACE. PROOF OF LEMMA 8.2 AND LEMMA 8&.7.

C.1. Geometry of spheres. Proof of Lemma 8.7.
Denote v(t) = ¢'(q,v). The Jacobi field of v are defined by the solution of the linear

equation
JU(t) + R(J(t), 7' (£)'(t) = 0,
where J' = £.J and R(X,Y)Z denotes the curvature tensor, which is equivalent to

(J)"(t +ZAZ HJt)=1,i=1,...,n,

where the matrix A(t) = (A} (t))i,jzl n s symmetric. Since Q has negative curvature,

-----

the spectrum of A(t) lies between —K? and — K3 for some K; and K.
Recall the following fact (see [Lemma 1.1][107]).

Proposition C.1. The differential
D¢ (V) : Ty @ x Ty @ — Trpt()Q X Trgtv) @

is given by Do (v)(z,y) = (J(t), J'(t)), where J(0) = x, J'(0) = y.

We are interested in the case
(C.1) J(0) =0, [J(0)] =1

Now Lemma 8.7 follows combining Proposition C.1 with Lemma C.2 below.
Lemma C.2. If (C.1) holds then for each ty there is a constant C > 0 such that
(C.2) [ < ClJ@)]  fort > to.
Proof. Denote S(t) = (J(t), J'(t)), N(t) = |J'(t)[* and [[[J||[[* = | J]|* + [ J'[*. Then

d / " !
(C3)  —8() = |7 + <T@, () = [J' O + J(@), =K @) I () = Cul|T|[]
for some C; > 0. It follows that S(¢) > 0 for t > 0. Once we know that S(t) is positive
we can also conclude from (C.3) that %S(t} > G5

(C.4) S(t) > S(u)e“r 2 fort > u.

, whence
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Next N(t) = N(0)e "2t = ¢=K3* which together with (C.3) gives
(C.5) S(t) = e M forte0,1].
Combining this with (C.4) we get

(C.6) S(t) > e M2 D2 for > 1.
Combining (C.5) and (C.6) with a trivial bound

(©7) N () < @] < N(0)ekd = ek

proves (C.2) for small ¢. To prove this estimate for large ¢ we shall use the fact, proven
in [6, Lecture 6] that J can be decomposed as J = ¢y J, + c_J_, where

max(|ey ], Je-]) < G5, ||lJ-[]| < Cae™™
and
() J, = R0
where R is a symmetric matrix with spectrum between K; and Ks. It follows that
(C.9) IO < el 7@l + CsCae™ " < A /1 + K3 ey o (1) + CsCae™™
On the other hand (C.6) gives a uniform lower bound
(C.10) ][] = 2 K3/2Cnlt=D/A
Combining (C.9) and (C.10) we obtain
2
1+ K3
which proves (C.2) for large t. O

IO = lex T (O = e~ [T~ @) = e MR 90y Cye !

C.2. Volume of the targets in the configuration space.
Proof of Lemma 8.2. 1 (¢,v) € B,(a), denote
L(g,v) = L*(q,v) + L™ (q,v) where L*(q,v) = sup{t : $**(q,v) € B,(a)for0 < s < t}.

Then we have the following estimate

1
/um@=e<g@L@wau+0@»

(see e.g. [34]). Note that p is of the form du(q,v) = % where A is the Riemann

volume on @ and o is normalized volume on the d dimensional sphere. If p is small
then the integral in parenthesis equals to p?y(1 + O(p)) where

1 1
(C.11) v = NO) Lxsd £(:E,v)alxala(v)

where B is the unit ball in R4 and £(-) is defined similarly L(-) with geodesics in
Q replaced by geodesics in RYT!. Specifically, an elementary plane geometry gives
L(z,v) =+/1 =712, where r,,, is the minimal distance between the line z +tv and the

min
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origin. Thus r,,;, = rsinf where r is the distance from x to 0, # is the angle between

v and the segment from x to 0. This proves (8.1) with v given by (C.11). OJ
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