
MULTIPLE BOREL CANTELLI LEMMA IN DYNAMICS AND
MULTILOG LAW FOR RECURRENCE.

DMITRY DOLGOPYAT, BASSAM FAYAD, AND SIXU LIU

Abstract. A classical Borel Cantelli Lemma gives conditions for deciding whether
an infinite number of rare events will almost surely happen. In this article, we propose
an extension of Borel Cantelli Lemma to characterize the multiple occurrence of events
on the same time scale. Our results imply multiple Logarithm Laws for recurrence
and hitting times, as well as Poisson Limit Laws for systems which are exponentially
mixing of all orders. The applications include geodesic flows on compact negatively
curved manifolds, geodesic excursions, Diophantine approximations and extreme value
theory for dynamical systems.
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1. Introduction

The study of rare events constitutes an important subject in probability theory. On
one hand, in many applications there are significant costs associated to certain rare
events, so one needs to know how often those events occur. On the other hand, there
are many phenomena in science which are driven by rare events including metastability,
anomalous diffusion (Levy flights) and traps for motion in random media, to mention
just a few examples.

In the independent setting there are three classical regimes. For the first two, consider
an array tΩk

nu
n
k“1 of independent events such that pn “ PpΩk

nq does not depend on k.
Let Nn be the number of events from the n-th array which have occurred. The first
two regimes are:

(i) CLT regime: npn Ñ 8. In this case Nn is asymptotically normal.
(ii) Poisson regime: npn Ñ λ. In this case Nn is asymptotically Poisson with param-

eter λ.
For the third, Borel Cantelli regime we consider a sequence tΩnu of independent

events with different probabilities. The classical Borel Cantelli Lemma says that infin-

itely many Ωns occur if and only if
ÿ

n

PpΩnq “ 8.

A vast literature is devoted to extending the above classical results to the case where
independence is replaced by weak dependence. In particular, there are convenient
moment conditions which imply similar results for weakly dependent events. One im-
portant distinction between the Poisson regime and the other two regimes, is that the
Poisson regime requires additional geometric conditions on close-by events to extend
the statement to the dependent case. Without such conditions, one can have clusters of
rare events where the number of clusters has Poisson distribution while several events
may occur inside each cluster. We refer the reader to [4] for a comprehensive discussion
of Poisson clustering.

The multiple Borel Cantelli Lemma. In the present paper, we consider a regime
which is intermediate between the Poisson and Borel Cantelli. Namely we consider
a family of events Ωn

ρ which are nested: Ωn
ρ1
Ă Ωn

ρ2
for ρ1 ă ρ2 and for large n,

PpΩn
ρq « σpρq for some function σpρq. Let Nn

ρ be the number of Ωk
ρ, k ď n which has

occurred. We fix a sequence ρn such that nσpρnq Ñ 0 as n Ñ 8 and r P N, and ask if
infinitely many events

Nn
ρn “ r

occur. Even if the events Ωn
ρ are independent for different ρ, the variables Nn1

ρn1
and

Nn2
ρn2

are strongly dependent if n1 and n2 are of the same order. On the other hand if

n2 " n1 then those variables are weakly dependent since conditioned on Nn2
ρn2
‰ 0 it is

very likely that all the events Ωk
ρn2

occur for k ą n1. Using this, one can show under

appropriate monotonicity assumptions (see [118]) that Nn
ρn “ r infinitely often if and

only if
ÿ

M

PpN2M

ρ
2M
“ rq “ 8.
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Under the condition nσpρnq Ñ 0 it follows that in the independent case

PpNn
ρn “ rq «

pnσpρnqq
r

r!
.

Therefore, under independence, infinitely many Nn
ρn “ r occur if and only if

ÿ

M

2Mrσr pρ2M q “ 8.

The multiple Borel Cantelli Lemma was extended to the dependent setting in [1]. How-
ever, the mixing assumptions made in [1] are quite strong requiring good symbolic
dynamics which limits greatly the applicability of that result. In the present paper we
present more flexible mixing conditions for the multiple Borel Cantelli Lemma. Our
conditions are similar to the assumptions typically used to prove Poisson limit theorems
for dynamical systems. The precise statements of our abstract results will be given in
Sections 2 and 3. Here we describe sample applications to dynamics, geometry, and
number theory.

MultiLog Law for recurrence. Let f be a map preserving a measure µ. Given

two points x, y let d
prq
n px, yq be the r closest distance among dpx, fkyq for 1 ď k ď n. In

particular, d
p1q
n px, yq is the closest distance the orbit of y comes to x up to time n. It

is shown in [61] that for systems with superpolynomial decay for Lipschitz observables,

for all x and µ-almost all y lim
nÑ8

| ln d
p1q
n px, yq|

lnn
“

1

d
, where d is the local dimension of µ

at x provided that it exists.
Under some additional assumptions, one can prove a dynamical Borel Cantelli Lemma

which implies in particular that, if µ is smooth then for all x and almost all y we have

lim sup
nÑ8

| ln d
p1q
n px, yq| ´ 1

d
lnn

ln lnn
“

1

d
.

In Section 4 we extend this result to r ą 1, for systems that have multiple exponential
mixing properties. For example, if f is an expanding map of the circle, we shall show
that for Lebesgue almost all x and y we have

lim sup
nÑ8

| ln d
prq
n px, yq| ´ lnn

ln lnn
“

1

r
.

The smoothness assumption on the invariant measure, the Lebesgue typicality assump-
tion on x and the hyperbolicity assumption on f are all essential. Namely, if µ is an
invariant Gibbs measure which is not conformal, λ is the Lyapunov exponent of µ, then
we show in Section 6 that for µ almost all x and y and for all r P N,

lim sup
nÑ8

| ln d
prq
n px, yq| ´ lnn

a

2plnnqpln ln lnnq
“

σ

d
?

dλ
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for some σ ą 0 which will be given in (6.4). We shall also show that there is Gδ–dense
set H such that for all x P H, Lebesgue almost all y and all r ě 1, we have

lim sup
nÑ8

| ln d
prq
n px, yq| ´ lnn

ln lnn
“ 1.

Finally if the expanding map is replaced by a rotation Tα then we have (see Theorem
4.7 below) that for almost all px, y, αq it holds that

lim sup
nÑ8

| ln d
prq
n px, yq| ´ lnn

ln lnn
“

#

1 if r “ 1,
1
2

if r ą 1.

Records of geodesic excursions. Consider a hyperbolic manifold Q of dimension
d ` 1 which is not compact but has finite volume. Such manifold admits a thick-
thin decomposition. Namely Q is a union of compact part and several cusps. A cusp
excursion is a maximal time segment such that the geodesic stays in a cusp for the
whole segment. Let

Hp1q
pT q ě Hp2q

pT q ě . . . Hprq
pT q ě . . .

be the maximal heights achieved during the excursions which occur before time T placed
in the decreasing order. Sullivan’s Logarithm Law is equivalent to saying that for almost
every geodesic

(1.1) lim sup
TÑ8

Hp1qpT q

lnT
“

1

d
.

The proof of (1.1) relies on Sullivan’s Borel-Cantelli Lemma and it actually also shows
that for almost every geodesic

lim sup
TÑ8

Hp1qpT q ´ 1
d

lnT

ln lnT
“

1

d
.

We obtain a multiple version of this result by showing that for almost every geodesic

lim sup
TÑ8

HprqpT q ´ 1
d

lnT

ln lnT
“

1

rd
.

Multiple Khinchine Groshev Theorem. Let ψ : R Ñ R be a positive function
(in dimension 1 we also assume that ψ is monotone). The classical Khinchine Groshev
Theorem ([69, 93, 132]) says that for almost all α P Rd there are infinitely many solutions
to

(1.2) |xk, αy `m| ď ψp}k}8q with k P Zd,m P Z
if and only if

(1.3)
8
ÿ

r“1

rd´1ψprq “ 8.

In particular the inequality

|k|d|xk, αy `m| ď
1

ln |k|pln ln |k|qs
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where |k| “
a

ř

k2
i , has infinitely many solutions for almost every α if and only if

s ď 1. We now replace the above inequality by

(1.4) |k|d|xk, αy `m| ď
1

lnNpln lnNqs

and say that α is pr, sq approximable if there are infinitely N for which (1.4) has r
positive solutions (that is, solutions with k1 ą 0). (Our interest in smallness of

(1.5) |k|d|xk, αy `m|

is motivated by [46] where the discrepancy of Kronecker sequences with respect to
convex sets is studied. Indeed the set of k where (1.5) is small are small denominators
of the discrepancy and they determine its growth rate.) We show in Section 9 that
almost every α P Rd is pr, sq approximable if and only if s ď 1

r
.

The layout of the paper is the following. In Section 2 we describe an abstract result
on an array of rare events in a probability space which ensures that for a given r, r
events in the same row happen for infinitely many (respectively, finitely many) rows.
In Section 3 this abstract criterion is applied in the case of rare events that consist of
visits to a sublevel set of a Lipschitz function by the orbits of a smooth exponentially
mixing dynamical systems. The results of Section 3 are then used to obtain MultiLog
Laws in various settings. Namely, Section 4 studies hitting and return times for multi-
fold exponentially mixing smooth systems. Section 8 treats similar problems in the
configuration space for the geodesic flows on compact negatively curved manifolds.
Geodesic excursions are discussed in Section 7, and Diophantine approximations are
treated in Section 9. The MultiLog Law for non-conformal measures is discussed in
Section 6. As it was mentioned, the regime we consider is intermediate between the
Poisson and Borel-Cantelli. Section 5 contains an application of our results to the
Poisson regime. Namely we derive Poisson distribution for hits and mixed Poisson
distribution for returns for exponentially mixing systems on smooth manifolds. Section
10 describes the application of our results to the extreme value theory for dynamical
systems. Each section ends with some notes where the related literature is discussed.

Some useful auxiliary results are collected in the appendices.

2. Multiple Borel Cantelli Lemma.

2.1. The result. The classical Borel Cantelli Lemma is a standard tool for deciding
when an infinite number of rare events occur with probability one. However in case
an infinite number of events do occur, the Borel Cantelli Lemma does not give an
information about how well separated in time those occurrences are. In this section we
present a criterion which allows to decide when several rare events occur on the same
time scale. The criterion is based on various independence conditions between the rare
events.

Definition 2.1. Consider a probability space pΩ,F ,Pq. Given r P N˚ and a family
of events tΩk

ρnupn,kqPN2;1ďkďn, we let Nn
ρn be the number of times k ď n such that Ωk

ρn

occurs.
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Remark 2.2. In all our applications it will be the case that

(2.1) Ωn
ρ1
Ă Ωn

ρ2
if ρ1 ď ρ2

however, part of our results will not require this condition.

Our goal is to give a criterion that allows to tell when almost surely Nn
ρn ě r will hold

for infinitely many n. For this, we introduce several conditions quantifying asymptotic
independence between the events Ωk

ρn . The statement of the conditions requires the
existence of:

‚ an increasing function σ : R` Ñ R`,
‚ a sequence εn Ñ 0,
‚ a function s : N ý such that spnq ď plnnq2,
‚ a function ŝ : N ý such that εn ď ŝpnq ă np1´ qq{p2rq for some 0 ă q ă 1, and

some 0 ă ε ă p1´ qq{p2rq,

for which the following holds.
For an arbitrary r-tuple 0 ď k1 ă k2 ¨ ¨ ¨ ă kr ď n we consider the separation indices

Sepnpk1, . . . , krq “ Card tj P t0, . . . r ´ 1u : kj`1 ´ kj ě spnqu , k0 :“ 0,

ySepnpk1, . . . , krq “ Card tj P t0, . . . r ´ 1u : kj`1 ´ kj ě ŝpnqu , k0 :“ 0.

pM1qr If 0 ď k1 ă k2 ă . . . kr ď n are such that Sepnpk1, . . . , krq “ r then

σpρnq
r
p1´ εnq ď P

˜

r
č

j“1

Ωkj
ρn

¸

ď σpρnq
r
p1` εnq.

pM2qr There exists K ą 0 such that if 0 ď k1 ă k2 ă . . . kr ď n are such that
Sepnpk1, . . . , krq “ m ă r, then

P

˜

r
č

j“1

Ωkj
ρn

¸

ď
Kσpρnq

m

plnnq100r
.

pM3qr If 0 ď k1 ă k2 ă ¨ ¨ ¨ ă kr ă l1 ă l2 ă ¨ ¨ ¨ ă lr, are such that 2i ă kα ď 2i`1, 2j ă
lβ ď 2j`1, for 1 ď α, β ď r, j ´ i ě b for some constant b ě 1, and such that

ySep2i`1pk1, . . . , krq “ r, ySep2j`1pl1, . . . , lrq “ r, l1 ´ kr ě ŝp2j`1
q,

then

P

˜«

r
č

α“1

Ωkα
ρ2i

ff

č

«

r
č

β“1

Ω
lβ
ρ

2j

ff¸

ď σpρ2iq
rσpρ2jq

r
p1` εiq.

Definition 2.3. For r P N˚, we say that the events of the family tΩk
ρnupn,kqPN2;1ďkďn

are 2r–almost independent at a fixed scale if pM1qr̄ and pM2qr̄ are satisfied for every
r̄ P r1, 2rs. We say that Ωn

ρ are 2r–almost independent at all scales if pM1qr̄, pM2qr̄ are
satisfied for r̄ P r1, 2rs, and pM3qr̄ is satisfied for r̄ P r1, rs.
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Theorem 2.4. Given a family of events tΩk
ρnupn,kqPN2;1ďkďn, define

Sr “
8
ÿ

j“1

`

2jσpρ2jq
˘r
.

(a) If Sr ă 8, (2.1) holds, and tΩk
ρnupn,kqPN2;1ďkďn are 2r–almost independent at a

fixed scale, then with probability 1, we have that for large n, Nn
ρn ă r.

(b) If Sr “ 8, and tΩk
ρnupn,kqPN2;1ďkďn are 2r–almost independent at all scales then

with probability 1, there are infinitely many n such that Nn
ρn ě r.

Observe that since ρn is decreasing and σ is an increasing function we have that

2j`1´1
ÿ

n“2j

σrpρnqn
r´1

ď
`

2j`1σpρ2jq
˘r
ď 22r

2j´1
ÿ

n“2j´1

σrpρnqn
r´1

when (2.1) holds. Hence, the convergence of Sr is equivalent to the convergence of
8
ÿ

n“1

σrpρnqn
r´1.

Remark 2.5. An analogous statement has been obtained in [1] under different mixing
conditions.

2.2. Estimates on a fixed scale. For m P N let

Um “ tpk1, . . . , krq such that 2m ă k1 ă k2 ă ¨ ¨ ¨ ă kr ď 2m`1 and ySep2m`1pk1, . . . krq “ ru,

Am :“ tD 0 ă k1 ă ¨ ¨ ¨ ă kr ď 2m`1 s.t. Ωkα
ρ2m

happens for any α P r1, rsu,

Dm :“ tD pk1, . . . , krq P Um s.t. Ωkα
ρ2m`1

happens for any α P r1, rsu.

The goal of this section is to prove the following estimates from which it will be easy
to derive Theorem 2.4.

Proposition 2.6. Suppose

(2.2) nσpρnq Ñ 0 as nÑ 8.

If tΩk
ρnupn,kqPN2;1ďkďn are 2r–almost independent at a fixed scale, then there exists con-

stants C, c ą 0 such that

(2.3) PpAmq ď C
`

2rmσpρ2m`1q
r
`m´10

˘

(2.4) PpDmq ě cp2rmσpρ2m`1q
r
´m´10

q

If tΩk
ρnupn,kqPN2;1ďkďn are 2r–almost independent at all scales, then for m1 ą m`1 we

have a sequence θm Ñ 0 such that if m1 ´m ě b (given in pM3qr)

(2.5) PpDm XDm1q ď pPpDmq `m
´10
qpPpDm1q `m

1´10
qp1` θmq
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We start with some notations and a lemma. For n P N˚, for k1, . . . , kr ď n, define

Ak1,...,kr
ρn :“

r
č

j“1

Ωkj
ρn .

With these notations

Am “
ď

0ăk1ăk2ă¨¨¨ăkrď2m`1

Ak1,...,kr
ρ2m

,(2.6)

Dm “
ď

pk1,...,krqPUm

Ak1,...,kr
ρ2m`1

.(2.7)

Lemma 2.7. Fix 0 ă a1 ă a2 ď 2. If pM1qr and pM2qr hold then there exists two
sequences δn Ñ 0, ηn Ñ 0 such that

(2.8)
ÿ

a1năk1ăk2ă¨¨¨ăkrďa2n

PpAk1,...,kr
ρn q “

ppa2 ´ a1qnσpρnqq
r

r!
p1` δnq ` ηn plnnq

´10 .

For a2 ´ a1 ě
1
2
, there exists constant cr such that

(2.9)
ÿ

a1năk1ăk2ă¨¨¨ăkrďa2n

ySepnpk1,...krq“r

PpAk1,...,kr
ρn q ě crpnσpρnqq

r.

Proof. For m ď r, denote

Sm :“
ÿ

a1năk1ăk2ă¨¨¨ăkrďa2n

Sepnpk1,...krq“m

PpAk1,...,kr
ρn q.

Note that Sr includes nr

r!
p1 ` δ1nq terms for some sequence δ1n Ñ 0 as n Ñ 8, hence

pM1qr yields

(2.10) Sr “
pnσpρnqq

r

r!
p1` δ2nq.

where δ2n Ñ 0 as nÑ 8.
For m ă r, Sm includes O pnmsr´mpnqq terms. Hence pM2qr gives

(2.11) Sm ď Cnmsr´mpmq
Kσpρnq

m

plnnq100r
“ ηnpnσpρnqq

m
plnnq´10

for some sequence ηn Ñ 0. Combining (2.10) with (2.11) we obtain (2.8). The proof
of (2.9) is similar to that of (2.10), except that the number of terms is not anymore
equivalent to 1

r!
nrp1` δ1nq but just larger than 1

r!
pn

2
´ rŝpnqqr which is larger than qr

2rr!
nr,

due to the hypothesis ŝpnq ă np1´ qq{p2rq. �
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Proof of Proposition 2.6. First, (2.3) follows directly from (2.6) and (2.8). Next, define

Im “
ÿ

pk1,...krqPUm

PpAk1,...,kr
ρ2m`1

q

Jm “
ÿ

pk1,...,krqPUm
pk11,...,k

1
rqPUm

tk1,...,kru‰tk11,...,k
1
ru

P
´

Ak1,...,kr
ρ2m`1

č

Ak
1
1,...,k

1
r

ρ2m`1

¯

.

From (2.7) and Bonferroni inequalities we get that

(2.12) Im ´ Jm ď PpDmq ď Im

Now, (2.9) implies that

(2.13) Im ě cr2
rpm`1qσpρ2m`1q

r.

On the other hand, since

Ak1,...,kr
ρ2m`1

č

Ak
1
1,...,k

1
r

ρ2m`1
“ Atk1,...,kruYtk11,...,k

1
ru

ρ2m`1
,

we get that

Jm ď Cr

2r
ÿ

l“r`1

ÿ

k1ă¨¨¨ăkl

PpAk1,...,kl
ρ2m`1

q,

and (2.8) then implies that

(2.14) Jm ď Crp2
pr`1qmσpρ2m`1q

r`1
`m´10

q.

Combining (2.12), (2.13) and (2.14), and using the assumption (2.2) we obtain (2.4).
Finally, observe that

PpDm XDm1q ď
ÿ

pk1,...,krqPUm,pl1,...,lrqPUm1

PpAk1,...,kr
ρ2m`1

X Al1,...,lrρ
2m
1`1
q.

But since m1 ą m` 1 implies that l1 ´ kr ě ŝp2m
1`1q, pM3qr then yields

PpAk1,...,kr
ρ2m`1

X Al1,...,lrρ
2m
1`1
q ď PpAk1,...,kr

ρ2m`1
qPpAl1,...,lrρ

2m
1`1
qp1` εmq,

so that using pM1qr and summing over all pk1, . . . , krq P Um, pl1, . . . , lrq P Um1 we get
that

PpDm XDm1q ď ImIm1p1` εmq

and (2.5) then follows from (2.12), (2.13) and (2.14). �

2.3. Convergent case. Proof of Theorem 2.4 (a). Suppose that Sr ă 8. Then by
monotinicity of σpρnq, we have that nσpρnq Ñ 0. By (2.3) of Proposition 2.6 we have
that

ř

m PpAmq ă 8. By Borel-Cantelli Lemma, with probability one, Am happen
only finitely many times. Observe that for n P p2m, 2m`1s, tNn

ρn ě ru Ă Am because
Ωρn Ă Ωρ2m

for n ě 2m due to (2.1). Hence with probability one tNn
ρn ě ru happen

only finitely many times. ˝
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2.4. Divergent case. Proof of Theorem 2.4 (b). Suppose that Sr “ 8. We give a
proof under the assumption (2.2). The case where (2.2) does not hold requires minimal
modifications which will be explained at the end of this section.

Claim 2.8. Let Zn “
n
ÿ

m“1

1Dm . Then there exists a subsequence tZnku such that a.s.

Znk
EpZnkq

Ñ 1.

Since EpZnq Ñ 8, due to (2.4), the claim implies that, almost surely, Zn Ñ 8. That

is, with probability one infinitely many of Dm happen. Note that Dm Ă tN
2m`1

ρ2m`1
ě ru,

which completes the proof of Theorem 2.4 (b) in case (2.2) holds.

Proof of Claim 2.8. We first prove that (2.4) and (2.5) imply that

Zn
EpZnq

Ñ 1 in L2,

or equivalently that

(2.15)
VarpZnq

E2pZnq
Ñ 0.

Note that

(2.16) VarpZnq “
n
ÿ

m“1

PpDmq ´

n
ÿ

m“1

PpDmq
2
` 2

ÿ

iăj

rPpDi XDjq ´ PpDiqPpDjqs .

By (2.5) for each δ there exists mpδq ą b such that if i ě mpδq, j ´ i ě mpδq then

(2.17) PpDiXDjq´PpDiqPpDjq ď δPpDiqPpDjq` 2i´10PpDjq` 2j´10PpDiq` 2pijq´10.

Split (2.16) into two parts:
(a) Due to (2.17), the terms where i ě mpδq, j ´ i ě mpδq contribute at most

ÿ

iěmpδq,j´iěmpδq

“

δPpDiqPpDjq ` 2i´10PpDjq ` 2j´10PpDiq ` 2pijq´10
‰

ď δpEpZnqq2`8EpZnq`8.

(b) The terms where i ď mpδq or j ´ i ď mpδq contribute at most

r2mpδq ` 1s
n
ÿ

j“1

PpDjq “ r2mpδq ` 1sEpZnq.

Since EpZnq Ñ 8, the case (a) dominates for large n giving

lim sup
nÑ8

VarpZnq

pEpZnqq2
ď δ.

Since δ is arbitrary, (2.15) follows.
Let nk “ inftn : pEpZnqq2 ě k2VarpZnqu. Then by Chebyshev inequality

P p|Znk ´ EpZnkq| ą δEpZnkqq ď
1

δ2k2
.
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Thus
8
ÿ

k“1

Pp|Znk ´ EpZnkq| ą δEpZnkqq ď
8
ÿ

k“1

1

δ2k2
ă 8. Therefore, by Borel-Cantelli

Lemma, with probability 1, for large k, |Znk´EpZnkq| ă δEpZnkq. Hence
Znk

EpZnk q
Ñ 1 a.s.,

as claimed. �

It remains to consider the case where (2.2) fails. After passing to a subsequence, we
choose a decreasing sequence νn such that σ̃pρnq :“ νnσpρnq satisfies lim

nÑ8
nσ̃pρnq “ 0

and
8
ÿ

j“1

p2jσ̃pρ2jqq
r
“ 8.

Next, we define for each n P N and for each k ď n, a sequence of events tΩ̃k
ρnukďn

as follows: If Ωk
ρn does not occur then Ω̃k

ρn does not occur and, conditionally on Ωk
ρn

occurring, Ω̃k
ρn occurs with probability νn independently of all other events (all other

Ωk
ρn with different k or different n).

The events tΩ̃k
ρnupn,kqPN2;1ďkďn thus satisfy pM1qr, pM2qr, and pM3qr the same way

as the events tΩk
ρnupn,kqPN2;1ďkďn, with this difference that σpρnq is now replaced with

σ̃pρnq.
1 Since condition (2.2) is satisfied by σ̃pρnq, and since

8
ÿ

j“1

p2jσ̃pρ2jqq
r
“ 8, we get

that, with probability one, more than r events among the events tΩ̃k
ρnukďn occurs for

infinitely many n. By definition, this implies that with probability one, more than r
events among the events tΩk

ρnukďn occurs for infinitely many n. The proof of Theorem
2.4 (b) is thus completed. ˝

2.5. Prescribing some details. In the remaining part of Section 2 we describe some
extensions of Theorem 2.4(b).

Namely, we assume that Ωn
ρ “

p
ď

i“1

Ωn,i
ρ and there exists a constant ε̂ ą 0 such that for

each i, PpΩn,i
ρ q ě ε̂PpΩn

ρq. We also assume the following extension of pM1qr: for each
pk1, . . . , krq with Sepnpk1, . . . , krq “ r and each pi1, . . . , irq P t1, . . . , pu

r

ĆpM1qr

«

r
ź

j“1

PpΩkj ,ij
ρn q

ff

p1´ εnq ď P

˜

r
č

j“1

Ωkj ,ij
ρn

¸

ď

«

r
ź

j“1

PpΩkj ,ij
ρn q

ff

p1` εnq;

and the following extension of pM3qr: for each δ there is b “ bpδq such that letting
ŝpnq “ δn we have that for each pk1, . . . , krq, pl1, . . . , lrq with

ySep2i`1pk1, . . . , krq “ r, ySep2j`1pl1, . . . , lrq “ r, l1 ´ kr ě ŝp2j`1
q, j ´ i ě b

and for each pi1, i2, . . . , irq, pj1, j2 . . . jrq P t1, . . . , pu
r

ĆpM3qr P

˜«

r
č

α“1

Ωkα,iα
ρ2i

ff

č

«

r
č

β“1

Ω
lβ ,jβ
ρ

2j

ff¸

1Note that the events tΩ̃kρnu will not satisfy (2.1) even if the events tΩkρnu satisfy it, but in this part
of the proof of Theorem 2.4 (b) condition (2.1) is not needed.
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ď

«

r
ź

α“1

PpΩkα,iα
ρ2i

q

ff«

r
ź

β“1

PpΩlβ ,jβ
ρ

2j
q

ff

p1` εiq.

Theorem 2.9. 2 If Sr “ 8, and ĆpM1qk, pM2qk as well as ĆpM3qk for k “ 1, . . . , 2r
are satisfied, then for any i1, i2 . . . ir and for any intervals I1, I2 . . . Ir Ă r0, 1s, with
probability 1 there are infinitely many n such that for some k1pnq, k2pnq . . . krpnq with
kjpnq

n
P Ij, Ω

kj ,ij
ρn occur.

The proof of Theorem 2.9 is similar to the proof of Theorem 2.4(b). Without the loss
of generality we may assume that Ij does not contain 0. Then we consider the following
modification of Dm

D̃m :“
!

D2m ă k1 ă ¨ ¨ ¨ ă kr ď 2m`1 such that
kα

2m`1
P Iα,

Ωkα,iα
ρ2m`1

happens and kα`1 ´ kα ě ŝp2m`1
q, 0 ď α ď r ´ 1

)

.

Arguing as in Proposition 2.6 we conclude that D̃m1 and D̃m2 are asymptotically in-
dependent (in the sense of (2.5)) if m2 ą m1 ` p and p is so large that 2´p R Iα for
α “ 1, 2 . . . r. The rest of the proof is identical to the proof of Theorem 2.4(b).

2.6. Poisson regime.

Theorem 2.10. Suppose that pM1qr and pM2qr hold for all r and that lim
nÑ8

nσpρnq “ λ.

Then Nn
ρn converges in law as nÑ 8 to the Poisson distribution with parameter λ.

Proof. We compute all (factorial) moments of the limiting distribution. Let X denote

the Poisson random variable with parameter λ. Below

ˆ

m
r

˙

denotes the binomial

coefficient
m!

r!pm´ rq!
. Since (see e.g. [126] formula (3.4) in section 7.3)

E
ˆˆ

Nn
ρn

r

˙˙

“
ÿ

k1ăk2ă¨¨¨ăkrďn

PpAk1,...,kr
ρn q,

Lemma 2.7 implies for each r

(2.18) lim
nÑ8

E
ˆˆ

Nn
ρn

r

˙˙

“
λr

r!
“ E

ˆˆ

X
r

˙˙

.

Since this holds for all r we also have that for all r, lim
nÑ8

EppNn
ρnq

r
q “ EpX r

q. Since the

Poisson distribution is uniquely determined by its moments the result follows. �

Similarly to Borel-Cantelli Lemma, we also have the following extension of Theo-
rem 2.10 in the setting of §2.5. Denote Nn,i

I the number of times event Ωk,i
ρn occurs with

k{n P I. Write Nn,i :“ Nn,i
r0,1s.

2This result is not used in the present paper, so it can be skipped during the first reading. In a followup
work, we shall use Theorem 2.9 to obtain some analogues of the Functional Law of Iterated Logarithm
for heavy tailed random variables.
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Theorem 2.11. Suppose that ĆpM1qr and pM2qr hold for all r and that

lim
nÑ8

nPpΩn,i
ρn q “ λi.

Then tNn,i
ρn u

p
i“1 converge in law as nÑ 8 to the independent Poisson random variables

with parameter λi.
Moreover if I1, I2, . . . Is are disjoint intervals then tNn,i

Ij
u, i “ 1 . . . p, j “ 1 . . . s

converge in law as nÑ 8 to the independent Poisson random variables with parameter
λi|Ij|.

Proof. It suffices to prove the second statement. The proof is similar to the proof of
Theorem 2.10. Namely, similarly to (2.18) we show that for each set rij P N we have

lim
nÑ8

E

˜

ź

i,j

ˆ

Nn,i
Ij

rij

˙

¸

“
ź

i,j

pλi|Ij|q
rij

prijq!
“
ź

i,j

E
ˆˆ

Xij

rij

˙˙

where Xij are independent Poisson random variables with parameters λi|Ij|. �

2.7. Notes. The usual Borel Cantelli Lemma is a classical subject in probability. There
are many extensions to weakly dependent random variables, see e.g. [140, §12.15],
[135, §1]. The connection between Borel-Cantelli Lemma and Poisson Limit Theorem
is discussed in [51, 57]. The multiple Borel Cantelli Lemma for independent events
is proven in [118]. [1] obtains multiple Borel Cantelli Lemma for systems admitting
good symbolic dynamics. Extending multiple Borel Cantelli Lemma for more general
sequences allows to obtain many new applications, see Sections 4–10 of this paper. We
note that separation conditions similar to our have been used in [40, 130] to obtain the
Poisson Law.

3. Multiple Borel Cantelli Lemma for exponentially mixing
dynamical systems.

3.1. Good maps, good targets. Let f be a transformation of a metric space X
preserving a measure µ. Given a family of sets Ωρ Ă X, ρ P R˚`, we will, in a slight
abuse of notations, sometimes call Ωρ the event 1Ωρ and Ωk

ρ the event 1Ωρ ˝ f
k. We will

take σpρq “ µpΩρq.
To deal with multiple recurrence and not just multiple hitting of targets, we need to

consider slightly more complicated events.
Given a family of events Ω̄ρ in X ˆX, let Ω̄k

ρ Ă X be the event

Ω̄k
ρ “ tx : px, fkxq P Ω̄ρu.

We will take σ̄pρq “ pµˆ µqpΩ̄ρq.
From now on we will always assume that if ρ1 ď ρ, then

Ωρ1 Ă Ωρ, Ω̄ρ1 Ă Ω̄ρ.

For φ : Xk Ñ R, k P N`, we denote

µkpφq “

ż

Xk

φpx1, ¨ ¨ ¨ , xkqdµpx1q ¨ ¨ ¨ dµpxkq.
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Given a sequence tρnu, we recall that Nn
ρn denotes the number of times k ď n such

that Ωk
ρn (or Ω̄k

ρn) occurs. We want to give conditions on the system pf,X, µq and

on the family tΩk
ρnupn,kqPN2;1ďkďn or tΩ̄k

ρnupn,kqPN2;1ďkďn, that imply the validity of the
dichotomy of Theorem 2.4 for the number of hits Nn

ρn . For this, we take

Sr “
8
ÿ

j“1

`

2jvj
˘r

where vj “ σpρ2jq if we are considering targets of the type Ωk
ρ and vj “ σ̄pρ2jq if we

are considering targets of the type Ω̄k
ρ.

The independence conditions pM1qr, pM2qr, pM3qr will be satisfied due to mixing
conditions on the dynamical system pf,X, µq, and to some regularity and shrinking
conditions on the targets that we now state.

Definition 3.1 (pr` 1q-fold exponentially mixing systems for r ě 1). Let B be a space
of real valued functions defined over Xr`1, with a norm } ¨ }B. For r ě 1, we say that
pf,X, µ,Bq is pr ` 1q-fold exponentially mixing, if there exist constants C ą 0, L ą 0
and θ ă 1 such that

(Prod) }A1A2}B ď C}A1}B}A2}B,

(Gr) }A ˝ pfk0 , . . . , fkrq}B ď CL
řr
i“0 ki}A}B,

pEMqr If 0 “ k0 ď k1 ď . . . ď kr are such that @j P r0, r ´ 1s, kj`1 ´ kj ě m, then
ˇ

ˇ

ˇ

ˇ

ż

X

Apx, fk1x, ¨ ¨ ¨ , fkrxqdµpxq ´

ż

Xr`1

Apx0, ¨ ¨ ¨ , xrqdµpx0q ¨ ¨ ¨ dµpxrq

ˇ

ˇ

ˇ

ˇ

ď Cθm }A}B .

Given a system pf,X, µ,Bq, we now define the notion of simple admissible targets
for f .

Definition 3.2 (Simple admissible targets). Let Ωρ, ρ P R˚`, be a decreasing collection
of sets in X for which there are positive η, τ such that for all sufficiently small ρ ą 0

(Appr) There are functions A´ρ , A
`
ρ : X Ñ R such that A˘ρ P B and

(i) }A˘ρ }8 ď 2 and }A˘ρ }B ď ρ´τ ;
(ii) A´ρ ď 1Ωρ ď A`ρ ;

(iii) µpA`ρ q ´ µpA
´
ρ q ď σpρq1`η,

where σpρq “ µpΩρq.
Let tρnu be a decreasing sequence of positive numbers. We say that the sequence

tΩρnu is a simple admissible sequence of targets for pf,X, µ,Bq if there exists u ą 0
such that

(Poly) ρn ě n´u, σpρnq ě n´u,

and

(Mov) @R, DC̄ : @k P p0, R lnnq, µpΩρn X f
´kΩρnq ď C̄σpρnqplnnq

´1000r.

Remark 3.3. Note that properties (Appr)(ii) and (iii) imply that

µpA`ρ q ´ µpΩρq ď µpΩρq
1`η, µpΩρq ´ µpA

´
ρ q ď µpΩρq

1`η.
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A useful situation where one can verify these properties is the following.

Lemma 3.4. Suppose that f is Lipschitz and B is the space of Lipschitz functions. We
have that (Prod) and (Gr) hold with L being the Lipschitz constant of f. Moreover, if
there exist constants ξ, ξ1 ą 0 and Φ : X Ñ R a (uniformly) Lipschitz function3 such
that for any interval J P R,

µptx : Φpxq P Juq P r|J |ξ, |J |ξ
1

s

and two (uniformly) Lipschitz functions a1 and a2 : RÑ R such that for some α, α1 ą 0
we have

a2pρq ´ a1pρq P rρ
α, ρα

1

s

then (Appr) holds for the targets

Ωρ “ tΦpxq P ra1pρq, a2pρqsu .

The same result holds if B is the space of Cs functions or the space of compactly sup-
ported Cs functions with s ą 0 arbitrary.

The proof of Lemma 3.4 relies on simple approximation of characteristic functions
by Lipschitz functions.

Proof. We will construct A`ρ that satisfies piq, piiq and piiiq of (Appr), with µpA´ρ q
replaced by µpΩρq. The construction of A´ρ is similar. Note that σpρq “ µpΩρq P

rραξ, ρα
1ξ1s.

Define a family of smooth function ψ` : R4 Ñ r0, 2s such that for v ą u and ε ą 0
and x P R (we are not interested in the form of ψ` outside this domain) we have

ψ`pu, v, ε, xq “

"

1, for x P ru, vs
0, for x R ru´ εpv ´ uq, v ` εpv ´ uqs

and for which there exist constants η ą 0 and C ą 0 such that that for any ν0 and for
R4 Ą Rν0 :“ tv ´ u ě ν0, ε ě ν0u, we have that

}ψ`}C1pRν0 q
ď Cν´η0 ,

where C1pRν0q refers to the C1 norm in the region Rν0 .
Define now A`ρ : X Ñ R : x ÞÑ ψ`pa1pρq, a2pρq, ρ

b,Φpxqq, where b ą 1 will be chosen
later. It is clear that A`ρ is Lipschitz and that 1Ωρ ď A`ρ . On the other hand }A`ρ }8 ď 2

and }A`ρ }B ď CpΦqρ´bαη, and piq holds for τ “ bαη`1. We turn now to piiiq. We observe

that with J1 “ ra1pρq´ρ
bpa2pρq´a1pρqq, a1pρqs and J2 “ ra2pρq, a2pρq`ρ

bpa2pρq´a1pρqqs,

µpA`ρ q ´ µp1Ωρq ď 2µ ptΦpxq P J1 Y J2uq

ď 4ρξ
1pb`α1q.

Hence, if b is chosen sufficiently large we have ρ ą 0 sufficiently small that µpA`ρ q ´

µp1Ωρq ď σpρq2.
The fact that the same results hold if B is the space of Cs functions or the space of

compactly supported Cs functions with s ą 0 arbitrary, is a simple consequence of the
approximation of Lipschitz functions by smooth functions. �

3The typical situation for using Lemma 3.4 will be with Φpxq defined by some distance dpx0, xq.
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To deal with recurrence, the following definition is useful.

Definition 3.5 (Composite admissible targets). Let Ω̄ρ be a decreasing collection of
sets in XˆX satisfying the following conditions for some positive constants C̄, η, τ and
for all sufficiently small ρ ą 0,

pApprq There are functions Ā´ρ , Ā
`
ρ : X ˆX Ñ R such that Ā˘ρ P B and

(i) }Ā˘ρ }8 ď 2 and }Ā˘ρ }B ď ρ´τ ;

(ii) Ā´ρ ď 1Ω̄ρ ď Ā`ρ ;
(iii) For any fixed x,

σ̄pρq ´ σ̄pρq1`η ď

ż

Ā´ρ px, yqdµpyq ď

ż

Ā`ρ px, yqdµpyq ď σ̄pρq ` σ̄pρq1`η,

(iv) For any fixed y,

ż

Ā`ρ px, yqdµpxq ď C̄σ̄pρq.

The sequence Ω̄ρn is said to be composite admissible if

(Poly) ρn ě n´u, σ̄pρnq ě n´u,

and there is a constant a ą 0 such that for any k1 ă k2

(Sub) Ω̄k1
ρ X Ω̄k2

ρ Ă f´k1Ω̄k2´k1
aρ ,

and

(Mov) @k ‰ 0, µpΩ̄k
aρnq ď C̄plnnq´1000r.

Observe that integrating condition pApprqpiiiq with respect to x we obtain for each
n ‰ 0,

(3.1) C̄´1µ
`

Ω̄n
ρ

˘

ď µ
`

Ā´ρ px, f
nxq

˘

ď µ
`

Ā`ρ px, f
nxq

˘

ď C̄µ
`

Ω̄n
ρ

˘

.

The typical composite targets we will deal with are of the type dpx, yq ă ρ or dpx, yq ă
γpxqρ, where γpxq is related to the local dimension of a smooth measure at the point x.
We state here a general Lemma that guarantees the admissibility of such targets. The
statement is a bit technical but if we keep in mind that the function Φpx, yq is usually
defined by a distance, then the hypothesis of the Lemma become natural. The proof of
the Lemma is very simple and follows a similar scheme of the proof of Lemma 3.4 for
simple targets.

Lemma 3.6. Suppose that f is Lipschitz and B is the space of Lipschitz functions.
Suppose there exists constants C, ξ, ξ1, ξ2 ą 0 and Φ : X ˆ X Ñ R a (uniformly)
Lipschitz function such that

(h1) @px, yq P X ˆX, Φpx, yq ď CΦpy, xq.
(h2) For any interval J P R, σ̄pJq :“ pµ ˆ µq ptpx, yq P X ˆX : Φpx, yq P Juq P

r|J |ξ, |J |ξ
1

s.

(h3) For any x P X, µ pty P X : Φpx, yq P Juq “ σ̄pJqp1`Op|J |ξ2qq.
If two (uniformly) Lipschitz functions a1 and a2 : R Ñ R are such that for some
α, α1 ą 0

a2pρq ´ a1pρq P rρ
α, ρα

1

s
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then pApprq holds for the targets

Ω̄ρ “ tΦpx, yq P ra1pρq, a2pρqsu

The same result holds if B is the space of Cs functions or the space of compactly sup-
ported Cs functions with s ą 0 arbitrary.

Proof. The proof is very similar to that of Lemma 3.4. We just explain the differences.
Note that σ̄pρq “ pµˆ µqpΩ̄ρq P rρ

αξ, ρα
1ξ1s.

We introduce Ā`ρ : XˆX Ñ R : px, yq ÞÑ ψ`pa1pρq, a2pρq, ρ
b,Φpx, yqq, where ψ` is as

in the proof of Lemma 3.4. Properties piq and piiq hold as in the proof of Lemma 3.4.
We turn now to piiiq. We fix x P X, and observe that with I “ ra1pρq, a2pρqs and

J1 “ ra1pρq ´ ρbpa2pρq ´ a1pρqq, a1pρqs, J2 “ ra2pρq, a2pρq ` ρbpa2pρq ´ a1pρqqs we have
that

ż

Ā`ρ px, yqdµpyq ´ µ pty P X : Φpx, yq P Iuq ď 2µ pty P X : Φpx, yq P J1 Y J2uq

ď σ̄pρq2

if b is sufficiently large due to ph2q and ph3q. Applying ph2q and ph3q, we also see that

|µ pty P X : Φpx, yq P Iuq ´ σ̄pρq| “ Opσ̄pρq1`ηq

for some η ą 0. This proves pApprqpiiiq.
Finally, fix y P X and observe that ph1q implies

ż

Ā`ρ px, yqdµpxq ď C

ż

Ā`ρ py, xqdµpxq ď 2Cσ̄pρq,

which proves pApprqpivq. �

3.2. Multiple Borel-Cantelli Lemma for admissible targets. The goal of this sec-
tion is to establish the following Theorem that gives conditions on the system pf,X, µq
and on the family tΩk

ρnupn,kqPN2;1ďkďn (or tΩ̄k
ρnupn,kqPN2;1ďkďn), that imply the validity of

the dichotomy of Theorem 2.4 for the number of hits Nn
ρn . Recall that

Sr “
8
ÿ

j“1

`

2jvj
˘r

where vj “ σpρ2jq if we are considering targets of the type Ωk
ρ and vj “ σ̄pρ2jq if we

are considering targets of the type Ω̄k
ρ.

Theorem 3.7. Assume a system pf,X, µ,Bq is p2r ` 1q-fold exponentially mixing.4

Then
a) If tΩρnu is a sequence of simple admissible targets as in Definition 3.2, then the
events of the family tΩk

ρnupn,kqPN2;1ďkďn are 2r–almost independent at all scales.

b) If tΩ̄ρnu is a sequence of composite admissible targets as in Definition 3.5, then the
events of the family tΩ̄k

ρnupn,kqPN2;1ďkďn are 2r–almost independent at all scales.

Hence, Theorem 2.4 implies

4Part aq holds for 2r-fold exponentially mixing systems, as shown by the first part of Proposition 3.9.
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Corollary 3.8. If the system pf,X, µ,Bq is p2r ` 1q-fold exponentially mixing, and if
tΩρnu (or tΩ̄ρnu) are as in Definition 3.2 (or Definition 3.5), then

(a) If Sr ă 8, then with probability 1, we have that for large n Nn
ρn ă r.

(b) If Sr “ 8, then with probability 1, there are infinitely many n such that Nn
ρn ě r.

In fact Theorem 3.7 is a direct consequence of the following Proposition. We accept
a convention that pEMqk for k ď 0 is an always satisfied.

Proposition 3.9. Given a dynamical system pf,X, µ,Bq and a sequence of decreasing
sets tΩρnu such that pProdq, pPolyq, and pApprq hold, then with the function σp¨q :“
µpΩ¨q, and

(i) If pEMqr´1 holds, then pM1qr is satisfied with the function s : N ý: spnq “ R lnn,
where R is sufficiently large (depending on r, the system and the targets).

(ii) If pGrq, pMovq and pEMqr´2 hold, then pM2qr is satisfied.
(iii) If pGrq and pEMqr hold, then for arbitrary ε ą 0, pM3qr is satisfied with ŝpnq “

εn.
Similarly, given a dynamical system pf,X, µ,Bq and a sequence of decreasing sets

tΩ̄ρnu such that pProdq, pPolyq and pApprq hold, then, with the function σ̄p¨q :“ µ ˆ
µpΩ̄¨q:

(i) If pEMqr holds, then pM1qr is satisfied with the function s : N ý: spnq “ R lnn,
with R sufficiently large (depending on r, the system and the targets).

(ii) If pGrq, pMovq, pSubq and pEMqr´1 hold, then pM2qr is satisfied.
(iii) If pGrq and pEMqr hold, then for arbitrary ε ą 0 pM3qr is satisfied with ŝpnq “

εn.

Proof of Proposition 3.9. We use C to denote a constant that may change from line to
line but that will not depend on ρn, Ωρn , Ω̄ρn , the order of iteration of f , etc.

Proof of (i) For Ωρn , we prove pM1qr in case ki`1´ki ě
?
R lnn, where R is a sufficiently

large constant. Indeed, using pApprq and pEMqr´1 we get

µ

˜

r
ź

i“1

1Ωρn pf
kixq

¸

ď µ

˜

r
ź

i“1

A`ρnpf
kixq

¸

ď

r
ź

i“1

µ
`

A`ρn
˘

` Cρ´rτn θ
?
R lnn

ď
`

µpΩρnq ` CµpΩρnq
1`η

˘r
` Cρ´rτn θ

?
R lnn,

which yields the RHS of pM1qr, due to pPolyq if R is sufficiently large. The LHS is
proved similarly.

For Ω̄ρn , we approximate 1Ω̄ρn
by Ā˘ρn , apply pApprq, pEMqr to the functions

B`ρnpx0, ¨ ¨ ¨ , xrq “ Ā`ρnpx0, x1q ¨ ¨ ¨ Ā
`
ρnpx0, xrq,

B´ρnpx0, ¨ ¨ ¨ , xrq “ Ā´ρnpx0, x1q ¨ ¨ ¨ Ā
´
ρnpx0, xrq,

and get

µ

˜

r
č

j“1

Ω̄kj
ρn

¸

ď
`

σ̄pρnq ` Cσ̄pρnq
1`η

˘r
` Cρn

´rτθ
?
R lnn,
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which yields the RHS of pM1qr due to pPolyq if R is taken sufficiently large. The LHS
is proved similarly.

Proof of (ii). For Ωρn , it is enough to consider the case Seppk1, . . . , krq “ r´1 otherwise
we can estimate all 1Ωρn ˝ f

ki with ki ´ ki´1 ă spnq, except the first, by 1.
So we assume that 0 ă kj ´ kj´1 ă R lnn and ki ´ ki´1 ě R lnn for i ‰ j. Since

pM1qr was proven under the assumption that minipki´ki´1q ą
?
R lnn we may assume

that kj ´ kj´1 ă
?
R lnn. Note that by (Appr) and Remark 3.3

µ
`

A`ρn
`

A`ρn ˝ f
k
˘˘

´ µ
`

1Ωρn

`

1Ωρn ˝ f
k
˘˘

ď 4µ
`

A`ρn ´ 1Ωρn

˘

ď 4CµpΩρnq
1`η.

Therefore (Mov) implies :

µ
`

A`ρn
`

A`ρn ˝ f
kj´kj´1

˘˘

ď CµpΩρnqplnnq
´1000r.

Take B “ A`ρn
`

A`ρn ˝ f
kj´kj´1

˘

, we get using pEMqr´2 and pPolyq that

µ

˜

r
ź

i“1

1Ωρn

`

fkix
˘

¸

ď µ

˜

r
ź

i“1

A`ρn
`

fkix
˘

¸

“ µ

˜

ź

i‰j´1,j

A`ρn
`

fkix
˘

Bpfkj´1xq

¸

ď µ
`

A`ρn
˘r´1

µpBq ` Cρn
´rτL

?
R lnnθR lnn

ď CµpΩρnq
r´1
plnnq´1000r

proving pM2qr.
For Ω̄ρn , we approximate 1Ω̄ρn

by Ā`ρn . Consider

B̃rpx0, ¨ ¨ ¨ , xj´1, xj`1, ¨ ¨ ¨ , xrq

“ 1Ω̄ρn
px0, x1q ¨ ¨ ¨ 1Ω̄ρn

px0, xj´1q1
Ω̄
kj´kj´1
aρn

pxj´1q1Ω̄ρn
px0, xj`1q ¨ ¨ ¨ 1Ω̄ρn

px0, xrq,

B̂rpx0, ¨ ¨ ¨ , xj´1, xj`1, ¨ ¨ ¨ , xrq

“ Ā`ρnpx0, x1q ¨ ¨ ¨ Ā
`
ρnpx0, xj´1qĀ

`
aρnpxj´1, f

kj´kj´1xj´1qĀ
`
ρnpx0, xj`1q ¨ ¨ ¨ Ā

`
ρnpx0, xrq.

Since pApprq, pMovq and pSubq hold, we obtain from pEMqr´1

µ

˜

r
č

j“1

Ω̄kj
ρn

¸

ď µ
´

B̃rpx, ¨ ¨ ¨ , f
kj´1x, fkj`1x, ¨ ¨ ¨ , fkrxq

¯

ď µ
´

B̂rpx, ¨ ¨ ¨ , f
kj´1x, fkj`1x, ¨ ¨ ¨ , fkrxq

¯

ď µrpB̂rq ` C̄ρn
´rτL

?
R lnnθR lnn.

Integrating with respect to all variables except for x0 and xj´1, then using pApprqpivq
when integrating along x0 for any fixed value of xj´1, then finally integrating along
xj´1, we get

µrpB̂rq ď
`

σ̄pρnq ` σ̄pρnq
1`η

˘r´1
µ
`

Ā`aρnpx, f
kj´kj´1xq

˘

which by (3.1) gives

µrpB̂rq ď
`

σ̄pρnq ` σ̄pρnq
1`η

˘r´1
C̄µpΩ̄kj´kj´1

aρn q

Therefore, pM2qr follows from pMovq, provided R is sufficiently large.
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Proof of (iii) Fix a large constant b that will be given below. Consider first simple

targets Ωρn . Denoting Bpxq “
r
ź

α“1

A`ρ2i
pfkαxq for 2i ă k1 ă ¨ ¨ ¨ ă kr ď 2i`1, we obtain

from (Prod), (Gr), (Appr), (Poly) and pEMqr, that }B}B ď CLr2
i`1

. Thus

µ

˜˜

r
ź

α“1

1Ωρ
2i
pfkαxq

¸˜

r
ź

β“1

1Ωρ
2j
pf lβxq

¸¸

ď µ

˜˜

r
ź

α“1

A`ρ2i
pfkαxq

¸˜

r
ź

β“1

A`ρ
2j
pf lβxq

¸¸

“ µ

˜

Bpxq

˜

r
ź

β“1

A`ρ
2j
pf lβxq

¸¸

ď µpBqµ
´

A`ρ
2j

¯r

` CLr2
i`1

ρ´rτ
2i

ρ´rτ
2j

θ2jε.

Applying already established pM1qr to estimate µpBq, and observing that the second

term is smaller than CpLr2
´b`1

q
2j22rτujθ2jε, which is thus much smaller than the first

when b is sufficiently large, we finally get pM3qr.
Next, we analyze Ω̄ρn . Consider

B˚px, x1, x2 . . . xrq “

˜

r
ź

α“1

1Ω̄kαρ
2i
pxq

¸˜

r
ź

β“1

1Ω̄ρ
2j
px, xβq

¸

.

By pApprq and pEMqr and the already established pM1qr, we get

µ
´

č

1ďα, βďr

`

Ω̄kα
ρ2i

č

Ω̄
lβ
ρ

2j

˘

¯

ď µ
`

B˚px, f l1x, . . . , f lrxq
˘

ď µ

˜

r
ź

α“1

Ā`ρ2i
px, fkαxq

¸

`

σ̄pρ2jq ` σ̄pρ2jq
1`η

˘r
` CLr2

i`1

ρ´rτ
2i

ρ´rτ
2j

θ2jε.

Using pM1qr again we observe that

µ

˜

r
ź

α“1

Ā`ρ2i
px, fkαxq

¸

ď C
`

σ̄pρ2iq ` σ̄pρ2iq
1`η

˘r
,

which allows to conclude the proof of pM3qr in the case of Ω̄ρn . �

Remark 3.10. In fact, analyzing the proof of Theorem 3.7 we see that the composite
targets pApprqpiiiq could be replaced by a weaker condition: there is a function σrpρq
such that C´1σrpρq ă σrpρq ă Cσrpρq and

(3.2a)

ż

. . .

ż

˜

r
ź

j“1

Ā`px, yjqdµpyjq

¸

dµpxq “ σrpρqp1`Opσ
η
pρqq,

(3.2b)

ż

. . .

ż

˜

r
ź

j“1

Ā´px, yjqdµpyjq

¸

dµpxq “ σrpρqp1`Opσ
η
pρqq.
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We shall call the composite targets satisfying pMovq, pSubq, pPolyq as well as pApprq
with condition piiiq replaced by (3.2a)–(3.2b) weakly admissible.

3.3. Notes. There is also a vast literature on Borel-Cantelli Lemmas for dynamical
systems starting with [123]. Some representative examples dealing with hyperbolic sys-
tems are [5, 35, 56, 68, 71, 73, 74, 80, 88, 102] while [29, 30, 88, 95, 96, 97, 108, 136] deal
with systems of zero entropy. The later cases are more complicated as counterexamples
in [55, 64] show. Survey [7] reviews the results obtained up to 2009 and contains many
applications, some of which parallel the results obtained in Sections 4–9 of the present
paper. We refer the reader to Appendix A for more background on multiple exponential
mixing and for examples of dynamical systems which enjoy this property. We note that
limit theorems for smooth systems which are only assumed to be multiply exponentially
mixing (but without any additional assumptions) are considered in [21, 33, 133]. [61]
obtains a Logarithm Law for hitting times under an assumption of superpolynomial
mixing which is weaker than our exponentially mixing assumption. We note that in
our approach the exponential rate of mixing is crucial for verifying the condition pM3qr
pertaining to interscale independence. Therefore it is an open problem to ascertain if
similar results hold under weaker mixing assumptions.

4. MultiLog Laws for recurrence and hitting times

In this section we apply the results of Section 3 to obtain MultiLog Laws for mul-
tiple exponentially mixing diffeomorphisms and flows. We will assume that f is a
smooth diffeomorphism of a compact d´dimensional Riemannian manifold M preserv-
ing a smooth measure µ. From now on, we take B in Definition 3.1 to be the space of
Lipschitz observables defined over Md`1.

4.1. Results. Let pf,M, µq be a smooth dynamical system. Let d
prq
n px, yq be the r-th

minimum of

dpx, fyq, ¨ ¨ ¨ , dpx, fnyq.

The following result was obtained for a large class of weakly hyperbolic systems as a
consequence of dynamical Borel-Cantelli Lemmas

(4.1a) lim sup
nÑ8

| ln d
p1q
n px, xq|

lnn
“

1

d
,

(4.1b) lim sup
nÑ8

| ln d
p1q
n px, yq|

lnn
“

1

d
.

In particular, the following results are known.

Theorem 4.1. (a) If a smooth system pf,M, µq has superpolynomial decay of correla-
tions for Lipschitz observables, that is,

|µpApxqBpfnxqq ´ µpAqµpBq| ď apnq}A}Lip}B}Lip where @s lim
nÑ8

nsapnq “ 0,

then for all x (4.1b) holds for a.e. y. If in addition, f has positive entropy, then (4.1a)
holds for a.e. x.
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(b) If, in addition, f is partially hyperbolic then for all x and a.e. y

(4.2) lim sup
nÑ8

| ln d
p1q
n px, yq| ´ 1

d
lnn

ln lnn
“

1

d
.

In part (a), (4.1a) is proven in [128, Theorem 1] and (4.1b) is proven in [61, Theorem
4]. Part (b) is proven in [44, Theorem 7].

Question 4.2. Suppose that pf, µq is exponentially mixing then (4.2) holds for all x and
a.e. y.

MultiLog Law for recurrence and for hitting times. The goal of this section
is to obtain an analogue of of (4.2) for multiple hits as well as for returns for multiple
exponentially mixing systems as in Definition 3.1.

Definition 4.3. Given a smooth system pf,M, µq, define

Gr “

#

x : for a.e. y, lim sup
nÑ8

| ln d
prq
n px, yq| ´ 1

d
lnn

ln lnn
“

1

rd

+

,

Ḡr “

#

x : lim sup
nÑ8

| ln d
prq
n px, xq| ´ 1

d
lnn

ln lnn
“

1

rd

+

.

Theorem 4.4. Suppose that pf,M, µ,Bq is p2r ` 1q-fold exponentially mixing.5 Then
(a) µpGrq “ 1; (b) µpḠrq “ 1.

Failure of the MultiLog laws for generic points. Naturally, one can ask if
in fact, Gr equals to M. If r “ 1 the answer is often positive (see Theorem 4.1(b)). It
turns out that for larger r the answer is often negative.

Definition 4.5. Given a function ζ : NÑ N˚, define

H “

#

x : for a.e. y, for all r ě 1 : lim sup
nÑ8

| ln d
prq
n px, yq| ´ 1

d
lnn

ln lnn
“

1

d

+

,

H̄ζ “

#

x : for all r ě 1 : lim sup
nÑ8

| ln d
prq
n px, xq|

ζpnq
“ 8

+

.

Theorem 4.6. Suppose that the periodic points of f are dense. Then
(a) If G1 “M , then H contains a Gδ dense set.
(b) For any ζ : NÑ N˚, H̄ζ contains a Gδ dense set.

Thus for r ě 2 topologically typical points do not belong to Gr or Ḡr.

Failure of the MultiLog laws for non mixing systems. The case of toral
translations.

Theorem 4.6 emphasizes the necessity of a restriction on x in Theorem 4.4.

5As seen from Proposition 3.9, part paq holds for 2r-fold exponentially mixing systems.
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In a similar spirit, we show that the mixing assumptions made in this paper are
essential. To this end we consider the case when the dynamical system is pTα,Td, λq
where Tα is the translation of vector α and λ is the Haar measure on Td.

Define

Er “

#

x : for a.e. y, lim sup
nÑ8

| ln d
prq
n px, yq| ´ 1

d
lnn

ln lnn
“

1

2d

+

,

Ēr “

#

x : lim sup
nÑ8

| ln d
prq
n px, xq| ´ 1

d
lnn

ln lnn
“

1

d

+

.

Theorem 4.7. For λ-a.e. α P Td, the system pTα,Td, λq, satisfies
a) λpG1q “ 1 and λpErq “ 1 for r ě 2;
b) Ēr “M for all r ě 1.

The proof requires different techniques from the rest of the results of this section,
that are related to homogeneous dynamics on the space of lattices, so it will be given
in Section 9 after we introduce the necessary tools.

The case of flows. Here we describe the analogue results of Theorems 4.4 and 4.6
for flows. Let φ be a smooth flow on a pd ` 1q dimensional Riemannian manifold M
preserving a smooth measure µ.

Observe that if φtpyq is close to x for some t, then the same is true for φt̃pyq with
t̃ close to t. Thus we would like to count only one return for the whole connected
component lying in the neighborhood of x. Namely, for some fixed ρ ą 0, for i ě 0,
let rt´i , t

`
i s denote the consecutive time intervals such that φty P Bpx, ρq for t P rt´i , t

`
i s.

Let ti be the argmin of dpx, φtpyqq for t P rt´t , t
`
i s. Let d

prq
n px, yq be the r´th minimum

of

(4.3) dpx, φt1pyqq, . . . , dpx, φtkpyqq, tk ď n ă tk`1.

Theorem 4.4 and Theorem 4.6 have the following counterpart in the case of flows.
Note that the dimension of the manifold in the case of flows is d` 1.

Theorem 4.8. Suppose that the smooth system pφ,M, µ,Bq is p2r`1q-fold exponentially
mixing. Then
a) µpGrq “ 1;
b) µpḠrq “ 1.

If, in addition, periodic points of φ are dense then
c)If G1 “M then H contains a Gδ dense set;
d) For any ζ : NÑ N˚, H̄ζ contains a Gδ dense set.

4.2. Slowly recurrence and proof of Theorem 4.4. Since µ is a smooth measure,
there is a smooth function γpxq such that

(4.4) µ pBpx, ρqq “ γpxqρd `O
`

ρd`1
˘

,

where the constant in O
`

ρd`1
˘

is uniform in x.
Given x PM, let

(4.5) Ωx,ρ “ ty : dpx, yq ď ρu
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and6

(4.6) Ω̄ρ “

"

px, yq : dpx, yq ď
ρ

pγpxqq1{d

*

We use the notation Ωk
x,ρ for the event 1Ωx,ρ ˝ f

k. We also recall the notation Ω̄k
ρ “

tx : px, fkxq P Ω̄ρu. We also keep the notation σpρq “ µpΩx,ρq, and σ̄pρq “ pµˆ µqpΩ̄ρq.
For s ě 0, we let ρn “ n´1{d ln´s n, and recall that Nn

ρn denotes the number of times

k ď n such that Ωk
x,ρn (or Ω̄k

ρn) occurs.
By compactness, there exists a constant c ą 0 such that

 

px, yq : dpx, yq ď c´1ρ
(

Ă Ω̄ρ Ă tpx, yq : dpx, yq ď cρu .

Thus the statement of Theorem 4.4 becomes equivalent to the following :

(a) If s ą 1
rd

, then for µ-a.e. x, we have that for large n, Nn
ρn ă r.

(b) If s ď 1
rd

, then for µ-a.e. x, there are infinitely many n such that Nn
ρn ě r.

With the notation Sr “
ř8

j“1 p2
jvjq

r
where vj “ σpρ2jq (in the Ωx,ρn case) or vj “

σ̄pρ2jq (in the Ω̄ρn case), we see from (4.4) that Sr “ 8 if and only if s ď 1
rd

.
Hence Theorem 4.4 follows from the alternative of Corollary 3.8, since pf,M, µ,Bq is

p2r ` 1q-fold exponentially mixing, provided we establish the following.

Proposition 4.9. (a) For µ-a.e. x the targets tΩx,ρnu are simple admissible targets.
(b)The targets tΩ̄ρnu are composite admissible targets.

The rest of this section is devoted to the
Proof of Proposition 4.9.

Observe first that with the definition of ρn and (4.4), we have that pPolyq and pPolyq
hold for every x for the target sequences tΩx,ρnu as well as for the sequence tΩ̄ρnu.

We proceed with the proof of pApprq and pApprq and pSubq properties.

Lemma 4.10. For each x, the targets Ωx,ρ satisfy pApprq. The targets Ω̄ρ satisfy pApprq

and pSubq.

Proof. For the targets Ωx,ρ, the statement follows from Lemma 3.4 by taking Φpyq “
dpx, yq (that is a Lipschitz function), a1pρq “ 0 and a2pρq “ ρ.

For the targets Ω̄ρ, we use Lemma 3.6. We take Φpx, yq “ dpx, yqγpxq1{d, a1pρq “ 0
and a2pρq “ ρ. We check ph1q since γpxq{γpyq is bounded for px, yq P X ˆX. Property
ph2q is obvious. As for ph3q it follows from the definition of γpxq in (4.4).

Finally, for any k1, k2, when x P Ω̄k1
ρ X Ω̄k2

ρ , we have

dpfk1x, fk2xq ď dpx, fk1xq ` dpx, fk2xq ď
2ρ

pγpxqq1{d
ď

aρ

pγpfk1xqq1{d
,

for some a ą 0. Hence Ω̄k1
ρ X Ω̄k2

ρ Ă f´k1Ω̄k2´k1
aρ , which is pSubq. Lemma 4.10 is proved.

�

6In the definition of the composite target Ω̄ρ, we include the factor pγpxqq´1{d because we want that

for every x,
ş

1Ω̄ρpx, yqdµpyq be essentially the same number to be able to check pApprqpiiiq for these
targets.
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Next we prove of the pMovq (for a.e. x) and pMovq properties. For this we state a
Lemma on recurrence for the multiple mixing system pf,M, µq that is of an independent
interest. We first introduce two definitions.

Definition 4.11 (Slowly recurrent points). Call x slowly recurrent for the system
pf,M, µq if for each A,K ą 0, there Dρ0 such that for all ρ ă ρ0 for all n ď K| ln ρ| we
have

µpBpx, ρq X f´nBpx, ρqq ď µpBpx, ρqq| ln ρ|´A.

Definition 4.12 (Slowly recurrent system). Call the system pf,M, µq slowly recurrent
if for each A ą 0 Dρ0 such that for all ρ ă ρ0 for all n P N˚ we have

µ ptx : dpx, fnxq ă ρuq ď | ln ρ|´A.

Lemma 4.13. Suppose that pf,M, µ,Bq is 2-fold exponentially mixing. Then

iq pf,M, µq is slowly recurrent.
iiq Almost every point is slowly recurrent.

As a consequence, we have that

(a) For µ-a.e. x, the targets Ωx,ρn satisfy pMovq.

(b) The targets Ω̄ρn satisfy pMovq.

Proof. Take B “ A2. If k ě B ln | ln ρ|, take ρ̂ “ | ln ρ|´A. By 2-fold exponential mixing,
we get

(4.7) µpx : dpx, fkxq ď ρq ď µpx : dpx, fkxq ď ρ̂q

ď µ
`

Ā`ρ̂ px, f
kxq

˘

ď C
`

ρ̂d ` ρ̂d`dη ` ρ̂´τθk
˘

ď | ln ρ|´2A,

provided ρ is sufficiently small.
Now fix any 1 ď k ď B ln | ln ρ|. Denote }f}1 “ maxxPM }Dfpxq}. Assume that x

satisfies dpx, fkxq ď ρ, then for any l we have that

dpf pl´1qk
pxq, f lkxq ď }f}

pl´1qk
1 ρ

If we take L “ r4B ln | ln ρ|{ks ` 1 we find that

dpx, fLkxq ď
ÿ

lďL´1

}f}lk1 ρ ď
?
ρ,

provided ρ is sufficiently small. But kL ě B ln | ln
?
ρ|, hence (4.7) applies and we get

µpx : dpx, fkxq ď ρq ď µpx : dpx, fLkxq ď
?
ρq ď | ln ρ|´A,

proving iq.
We proceed now to the proof of iiq. Define for j, k P N˚

Hj,kpxq :“ µpBpx, 1{2jq X f´kBpx, 1{2jqq.
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Note that
ż

Hj,kpxqdµpxq “

ĳ

1r0,1{2jsdpx, yq1r0,1{2jsdpx, f
kyqdµpxqdµpyq

ď

ĳ

1r0,1{2jsdpx, yq1r0,1{2j´1sdpy, f
kyqdµpxqdµpyq

ď CµpBpx, 1{2jqq

ż

1r0,1{2j´1sdpy, f
kyqdµpyq

where we used that µpBpy, 1{2jqq ď CµpBpx, 1{2jqq for any x, y P M . Part iq then
implies that for sufficiently large j it holds that

ż

Hj,kpxqdµpxq ď µpBpx, 1{2jqqj´A´3.

For such j we get from Markov inequality

µ
`

x : Dk P p0, Kjs : Hj,kpxq ą µpBpx, 1{2jqqj´A
˘

ď Kj´2.

Hence Borel Cantelli Lemma implies that for almost every x there exists j̄ such that
Hj,kpxq ď µpBpx, 1{2jqqj´A for every j ě j̄ and every k P p0, Kjs, which implies iiq.

Finally, paq and pbq clearly follow from iiq and iq respectively. Lemma 4.13 is thus
proved. �

With Lemmas 4.10 and 4.13, the proof of Proposition 4.9 is finished. l

Proof of Theorem 4.4. Theorem 4.4 directly follows from Proposition 4.9 and Corollary
3.8. �

4.3. Generic failure of the MultiLog Law. Proof of Theorem 4.6.

Proof. To prove part a), we first prove that periodic points belong to Hr. By assump-
tion, for any x PM and almost every y,

(4.8) lim sup
nÑ8

| ln d
p1q
n px, yq| ´ 1

d
lnn

ln lnn
“

1

d
.

Since d
prq
n px, yq ě d

p1q
n px, yq, it follows that for any x PM , any r ě 1, and almost every

y

(4.9) lim sup
nÑ8

| ln d
prq
n px, yq| ´ 1

d
lnn

ln lnn
ď

1

d
.

To prove the opposite inequality let

Hm,l,r “

#

x : DY-open, µpYq ą 1´
1

l
: @y P Y ,

| ln d
prq
m px, yq| ´ 1

d
lnm

ln lnm
ą

1

d
´

1

l

+

We have that
#

x : for a.e. y, for all r ě 1 : lim sup
nÑ8

| ln d
prq
n px, yq| ´ 1

d
lnn

ln lnn
ě

1

d

+

“
č

lě1,rě1

ď

mě1

Hm,l,r.
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But Hm,l,r is an open set. Hence we finish if we show that for any fixed r and l,
Ť

mHm,l,r contains the dense set of periodic points.
Let x̄ be a periodic point of period p. Take U to be some small neighbourhood of x̄

and denote by Λ the Lipschitz constant of fp in U .
By (4.8), there exists n ě exp ˝ exppΛ` prq and Y such that µpYq ą 1´ 1

l
, such that

for every y P Y , there exists k P r1, ns satisfying

dpx̄, fkyq ď

ˆ

1

n

˙
1
d
ˆ

1

lnn

˙
1
d
´ 1

2l

.

Then

dpx̄, fk`pjyq “ dpfpjx̄, fk`pjyq ď Λr

ˆ

1

n

˙
1
d
ˆ

1

lnn

˙
1
d
´ 1

2l

, 0 ď j ď r ´ 1.

Hence for y P Y and m “ n` ppr ´ 1q, we have that

dprqm px̄, yq ď Λr

ˆ

1

n

˙
1
d
ˆ

1

lnn

˙
1
d
´ 1

2l

ă

ˆ

1

m

˙
1
d
ˆ

1

lnm

˙
1
d
´ 1
l

,

because we took n ě exp ˝ exppΛ`prq. Hence x̄ P Hm,l,r and the proof of paq is finished.
We now turn to the proof of pbq. Given any function ζ : NÑ N˚, define

Am,l “
 

x : | ln dplqm px, xq| ą mζpmq
(

.

Observe that H̄ζ Ă
Ş

l

Ť

mAm,l. But Am,l is open and
Ť

mAm,l clearly contains the
periodic points. Part pbq is thus proved. �

4.4. The case of flows. Proof of Theorem 4.8. The proof proceeds in the same
way as for diffeomorphisms with minimal modifications that we now explain. First, we
need to modify the targets

Ωx,ρ “ ty : D s P r0, 1s, dpx, φsyq ď ρu,

and

Ω̄ρ “

"

px, yq : D s P r0, 1s, dpx, φsyq ď
ρ

γpxq1{d

*

where γpxq “ lim
ρÑ0

µpΩx,ρq{ρ
d. Consider the targets

Ωn
x,ρ “ φ´nΩx,ρ, Ω̄n

ρ “ tx : px, φnxq P Ω̄ρu

for N˚ and let σpρq “ µpΩρ,xq, σ̄pρq “ pµˆ µqpΩ̄ρq.
To prove a) and b) of Theorem 4.8 we can apply Corollary 3.8 to the smooth system

pφ,M, µ,Bq and to the targets Ωn
x,ρ and Ω̄n

ρ . For this, we just need to see that the
targets are admissible targets. This can be checked as in the proof of Proposition 4.9,
with very minor differences. Let us check for instance that pSubq holds for Ω̄n

ρ . Note

that when x P Ω̄n1
ρ X Ω̄n2

ρ for n1 ă n2, we have some s1, s2 P r0, 1s such that

dpx, φn1`s1xq ď
ρ

pγpxqq1{d
, dpx, φn2`s2xq ď

ρ

pγpxqq1{d
.
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Hence

dpφn1x, φn2`s2´s1xq ď max
sPr´1,0s

}φs}C1dpφn1`s1x, φn2`s2xq

ď max
sPr´1,1s

}φs}C1

2ρ

pγpxqq1{d
ď

aρ

pγpφn1xqq1{d

for some a ą 0. It follows that Ω̄n1
ρ X Ω̄n2

ρ Ă φ´n1Ω̄n2´n1
aρ , which is pSubq. 7 As for the

proofs of pMovq and pMovq, they are obtained as in the case of maps via the notion
of slow recurrence. We say that a point x is slowly recurrent for the flow if for each
A,K ą 0, there Dρ0 such that for all ρ ă ρ0 for all n ď K| ln ρ| we have

µ
`

Ωx,ρ X Ωn
x,ρ

˘

ď µpΩx,ρq| ln ρ|
´A.

Similarly we say that the flow is slowly recurrent if for each A ą 0 Dρ0 such that for
all ρ ă ρ0 for all n P N˚ we have

µ
`

Ω̄n
ρ

˘

ď | ln ρ|´A.

The same proof of Lemma 4.13 then shows that if the system pφ,M, µ,Bq is exponen-
tially mixing, it holds that µ-a.e. point is slowly recurrent for the flow, and that the
flow is slowly recurrent. Properties pMovq and pMovq are immediate consequences.

The proof of part c) and part d) also proceeds in the same way as for maps. Namely
we first see that periodic orbits of the flow belong to Hr and H̄r and then use the
genericity argument. ˝

4.5. Notes. Many authors obtain Logarithm Law (4.1b) for hitting times as a conse-
quence of dynamical Borel-Cantelli Lemmas. See [35, 44, 60, 80] and references wherein.
[61] also studies return times. We note that [61] works under much weaker conditions
than those imposed in the present paper, however, his results are valid only for r “ 1
(the first visit).

[88, 94, 99] study the recurrence problem when the lim sup in (4.1b) is replaced by
lim inf. In particular, [99] proves that for several expanding maps the

lim inf
nÑ8

n d
p1q
n px, yq

ln lnn

exists for almost all y.
Theorem 4.7 shows that some systems may satisfy logarithmic laws for r “ 1 that

are the same as in the exponentially mixing case, but fail to do so for r ě 2. Logarithm
Laws for unipotent flows were obtained in [9, 10, 65, 88]. It is not known which kind
of MultiLog Laws hold for such flows.

7 When s2 ´ s1 ă 0, we modify Ω̄ρ by Ω̃ρ “
!

px, yq : D s P r´1, 1s, dpx, φsyq ď ρ
γpxq1{d

)

and get Ω̄n1
ρ X

Ω̄n2
ρ Ă φ´n1Ω̃n2´n1

aρ , which gives pM2qr by a same argument of Proposition 3.9(ii).
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5. Poisson Law for near returns.

In this section we suppose that µ is a smooth measure and that pf,M, µ,Bq is an r-
fold exponentially mixing system for all r. In the previous section we verified properties
pM1qr and pM2qr for the targets Ωx,ρ given by (4.5), for almost every x, and for the
targets Ω̄ρ given by (4.6). Moreover, we have that lim

ρÑ0
ρ´dσpρq “ γpxq and lim

ρÑ0
ρ´dσ̄pρq “

1, where σpρq “ µpΩρ,xq, σ̄pρq “ pµ ˆ µqpΩ̄ρq. Accordingly Theorem 2.10 gives the
following.

Theorem 5.1. (a) For almost all x the following holds. Let y be uniformly distributed
with respect to µ. The number of visits of tfkpyqukPr1,τρ´ds to Bpx, ρq converges to a

Poisson distribution with parameter τγpxq as ρ Ñ 0. Moreover letting n “ τρ´d we
have the sequence

(5.1)
d
p1q
n px, yq

ρ
,
d
p2q
n px, yq

ρ
, . . . ,

d
prq
n px, yq

ρ
, . . .

converges to the Poisson process with measure γpxqτdtd´1dt.
(b) Let x be chosen uniformly with respect to µ. Then the number of visits of tfkpxqukPr1,τρ´ds

to B

ˆ

x,
ρ

γ1{dpxq

˙

converges to a Poisson distribution with parameter τ as ρÑ 0.

Proof. All the results except for Poisson limit for (5.1) follows from Theorem 2.10. To
prove the Poisson limit for (5.1) we need to check that for each choice of r´1 ă r`1 ă r´2 ă
r`2 ă ¨ ¨ ¨ ă r´s ă r`s the number of times k P r1, τρ´ds where dpx, fkyq P

“

r´j ρ, r
`
j ρ

‰

are
converging to independent Poisson random variables with parameters

γpxq

ż r`j

r´j

τdtd´1dt “ γpxqτ
“

pr`j q
d
´ pr´j q

d
‰

.

But this follows from Theorem 2.11. The latter theorem can be applied since ĆpM1qr
follows from Property (Appr) of the targets

Ωk,i
ρ “ ty : dpx, fkyq P rr´i ρ, r

`
i ρsu

that holds due to Lemma 3.4. �

There are two natural questions dealing with improving this result. In part (a) we
would like to specify more precisely the set of x where the Poisson limit law for hits
holds. In part (b) we would to remove an annoying factor γ1{dpxq from the denominator.
Regarding the first question we have

Conjecture 5.2. If f is exponentially mixing then the conclusion of Proposition 5.1(a)
holds for all non-periodic points.

Regarding the second question we have the following.

Theorem 5.3. Let x be chosen uniformly with respect to µ. Then the number of visits
of tfkpxqukPr1,τρ´ds to Bpx, ρq converges to a mixture of Poisson distributions. Namely,
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for each l

(5.2) lim
ρÑ0

µpCardpn ď τρ´d : dpx, fnxq ď ρq “ lq “

ż

M

e´γpzqτ
pγpzqτql

l!
dµpzq.

In other words to obtain the limiting distribution in Theorem 5.3 we first sample
z P M according to the measure µ and then consider Poisson random variable with
parameter τγpzq.

Corollary 5.4. If f preserves a smooth measure and is r-fold exponentially mixing for
Lipschitz observables for all r ě 2 then

(a) For almost all x we have that if τεpyq is an the first time an orbit of y enters
Bpx, εq then for each t

limµpy : τεpyqε
d
ą tq “ e´γpxqt

(b) If Tεpxq is the first time the orbit of x returns to Bpx, εq then

limµpx : Tεpxqε
d
ą tq “

ż

M

e´γpzqtdµpzq.

Proof. This is a direct consequence of Theorems 5.1(a) and 5.3. For example to get
part (b), take l “ 0 in (5.2). �

Proof of Theorem 5.3. Consider the targets

Ω̂ρpx, yq “ tpx, yq PM ˆM : dpx, yq ď ρu

and let Ω̂k
ρ “ tx : px, fkxq P Ω̂ρu. Note that pM2qr for Ω̄k

ρ implies pM2qr for Ω̂k
ρ. However,

pM1qr is false for targets Ω̂k
ρ. We now argue similarly to the proof of Theorem 3.7 to

obtain that for separated tuples k1, k2, . . . , kr,

(5.3) µ

˜

r
č

j“1

Ω̂kj
ρ

¸

“ ρrd
ż

M

γrpzqdµpzqp1` op1qq.

Namely, note that
ż

1Ω̂ρ
px0, x1q . . . 1Ω̂ρ

px0, xrqdµpx0qdµpx1q . . . dµpxrq

“

ż

µrpBpx0, ρqqdµpx0q “ ρrdp1`Opρqq

ż

M

γrpx0qdµpx0q.

Thus approximating 1Ω̂ρ
by Â˘ρ satisfying pApprq, and applying pEMqr to the functions

B̂`ρ px0, ¨ ¨ ¨ , xrq “ Â`ρ px0, x1q ¨ ¨ ¨ Â
`
ρ px0, xrq,

B̂´ρ px0, ¨ ¨ ¨ , xrq “ Â´ρ px0, x1q ¨ ¨ ¨ Â
´
ρ px0, xrq,

we get that if kj`1 ´ kj ą R| ln ρ| for all 0 ď j ď r ´ 1, then

µ

˜

r
č

j“1

Ω̂kj
ρ

¸

ď µ
´

B̂`ρ px0, f
k1x0, ¨ ¨ ¨ , f

krx0q

¯

ď µ
´

B̂`ρ px0, ¨ ¨ ¨ , xrq
¯

` Cρ´rσθR| ln ρ|

ď
`

ρd ` Cρdp1`ηq
˘r
ż

M

γrpzqdµpzq ` Cρ´rσθR| ln ρ|,
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and, likewise,

µ

˜

r
č

j“1

Ω̂kj
ρ

¸

ě
`

ρd ´ Cρdp1`ηq
˘r
ż

M

γrpzqdµpzq ´ Cρ´rσθR| ln ρ|.

Taking R large we obtain (5.3).
Summing (5.3) over all well separated couples with kj ď τρ´d and using that the

contribution of non-separated couples is negligible due to pM2qr we obtain

lim
ρÑ0

ż

M

ˆ

Nρ,τ,x

r

˙

dµpxq “

ż

M

λrpzq

r!
dµpzq

where
Nρ,τ,x “ Card

 

k ď τρ´d : dpx, fkxq ď ρ
(

.

Since the RHS coincides with factorial moments of the Poisson mixture from (5.2), the
result follows. �

5.1. Notes. Early works on Poisson Limit Theorems for dynamical systems include
[36, 42, 81, 82, 83, 124]. [31, 75, 79, 125] prove Poisson law for visits to balls centered
at a good point for nonuniformly hyperbolic dynamical systems and show that the
set of good points has a full measure. [44] obtains Poisson Limit Theorem for partially
hyperbolic systems. Some of those papers, including [28, 44, 75, 78] show that in various
settings is the hitting time distributions are Poisson for all non-periodic points (cf. our
Conjecture 5.2). The rates of convergence under appropriate mixing conditions are
discussed in [2, 3, 76]. The Poisson limit theorems for flows are obtained in [116, 120].
Convergence on the level of random measures where one records some extra information
about the close encounters, such as for example, the distance of approach is discussed in
[44, 58, 59]. A mixed exponential distribution for a return time for dynamical systems
similar to Corollary 5.4 has been obtained in [38] in a symbolic setting. For more
discussion of the distribution of the entry times to small measure sets we refer the
readers to [37, 87, 129, 143] and references wherein. We also refer to Section 10 for the
related results in the context of extreme value theory.

6. Gibbs measures on the circle: Law of iterated logarithm for
recurrence and hitting times

6.1. Gibbs measures. The goal of this section is to show how absence of the hy-
pothesis of smoothness on the invariant measure µ may also alter the law of multiple
recurrence and hitting times.

For simplicity we consider the case where f is an expanding map of the circle T and
µ is a Gibbs measure with Lipschitz potential g. Adding a constant to g if necessary
we may and will assume in all the sequel that the topological pressure of g is 0, that is

(6.1) P pgq “

ż

gdµ` hµpfq “ 0.

This means (see [131] for background on Gibbs measures) that for each ε ą 0 there
is a constant Kε such that if Bnpx, εq is the Bowen ball

Bnpx, εq “ ty : dpfky, fkxq ď ε for k “ 0, . . . , n´ 1u,
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then

K´1
ε ď

µpBnpx, εqq

exp
“`
řn´1
k“0 gpf

kxq
˘‰ ď Kε.

We denote

(6.2) fu “ ln |f 1|,

λ “ λpµq the Lyapunov exponent of µ

λ “ lim
nÑ8

ln |pfnq1pxq|

n
“

ż

fudµ ą 0,

and by d the dimension of the measure µ

d “ lim
δÑ0

lnµpBpx, δqq

ln δ
.

We know from [110] that the limit exists for µ-a.e. x and

d “ hµpfq{λ “ ´

ş

gdµ
ş

fudµ

where the last step relies on (6.1).
We say that µ is conformal if there is a constant K such that for each x and each

0 ă r ď 1,

K´1
ď
µpBpx, rqq

rd
ď K.

It is known (see e.g. [121]) that µ is conformal if and only if g can be represented in
the form

g “ tfu ´ P ptfuq ` g̃ ´ g̃ ˝ f

for some Hölder function g̃ and t P R.
Denote

(6.3) ψpxq “ gpxq ` dfupxq,

then we have
ş

ψdµ “ 0 under the assumption P pgq “ 0. Define σ “ σpµq by the
relation

(6.4) σ2
“

ż

ψ2dµ` 2
8
ÿ

n“1

ż

ψ pψ ˝ fnq dµ.

The goal of this section is to prove the following

Theorem 6.1. (a) If µ is conformal then Theorems 4.4 and 4.6 remain valid with d
replaced by d.

(b) If µ is not conformal then for µ almost every x and µˆ µ almost every px, yq, it
holds that

lim sup
nÑ8

| ln d
prq
n px, xq| ´ 1

d
lnn

a

2plnnqpln ln lnnq
“

σ

d
?

dλ
,(6.5)

lim sup
nÑ8

| ln d
prq
n px, yq| ´ 1

d
lnn

a

2plnnqpln ln lnnq
“

σ

d
?

dλ
.(6.6)
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6.2. Preliminaries on expanding circle maps and their Gibbs measures. Here
we prepare for the proof of Theorem 6.1 by collecting some facts on expanding maps of
the circle and their Gibbs measures.

We first check multiple mixing for such maps.
Recall we take B “ Lip. Let us denote by } ¨ }Lip the Lipschitz norm

}φ}Lip “

ż

|φ|dµ` sup
x,yPT

|φpxq ´ φpyq|

dpx, yq

for φ P B.

Proposition 6.2. For each Gibbs measure µ, the system pf,T, µ,Bq is r-fold exponen-
tially mixing for any r ě 2.

This fact is well known but for the reader’s convenience we provide the argument in
in §A.2.

In the rest of the argument it will be important that if µ is a Gibbs measure then
there are positive constants a, b such that for all sufficiently small ρ and for all x,

(6.7) ρa ď µpBpx, ρqq ď ρb.

We also need the fact that Gibbs measures are Alhfors regular, that is there is a
constant R such that for each x, ρ we have

(6.8) µ pBpx, 4ρqq ď RµpBpx, ρqq.

We recall the proofs of (6.7) and (6.8) in §B.2.
We also need a lemma on the fluctuations of the local dimension of Gibbs measures

for expanding circle maps.

Lemma 6.3.
(a) σpµq “ 0 if and only if µ is conformal.
(b) If σ ą 0 then for µ almost every x

lim sup
δÑ0

| lnµ pBpx, δqq | ´ d| ln δ|
a

2| ln δ|pln ln | ln δ|q
“

σ
?
λ
, lim inf

δÑ0

| lnµ pBpx, δqq | ´ d| ln δ|
a

2| ln δ|pln ln | ln δ|q
“ ´

σ
?
λ
.

The proof of this lemma is also given in Appendix B.

6.3. The targets. Given x PM, let

Ωx,ρ “ ty : dpx, yq ď ρu, Ω̄ρ “ tpx, yq : dpx, yq ď ρu .

We use the notation Ωk
x,ρ for the event 1Ωx,ρ ˝ f

k. We also recall the notation Ω̄k
ρ “

tx : px, fkxq P Ω̄ρu. In the sequel we will always assume that tρnu is a sequence such
that ρn ą n´u for some u.

We caution the reader that the targets Ω̄ρ are not admissible targets in the non-
conformal case, so we need to use a roundabout approach, different from Section 4, for
proving Theorem 6.1(b).

On the other hand, we will need a modification of the argument of Lemma 4.13
to show that for any Gibbs measure µ and for µ-a.e. x P M , the targets Ωx,ρn are
admissible for pf,M, µ,Bq. The difference with the case of smooth measures, is that
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it does not hold anymore that µpBpy, 1{2jqq ď CµpBpx, 1{2jqq for any x, y P M , while
this was used in the proof of Lemma 4.13.

Lemma 6.4. For any Gibbs measure µ, for µ-a.e. x PM , the targets Ωx,ρn are admis-
sible for pf,M, µ,Bq.

Proof. Due to (6.7) and (6.8), all the properties of admissible targets except for (Mov)
are obtained exactly as in the smooth measure case. To prove (Mov), we modify the
argument of Lemma 4.13 to overcome the fact that it does not hold anymore that
µpBpy, 1{2jqq ď CµpBpx, 1{2jqq for any x, y PM .

In fact we can prove more than (Mov) in this context of expanding circle maps.
Namely we can show that for a.e. x and all k

(6.9) µpBpx, ρq X f´kBpx, ρqq ď µpBpx, ρqq1`η.

We consider two cases.
(I) k ą ε| ln ρ| where ε is sufficiently small (see case (II) for precise bound on ε).

Take A`ρ such that A`ρ “ 1 on Bpx, ρq,
ş

A`ρ dµ ď 2µpBpx, ρqq and }A`ρ }Lip ď Cρ´τ for
some τ “ τpµq. Let ρ̂ “ ρσ where σ is a small constant. Then (A.3) gives

µpBpx, ρq X f´kBpx, ρqq ď

ż

A`ρ̂ pA
`
ρ ˝ f

k
qdµ

ď 4µpBpx, ρqqµpBpx, ρ̂qq ` 2Cθ̄kρ̂´τµpBpx, ρqq ď CµpBpx, ρqq
´

ρσb ` ρε| ln θ̄|ρ´τσ
¯

for some 0 ă θ̄ ă 1. Taking σ small we can make the second term smaller than ρε| ln θ̄|{2

which is enough for pMovq in view of already established pPolyq. Note that no restric-
tions on x are imposed in case (I).

(II) k ď ε| ln ρ|. In this case for a.e. x the intersection Bpx, ρq X f´kBpx, ρq is empty
for small ρ due to the Proposition 6.5 below. �

Proposition 6.5. ([15, Lemma 5]) Let T : X Ñ X be a Lipschitz map with Lipschitz
constant L ą 1 on a compact metric space X. If µ is an ergodic measure with hµpT q ą 0.
Then for almost every x, there exists ρ0pxq ą 0 such that for all ρ ď ρ0pxq, and all
0 ă k ď 1

2L
| ln ρ|, we have T´kB px, ρq XB px, ρq “ H.

The case of composite targets Ω̄ρ is more complicated, except for the conformal case.
In the conformal case, the following Lemma is obtained exactly as in Proposition 4.9

that dealt with the smooth measure case, so we omit its proof.

Lemma 6.6. If µ is conformal, then the targets Ω̄ρn defined by (4.6) are weakly admis-
sible in the sense of Remark 3.10.

6.4. The conformal case.

Proof of Theorem 6.1 (a). We take ρn “ n´1{d ln´s n. Due to Lemmas 6.4 and 6.6, the
targets targets Ωx,ρn are admissible for µ-a.e. x PM and the targets Ω̄ρn are composite
weakly admissible. Consequently, the proof of Theorem 6.1 (a) follows exactly as that
of Theorems 4.4 and 4.6 corresponding to the smooth measure case. �
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6.5. The non conformal case. Proof of Theorem 6.1 (b). The proof of Theorem
6.1 (b) relies on the lim inf in Lemma 6.3(b).

6.5.1. The iterated logarithm law for hitting times : Proof of (6.6) of Theorem 6.1 (b).
For ε ą 0 and c ą 0 arbitrary let

ρn “ ρnpcq “
1

n1{d
exp

´

´c
a

2plnnqpln ln lnnq
¯

.(6.10)

ϑ˘ε pδq “ δd exp

ˆ

p1˘ εq
σ
?
λ

a

2| ln δ| pln ln | ln δ|q

˙

,

ϑ̃˘ε,cpnq “ ϑ˘ε pρnpcqq.

then

ϑ̃˘ε,cpnq “
1

n
exp

ˆˆ

´cd` p1˘ εq
σ
?

dλ
` ηn

˙

a

2 lnnpln ln lnnq

˙

for some ηn Ñ 0 as nÑ 8.
The lim inf in Lemma 6.3, has the following straightforward consequences, for any

ε ą 0 and for µ almost every x:

There exists npxq such that for n ě npxq, we have

(6.11) µ pΩx,ρnq ď ϑ̃`ε,cpnq.

For a subsequence nl Ñ 8 we have

(6.12) µ
`

Ωx,ρnl

˘

ě ϑ̃´ε,cpnlq.

Now it follows that for any r ě 1, Sr “
8
ÿ

k“1

`

2kµpΩx,ρ
2k
q
˘r

is finite if c ą p1 ` εq σ
d
?
dλ

and is infinite if c ă p1´ εq σ
d
?
dλ
. Hence (6.6) follows from Proposition 6.2, Lemma 6.4

and Corollary 3.8 l

6.5.2. The iterated logarithm law for return times: Proof of the upper bound in (6.5).
Now we turn to the proof of

(6.13) lim sup
nÑ8

| ln d
prq
n px, xq| ´ 1

d
lnn

a

2plnnqpln ln lnnq
ď

σ

d
?

dλ
.

Since d
prq
n px, xq ě d

p1q
n px, xq, we only need to show (6.13) for r “ 1.

Denote

rn “
1

n1{d
exp

"

´p1` 2εq
σ

d
?

dλ

a

2plnnqpln ln lnnq

*

.

Let Nk “ 2k. Similarly to Section 2 it is enough to show that for almost all x, for all
sufficiently large k we have that

dpx, fmxq ě rNk for m “ 1, . . . , Nk.

Proposition 6.5 allows us to further restrict the range of m by assuming m ě ε̄ lnNk,
where ε̄ is sufficiently small.
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We say x P T is n´good if µ pBpx, rnqq ď ϑ`prnq. Fix k0 and let

Ak “ tx : x is n´good for n ě Nk but dpx, fmxq ď rNk for some m “ ε̄ lnNk, . . . , Nku.

Let Xk “ txj,ku
lk
j“1 to be a maximal rNk separated set of Nk´good points. Thus if x is

Nk good then there is j such that x P Bpxj,k, rNkq. Therefore if fmx P Bpx, rNkq then
fmx P Bpxj,k, 2rNkq. Fix a large K, for m ď K lnNk, (6.9) is telling us that

µ
`

Bpxj,k, 2rNkq X f
´mBpxj,k, 2rNkq

˘

ď KµpBpxj,k, 2rNkqq
1`η.

while for m ą K lnNk we get by exponential mixing that

µ
`

Bpxj,k, 2rNkq X f
´mBpxj,k, 2rNkq

˘

ď KµpBpxj,k, 2rNkqq
2.

Summing those estimate for we obtain

Nk
ÿ

m“ε̄ lnNk

µ
`

Bpxj,k, 2rNkq X f
´mBpxj,k, 2rNkq

˘

ď KµpBpxj,k, 2rNkqqe
´κ
?
k

for some κ “ κpε̄q ą 0. Since Bpxj,k, rNk{2q are disjoint for different j, by (6.8) we
conclude that

ÿ

j

µ pBpxj,k, 2rNkqq ď R
ÿ

j

µ pBpxj,k, rNk{2qq ď R.

It follows that
µpAkq ď KRe´κ

?
k.

Now the result follows from the classical Borel Cantelli Lemma.

6.5.3. The law of iterated logarithm for return times: Proof of the lower bound in (6.5).
Here we prove that

(6.14) lim sup
nÑ8

| ln d
prq
n px, xq| ´ 1

d
lnn

a

2plnnqpln ln lnnq
ě

σ

d
?

dλ
.

Suppose p to be a fixed point of f. Take the Markov partition Pn of T such that if
Pn P Pn, then fnpBPnq “ p. Denote Pnpxq “ tPn P Pn : x P Pnu, two sequences kjpxq
and njpxq, j P N such that k0pxq “ n0pxq “ 0,

njpxq “ min
 

n ą kj´1pxq
2 : µ pPnpxqq ě ϑ´ε p|Pnpxq|q

(

and

kjpxq “
2

µpPnjpxqq
.

Let
Aj “

 

x : Card
 

kj´1pxq ď k ď kjpxq : fkx P Pnjpxq
(

ě r
(

.

Then

lim sup
nÑ8

| ln d
prq
n px, xq| ´ 1

d
lnn

a

2plnnqpln ln lnnq
ě

σ

d
?

dλ
p1´ 2εq

if x belongs to infinitely many Ajs.
Denote by P p¨|¨q the conditional probability and Fj “ B

`

Pk1 , ¨ ¨ ¨ ,Pkj
˘

be the σ
algebra generated by the itineraries up to the time kj. We will use the following Lévy’s
extension of the Borel-Cantelli Lemma.
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Theorem 6.7. ([140, §12.15]) If
ÿ

j

P pAj`1|Fjq “ 8 a.s. then Aj happen infinitely

many times almost surely.

Hence (6.14) follows from the lemma below.

Lemma 6.8. There exists c˚ ą 0, such that for almost all x there is j0 “ j0pxq such
that P pAj`1|Fjq ě c˚ for all j ě j0.

Proof. For any Ω Ă T, Pk P Pk,

µ
`

fkpΩX Pkq
˘

“
µ
`

fkpΩX Pkq
˘

µ pfkpPkqq
ď C

µpΩX Pkq

µpPkq

by bounded distortion property. Note that

P pAj`1|Fjq pxq “
µ
`

Aj`1 X Pkjpxqpxq
˘

µ
`

Pkjpxqpxq
˘ ě C´1µ

`

fkjpxq
`

Aj`1 X Pkjpxqpxq
˘˘

.

By construction

fkjpxq
`

Aj`1 X Pkjpxqpxq
˘

is the set of points y P T which visit Pnj`1pxq at least r times before time

k̄j`1pxq “ kj`1pxq ´ kjpxq.

By Lemma 6.4 for almost all x the targets Pnj`1
pxq satisfy pM1qr and pM2qr for all r.

Since by construction lim
jÑ8

µpPnjpxqqk̄jpxq “ 2 we can apply Theorem 2.10 to get

P pAj`1|Fjq pxq ě C´1µ
`

fnjpAj`1 X Pnjq
˘

ě C0

8
ÿ

k“r

e´2 2k

k!
:“ c˚.

proving the lemma. �

6.6. Notes. The fact that return times for the non-conformal Gibbs measures are dom-
inated by fluctuations of measures of the balls has been explored in various settings
[24, 25, 32, 38, 77, 85, 119, 127, 137]. In particular, [72] obtains a result similar to
our Lemma 6.3 in the context of symbolic systems. The papers mentioned above deal
with either one dimensional or symbolic systems. In higher dimensions even the leading
term of lnµpBpx, rqq is rather non-trivial and is analyzed in [14], while fluctuations are
determined only for a limited class of systems [111]. Thus extending the results of this
section to higher dimension is an interesting open problem.

7. Geodesic excursions.

7.1. Excursions in finite volume hyperbolic manifolds. Let Q be a finite volume
non-compact pd ` 1q-dimensional manifold of curvature ´1. Let SQ denote the unit
tangent bundle to Q. For pq, vq P SQ, let γptq “ γpq, v, tq be the geodesic such that
γp0q “ q, 9γp0q “ v. We call gt the corresponding geodesic flow, that is gtpγp0q, 9γp0qq “
pγptq, 9γptqq. gt preserves the Liouville measure µ. Fix a reference point O P Q and let
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Dpq, v, tq “ distpO, γptqq. According to Sullivan’s Logarithm Law for excursions [135]
for µ-a.e. pq, vq P SQ, it holds that

(7.1) lim sup
TÑ8

Dpq, v, T q

lnT
“

1

d
.

In fact, the Borel Cantelli Lemma of [135] also shows that

(7.2) lim sup
TÑ8

Dpq, v, T q ´ 1
d

lnT

ln lnT
“

1

d
.

Here we present a multiple excursions version of (7.2). Recall ([17, Proposition D.3.12])

that Q admits a decomposition Q “ K
ď

˜

p
ď

j“1

Cj

¸

where K is a compact set and Cj

are cusps. Moreover each cusp is isometric to Vi ˆ rLj,8q endowed with the metric

ds2
“
dx2 ` dy2

y2
, x P Vj, y P rLj,8q

where Vj is a compact flat manifold and dx is the Euclidean metric on Vj. Cusps are
disjoint, so that a geodesic cannot pass between different cusps without visiting the
thick part K in between. We note that8 for each q0 “ px0, y0q P Ci there is a unique
geodesic (tx “ x0u) which remains in the cusp for all positive time. We will call this
geodesic the escaping geodesic passing through px0, y0q. Let hpq, v, tq “ 0 if γpq, v, tq P K
and hpq, v, tq “ ln yptq if γpq, v, tq “ pxptq, yptqq P Ci. It is easy to see using the triangle
inequality that there exists a constant C such that

|Dpq, v, tq ´ hpq, v, tq| ď C.

A geodesic excursion is a maximal interval I such that γptq belongs to some cusp Ci for
all t P I. Then, hpIq “ max

tPI
hpq, v, tq is called the height of the excursion I. For every

triple pq, v, T q we can order the heights of the excursions that correspond to maximal
excursion intervals included inside p0, T q starting from the highest one

Hp1q
pq, v, T q ě Hp2q

pq, v, T q ě ¨ ¨ ¨ ě Hprq
pq, v, T q . . .

Note that (7.2) is implied by

(7.3) lim sup
TÑ8

Hp1qpq, v, T q ´ 1
d

lnT

ln lnT
“

1

d
.

Here we prove the following multiple excursions version of (7.3).

Theorem 7.1. For a.e. pq, vq and all r we have

lim sup
TÑ8

Hprqpq, v, T q ´ 1
d

lnT

ln lnT
“

1

rd
.

We also have the following byproduct of our analysis.

8We identify hereafter each cusp Cj with Vi ˆ rLj ,8q.
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Corollary 7.2. There is a constant ai such that for each h the following holds. Suppose
that pq, vq is uniformly distributed on SQ. Then the number of excursions in the cusp
Ci which finished before time T and reached the height lnT

d
`h is asymptotically Poisson

with parameter aie
´dh.

In other words, for every r ě 1, we have

(7.4) lim
TÑ8

µ

ˆ

H
prq
i pq, v, T q ă

lnT

d
` h

˙

“

r´1
ÿ

l“0

paie
´dhql

l!
exp

`

´aie
´dh

˘

.

In particular, taking r “ 1 in (7.4) we obtain

Corollary 7.3. (Gumbel distribution for the maximal excursion) If pq, vq is uniformly

distributed on SQ. Let H
p1q
i pq, v, T q denote the maximal height reached by γpq, v, tq up

to time T inside cusp Ci. Then

lim
TÑ8

µ

ˆ

H
p1q
i pq, v, T q ´

lnT

d
ă h

˙

“ exp
`

´aie
´dh

˘

.

7.2. MultiLog law for geodesic excursions. In this section we prove Theorem 7.1.
We first need to discuss the probability of having an excursion reaching a given level.
To this end let Π be the plane passing through γ and the escaping geodesic. In this
plane the geodesics are half circles centered at the absolute ty “ 0u. The half circle
(geodesic) given by px ´ x0q

2 ` y2 “ R2 reaches the maximum height of lnR ` Op1q.
Let n˚ be the first integer moment of time after the beginning of the excursion. Then
the y coordinate of γpn˚q is uniformly bounded from above and below so the radius of

the circle defining the geodesic is given by R “
ypn˚q

sin θ
where θ is the angle with the

escaping geodesic. It follows that the condition R ě R0 is equivalent to the condition

sin θ ď ypn˚q
R0

.

Definition 7.4. Given H we consider the set Ai,H which consists of points pq, vq P Ci
such that

(i) The first positive time t̄pq, vq such that the backward geodesic γpq, v,´t̄q exits the
cusp satisfies t̄pq, vq P r0, 1s;

(ii) The angle v makes with the escaping geodesic at q is less than e´H .

The above discussion implies that for pq, vq P Ci satisfying (i) and (ii), the geodesic
starting at pq, vq will exit the cusp in backward time less than 1 and will do an excursion
in future time up to height h ě H, consuming for this a time comparable to h. Moreover
condition (ii) on the angle is a necessary and sufficient condition for the excursion to
reach height H.

We also introduce

(7.5) AH “
ď

i

Ai,H .

It is a basic fact (e.g. see the proof of Theorem 6 in [135])

(7.6) µpAi,Hq “ aie
´dH

p1` op1qq.
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To prove Theorem 7.1 we define for every k ě 0

(7.7) Ωk
ρ “ g´kA´ ln ρ.

By a slight abuse of notation, we still denote the event 1Ωkρ
by Ωk

ρ. We also keep the

notation σpρq “ µpΩρq.
For s ě 0, we let ρn “ n´1{d ln´s n, and recall that Nn

ρnpq, vq denotes the number of

times k P r1, ns such that Ωk
ρn occurs (i.e. pq, vq P Ωk

ρn).
Theorem 7.1 becomes equivalent to the following:

(a) If s ą 1
rd

, then for µ-a.e. pq, vq, we have that for large n, Nn
ρn ă r.

(b) If s ď 1
rd

, then for µ-a.e. pq, vq, there are infinitely many n such that N
n
2
ρn ě r.9

Observe that by (7.6), we have that

(7.8) µpΩρnq P
“

C´1n´1 ln´sd n,Cn´1 ln´sd n
‰

With the notation Sr “
ř8

j“1 p2
jvjq

r
where vj “ σpρ2jq we see from (7.8) that

Sr “ 8 if and only if s ď 1
rd

. We want thus to apply Corollary 3.8, but first we need
to verify its conditions.

The system pg1, SQ, µ,Bq is r-fold exponentially mixing for every r ě 2 in the sense
of Definition 3.1. Indeed (Prod) an (Gr) are clear, while pEMqr follows from Theorem
1.1 of [19] (see also Theorem 1.2 of [103]) and Remark A.1 and Theorem A.2 of our
appendix.

To apply Corollary 3.8, we also need the admissibility of the targets.

Proposition 7.5. The family of targets tΩρnu is admissible as in Definition 3.2.

Before we prove Proposition 7.5, we first complete the

Proof of Theorem 7.1. From the equivalence stated in paq and pbq above, and since by
Proposition 7.5 the targets tΩρnu are admissible, the lim sup of Theorem 7.1 follows
from Corollary 3.8 and the fact that Sr “ 8 if and only if s ď 1

rd
. �

Proof of Proposition 7.5. First, the definition of ρn and (7.8) imply (Poly). Next, the
first time t̄pq, vq ě 0 such that γpq, v,´tq exits the cusp is Lipschitz in pq, vq. Also, the
angle Ψpq, vq that v makes with the escaping geodesic at q is also a Lipschitz function
of pq, vq. We conclude that (Appr) for the targets tΩρu follows from Lemma 3.4 with
Φpq, vq “ Ψpq, vq, a1pρq “ 0 and a2pρq “ ρ, modulo a very simple modification in the
proof of Lemma 3.4 to account for the benign extra condition that t̄pq, vq P r0, 1s.

It remains to prove (Mov). We denote An
H “ g´nAH . (Mov) is an immediate conse-

quence from the following quasi-independence result on the excursions. Similar quasi-
independence results are obtained in [135, 122], and we will give a proof adapted to our
setting for completeness.

Lemma 7.6. There is a constant K such that for each H ą 0 and each n1 ă n2,

µpAn1
H XAn2

H q ď Kµ pAHq
2 .

9We introduce a factor 1{2 to make sure the last excursion that starts before n{2 finishes before n.
Here, we are using the control on the excursion time that is comparable to the excursions height
lnn ! n{2.
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Up to proving Lemma 7.6, we finished the proof of Proposition 7.5. �

The rest of this section is devoted to the

Proof of Lemma 7.6. Let ÃH “ IAH where I denotes the involution Ipq, vq “ pq,´vq.
Given n1, n̄ define

BH,n1,n̄ “ tx : gn1x P AH , g
n̄x P ÃH , g

nx R K for n1 ă n ă n̄u.

Thus BH,n1,n̄ consists of points which enter a cusp at time n1, reach the height H, and

then exit the cusp at time n̄. We have that An1
H “

ď

n̄ąn1

BH,n1,n̄. Note that n̄´ n1 ě H.

Fix a small δ and let B̃H,n1,n̄ “
Ť

xPBH,n1,n̄
Wu px, δe´n̄q , where Wu px, ρq denotes the

local unstable cube containing x of length ρ. Note that if y P B̃H,n1,n̄ then gn̄1y P AH´1

for some n̄1 P rn1´1, n1`1s and gn̄2y P ÃH´1 for some n̄2 P rn̄´1, n̄`1s. In particular
for each n1 the sets tB̃H,n1,n̄un̄ěn1 have at most 3 intersection multiplicity and hence

(7.9)
ÿ

n̄

µpB̃H,n1,n̄q ď 3µpAH´1q.

Since B̃H,n1,n̄ XAn2
H “ H if n̄ ě n2, we have for n2 ą n1

(7.10) µpAn1
H XAn2

H q ď
ÿ

n1ăn̄ăn2

µ
´

B̃H,n1,n̄ XAn2
H

¯

.

We claim that for some constant C ě 1 for each n1 ă n̄ ă n2

(7.11) µ pBH,n1,n̄ XAn2
H q ď CµpB̃H,n1,n̄qµpAHq.

Now, (7.6), (7.9), (7.10) and (7.11), imply the estimate of Lemma 7.6.
It remains to establish (7.11). To this end, fix a large H̄ and partition a small

neighborhood U of ÃH̄ into unstable cubes of size δ (these are nice unstable cubes
around points that are close to the compact region K). For H ě H̄, let

B̂H,n1,n̄ “
ď

xPBH,n1,n̄

Wu
pgn̄x, δq

where Wupy, δq is the element of the above partition containing y. Note that

(7.12) BH,n1,n̄ Ă g´n̄B̂H,n1,n̄ Ă B̃H,n1,n̄.

Thus

µ pBH,n1,n̄ XAn2
H q ď µ

´

g´n̄B̂H,n1,n̄ XAn2
H

¯

“ µ
´

B̂H,n1,n̄ XAn˚

H

¯

where n˚ “ n2 ´ n̄ ą 0. We thus finish if we show that

(7.13) µ
´

B̂H,n1,n̄ XAn˚

H

¯

ď CµpB̂H,n1,n̄qµpAHq.

Indeed (7.12) and (7.13) imply (7.11). By construction, B̂H,n1,n̄ is partitioned into nice
unstable cubes of size δ. It suffices to show that for any such cube W we have

(7.14) µpAn˚

H |Wq ď Ce´dH
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where µp¨|¨q denotes the conditional expectation. Let Q “
ď

xPW

ď

|t|ăδ

Ws
pgtx, δq, where

Ws py, δq denotes the local stable leaf containing y of length δ. Note that if δ is suf-
ficiently small then due to the local product structure, for each point y P Q there is
unique x P W and t P r´δ, δs such that y P Wspgtx, δq. In addition if gn

˚

x P AH then
gn
˚

y P AH´1. Since the measure of Q is bounded from below uniformly in W Ă U , it
follows that

µpAn˚

H |Wq ď µpAn˚

H´1|Qq “
µpAn˚

H´1 XQq

µpQq
ď c̄µpAH´1q ď ĉe´dH .

This establishes (7.14) and, hence (7.13) completing the proof of Lemma 7.6. �

7.3. Poisson Law for excursions. Proof of Corollary 7.2. Here we take

ρn :“ n´1{d.

We fix h P R and fix a cusp index i. With the sets Ai,H defined as in Definition 7.4,
consider the targets

Ωk
i,ρn “ g´kAi,´ ln ρn´h.

As in the proof of Theorem 7.1, we have that tΩk
i,ρnu satisfies the assumptions pM1qr

and pM2qr for all r. Moreover, by (7.6)

lim
nÑ8

nµpΩi,ρnq “ aie
´dh.

Therefore Corollary 7.2 follows from Theorem 2.10. l

7.4. Notes. The logarithm law for the highest excursion was proven in [135]. The
extensions for infinite volume hyperbolic manifolds is studied in [134]. Corollary 7.3
for surfaces is obtained in [86] where the authors also consider infinite volume surfaces.
Papers [12, 52] obtain stable laws for geodesic windings on hyperbolic manifolds. Those
papers are relevant since the main contribution to windings comes from long excursions,
so the proofs of stable laws and of the Poisson laws for excursions are closely related,
see e.g. [48, 50]. In case the hyperbolic manifold under consideration is the modular
surface, the length of the n-th geodesic excursion is approximately equal to the size of
the n-th convergent of the continued fraction expansion of the geodesic endpoint [70],
therefore the multiple Borel-Cantelli Lemma in that case follows from the results of [1].

Several authors discussed extended Logarithm Law for excursion to other homoge-
neous spaces. Namely, [102] studies partially hyperbolic flows on homogenous spaces
and presents applications to metric number theory, cf. Section 9 of the present paper.
Logarithm Law for unipotent flows is considered in [9, 10, 65, 88]. In the next section
we obtain MultiLog Law for certain diagonal flows on the space of lattices.

8. Recurrence in configuration space.

8.1. The results. In this section we return to the study of compact manifolds, but we
treat targets which have more complicated geometry than the targets from Section 4.
We will see that a richer geometry of targets leads to stronger results.
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Let Q be a compact manifold of a variable negative curvature and dimension d` 1.
Denote SQ for the unitary tangent bundle over Q, π : SQÑ Q the canonical projection,
φ the geodesic flow on SQ preserving the Liouville measure µ.

Fix a small number ρ̄ ą 0. Given a point a P Q and pq, vq P SQ, let tj be consecutive
times where the function t Ñ dpa, πpφtpq, vqqq has a local minima such that dj :“

dpa, πpφtjpq, vqq ď ρ̄. Let d
prq
n pa, pq, vqq be the r-th minima among the numbers tdjutjďn.

Theorem 8.1. (a) For each a P Q and almost every pq, vq P SQ,

lim sup
nÑ8

| ln d
prq
n pa, pq, vqq| ´ 1

d
lnn

ln lnn
“

1

rd
.

(b) For almost every pq, vq P SQ,

lim sup
nÑ8

| ln d
prq
n pq, pq, vqq| ´ 1

d
lnn

ln lnn
“

1

rd
.

Note that in contrast with Section 4 there are no exceptional points for hitting. We
also obtain a Poisson limit theorem. Denote

Bρpaq “ tq P Q : dpa, qq ă ρu,

B̂ρpaq “ tpq, vq P SQ : dpa, qq ă ρ, v P SqQu,

Ωa,ρ “
ď

tPr0,εs

φtB̂ρpaq,

Ω̄ρ “ tppa, uq, pq, vqq P SQˆ SQ : D s P r0, εs, d pa, πpφspq, vqqq ă ρu .

The following fact proven in Appendix C will be helpful in our argument.

Lemma 8.2. The following limits exist and does not dependent on a P Q:

γ “ lim
ρÑ0

µ pΩa,ρq {
`

ερd
˘

.(8.1)

The following will be a byproduct of our analysis and the proof will be given in §8.3.

Corollary 8.3. For each a P Q, for every τ ą 0, for every r ě 1, we have

paq lim
ρÑ0

µ
´

pq, vq P SQ : d
prq

τρ´d
pa, pq, vqq ă ρ

¯

“

r´1
ÿ

l“0

e´τγ
pγτql

l!
,

pbq lim
ρÑ0

µ
´

pq, vq P SQ : d
prq

τρ´d
pq, pq, vqq ă ρ

¯

“

r´1
ÿ

l“0

e´τγ
pγτql

l!
.

8.2. MultiLog Law. Proof of Theorem 8.1. We fix r P N and consider the sys-
tem pf, SQ, µ,Lipq, where f “ φε for a small ε ą 0. We note that it follows from
[112][Theorem 2.4], [44][Theorem 2], Remark A.1 and Theorem A.2 that pf, SQ, µ,Lipq
is r-fold exponentially mixing for every r ě 2 as in Definition 3.1.

For k ‰ 0, we keep the notations Ωk
a,ρ for the event 1Ωa,ρ ˝ f

k, and Ω̄k
ρ for the

event tpq, vq : ppq, vq, fkpq, vqq P Ω̄ρu. We also keep the notation σpρq “ µpΩa,ρq and
σ̄pρq “ pµˆ µqpΩ̄ρq.
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For s ě 0, we let ρn “ n´1{d ln´s n, and recall that Nn
ρn denotes the number of times

k ď n such that Ωk
a,ρn (or Ω̄k

ρn) occurs.
The statement of Theorem 4.4 becomes equivalent to the following :

(a) If s ą 1
rd

, then for µ-a.e. pq, vq, we have that for large n, Nn
ρn ă r.

(b) If s ď 1
rd

, then for µ-a.e. pq, vq, there are infinitely many n such that Nn
ρn ě r.

With the notation Sr “
ř8

j“1 p2
jvjq

r
where vj “ σpρ2jq (in the Ωx,ρn case) or vj “

σ̄pρ2jq (in the Ω̄ρn case), we see from (8.1) that Sr “ 8 if and only if s ď 1
rd

.
Hence Theorem 8.1 follows from Corollary 3.8, provided we establish the following.

Proposition 8.4. (a) For any a P Q, the targets tΩa,ρnu are simple admissible targets
as in Definition 3.2.

(b) The targets tΩ̄ρnu are composite admissible targets as in Definition 3.5.

The rest of this section is devoted to the

Proof of Proposition 8.4. Properties (Prod) and (Gr) are clear. Note that Ωa,ρ is a
sublevel set of a Lipschitz function

hpq, vq “ min
sPr0,εs

dpa, πφspq, vqq

so (Appr) follows as in Lemma 3.4. To prove the first part of Proposition 8.4, it only
remains to check (Mov). That is, we need to prove the following Lemma.

Lemma 8.5. There exists η ą 0 10 and t0 ą 0 such that for any a P Q and ρ sufficiently
small,

(8.2) µpΩa,ρ X φ
´tΩa,ρq ď µpΩa,ρq

1`η,

for all t ą t0.

Recall that SqQ is the unit tangent bundle at the point q.DenoteAεpqq “
ď

sPr0,εs

φsSqQ,

which is an embedded submanifold with boundary in SQ of dimension d` 1.

Lemma 8.6. We let ν be the restriction of µ on Aεpqq. For each a P Q

(8.3) ν
`

Aεpqq X φ
´tΩa,ρ

˘

ď CρηνpAεpqqq.

Lemma 8.5 follows from Lemma 8.6 by integration on q P Bρpaq.
Introduce Σpt, q, εq :“ φtAεpqq. Note that Σpt, q, εq is an embedded submanifold on

SQ of dimension d` 1.
The proof of the following result is given in the Appendix C.

Lemma 8.7 (Geometry of expanded spheres in the configuration space). We have that
π : Σpt, q, εq Ñ Q is a local diffeomorphism. Moreover for the inverse map
dπ´1 : SQÑ SΣpt, q, εq the norm ||dπ´1|| is uniformly bounded.

10In fact, it can be seen from the proof that η can be taken to be d, that is, we have quasiindependence
in Lemma 8.5 µpΩa,ρ X φ

´tΩa,ρq ď CµpΩa,ρq
2
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Proof of Lemma 8.6. By elementary geometry and the bounded distortion property

(8.4) νpAεpqq X φ
´tΩa,ρq ď Cρ´1νpΣpt, q, εq X B̂2ρpaqq.

By Lemma 8.7, ||dπ´1|| is uniformly bounded. Note that πΣpt, a, εq is an annulus
whose boundaries are spheres of radii t and t ` ε respectively. Note those spheres are
perpendicular to the geodesics emanating from q. Since the width of annulus is equal
to ε and does not depend on t, taking a maximal 1-separated set in the sphere of radius
of t ` pε{2q and considering associated Voronoi cells we see that Σpt, q, εq can be cut
into several disjoint piece Σjptq satisfying that for each j, πΣjptq is contained in a ball
of radius ε2 (independent of t and q) and contains a ball of radius ε{2. Decreasing ε2 if
necessary we obtain that the intersection πΣjptq XB2ρpaq has only one component and
since dπ´1 is bounded we get that

νpΣjptq X B̂2ρpaqq ď Cpε1qρ
d`1ν pΣjptqq .

Summing over j in (8.4) we obtain (8.3) which finishes the proof of Lemma 8.6. �

The proof of Proposition 8.4 (a) is thus completed.
Now we turn to the proof of Proposition 8.4 (b). The task is to verify the conditions

pApprq, pMovq and pSubq for the targets Ω̄ρ defined in Section 8.1. The proof of pApprq

and pSubq is obtained from Lemma 3.6 exactly as in the proof of Lemma 4.10 that

treats the case of the composite targets of Section 4.2. It is left to verify pMovq. Take

xi P Q, Bi “ Bpxi, ρq, 1 ď i ď k such that Q “

k
ď

i“1

Bi and k “ Opρ´dq. By (8.2), for

t ą t0

µpΩ̄t
ρq ď

ÿ

i

"

pq, vq P SQ : D s P r0, εs, d
`

q, πpφs`tpq, vqq
˘

ă
ρ

γpqq1{d
, q P Bi

*

ď
ÿ

i

 

pq, vq P SQ : D s P r0, εs, d
`

xi, πpφ
s`t
pq, vqq

˘

ă cρ, q P Bi

(

ď
ÿ

i

µpΩxi,cρq
1`η

ď
ÿ

i

Cρdp1`ηq ď Cρη.

This completes the proof of Proposition 8.4 and finishes the proof of Theorem 8.1. �

πΣjptq Σjptq

Figure 1. Proof of Lemma 8.6
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8.3. Poisson regime. Proof of Corollary 8.3. Part (a) follows from Theorem 2.10,
since conditions pM1qr and pM2qr are satisfied for all r, due to the results of §8.2.

The proof of part (b) follows the same argument as the proof of Theorem 5.3 except
that now pM1qr is satisfied since the RHS of (5.3) takes form ρdλ because λ defined by
(8.1) does not depend on a. l

8.4. Notes. In [117], Maucourant proved that for all a P Q and almost every pq, vq P
SQ

lim sup
tÑ`8

| ln d pa, π pφtpq, vqqq |

ln t
“

1

d
.

[106] generalized Maucourant’s result to study a shrinking target problem for time h
map. The shrinking target problems for sets with complicated geometry is discussed in
[62, 63, 65, 88, 89, 90].

Concerning Poisson Limits we note that visits to sets with complicated geometry
naturally appears in Extreme Value Theory, see Section 10 for details. [141] provided
a general conditions for the number of visits to a small neighborhood of arbitrary
submanifold to be asymptotically Poisson.

9. Multiple Khintchine-Groshev Theorem.

9.1. Statements.

Homogenous approximations. For x P Rd, we use the notation |x| “
a

ř

x2
i .

Definition 9.1 (pr, sq-approximable vectors). Given α “ pα1, . . . , αdq P Rd, s ě 0,
c ą 0, let DNpα, s, cq be the set of k “ pk1, . . . , kdq P Zd such that

|k| ď N and Dm P Z : gcdpk1, . . . , kd,mq “ 1 and |k|d |xk, αy `m| ď
c

lnNpln lnNqs
.

Call α pr, sq-approximable if for any c ą 0, CardpDNpα, s, cqq ě 2r for infinitely many
Ns.

Theorem 9.2. If s ď 1{r then the set of pr, sq-approximable vectors α P Td has full
measure. If s ą 1{r then the set of pr, sq-approximable numbers has zero measure.

Remark 9.3. Observe that an equivalent statement of Theorem 9.2 is to replace 2r
with r in the definition of pr, sq approximable vectors provided we restrict to k P Zd
such that k1 ą 0. This will be the version that we will prove in the sequel.

Inhomogeneous approximations.

Definition 9.4 (pr, sq-approximable couples). Given α “ pα1, . . . , αdq P Rd and z P R,
s ě 0 and c ą 0, let DNpα, z, s, cq be the set of k “ pk1, . . . , kdq P Zd such that

|k| ď N and Dm P Z : |k|d |z ` xk, αy `m| ď
c

lnNpln lnNqs
.

Call the couple pα, zq pr, sq-approximable if for any c ą 0, CardpDNpα, z, s, cqq ě r for
infinitely many Ns.
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Theorem 9.5. If s ď 1{r then the set of pr, sq-approximable couples pα, zq P Rd ˆ R
has full measure. If s ą 1{r then the set of pr, sq-approximable couples pα, zq P Rd ˆ R
has zero measure.

Extensions. One can extend the above results to general Kintchine Groshev 0 ´ 1
laws for Diophantine approximations of linear forms. For example

Definition 9.6 (pr, sq-simultaneously approximable vectors). Given α “ pα1, . . . αdq P
Rd, s ě 0, c ą 0, let DNpα, s, cq be the set of k P Z˚ such that

k ď N and Dm P Zd : gcdpk,m1, . . . ,mdq “ 1

and for all i “ 1, . . . , d, k
1
d |kαi `mi| ď

c

plnNq
1
d pln lnNq

s
d

.

Call α pr, sq-simultaneously approximable if for any c ą 0, CardpDNpα, s, cqq ě r for
infinitely many Ns.

Theorem 9.7. If s ď 1{r then the set of pr, sq-simultaneously approximable vectors
α P Td has full measure. If s ą 1{r then the set of pr, sq-simultaneously approximable
numbers has zero measure.

We omit the proof of Theorem 9.7 since it is obtained by routine modification of the
proof of Theorem 9.2.

9.2. Reduction to a problem on the space of lattices. Let M be the space
of d ` 1 dimensional unimodular lattices. We identify M with SLd`1pRq{SLd`1pZq.
Denote Haar measure on M by µ. Define

Λα “

ˆ

Idd 0
α 1

˙

.

For t P R, we consider gt P SLd`1pRq

gt “

¨

˚

˚

˝

2´t

. . .
2´t

2dt

˛

‹

‹

‚

(9.1)

For a lattice L Ă Md`1, we say that a vector in L is prime if it is not an integer
multiple of another vector in L.

Given a function f on Rd`1 we consider its Siegel transform Spfq : M Ñ R defined
by

(9.2) SpfqpLq “
ÿ

ePL, e prime

fpeq.

For a ą 0, let φa be the indicator of the set11

Ea :“
 

px, yq P Rd
ˆ R | x1 ą 0, |x| P r1, 2s, |x|d|y| P r0, as

(

.

11We added x1 ą 0 in the definition of Ea since we will restrict to vectors k P Zd with k1 ě 0.
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Fix s ě 0, c ą 0. For M P N˚, define

(9.3) ν :“
c

MplnMqs
, Φν :“ Spφνq.

For t ě 0, we then define

AtpMq :“ tα P Td : ΦνpgtΛαq ě 1u

It is readily checked that α P AtpMq if and only if there exists k “ pk1, . . . , kdq with
k1 ě 0, and 2t ă |k| ď 2t`1 such that

(9.4) Dm, gcdpk1, . . . kd,mq “ 1, |k|d|xk, αy `m| ď
c

MplnMqs
.

If α is such that ΦνpgtΛαq ď 1 for every t P N, then we get that α is pr, sq-
approximable if and only if there exists infinitely many M for which there exists
0 ă t1 ă t2 ă . . . ă tr ďM satisfying α P

Şr
j“1AtjpMq.

But in general, for α and t ďM such that α P AtpMq, there may be multiple solutions
k such that 2t ă |k| ď 2t`1 for the same t. Since in Theorem 9.2 we are counting all
solutions we have to deal with this issue.

The following proposition proven in §9.3 shows that for a.e. α, multiple solutions do
not occur.

Proposition 9.8. For almost every α, we have that for every M sufficiently large, for
every t P r0,M s, it holds that ΦνpgtΛαq ď 1

Hence, Theorem 9.2 is equivalent to the following.

Theorem 9.9. If rs ď 1, then for almost every α P Td, there exists infinitely many M
for which there exists 0 ă t1 ă t2 ă . . . ă tr ďM satisfying

α P
r
č

j“1

AtjpMq.

If rs ą 1, then for almost every α P Td, there exists at most finitely many M for
which there exists 0 ă t1 ă t2 ă . . . ă tr ďM satisfying

α P
r
č

j“1

AtjpMq.

9.3. Modifying the initial distribution: homogeneous case. We transformed our
problem into a problem of multiple recurrence of the diagonal action gt when applied
to a piece of horocycle in the direction of Λα : α P Td. But this horocycle is exactly the
full strong unstable direction of the rapidly mixing partially hyperbolic action gt. Due
to the equidistribution of the strong unstable horocycles, it is thus possible and much
more convenient to work with Haar measure on M instead of Haar measure on Λα for
α P Td.

Hence, we define

BtpMq :“ tL PM : ΦνpgtLq ě 1u,
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where we recall that ν :“
c

MplnMqs
, Φν :“ Spφνq, and φν is the indicator of the set

Eν “
 

px, yq P Rd ˆ R | x1 ą 0, |x| P r1, 2s, |x|d|y| P r0, νs
(

.
Our goal becomes to prove the following.

Proposition 9.10. For µ-almost every L PM, we have that for every M sufficiently
large, for every t P r0,M s, it holds that ΦνpgtLq ď 1.

Theorem 9.11. If rs ď 1, then for µ-almost every L PM, there exists infinitely many
M for which there exists 0 ă t1 ă t2 ă . . . ă tr ďM satisfying

L P
r
č

j“1

BtjpMq.

If rs ą 1, then for µ-almost every L PM, there exists at most finitely many M for
which there exists 0 ă t1 ă t2 ă . . . ă tr ďM satisfying

L P
r
č

j“1

BtjpMq.

Proof that Proposition 9.10 and Theorem 9.11 imply Proposition 9.8 and Theorem 9.9.
Recall that for M P N we defined ν “ c

MplnMqs
. Fix η ą 0 and define Φ˘ν as in (9.7)

but with p1` ηqc and p1´ ηqc instead of c. Next, define for β P Rd

Λ´β “

ˆ

Idd β
0 1

˙

,

and for B P SLdpRq we define

DB “

ˆ

B 0
0 1

˙

,

and finally

Λ̃α,β,B “ DBΛ´β Λα.

Fix 0 ă ε ! η. If B is distributed according to a smooth density with respect to
Haar measure on SLdpRq in an ε neighborhood of the Identity, β is distributed in some
ε neighborhood of 0 in Rd with a smooth density according to Haar measure of Td, and
α is distributed according to any measure with smooth density with respect to Haar
measure on Td, then the lattice Λ̃α,β,B is distributed according to a smooth density in M
with respect to the Haar measure µ. Moreover, because Λ´β forms the stable direction
of gt and because DB forms the centralizer of gt, we have that if M is sufficiently large,
then

Φ´ν pgtΛ̃α,β,Bq ě 1 ùñ ΦνpgtΛαq ě 1 ùñ Φ`ν pgtΛ̃α,β,Bq ě 1.

This shows that Proposition 9.8 and Theorem 9.9 follow from Proposition 9.10 and
Theorem 9.11 respectively. l
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9.4. Rogers identities. The following identities (see [114, 139]) play an important
role in our argument. Denote

c1 “ ζpd` 1q´1, c2 “ ζpd` 1q´2, where ζpd` 1q “
8
ÿ

n“1

n´pd`1q

is the Riemann zeta function.
Let f, f1, f2 be piecewise smooth functions with compact support on Rd`1.
Let

F pLq “
ÿ

ePL, prime

fpeq, F̄ pLq “
ÿ

e1‰˘e2PL, prime

f1pe1qf2pe2q.

F is the Siegel transform of f that we denoted Spfq.

Lemma 9.12. We have

paq

ż

M
F pLqdµpLq “ c1

ż

Rd`1

fpxqdx,

pbq

ż

M
F̄ pLqdµpLq “ c2

ż

Rd`1

f1pxqdx

ż

Rd`1

f2pxqdx.

9.5. Multiple solutions on the same scale. Proof of Proposition 9.10. Recall
that ν “ c

M lnMs

Lemma 9.13. There exists a constant C ą 0, such that for every M , for every t P R,
it holds that

µ pΦνpgtLq ą 1q ď Cc2M´2
plnMq´2s.

For K ě 0, apply the lemma for M “ 2K and sum over all t P r0,M s, then

µ
`

Dt ď 2K ,Φ4νpgtLq ą 1
˘

ď 16Cc22´KK´2s.

The straightforward side of Borel Cantelli lemma gives that for almost every L, for K
sufficiently large, for any t ď 2K ,Φ4νpgtLq ď 1. For the same L, it then holds that for
M sufficiently large, for any t ďM , ΦνpgtLq ď 1.

To finish the proof of Proposition 9.10 we give

Proof of Lemma 9.13. Since gt preserves Haar measure on M it suffices to prove the
lemma for t “ 0. But the condition k1 ě 0 implies that

Φ2
νpLq ´ ΦνpLq “

ÿ

e1‰e2PL prime

φνpe1qφνpe2q “
ÿ

e1‰˘e2PL prime

φνpe1qφνpe2q.

It then follows from Rogers identity (b) of Lemma 9.12 that

µ pΦνpLq ą 1q ď E
`

Φ2
νpLq ´ ΦνpLq

˘

ď c2

ˆ
ż

Rd`1

φνpuqdu

˙2

ď Cc2M´2
plnMq´2s. �



52 DMITRY DOLGOPYAT, BASSAM FAYAD, AND SIXU LIU

9.6. Proof of Theorem 9.11.
We want to apply Corollary 3.8. For the system pf,X, µq we take pg1,M, µq, where

µ is the Haar measure on M. For the targets, we take Ωρ “ tL : ΦρpLq ě 1u and
Ωt
ρ “ g´tΩρ. Note that by the invariance of the Haar measure by gt we have that

µpΩt
ρq “ µpΩρq for any t.

For s P N, we define the sequence ρM :“ c
MplnMqs

. The conclusions of Theorem 9.11

will then follow from the conclusion of Corollary 3.8 applied to NM
ρM

, where Nn
ρ is the

number of times t ď n such that Ωt
ρ occurs.

Indeed, if we recall the definition of

Sr “
8
ÿ

j“1

`

2jvj
˘r
, vj “ σpρ2jq, σpρq “ µpΩρq

we see that Sr “ 8 if and only if rs ď 1.
This being said, to be able to apply Corollary 3.8 and finish, we still need to check

the conditions of Definition 3.1 and Definition 3.2 for the system pg1,M, µ,Bq and for
the family of targets given by Ωρ and the sequence ρM . pEMqr follows from Theorem
1.1 of [19], Remark A.1 and Theorem A.2. And the approximation condition (Appr)
can be checked as follows. Indeed we have:

Claim. There exists σ ą 0 such that, for every ρ ą 0 sufficiently small, there exists
A´ρ , A

`
ρ P LippMq such that

(i) }A˘ρ }8 ď 2 and }A˘ρ }Lip ď ρ´σ;
(ii) A´ρ ď 1Ωρ ď A`ρ ;

(iii) µpA`ρ q ´ µpA
´
ρ q ď ρ2

Clearly the claim implies (Appr) since µpΩρq “ Opρq.

Proof of the claim. Recall that Φρ “ Spφρq, where φρ is the indicator of the set Eρ “
 

px, yq P Rd ˆ R | x1 ą 0, |x| P r1, 2s, |x|d|y| P r0, ρs
(

. We will construct A`ρ that satisfies
piq, piiq and piiiq with µpA´ρ q replaced by µp1Ωρq. The construction of A´ρ is similar.

Pick f` P LippRd`1, r0, 2sq such that for some σ ą 0

‚ }f`}Lip ď ρ´σ

‚ For z P Eρ, f
`pzq “ 1

‚ For z R Eρ`ρ10 , f`pzq “ 0.

As the consequence Spf`q P LippMq and Φρ ď Spf`q, and using Rogers identity of
Lemma 9.12(a) (applied to the Siegel transform of the characteristic function of the set
Eρ`ρ10 ´ Eρ) we get for ρ sufficiently small an open set Eρ ĂM such that µpEρq ď ρ3

(P1) For L R Eρ, if Spf`q ą 0, then Φρ ě 1.
pP2q If Mρ :“ tL : Spf`q ă 2u, then }Spf`q}LippMρq ď ρ´σ´1.

Let now u : RÑ r0, 1s be some increasing C8 function such that upxq “ 0 for x ď 0
and upxq “ 1 for x ě 1.

Finally, introduce A`ρ : MÑ R such that for L PM

A`ρ pLq “ u
`

Spf`qpLq
˘
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We now check that A`ρ satisfies the requirements of the claim.
Since u P C8pM, r0, 1sq we get that A`ρ P LippMq and }A`ρ }8 ď 2. To prove the

Lipschitz bound, observe that for L R Mρ we have that A`ρ pLq “ 1, while for L P Mρ

we have pP2q. Hence }A`ρ }Lip ď ρ´2σ. This proves piq of the claim. To see piiq, just
observe that

ΦρpLq ě 1 ùñ Spf`qpLq ě 1 ùñ A`ρ pLq “ 1.

We turn to piiiq. If L R Eρ, then by pP1q

A`ρ pLq ą 0 ùñ Spf`qpLq ą 0 ùñ ΦρpLq ě 1 ùñ A`ρ pLq “ 1.

Since µpEρq ď ρ3 and }A`ρ }8 ď 2, we get that µpA`ρ q ´ µp1Ωρq ď ρ2 and piiiq is proved.
�

Next we show now how Rogers identity of Lemma 9.12(b) implies (Mov). Define

Eτ
ν “

 

px, yq P Rd
ˆ R | x1 ą 0, 2´τ |x| P r1, 2s, |x|d|y| P r0, νs

(

and let φτν be the indicator function of Eτ
ν . Then

µpΩρ X g´τΩρq ď EpΦρΦρ ˝ gτ q “

ż

M

ÿ

e2‰˘e1PL prime

φρpe1qφ
τ
ρpe2qdµpLq,

where the contribution of e2 “ ´e1 vanishes because the contribution of any pair pe1, e2q

where not both e1,1 and e2,1 are positive is zero. Applying Lemma 9.12 (b) we get that

µpΩρ X g´τΩρq ď CµpΩρq
2

which is stronger than the required (Mov).
Finally, the condition (Poly) clearly holds for the sequence ρM “ c

MplnMqs
due to

Lemma 9.12 (a). l

9.7. The argument in the inhomogeneous case. The proof of Theorem 9.5 is very
similar to that of Theorem 9.2, and below we only outline the main differences.

Let ĂM be the space of d` 1 dimensional unimodular affine lattices. We identify ĂM
with SLd`1pRq ˙ Rd`1{SLd`1pZq ˙ Zd`1, where the multiplication rule in SLd`1pRq ˙
Rd`1 is defined as pA, aqpB, bq “ pAB, a ` Abq. We denote by µ̃ the Haar measure on
ĂM.

For α P Rd and z P R, we define

(9.5) Λα,z “ pΛα, p0, . . . , 0, zqq

Given a function f on Rd`1 we consider its Siegel transform Spfq : ĂM Ñ R defined
by

(9.6) S̃pfqpL̃q “
ÿ

ePL̃

fpeq.

Note that, unlike our definition of the Siegel transform in the case of regular lat-
tices, we do not require in this affine setting that the vectors e in the summation be
prime. This is because in this affine setting, when a vector k P Zd contributes to the
Diophantine approximation counting problem there is no reason for the multiples of k
to contribute.
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For a ą 0, let φ̃a be the indicator of the set12

Ẽa :“
 

px, yq P Rd
ˆ R | |x| P r1, 2s, |x|d|y| P r0, as

(

Fix s ě 0, c ą 0. For M P N˚, define

(9.7) ν :“
c

MplnMqs
, Φ̃ν :“ S̃pφνq.

For t ě 0, we then define

ÃtpMq :“ tpα, zq P Rd
ˆ R : Φ̃νpgtΛα,zq ě 1u

It is readily checked that pα, zq P ÃtpMq if and only if there exists k “ pk1, . . . , kdq
such that 2t ă |k| ď 2t`1 and that

Dm, |k|d|z ` xk, αy `m| ď
c

MplnMqs
.

If α is such that Φ̃νpgtΛα,zq ď 1 for every t P N, then we get that pα, zq is pr, sq-
approximable if and only if there exists infinitely many M for which there exists 0 ă

t1 ă t2 ă . . . ă tr ďM satisfying pα, zq P
r
č

j“1

ÃtjpMq.

But in general, for α and t ď M such that pα, zq P ÃtpMq, there may be multiple
solutions k such that 2t ă |k| ď 2t`1 for the same t. As in the case of Theorem 9.2 we
have to deal with this issue.

The following proposition shows that almost surely on pα, zq, multiple solutions do
not occur. Its proof is based on Rogers identity for the second moment of the Siegel
transforms.

Proposition 9.14. For almost every pα, zq P Rd ˆ R, we have that for every M suffi-
ciently large, for every t P r0,M s, it holds that Φ̃νpgtΛα,zq ď 1

Hence, Theorem 9.5 is equivalent to the following.

Theorem 9.15. If rs ď 1, then for almost every pα, zq P TdˆT, there exists infinitely
many M for which there exists 0 ă t1 ă t2 ă . . . ă tr ďM satisfying

α P
r
č

j“1

ÃtjpMq.

If rs ą 1, then for almost every pα, zq P Td ˆ T, there exists at most finitely many
M for which there exists 0 ă t1 ă t2 ă . . . ă tr ďM satisfying

α P
r
č

j“1

ÃtjpMq.

12Note that we do not ask in this affine setting that x1 ą 0 in the definition of Ẽa since the symmetric
contributions of ´k for every k P Zd that contributes to the Diophantine approximation counting
problem in the homogenous case of Theorem 9.2 do not appear in the inhomogeneous Diophantine
approximation problem of Theorem 9.5.
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9.8. Modifying the initial distribution: inhomogeneous case. Since the horo-
cycle directions of Λα,z, pα, zq P Td ˆ T account for all the strong unstable direction

of the diagonal flow gt acting on ĂM, we can transform the requirement of Proposition
9.14 and Theorem 9.15 into a problem of multiple recurrence of the diagonal action gt
when applied to a random lattice in ĂM.

We define
B̃tpMq :“ tL̃ P ĂM : Φ̃νpgtL̃q ě 1u

Our goal becomes to prove the following.

Proposition 9.16. For µ̃-almost every L̃ P ĂM, we have that for every M sufficiently
large, for every t P r0,M s, it holds that Φ̃νpgtL̃q ď 1

Theorem 9.17. If rs ď 1, then for µ̃-almost every L̃ P ĂM, there exists infinitely many
M for which there exists 0 ă t1 ă t2 ă . . . ă tr ďM satisfying

L̃ P
r
č

j“1

B̃tjpMq.

If rs ą 1, then for µ̃-almost every L̃ P ĂM, there exists at most finitely many M for
which there exists 0 ă t1 ă t2 ă . . . ă tr ďM satisfying

L̃ P
r
č

j“1

B̃tjpMq.

9.9. Proofs of Proposition 9.16 and Theorem 9.17. Again, the proofs of Propo-
sition 9.16 and Theorem 9.17 are very similar to the proofs of their counterpart in the
homogeneous case, Proposition 9.10 and Theorem 9.11.

Similarly to the homogeneous case, we want to apply Corollary 3.8. For the system

pf,X, µq we take pg1, ĂM, µ̃q, where µ̃ is the Haar measure on ĂM. For the targets, we
take Ωρ “ tL̃ : Φ̃ρpL̃q ě 1u. Observe that from the invariance of the Haar measure by
gt we have that µ̃pΩt

ρq “ µ̃pΩρq for any t.
The only difference in the proof of Proposition 9.16 and Theorem 9.17 compared to

that of Proposition 9.10 and Theorem 9.11, is in the application of Rogers identities
to prove Proposition 9.16 as well as in the proof of (Mov) that is part of the proof of
Theorem 9.17.

We explain this difference now.
In fact, Rogers identities are slightly simpler in the affine case, where there is no need

to pay a special attention to the multiples of a vector in the affine lattice. Recall (9.6)
Rogers identities for affine lattices (read [114])

EpS̃pfqq “
ż

Rd`1

fpuqdu

EpS̃pfq2q “
ˆ
ż

Rd`1

fpuqdu

˙2

`

ż

Rd`1

f 2
puqdu.

(The idea behind the proof for the second moment identity is that the linear functionals
on the space of continuous functions on Rd`1ˆRd`1 that are SLd`1pRq˙Rd`1 invariant
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can be identified to invariant measures on Rd`1ˆRd`1 by the action of SLd`1pRq˙Rd`1.
But the orbits of the latter action decompose into pairs of independent vectors and pairs
of equal vectors.)

Now for the proof Proposition 9.16, we have that

µ̃
´

Φ̃νpL̃q ą 1
¯

ď E
´

Φ̃2
νpL̃q ´ Φ̃νpL̃q

¯

ď

ˆ
ż

Rd`1

φ̃νpuqdu

˙2

ď Cc2M´2
plnMq´2s

and Proposition 9.16 then follows by a Borel Cantelli argument exactly as in the regular
lattices case.

For the proof of (Mov) in the affine case we write for τ ě 1

Ẽτ
ν “

 

px, yq P Rd
ˆ R | 2´τ |x| P r1, 2s, |x|d|y| P r0, νs

(

and for φ̃τν the indicator function of Ẽτ
ν , observe that

µ̃pΩρ X g´τΩρq ď E
´

Φ̃ρ

´

Φ̃ρ ˝ gτ

¯¯

“

ż

M

ÿ

e2,e1PL̃

φ̃ρpe1qφ̃
τ
ρpe2qdµ̃pL̃q

“

ż

M̃

ÿ

e2‰e1PL̃

φ̃ρpe1qφ̃
τ
ρpe2qdµ̃pL̃q “

ˆ
ż

Rd`1

φ̃ρpuqdu

˙2

ď Cµ̃pΩρq
2

which is stronger than the required (Mov). l

9.10. Multiple recurrence for toral translations.

Proof of Theorem 4.7. Proof of part paq. We begin with several reductions. Let

z “ x´ y. Then dpx, y ` kαq “ dpz, kαq. Accordingly denoting d̂
prq
n pz, αq to be the r-th

smallest among tdpz, kαqun´1
k“0 we need to show that for almost every pz, αq P pTdq2 we

have

(9.8) lim sup
nÑ8

| ln d̂
p1q
n pz, αq| ´ 1

d
lnn

ln lnn
“

1

d
,

(9.9) lim sup
nÑ8

| ln d̂
prq
n pz, αq| ´ 1

d
lnn

ln lnn
“

1

2d
, for r ě 2.

Next we claim that it suffices to prove (9.9) only for r “ 2. Indeed, since d̂
prq
n is non

decreasing in r, (9.9) with r “ 2 implies that for r ą 2,

lim sup
nÑ8

| ln d̂
prq
n pz, αq| ´ 1

d
lnn

ln lnn
ď

1

2d
.

To get the upper bound, suppose that d̂
p2q
n pz, αq ď ε. Then there are 0 ď k1 ă k2 ă n

such that kjα P Bpz, εq. Let k “ k2 ´ k1. Then

k2 ` sα P Bpz, p1` 2sqεq
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for s “ 1, ¨ ¨ ¨ , r ´ 2. Thus d̂
prq
pr´1qnpz, αq ď p2r ´ 1qd̂

p2q
n pz, αq. Taking limit superior, we

obtain that if (9.9) holds for r “ 2 then it holds for arbitrary r. In summary, we only
need to show (9.8) and

(9.10) lim sup
nÑ8

| ln d̂
p2q
n pz, αq| ´ 1

d
lnn

ln lnn
“

1

2d
.

The proofs of (9.8) and (9.10) are similar to but easier than the proof of Theorem
9.5 so we only explain the changes. First, it is suffices to take limit superior, for n of
the form 2M since for 2M´1 ď n ď 2M we have

d̂
prq

2M
pz, αq ď d̂prqn pz, αq ď d̂

prq

2M´1pz, αq.

Let νM “M´s for a suitable s and

(9.11) Êν “ te “ pe
1, e2q P Rd

ˆ R : ||e1|| ď ν, e2 P p0, 1su.

Then a direct inspection shows that

d̂
prq

2M
pz, αq ď νM ô S̃p1ÊνM

qpĝM Λ̂α,zq ě r,

where S̃ is defined by (9.6), ĝM “ g´M{d for g given by (9.1), and Λ̂α,z is defined by

Λ̂α,z “ pΛ̂α, pz, 0qq for

Λ̂α “

ˆ

Idd α
0 1

˙

.

Recall ĂM denoted by the space of d ` 1 dimensional unimodular affine lattices

and µ̃ the Haar measure on ĂM. As in the proof of Theorem 9.5 one can show that
S̃p1ÊνM

qpĝM Λ̂α,zq ě r infinitely often for almost every pz, αq if and only if S̃p1ÊνM
qpĝM L̃q ě

r infinitely often for almost every L̃ P ĂM. Thus we need to show that for almost every

L̃ P ĂM

(9.12) S̃p1ÊνM
qpĝM L̃q ě 1 infinitely often if s ă

1

d
,

(9.13) S̃p1ÊνM
qpĝM L̃q ě 1 finitely often if s ą

1

d
,

(9.14) S̃p1ÊνM
qpĝM L̃q ě 2 infinitely often if s ă

1

2d
,

(9.15) S̃p1ÊνM
qpĝM L̃q ě 2 finitely often if s ą

1

2d
.

To prove (9.12)–(9.15), we need the following fact.

Lemma 9.18. (a) µ̃
´

S̃p1Êν q “ 1
¯

“ cdν
dp1`Opν2dqq,

(b) c1ν2d ď µ̃
´

S̃p1Êν q ě 2
¯

ď c2ν2d.
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Before we give the proof of the lemma, we see how it allows to obtain (9.12)–(9.15)
and finish the proof of part paq of Theorem 4.7.

Indeed, Lemma 9.18 shows that
ÿ

M

µ̃
´

S̃p1ÊνM
q “ 1

¯

“ 8 ðñ s ď
1

d
,

ÿ

M

µ̃
´

S̃p1ÊνM
q ě 2

¯

“ 8 ðñ s ď
1

2d
.

From there, (9.12)–(9.15) follow from the the classical Borel Cantelli Lemma, that

is, from the case r “ 1 in our Theorem 2.4.13 For this, denote Φ̂ν “ S̃p1Êν q, and
observe that the verification of the conditions of Definitions 3.1, and Definition 3.2 for
the targets Ωρ “ tL̃ : Φ̂ρpL̃q ě 1u is very similar to the proof of Theorem 9.5 so we
omit it.

Proof of Lemma 9.18. we get by Rogers

EpΦ̂νq “ cdν
d, EpΦ̂2

ν ´ Φ̂νq “
`

cdν
d
˘2
.

It follows that

µ̃pΦ̂ν ě 2q ď EpΦ̂2
ν ´ Φ̂νq{2 ď Cν2d

proving the upper bound of part (b).
In addition

E
´

Φ̂ν1Φ̂νě2

¯

ď
`

cdν
d
˘2

so that

(9.16) µ̃pΦ̂ν “ 1q “ EpΦ̂νq ´ EpΦ̂ν1Φ̂νě2q “ cdν
d
`O

`

ν2d
˘

.

This proves part (a).
To prove the lower bound in part (b) we need the following estimate. Denote Lprime

the set of prime vectors in L for L PM “ SLd`1pRq{SLd`1pZq. Let

Ē1 “

"

pe1, e2q P Rd
ˆ R : |e1| P

” ν

10
,
ν

5

ı

, |e2| ď
1

10

*

,

Ē2 “

"

pe1, e2q P Rd
ˆ R : |e1| ď

ν

5
, |e2| ď

1

10

*

,

A “
 

L PM : Card
`

Lprime X Ē1

˘

“ Card
`

Lprime X Ē2

˘

“ 1
(

.

Claim.We have

(9.17) µpAq “ cνd.

Assume the claim holds. Denote z̃ “ pz, 0q. For L P A, the fundamental domain of
Rd`1{L can be chosen to contain

Ē3 “

"

pe1, e2q P Rd
ˆ R : |e1| ď

ν

100
, |e2| ď

1

100

*

.

13We note that in case r “ 1 Theorem 2.4 is a minor variation of standard dynamical Borel Cantelli
Lemmas such as e.g., the Borel Cantelli Lemma of [102].
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We thus have

µ
´

pL` z̃q : Card
´

pL` z̃q X Êν
¯

ě 2
¯

ě µ pAqµ
´

Card
´

pL` z̃q X Êν
¯

ě 2|A
¯

ě µpAqµpz P Ē3q ě c1ν2d.

This gives the lower bound in part (b) of Lemma 9.18. To complete the proof, we now
give the

Proof of the claim. We consider the cases d ą 1 and d “ 1 separately.
In case d ą 1, denote Ψj “ S̃p1Ējq for j “ 1, 2. By Rogers identities,

E pΨ1q “
1

10
cdν

d, E
`

Ψ2
1 ´Ψ1

˘

“

ˆ

1

10
cdν

d

˙2

.

Thus arguing as in the proof of (9.16) we conclude that

(9.18) µpΨ1 “ 1q “
1

10
cdν

d
`O

`

ν2d
˘

.

Rogers identities also give

EpΨ1pΨ2 ´Ψ1qq “ O
`

ν2d
˘

.

Hence

(9.19) µ
`

CardpLprime X Ē1q ě 1 and Card
`

Lprime X
`

Ē2zĒ1

˘˘

ě 1
˘

“ O
`

ν2d
˘

.

Combining (9.18) and (9.19) we obtain (9.17) for d ą 1.
In case d “ 1 we still have EpΨ1q “ cν ` Opν2q. On the other hand, for d “ 1 we

have Card
`

Lprime X Ē2

˘

ď 1 since L is unimodular. Thus
EpΨ1q “ µpΨ1 “ 1q “ µpΨ1 “ 1 and Ψ2 ´Ψ1 “ 0q “ cν. �

This completes the proof of Lemma 9.18 and thus of part paq of Theorem 4.7. �

Proof of part pbq. It is clear that for any r, if Ēr is not empty then it is equal to M .
The fact that Ē1 “M implies that Ēr “M for all r is exactly similar to the implication
of (9.9) from (9.10), so we just focus on showing that Ē1 “M . Adapting the beginning
of the proof of part paq to the current homogeneous setting, we see that what we want
to prove boils down to showing that for almost every L PM

Sp1Eνn qpĝnLq ě 1 infinitely often if s ă
1

d
,(9.20)

Sp1Eνn qpĝnLq ě 1 finitely often if s ą
1

d
,(9.21)

where Eνn is as in (9.11), and S designates the Siegel transform as in (9.2). By Rogers
identity, Lemma 9.12(a), we have that E

`

Sp1Eνn q
˘

“ cn´sd, hence (9.20) and (9.21)
follow by classical Borel Cantelli Lemma (see for example the Borel Cantelli Lemma of
[102]) or by the case r “ 1 of our Theorem 2.4 .

This completes the proof of Theorem 4.7. �
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9.11. Notes. A classical Khintchine–Groshev Theorem is given by (1.2)–(1.3). A lot
of interest is devoted to extending this result to α lying in a submanifold of Rd (see e.g.
[13, 18]). The applications of dynamics to Diophantine approximation are based on Dani
correspondence [39]. In particular, [101] discusses Khintchine–Groshev type results on
manifolds using dynamical tools. The use of Siegel transform as a convenient analytic
tool for applying Dani correspondence can be found in [114]. Surveys on applications
of dynamics to metric Diophantine approximations include [16, 20, 47, 53, 54, 66, 98,
104, 115]. Limit Theorems for Siegel transforms are discussed in [8, 11, 22, 48, 49].

10. Extreme values.

10.1. From hitting times to extreme values. Here we describe applications of our
results to extreme value theory.

Let pf,M, µq be as in Definition 3.1. Recall that the sets Gr and H are introduced in
Defenitions 4.3 and 4.5 respectively. Recall also that under the conditions of Theorems
4.4 and 4.6 µpGrq “ 1 and H contains a residual set.

Given a function φ and a point y P M, let φ
prq
n pyq be the r-th minimum among the

values tφpf jyqunj“1.

Theorem 10.1. (a) Suppose f is p2r`1q-fold exponentially mixing preserving a smooth
measure µ. Then

(i) There is a set G of full measure in M such that if φ is a function with a unique
non degenerate minimum at x P G, then for almost every y PM,

lim sup
nÑ8

ˇ

ˇ

ˇ
ln
´

φ
prq
n pyq ´ φpxq

¯
ˇ

ˇ

ˇ
´ 2

d
lnn

ln lnn
“

2

rd
.

(ii) If G1 “ M and the periodic orbits of f are dense, then there is a dense Gδ set
H ĂM , such that if φ is a function with a unique non degenerate minimum at x P H,
then for almost every y PM,

lim sup
nÑ8

ˇ

ˇ

ˇ
ln
´

φ
prq
n pyq ´ φpxq

¯
ˇ

ˇ

ˇ
´ 2

d
lnn

ln lnn
“

2

d
.

(b) If f is an expanding map of T and µ is a non-conformal Gibbs measure of di-
mension d, λ is the Lyapunov exponent of µ, then there is a set Gµ with µpGµq “ 1,
such that if φ is a function with a unique non degenerate minimum at x P Gµ, then for
µ–almost every y PM,

lim sup
nÑ8

ˇ

ˇ

ˇ
ln
´

φ
prq
n pyq ´ φpxq

¯
ˇ

ˇ

ˇ
´ 2

d
lnn

a

2plnnqpln ln lnnq
“

2σ

d
?

dλ
,

where σ given by (6.4).
(c) Part (a) remains valid for the geodesics flow on a compact pd ` 1q´dimensional

manifold Q and functions φ : Q Ñ R which have unique non-degenerate minimum at
some point on Q. (In this case φrpyq is the r-th local minimum of the map t ÞÑ φpqptqq
where pqptq, vptqq is the geodesic starting at q with velocity v.)



MULTIPLE BOREL CANTELLI LEMMA IN DYNAMICS 61

(d) For toral translations we have that for almost all α and almost all y we have

lim sup
nÑ8

ˇ

ˇ

ˇ
ln
´

φ
prq
n pyq ´ φpxq

¯
ˇ

ˇ

ˇ
´ 2

d
lnn

ln lnn
“

#

2
d

if r “ 1,
1
d

if r ě 2.

Proof. At a non-degenerate minimum x we have that for y close to x

(10.1) K´1d2
px, yq ď φpyq ´ φpxq ď Kd2

px, yq

so part piq of (a) holds for x P Gr and part piiq of (a) holds for x P H as defined
in Theorems 4.4 and 4.6. Part (b) follows from Theorem 6.1. Part (c) follows from
Theorem 8.1, and part (d) follows from Theorem 4.7. �

Theorem 10.2. Under the assumptions of Theorem 10.1(a) or Theorem 10.1(d) there
is a set of points x of full measure such that if φ has a non-degenerate minimum at x
then the process

φ
p1q
n pyq ´ φpxq

ρ2
,
φ
p2q
n pyq ´ φpxq

ρ2
, . . . ,

φ
prq
n pyq ´ φpxq

ρ2
, . . .

with n “ rτρ´ds converges as ρ Ñ 0 to the Poisson process on R` with measure

γpφqτ d
2
t
d
2
´1dt, where γpφq ą 0 depends on x and φ.

Proof. Note that (10.1) does not provide enough information to deduce the result from
(5.1) of Theorem 5.1. However, for any choice of r´1 ă r`1 ă r´2 ă r`2 ă ¨ ¨ ¨ ă r´s ă r`s ,
consider the targets

(10.2) Ωn,j
“
 

y : φpyq ´ φpxq P
“

r´j ρ
2, r`j ρ

2
‰(

,

that satisfy

lim
ρÑ0

τρ´dµpΩn,j
q “ τγpφqppr`j q

d
2 ´ pr´j q

d
2 q “ τγpφq

ż r`j

r´j

d

2
t
d
2
´1dt.

Conditions ĆpM1qr and pM2qr from §2.5 can easily be checked for the targets Ωn,j using
the results of Section 3. Since (Mov) for targets (10.2) follows from (Mov) for balls,
only (Appr) needs to be checked but the latter follows immediately from Lemma 3.4.
We can thus apply Theorem 2.11 and conclude the Poisson limit. �

Next, we consider functions of the form

(10.3) ψpyq “
c

dspx, yq
` rψpyq, where c ă 0 and rψ P LippMq.

Theorem 10.3. Let f be p2r ` 1q-fold exponentially mixing. Then
(a) There is a set G or full measure such that if ψ satisfies (10.3) with x P G then for
almost all y

lim sup
nÑ8

ln |ψ
prq
n pyq| ´ s

d
lnn

ln lnn
“

s

rd
.
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(b) There is a Gδ set H such that if ψ satisfies (10.3) with x P H then for almost all y

lim sup
nÑ8

ln |ψ
prq
n pyq| ´ s

d
lnn

ln lnn
“
s

d
.

(c) If x P G then

ρsψ
p1q
n pyq

c
,
ρsψ

p2q
n pyq

c
, . . . ,

ρsψ
prq
n pyq

c
, . . . where n “ τρ´d

converges as ρÑ 0 to the Poisson process on R` with measure dτγpxq
s

t´pd{sq´1dt.

The proofs of the above results is similar to the proofs of Theorem 10.1 and 10.2 so
we will leave them to the readers.

The next result is an immediate consequence of Theorems 10.2 and 10.3(c).

Corollary 10.4. (a) (Fréchet Law for smooth functions) If f is p2r ` 1q-fold
exponentially mixing, φ is a smooth function with non-degenerate minimum at some
x P G then there is σ “ σpxq such that for each t ą 0

lim
nÑ8

µpy : φp1qn pyq ą n´2{dtq “ e´σt
d{2

.

(a) (Weibull Law for unbounded functions) If f is p2r`1q-fold exponentially
mixing, φ is given by (10.3) with x P G then there is σ “ σpxq such that for each t ą 0

lim
nÑ8

µpy : φp1qn pyq ą ´n
´s{dtq “ e´σt

´d{s

.

10.2. Notes. A classical Fisher–Tippett–Gnedenko theorem says that for independent
identically distributed random variables the only possible limit distributions of nor-
malized extremes are the Gumbel distribution the Fréchet distribution, or the Weibull
distribution. Corollaries 7.3 and 10.4(a) and (b) provide typical examples where one can
encounter each of these three types. We refer to [109] for the proof of Fisher–Tippett–
Gnedenko theorem as well as for extensions of this theorem to weakly dependent random
variables. The weak dependence conditions used in the book have a similar sprit to our
conditions (M1) and (M2). More discussions about relations of extreme value theory to
Poisson limit theorems in the context of dynamical systems can be found in [58]. The
book [113] discusses extreme value theory for dynamical systems and lists various appli-
cations. One application of extreme value theory, is that for non-integrable functions,
such as described in Theorem 10.3 above, the growth of ergodic sums are dominated
by extreme values, see [1, 26, 41, 91, 92, 118] and references wherein.

Appendix A. Multiple exponential mixing.

A.1. Basic properties. Let f be a smooth map of a compact manifold M preserving
a smooth probability measure µ. In the dynamical system literature, for r ě 1, f is
called pr ` 1q-fold exponentially mixing if there are constant s, C̄ and θ̄ ă 1 such that
for any Cs functions A0, A1, . . . , Ar for any r tuple k1 ă k2 ă ¨ ¨ ¨ ă kr

(A.1)

ˇ

ˇ

ˇ

ˇ

ˇ

ż r
ź

j“0

`

Aj ˝ f
kj
˘

dµ´
r
ź

j“0

ż

Ajdµ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C̄θ̄m
r
ź

j“0

}Aj}Cs ,
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where m “ min
j
pkj ´ kj´1q with k0 “ 0.

In this paper we need to consider a larger class of functions, namely we need that
there are constants s, C and θ ă 1 such that for any B P CspM r`1q we have
(A.2)
ˇ

ˇ

ˇ

ˇ

ż

Bpx0, f
k1x0, ¨ ¨ ¨ , f

krx0qdµpx0q ´

ż

Bpx0, ¨ ¨ ¨ , xrqdµpx0q ¨ ¨ ¨ dµpxrq

ˇ

ˇ

ˇ

ˇ

ď Csθ̄
m
}B}Cs .

In this section we show equivalence of (A.1) and (A.2). We use the following fact.

Remark A.1. If (A.1) holds for some s then it holds for all s (with different θ̄). The
same applies for (A.2).

Indeed suppose that (A.2) for some Cs functions. Pick some α ă s. We claim that
it also holds for Cα functions. Indeed pick a small ε and approximate a Cα function B
with }B}Cα “ 1 by a Cs function B̄, so that (assuming that m is large)

}B ´ B̄}C0 ď e´εαm, }B̄}Cs ď eεsm.

Then
ż

Bpx0, f
k1x0, ¨ ¨ ¨ , f

krx0qdµpx0q “

ż

B̄px0, f
k1x0, ¨ ¨ ¨ , f

krx0qdµpx0q `O
`

e´εαm
˘

“

ż

B̄px0, x1, . . . xrqdµpx0qdµpx1q . . . dµpxrq `O
`

e´εαm
˘

`O pθmeεsmq

“

ż

Bpx0, x1, . . . xrqdµpx0qdµpx1q . . . dµpxrq `O
`

e´εαm
˘

`O pθmeεsmq .

and the second error term is exponentially small if ε is small enough. The argument
for (A.1) is identical.

We now ready to show that (A.1) implies (A.2).

Theorem A.2. Suppose that (A.1) holds and s is sufficiently large. Then (A.2) holds.

Proof of Theorem A.2. Since B P CspM r`1q it also belongs to Sobolev space HspM r`1q.
Hence we can decompose

B “
ÿ

λ

bλφλ

where φλ are eigenfunctions of Laplacian on M r`1 with eigenvalues λ2 and }φλ}L2 “ 1.
The eigenfunctions φλ are of the form

φλpx0, x1, . . . , xrq “
r
ź

j“0

ψjpxjq

where ∆Mψj “ ζ2
jψj and λ2 “

ř

j ζ
2
j . Recall that by Sobolev Embedding Theorem for

compact manifolds, HspMq Ă Cs´ d
2
´1´εpMq for any ε ą 0. Since }ψj}Hs “ ζsj we have

}ψj}C1 ď Cuζ
u
j ď Cuλ

u if u ą 1`
d

2
.
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It follows from (A.1) that if φ ı 1 then
ˇ

ˇ

ˇ

ˇ

ˇ

ż

φλpx, f
k1x, . . . , fkrxqdµpxq ´

r
ź

j“0

ż

ψjdµ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cλupr`1qθm.

Therefore
ˇ

ˇ

ˇ

ˇ

ż

Bpx, fk1x, . . . , fkrxqdµpxq ´

ż

Bpx0, ¨ ¨ ¨ , xrqdµpx0q ¨ ¨ ¨ dµpxrq

ˇ

ˇ

ˇ

ˇ

ď Cθm
ÿ

λ

bλλ
upr`1q

ď Cθm||B||Hupr`1qpMr`1q.

This proves the result if s ą
`

1` d
2

˘

pr ` 1q. �

A.2. Mixing for Gibbs measures.

Proof of Proposition 6.2. The proof consists of three steps.
Step 1. By the same argument as in [138, Proposition 3.8], we have that for ψ̂1 P

LippTq, ψ̂2 P L
1pµq,

(A.3)

ˇ

ˇ

ˇ

ˇ

ż

ψ̂1pψ̂2 ˝ f
n
qdµ´

ż

ψ̂1dµ

ż

ψ̂2dµ

ˇ

ˇ

ˇ

ˇ

ď C}ψ̂1}Lip}ψ̂2}L1 θ̄n, n ě 0.

Step 2. We proceed to show inductively that for each r ą 0 and ψi P LippTq for
i “ 1, . . . , r,

(A.4)

ˇ

ˇ

ˇ

ˇ

ˇ

ż

˜

r
ź

i“1

ψi ˝ f
ki

¸

dµ´
r
ź

i“1

ż

ψidµ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cθ̄m
r
ź

i“1

||ψi||Lip,

where m “ min
1ďiďr´1

pki`1 ´ kiq, k0 “ 0.

By invariance of µ we may assume that k1 “ 0. Applying (A.3) with ψ̂1 “ ψ1,

ψ̂2 “

r
ź

j“2

ψj ˝ f
kj´k2 we get

ˇ

ˇ

ˇ

ˇ

ˇ

ż

˜

r
ź

i“1

ψi ˝ f
ki

¸

dµ´

ˆ
ż

ψ1dµ

˙

«

ż

˜

r
ź

i“2

ψi ˝ f
ki

¸

dµ

ffˇ

ˇ

ˇ

ˇ

ˇ

ď Cθ̄m}ψ1}Lip

›

›

›

›

›

˜

r
ź

i“2

ψi ˝ f
ki

¸
›

›

›

›

›

L1

ď Cθ̄m
r
ź

i“1

||ψi||Lip.

Applying inductive estimate to

ż

˜

r
ź

i“2

ψi ˝ f
ki

¸

dµ

we obtain (A.4).
Step 3. Applying the same argument as in proof of Theorem A.2 we get pEMqr. �
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A.3. Examples of exponentially mixing systems. There are many results about
double (=2-fold) exponential mixing. Many examples of those systems are partially
hyperbolic. In particular, they expand an invariant foliation W s by unstable manifolds.
The next result allows to promote double mixing to r fold mixing.

Theorem A.3. ([44, Theorem 2]) Suppose that for each subset D in a single unstable
leave of bounded geometry14 and any Hölder probability density ρ on D we have

ˇ

ˇ

ˇ

ˇ

ż

D

Apfnxqρpxqdx´

ż

Adµ

ˇ

ˇ

ˇ

ˇ

ď Cθn}A}Cs}ρ}Cα

for A P Cs. Then f is r-fold exponentially mixing for all r ě 2.

Examples of maps satisfying the conditions of Theorem A.3 include expanding maps,
volume preserving Anosov diffeomorphsims [23, 121], time one maps of contact Anosov
flows [112], mostly contracting systems [27, 43], partially hyperbolic translations on
homogeneous spaces [100], and partially hyperbolic automorphisms of nilmanifolds [67].

We also note the following fact.

Theorem A.4. A product of exponentially mixing maps is exponentially mixing.

The proof of this theorem is very similar to the proof of Theorem A.2 so we leave
it to the reader. We also note that instead of direct products one can also consider
certain skew products (so called generalized T, T´1 transformations) provided that the
skewing function has positive drift. We refer the reader to [45] for more details.

Another source of exponential mixing is spectral gap for transfer operators (cf. §A.2
as well as [121, 138]). This allows to handle non-uniformly hyperbolic systems admitting
Young tower with exponential tails [142] as well as piecewise expanding maps [138].

We note that the maps described in the last paragraph do not fit in the framework of
the present paper due to either lack of smoothness or lack of smooth invariant measure.
It is interesting to extend the result of the paper to cover those systems as well as some
slower mixing system and this is a promising direction for a future work.

Appendix B. Gibbs measures for expanding maps on the circle

B.1. Some notation. Recall that we assume P pgq “ 0, so we have

(B.1) lnµ pBnpx, εqq “
n´1
ÿ

j“0

gpf jxq `Op1q.

Denote

rn “ sup
rą0
tr | Bpx, rq Ă Bnpx, εqu, r̄n “ inf

rą0
tr | Bpx, rq Ą Bnpx, εqu.

By bounded distortion property, there exist constants C0 ą 0 and α ą 0 such that if
dpfny, fnxq ă ε then

pC0 exp εαq´1
ď
|Dfnpyq|

|Dfnpxq|
ď C0 exp εα.

14We refer the reader to [44] for precise requirements on D since those requirements are not essential
for the present discussion.
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Recalling (6.2)

exp

«˜

n´1
ÿ

j“0

fupf
jxq

¸

´ εα

ff

dpx, yq

C0

ď dpfnx, fnyq ď C0 exp

«˜

n´1
ÿ

j“0

fupf
jxq

¸

` εα

ff

dpx, yq.

Hence

εC´1
0 exp

«˜

´

n´1
ÿ

j“0

fupf
jxq

¸

´ εα

ff

ď rn ď r̄n ď εC0 exp

«˜

´

n´1
ÿ

j“0

fupf
jxq

¸

` εα

ff

.

It follows that

(B.2) ln rn “
n´1
ÿ

j“0

´fupf
jxq `Op1q, ln r̄n “

n´1
ÿ

j“0

´fupf
jxq `Op1q.

Next define

Nprq “ max pn : Bpx, rq Ă Bnpx, εqq , N̄prq “ min pn : Bpx, rq Ą Bnpx, εqq .

Then, similarly to (B.2) we obtain

(B.3) ln r “

Nprq´1
ÿ

j“0

´fupf
jxq `Op1q “

N̄prq´1
ÿ

j“0

´fupf
jxq `Op1q.

B.2. Proof of (6.7) and (6.8). Note that

(B.4) µpBN̄prqpx, εqq ď µpBpx, rqq ď µpBNprqpx, εqq.

Since f is uniformly expansing there is a positive constant C such that for each x
1{C ď fupxq ď C. Accordingly

(B.5)
Nprq

C
ď | ln r| ď CNprq,

N̄prq

C
ď | ln r| ď CN̄prq.

On the other hand, since P pgq “ 0, [121, Chapter 3] shows that there is a function a
Hölder function ĝpxq such that ĝ “ g ` h´ h ˝ f for a Hölder function h and moreover

ÿ

fpyq“x

eĝpyq “ 1.

In particular, ĝpyq is negative and, since it is continuous, there are constants Ĉ1 ą ε̂ ą 0

such that for any x P T we have ĝpxq P p´Ĉ1,´ε̂q. Using the estimate

N´1
ÿ

n“0

gpfnxq “
N´1
ÿ

n“0

ĝpfnxq `Op1q

we conclude that for some constant Ĉ2 ą 0 we have for every x P T,

(B.6) ´ Ĉ1N ´ Ĉ2 ď

N´1
ÿ

n“0

gpfnxq ď ´ε̂N ` Ĉ2

Combining (B.1), (B.4), (B.5) and (B.6) we obtain (6.7).
Next (B.3) shows that Np4rq´N̄prq “ Op1q. Now (6.8) follows from (B.1) and (B.4).
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B.3. Proof of Lemma 6.3(b). Observe that (B.1) (B.2) give

lnµ pBnpx, εqq´d ln rn “
n´1
ÿ

j“0

ψpf jxq`Op1q, lnµ pBnpx, εqq´d ln r̄n “
n´1
ÿ

j“0

ψpf jxq`Op1q

where ψ is defined by (6.3).
By Law of Iterated Logarithm [84],

lim sup
nÑ8

řn´1
j“0 ψpf

jxq
?

2n ln lnn
“ σ, lim inf

nÑ8

řn´1
j“0 ψpf

jxq
?

2n ln lnn
“ ´σ.

Since Bpx, rnq Ă Bnpx, εq Ă Bpx, r̄nq

lim sup
nÑ8

| lnµ pBpx, r̄nqq | ´ d| ln r̄n|
?

2n ln lnn
ď σ ď lim sup

nÑ8

| lnµ pBpx, rnqq | ´ d| ln rn|
?

2n ln lnn
.

Using (B.2) again, we conclude that for every sufficiently small δ, there exists npδq and
k independent of δ and npδq such that r̄n`k ď δ ď rn. Then

σ ď lim sup
δÑ0

| lnµpBpx, rnpδqqq| ´ d| ln rnpδq|
a

2npδq ln lnnpδq
ď lim sup

δÑ0

|lnµ pBpx, δqq| ´ d| ln δ|
a

2npδq ln lnnpδq

ď lim sup
δÑ0

| lnµpBpx, r̄npδqqq| ´ d| ln r̄npδq|
a

2npδq ln lnnpδq
ď σ.

It follows that all inequalities above are in fact equalities. In particular,

lim sup
δÑ0

| lnµpBpx, δqq| ´ d| ln δ|
a

2npδq ln lnnpδq
“ σ.

On the other hand by (B.2) and the ergodic theorem we see that for µ-a.e. x P T,

it holds that lim
nÑ8

| ln rn|

n
“ λ. For such x we have lim

nÑ8

| ln rn|pln ln | ln rn|q

n ln lnn
“ λ. Since

rn{C ď δ ď rn we have

lim
δÑ0

d

npδq ln lnnpδq

| ln δ|pln ln | ln δ|q
“

1
?
λ
.

Multiplying the last two displays we obtain for µ-a.e. x P T

lim sup
δÑ0

| lnµpBpx, δqq| ´ d| ln δ|
a

2| ln δ|p| ln ln | ln δ|q
“

σ
?
λ
,

and likewise

lim inf
δÑ0

| lnµpBpx, δqq| ´ d| ln δ|
a

2| ln δ|p| ln ln | ln δ|q
“ ´

σ
?
λ
.

This proves part (b) of Lemma 6.3. l
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B.4. Proof of Lemma 6.3(a). Suppose that σ2 “ 0. Since we also have that
ş

ψdµ “ 0
[121, Proposition 4.12] shows that ψ is a coboundary, that is, there exists a Hölder

function η such that ψpxq “ ηpxq´ηpfxq. Thus
n´1
ÿ

k“0

ψpfkxq “ ηpxq´ηpfnxq is uniformly

bounded with respect to both n and x. Recalling the definition of ψ we see that in this
case

n´1
ÿ

k“0

gpfkxq “ ´

«

d
n´1
ÿ

k“0

fupf
kxq

ff

`Op1q.

Now (B.1) and (B.2) show that µ is conformal. l

Appendix C. Geodesic Flows: Geometry of targets in the
configuration space. Proof of Lemma 8.2 and Lemma 8.7.

C.1. Geometry of spheres. Proof of Lemma 8.7.
Denote γptq “ φtpq, vq. The Jacobi field of γ are defined by the solution of the linear

equation
J2ptq `RpJptq, γ1ptqqγ1ptq “ 0,

where J 1 “ d
dt
J and RpX, Y qZ denotes the curvature tensor, which is equivalent to

pJ iq2ptq `
n
ÿ

j“1

AijptqJ
j
ptq “ 1, i “ 1, . . . , n,

where the matrix Aptq “ pAijptqqi,j“1,...,n is symmetric. Since Q has negative curvature,

the spectrum of Aptq lies between ´K2
1 and ´K2

2 for some K1 and K2.
Recall the following fact (see [Lemma 1.1][107]).

Proposition C.1. The differential

Dφtpvq : TπvQˆ TπvQÑ TπφtpvqQˆ TπφtpvqQ
is given by Dφtpvqpx, yq “ pJptq, J 1ptqq, where Jp0q “ x, J 1p0q “ y.

We are interested in the case

(C.1) Jp0q “ 0, }J 1p0q} “ 1.

Now Lemma 8.7 follows combining Proposition C.1 with Lemma C.2 below.

Lemma C.2. If (C.1) holds then for each t0 there is a constant C ą 0 such that

(C.2) }J 1ptq} ď C}Jptq} for t ą t0.

Proof. Denote Sptq “ xJptq, J 1ptqy, Nptq “ }J 1ptq}2 and |||J |||2 “ }J}2 ` }J 1}2. Then

(C.3)
d

dt
Sptq “ }J 1ptq}2 ` xJptq, J2ptqy “ }J 1ptq}2 ` xJptq,´KptqJptqy ě C1|||J |||

2

for some C1 ą 0. It follows that Sptq ą 0 for t ą 0. Once we know that Sptq is positive

we can also conclude from (C.3) that
d

dt
Sptq ą

C1Sptq

2
, whence

(C.4) Sptq ą SpuqeC1pt´uq{2 for t ą u.
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Next Nptq ě Np0qe´K
2
2 t “ e´K

2
2 t which together with (C.3) gives

(C.5) Sptq ě e´K
2
2 tt for t P r0, 1s.

Combining this with (C.4) we get

(C.6) Sptq ą e´K
2
2eC1pt´1q{2 for t ą 1.

Combining (C.5) and (C.6) with a trivial bound

(C.7) Nptq ď |||Jptq||| ď Np0qeK
2
2 t “ eK

2
2 t

proves (C.2) for small t. To prove this estimate for large t we shall use the fact, proven
in [6, Lecture 6] that J can be decomposed as J “ c`J` ` c´J´, where

maxp|c`|, |c´|q ď C3, |||J´||| ď C4e
´K1t

and

(C.8) J` “ RptqJ 1`ptq

where R is a symmetric matrix with spectrum between K1 and K2. It follows that

(C.9) |||Jptq||| ď c`|||J`ptq||| ` C3C4e
´K1t ď

b

1`K2
2 }c`J`ptq} ` C3C4e

´K1t

On the other hand (C.6) gives a uniform lower bound

(C.10) |||J ||| ě 2e´K
2
2 {2eC1pt´1q{4

Combining (C.9) and (C.10) we obtain

}Jptq} ě }c`J
`
ptq} ´ c´}J

´
ptq} ě

2

1`K2
2

e´K
2
2 {2eC1pt´1q{4

´ 2C3C4e
´K1t

which proves (C.2) for large t. �

C.2. Volume of the targets in the configuration space.

Proof of Lemma 8.2. If pq, vq P B̂ρpaq, denote

Lpq, vq “ L`pq, vq ` L´pq, vq where L˘pq, vq “ suptt : φ˘spq, vq P B̂ρpaq for 0 ď s ď tu.

Then we have the following estimate

µ pΩa,ρq “ ε

˜

ż

B̂ρpaq

1

Lpq, vq
dµ

¸

p1`Opρqq

(see e.g. [34]). Note that µ is of the form dµpq, vq “ dλpqqdσpvq
λpQq where λ is the Riemann

volume on Q and σ is normalized volume on the d dimensional sphere. If ρ is small
then the integral in parenthesis equals to ρdγp1`Opρqq where

(C.11) γ “
1

λpQq

ż

BˆSd

1

Lpx, vq
dxdσpvq

where B is the unit ball in Rd`1 and Lp¨q is defined similarly Lp¨q with geodesics in
Q replaced by geodesics in Rd`1. Specifically, an elementary plane geometry gives
Lpx, vq “

a

1´ r2
min where rmin is the minimal distance between the line x` tv and the



70 DMITRY DOLGOPYAT, BASSAM FAYAD, AND SIXU LIU

origin. Thus rmin “ r sin θ where r is the distance from x to 0, θ is the angle between
v and the segment from x to 0. This proves (8.1) with γ given by (C.11). �
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