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Abstract: Environment viewed from the particle is a powerful method
of analyzing random walks (RW) in random environment (RE). It is well
known that in this setting the environment process is a Markov chain on
the set of environments. We study the fundamental question of existence
of the density of the invariant measure of this Markov chain with respect
to the measure on the set of environments for RW on a strip. We first de-
scribe all positive sub-exponentially growing solutions of the corresponding
invariant density equation in the deterministic setting and then derive nec-
essary and sufficient conditions for the existence of the density when the
environment is ergodic in both the transient and the recurrent regimes. We
also provide applications of our analysis to the question of positive and null
recurrence, the study of the Green functions and to random walks on orbits
of a dynamical system.
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1. Introduction
1.1. Brief historic remarks and motivations

The approach to the study of the asymptotic behaviour of random walks in
random environments (RWRE) known under the name environment viewed from
the particle was initiated by S. Kozlov [21, 22], as well as by Papanicolau-
Varadhan [26]. In the case of the RWRE in Z?, the idea is to move, after each
jump of the particle, the environment and the particle in the direction opposite
to the jump. The particle thus remains at its initial position but does “see” the
same environments it would be seeing while performing the usual random walk.

The corresponding random process is a Markov chain (MC) on the space of
environments. It turns out [22] that if the random environment is stationary
and ergodic with respect to the standard shift and if this MC has an invariant
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measure which is absolutely continuous with respect to the measure on the space
of environments then:

(a) the absolutely continuous measure is unique;

(b) this invariant measure and the measure on the space of environments are
absolutely continuous with respect to each other;

(c) the stationary MC on the set of environments whose initial distribution
is the said invariant measure is ergodic (see [22], [5], or [34] for a more compre-
hensive discussion and proofs of these properties).

The main model we consider in this work is the RWRE on a strip introduced
in [3]. Our main goal is to obtain a complete classification of the solutions to the
invariant density equation and to describe the necessary and sufficient conditions
for the existence of an invariant density of the MC on the space of ergodic ran-
dom environments on the strip in both the transient and the recurrent regimes.
(Here and below we often use the expression “invariant density” instead of “the
density of the invariant measure”.)

In many papers concerned with the study of the RWRE, establishing the
existence of the invariant density has been a crucial (if not the major) part of
the work (see [2, 6, 33, 17, 18, 30, 7, 23, 5, 31, 29, 8] and references therein). As
a fundamental problem of the theory of RWRE, this question is interesting and
important in its own right. But our motivation is also due to two more sources.

One is Sinai’s paper [33] where he considers a random walk on a torus gener-
ated by an irrational shift satisfying certain diophantine conditions. In Section
6 of [33], Sinai lists several open problems. We quote those of them which will
be solved in this paper

“Let T' be a measure preserving automorphism acting on a measure space
(M, M, ) and p < 1 be a positive py-a.e. on M. Consider a Markov chain where
a point x € M jumps to Tx with probability p(x) and to T~ 'z with probability
1—p(z). Problem: does this MC have an invariant measure equivalent to u? We
believe that in the case of T with strong mixing properties like Anosov transitive
diffeomorphisms the answer is negative. Probably this case is connected with
random walks in random environments (see [32]). It would be interesting to
extend the results of this paper to Markov chains where a point can jump from
x to Tz, |i| <ip.”

The first of these questions was, to a large extent, answered by Kaloshin and
Sinai in [17] and [18]. As will be seen in Section 6, our results allow us to answer
a question which includes as a particular case the second of the above questions
and also to complement the results obtained in [17], [18].

The other motivation is due to our paper [11] where we came across the
necessity to control the behavior of the variance of a recurrent RWRE on a strip
in a bounded potential. The only way to do that in the recurrent case that we
are aware of is via constructing the invariant density for the walk on the space
of environments. In [11], this construction was carried out under the assumption
that a particular function of the environment satisfies the homological equation
(see (5.6) below). This prompts a natural question: is (5.6) also necessary? As
will be shown below, the answer is positive.

Let us mention previous results related to our work. The existence of the
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invariant density in the ballistic regime (positive speed of escaping to infinity)
was first proved in [30]. The corresponding formula for the density under the
same conditions was found in [16]. RWRE with bounded jumps on Z were stud-
ied in [7] where the solutions to the invariant density equation for this model
were described. The RW with bounded jumps on Z is a particular case of the
RWRE on a strip and in this sense we recover here the results from [7]. The way
in which the study of the RW on a line is reduced to the study of the RW on a
strip was explained in [3], [4], [15].

1.2. Informal discussion of the main results and of the approach

The precise statements of our main results require some preparation and will be
given later. Here, we discuss them informally. To do that we have to introduce
some notations which will be discussed in detail in section 2.

Let (Q, F,P) be a probability space with Q being the space of environments
and let T" an ergodic automorphism of €2 preserving measure P. The invariant
density equation can be viewed in two ways.

First, it is derived as a functional equation for the density function p : Q —
R™. It has the form

p(w) = p(Tw)Q(Tw) + p(w)R(w) + p(T~'w)P(T " w), (L.1)

where w € Q is an environment, p is a row-vector, P(w), Q(w), R(w) are m x
m matrices with non-negative entries and such that their sum is a stochastic
matrix: (P(w)+Q(w)+ R(w))1 = 1. (Throughout the paper 1 € R™ is a column
vector whose all components are 1.)

Second, for a given w we consider the restriction of p(-) to the points of the
trajectory T™w, —oco < n < oco. Namely, we set

T = p(T"W), (Pn,Qn, Ryn) = (P(T"w), Q(T"w), R(T"w)) (1.2)
and obtain from (1.1) the equation
Tn = 7Tn+1Qn+1 + TRy +mo1 Py, —00 <n < oo. (13)

Since p > 0, we are interested only in non-negative solutions. Next, it is easy
to see (cf. inequality (2.12)) that 7, may grow at most linearly in n. However, our
technique allows us (at no additional cost) to classify sub-exponentially growing
solutions and we shall do exactly that. We call such solutions tempered. The idea
now is to describe all non-negative tempered solutions to (1.3) as functions of the
sequence (P, Qn, R;,) and then to extract from this description the information
required for the control of (1.1). Accordingly, our analysis consists of two parts.

In the first part we view equation (1.3) as deterministic in the sense that we
solve it for a fixed sequence (P,, @, R,). This sequence is supposed to satisfy
ellipticity assumptions (2.6) but the second relation in (1.2) plays no role in the
deterministic analysis. Our deterministic results are as follows.
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e Equation (1.3) admits the first integral ¢ = m, Pyl — 7y p1Qpny11.

This fundamental property of equation (1.3) was not known before. Lemma 4.6
proves this statement and also contains another, more technical definition of
¢. Both definitions play a crucial role in the proofs of our main results. It is
remarkable that the existence of ¢ does not need any positivity assumption on
the solution.

e We describe all non-negative tempered solutions to (1.3) as explicit func-
tions of certain auziliary vectors and matrices which can be efficiently
computed from the sequence (P, Qn, Ry).

Theorem 4.12 is the exact, extended, and quite technical version of this state-
ment.

e Equation (1.3) has at most 8 linearly independent positive solutions.

This statement is not particularly intuitive since under mild non degeneracy
assumptions the space of solutions to (1.3) is 2m-dimensional.

The second, probabilistic part of our analysis is mainly concerned with the
existence of the invariant density. This time the stationarity in the form of the
second relation in (1.2) plays a very important role. We still work with (1.3) -
but with its stationary version. The results for (1.1) follow since p(w) = mo(w).
Under (2.6) and ergodicity of T, the following properties hold with probability
1.

e If a solution to (1.3) is a stationary process then the first integral ¢ con-
sidered as a function of w is a constant (does not depend on w).

e The RW on a strip is transient iff (1.3) has a non-negative tempered sta-
tionary solution with ¢ # 0. This solution is unique and can be normalized
to become the invariant density iff p(w) = mo(w) is integrable.

e The RW is recurrent iff equation (1.3) has a unique non-negative tempered
solution with ¢ = 0. This solution (properly normalized) is the invariant
density iff the related homological equation is solvable.

Remark 1.1. (a) The exact, extended, and more technical versions of these
statements are contained in Lemmas 5.2, 5.3 and Theorems 5.4, 5.5.

(b) Note the contrast with the deterministic case: a tempered non-negative
solution is always unique (up to a multiplication by a positive constant).

(c) A positive solution to (1.3) with ¢ = 0 always exists but it grows expo-
nentially in the transient case.

(d) The results from [33] and [11], which use the solvability of the homological
equation for constructing the invariant density, do now get an important final
touch: in the absence of this condition the invariant density simply does not
exist.

Checking the existence of solutions to the homological equation may not
be a straightforward task. However, this was done for at least two important
cases. Namely, if (P,, Qn, R,) is an i.i.d. sequence then the related homological
equation is equivalent to a certain system of algebraic equations ([4, 11]). And if
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this sequence is generated by a diophantine quasi-periodic shift on a torus then
it can be verified for a smooth enough generating function (as in [1, 33, 11]).

(e) The above results can also be viewed as a new criteria for the recurrence
and transience of the walk. Previously, these were stated in [3] in terms of the
sign of the Lyapunov exponent AT (defined by (3.19)). The two criteria are of
course equivalent since sign(c) = —sign(A") as we shall see later. We note that
the interplay between ¢ and AT is an important part of our analysis.

1.3. Some applications

We turn to a brief discussion of some applications of our main results.

In section 6.1 we provide necessary and sufficient conditions for positive re-
currence of the walk on a strip. This result makes use of the fact that invariant
measure of the walk on a strip (not on environments!) satisfies the deterministic
version of (1.3) and the relevant solution is always the one with ¢ = 0.

In section 6.3 we consider the Green function (GF) at —oo for a RW which
escapes to +oo. By definition, the GF is the limit of the expected number of
visits to a given site when the starting point of the walk tends to —oo. We prove
that this GF is the unique monotone increasing (see Definition 4.7) solution to
(1.3) with ¢ = 1. It plays an important role in the study of the limit theorems
since the sites where it is large serve as traps. The traps for RWRE were studied
in many papers starting from [20]. For the state of art picture in this area
see [9, 10, 14, 27, 28, 34] and references therein. We also note that the Green
function described above plays an important role in the recent work on local
limit theorems for transient RWRE ([2, 11, 24]).

Sections 6.2 and 6.4 deal with application of the random version of (1.3).
In section 6.2 we discuss the generalization of Sinai’s model mentioned above.
Apart of the answer to Sinai’s question, we also explain what happens in the
so called non-symmetric case. In particular, we prove that if 7" is a uniquely
ergodic transformation of a compact metric space then the invariant density
always exists in the non-symmetry case. Note that the ergodic shift on a torus
considered in [33] is a particular case of this class of transformations.

Finally in section 6.4 we show that in the transient case the existence of non-
zero velocity of the walk is equivalent to the existence of the invariant density.
Moreover, we show that the non-zero velocity of the walk is c.

1.4. Organization of the paper

The RW on the strip is defined in section 2.1. In section 2.2 we explain the ex-
act definition of the walk on the space of environments and state the invariant
density equation for this walk in Lemma 2.3 (its derivation is given in Ap-
pendix A). Section 3 contains preparatory results: we recall several definitions
and facts known from previous work and also state a new recurrence criteria for
a RW in the deterministic setting. Exact statements and proofs of the main re-
sults concerned with the deterministic version of the invariant density equation
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are in Section 4. In Section 5 we use these results to derive the necessary and
sufficient conditions for the existence of the invariant density in the transient
and in the recurrent case. In Section 6, we consider some applications of our
main results; the structure and the content of this section has been explained
above. Appendix B gives the proof of the recurrence criterion sated in Theo-
rem 3.5. Apart of being used in the proofs, this criterion is important in its
own right; we prove it in the appendix since it is outside the main topic of the
present paper.

We would like to thank O. Zeitouni for a useful discussion related to the
subject of this paper.

2. The walks on the strip and on the space of environments

2.1. The Model

Let S % 7 x {1,...,m} be a strip and denote by L,, def {(n,7): 1 <i<m} the
nth layer of the strip. The random walks on S with jumps to nearest layers were
introduced in [3]: the walk is allowed to jump from any point (n,:) € L, only

to points in L,,_1, or L,, or L,;1. To describe the corresponding transition

kernel consider a sequence of triples of m X m non-negative matrices, w def
(P, Qny Ri)—co<n<oco, such that for all n € Z the sum P, + Q,, + R, is a
stochastic matrix,

(Phn+Qn+Ryl=1, (2.1)

where 1 is a column vector whose components are all equal to 1. The matrix
elements of P, are denoted P, (i,7), 1 <14, < m, and similar notations are used
for @, and R,. The transition kernel Q(-,-) is now defined as follows:

P,(i,j) if z=(n,i), 21 =(n+1,j),
def ) Rn(i,7) if z=(n,i), 21 = (n,7),

Qn(ZJ) if Z:(nvi), le(n—Lj),
0 otherwise.

(2.2)

For a given w and a starting point z = (n,i) € S we define a random walk
& = (X, Y), t € Ny on S with transition kernel (2.2) in the usual way. Namely,
the law P, . for the Markov chain £ with £ = z is given by

def

Poz (=21, .6 = 2) = Qu(2,21)Qu(21,22) - Qu(ze-1, 2t)- (2.3)

We say that w is the environment on the strip S and the walk £ is the walk in
the environment w.

In this definition, w is a fixed environment and, as mentioned before, some
of our results are deterministic.

In the random setting we suppose that (2, F,P,T) is a dynamical system,
where ) is the space of all the sequences w = ((Pp, Qn, Rpn))22 described

n=—oo
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above, F is the natural o-algebra of subsets of 2, P denotes a probability mea-
sure on (€, F), and T is the shift operator on Q defined by T(P,, @Qn, R,) =
(Pnt1,Qnt1, Rnt1) and preserving the measure P. In this context we say that
w is a random environment on the strip S.

Denote by =, the set of trajectories &, t > 0 starting at z. P,, . is the so called
quenched probability measure on Z,. The semi-direct product P(dw)P,, .(d§) of
P and P, . is defined on the direct product Q2 x =, and is called the annealed
measure. The corresponding expectations are denoted E, E,, ., and E(E,, .(-))
respectively.

Denote by J the following set of triples of m x m matrices:

JEPQR :P>0,Q>0,R>0 and (P+Q+R)1=1}. (24)

Let Jo = Jo(P) C J be the support of the probability distribution of the random
triple (P, @Qn, Ry) defined above (obviously, this support does not depend on

Throughout the paper we shall use the following conventions concerning vec-
tors and matrices. Given a vector x = (z;) and a matrix A = (a(i,j)) we set
| % max; |z;|, which implies ||Al| = sup,, | Az| = max; 7, Ja(i, j)|. We
say that A is strictly positive (and write A > 0) if all its matrix elements sat-
isfy a(i,j) > 0. A is called non-negative (and we write A > 0), if all a(i, j)
are non negative. A similar convention applies to vectors. Note that if A is a
non-negative matrix then [|A|| = [|A1]].

Since 2 = JZ, it can be endowed with a metric (in many ways). We shall make
use of a metric defined as follows. If w’ = {(P},Q.,,R.)}, w"’" = {(P/, Q! R}
set

oy 2 3 PR = P+ QL — Qo + |, — Ry

o1 (2.5)

nez
Below, whenever we say that a function defined on {2 is continuous, we mean
that it is continuous with respect to the topology induce on € by the metric
The assumptions C1 and C2 listed below will be called Condition C.
Condition C
C1 (P,,Qn,R,), —00 < n < 0o, is an ergodic sequence (equivalently, T is an
ergodic transformation of ).

C2 There is an € > 0 and a positive integer number ky < oo such that for any
(P,Q,R) € Jp and all ¢, j € [1,m]

||Rk0|| <1- & ((I - R)ilp)(zaj) > €, ((I - R)ilQ)(laJ) > E. (26)

Remark 2.1. The ellipticity condition (2.6) is sufficient for our purposes. It
can be weakened but then many statements and proofs become more technical
and less transparent which we prefer to avoid. So, C2 is always supposed to be
satisfied by all the environments considered in this paper.

Unlike C2, Condition C1 is needed only when random environments are
considered and in all such cases it is supposed to be satisfied.
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2.2. Environment viewed from the particle and the invariant
density equation

Definition 2.2. The environment viewed from the particle is a random process
(@, Yy) taking values in Q x [1,...,m] and defined by

(@, Yy) = (T™w,Yy), t >0, (2.7)

where X; € Z,Y; € [1,...,m] are the coordinates of the process & = (X, Y;)
defined in Section 2.1

(@t,Yy) is a Markov chain with the phase space 0« [1,...,m] and the
transition kernel

(Kf)(w,i) < 3 Qu((0,4), (ks ) f(THw,5),  (2.8)

ke{-1,0,1},1<j<m

where Q,,(+,) is defined by (2.2) and f is a bounded measurable function on .
Note that our notation emphasizes the dependence of the kernel on w which is
important (as in (2.3)).

We can now explain more precisely the main goal of this work: we want to
establish, in terms of the parameters of the environment, the necessary and
sufficient conditions for the existence of an invariant measure for the Markov
chain (2.7) which is absolutely continuous with respect to the measure P e
P x {m~1} on Q where {m~1} is the uniform distribution on [1,...,m].

So, suppose that the Markov chain (@, Y:) has an absolutely continuous
invariant measure and let p : Q + R be the density function of this measure.
It is convenient to introduce a row vector p = p(w) = (p(w,1),..., p(w,m)),
where the component p(w, ) is the value of the density at (w,1).

Lemma 2.3. A non-negative function p : Q + R is a density function of
the invariant measure of the Markov chain (o, Y:) if and only if the following
conditions are satisfied. For allm € Z

P (@) = Ppi1 (@) Qi1 (W) + P (W) Bn(w) + 1 (@) Pra (W), (2.9)

where
pr(w) = p(T"w) (2.10)

and
E (Z p(w,i)) =m. (2.11)

Remark 2.4. Let us extend the definition of the metric (2.5) to {2 by setting

d((w', i), (W",i")) ef d(w’,w") + |i’ —4"|. Since € is a compact metric space,
the Markov chain (@, Y;) has at least one invariant probability measure which,
however, may be singular with respect to the measure P. For example, in the
transient case absolutely continuous invariant measure exists iff the walk has
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positive speed (see Theorem 6.12 below). On the other hand we will see in
Section 6.3 (cf Remark 6.11) that in the transient case the invariant density
equation (2.9) always admits a stationary solution which, in general, may fail
to be integrable.

Remark 2.5. The invariant measure (not density!) of a Markov chain on the
strip in a fixed environment (not on the space of environments!) also satisfies
equation (2.9) which is a standard textbook statement. In that capacity, this
equation was studied in [3] and played a major role in the proof of [3, Lemma
3] (Lemma 3.4 below; see also the proof of Lemma 4.4).

The situation is very different when p is interpreted as a density. Namely, we
need the stationarity of the environment to derive (2.9) and (2.10). The idea of
the proof of Lemma 2.3 goes back to [22] and yet we prove this lemma because,
first of all, the proof is short; secondly, it makes our work more self-contained;
finally and mainly because it is natural to provide a derivation of an equation
which is the main subject of the work.

Remark 2.6. By (2.10) and (2.11), the sequence p,, must be stationary and
integrable and therefore must satisfy the following standard estimate: for P-a.a.
w there is a constant C'(w) such that for all n

lon (W) < Cw)(In| +1). (2.12)

However, as has already been mentioned in section 1.2, the method we use allows
us to describe a much wider class of solutions to (2.9), namely all tempered
solutions. This will now be done in sections 3, 4, 5.

3. Some preparatory facts and results
3.1. Matrices (pn, An, o, and related quantities

We recall the definitions of several objects most of which were first introduced
and studied in [3], [4], and which will play a crucial role also in this work.

For a given w € 2, define a sequence of m xm stochastic matrices ¢, as follows.
For an integer a, let 1, be a stochastic matrix. For n > a define matrices v,
recurrently:

Up=I—Rp—Qutbp_1) 'Py, n=a+1,a+2, .... (3.1)
It is easy to show ([3]) that matrices 1), are stochastic. Now for a fixed n set

a— — 00

By [3, Theorem 1], the limit (3.2) exists and is independent of the choice of the
sequence ¥,. Moreover, this result implies that the sequence (,, n € Z, can be
defined as the unique sequence of stochastic matrices satisfying the following
infinite system of equations:

Co=I—-Ry—QunCr1)'P,, nel. (3.3)
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The following notation will be useful for the future references:

Yn (I = Ry = QuGnr) ™" (3.4)

Next, define probability row-vectors y, = yn(w) = (yn(w, 1), ..., yn(w, m)) by

Yn déf aEI—noo gaCa s Cnfla (35)
where g, is any sequence of probability row-vectors (that is g, > 0and Y ;" | 7,(i) =
1). By [15, Lemma 1], this limit exists and does not depend on the choice of
the sequence g,. This fact implies that y,, is the unique sequence of probability
vectors satisfying the infinite system of equations

Yn = yn—ICn—h n € Z. (36)
Set
an = Qnt1Vn, A, = V@ (3.7)

Two more sequences of vectors, v, and [,,, are defined as follows. By [4, Theorem
4], for any sequence of (column) vectors 0, > 0, 0, # 0, the following limit exists
and does not depend on the sequence ,:

li AnAn—l oo Aa+11~)a
im —.
a——0o ||AnAn—1 ... Aat1Ual|

(3.8)

Un =
Similarly, for any sequence of row-vectors I, >0 satisfying looa_1 # 0, the
following limit exists and does not depend on the choice of the sequence I,:

def laaaflaa72 <. Qp

[ TP (3.9)
70N g 102 - . . Oty
Set .
An = [[Anvn_1]] and Ay, = ||[lpp1 0| (3.10)
then obviously R
lnt1an = Apln,  Apvp_1 = Ao, (3.11)

and for any n > k we have
|AnAp_1 . Agve 1]l = An o Ak lns10m@n_1 . onl| = An oo Ak (3.12)

Remark 3.1. It should be emphasized that the proofs provided in [3], [4] of the
existence of the limits (3.2) and (3.8) are in fact working for all (and not just
almost all) sequences w satisfying (2.6). In particular, (3.8) is a deterministic
statement which follows from two facts:

|An|l < Const and A, (i,7) > e forall 1 <i,j7 <m, (3.13)

where ¢ is the same as in (2.6) and the Const depends only on m and ¢. For the
proof of these inequalities see [4, Lemmas 1 — 4]).
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Next, we define

(W) =¢o(w), Aw)=Ao(w), aw)=ao(w),

v(w) =), lw)=lw) Aw)=Xw), Aw)=X(w)
then

(hn=C(T"w), A,=AT"w), «a,=a(T"w),

o (3.15)
vp =0(T"w), L, =UT"w), I =AXT"w), M\, =NT"w).

Moreover, the functions ¢(+), v(+), I(-) are continuous in w. The continuity of all
other functions is implied by the continuity of ¢, v, and [. In fact, a stronger
result was proved in [11]: the above functions are Holder continuous with respect
to the metric d defined by (2.5). This regularity plays important role in our
analysis.

Remark 3.2. The case m = 1 corresponds to the RW on Z with jumps to
the nearest neighbours and the above formulae become very simple. Namely,

, dn+1
Un=Gu=L v =Ly =1, Ay = Ay = 22, @, = Ay = 2252 et
n Pn

3.2. Matrices ¢, A, , o, and related quantities

In the above considerations, matrices P, and ,, play asymmetric roles and it
turns out to be useful to ‘symmetrize’ the situation. Namely, let us introduce
stochastic matrices (;, as the unique sequence of stochastic matrices satisfying
the system of equations which is symmetric to (3.3):

Co =V @n, —00 <n < +00, (3.16)
where
PY'; = (I - Rn - Pn 7?+1)_1~ (317)
Next we set ot
A, S 9, Pay oy =Paiay, . (3.18)

All other related objects are introduced similarly.

Matrices ¢, o, , A;,, etc have properties which are similar to those of ma-
trices Cpn, an, A, ete listed above. All these objects will be used below without
further explanations.

3.3. Lyapunov exponents and the recurrence and transience criteria
revisited

The top Lyapunov exponent of the products of matrices A,, and of matrices A,
are defined respectively by

e 1 S 1
AT Y lim —log||[4pAn 1... Ay and AT Y lim —
n—oo N

n——oo |n|

log ||A; Ay - A |-
(3.19)
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It follows from (3.12) that

AT =E(log || Agvr_1]]) = E(log ). (3.20)

Next, note that
ApnQpn_—1...001 = Qn+1AnAn,1 PN A2’71 (321)

and therefore
n .1 . _ . 1 _ _
AT = lim ~log|lan...cq| andsimilarly A7 = lim —log ||, ...a ||
n—o0o N, n— —oo n|

(3.22)

Remark 3.3. Formulae (3.20) and (3.22) are due to the following observation.
The ellipticity condition (2.6) together with (3.21) imply that there exists a
constant K such that for each n € N the ratio of any two among the expressions
(i) — (iv) below is between 1/K and K

(@) | An .- Aoll, () llam ... aoll, (i) T[T M (o) J] Mo
k=0 k=0

This equivalence will play an important role throughout the paper.
A very important symmetry property of Lyapunov exponents was proved in
3]:
Lemma 3.4. [3, Lemma 3/
AT+ =0. (3.23)

We need the following deterministic(!) recurrence criterion which we prove
in Appendix B.

Theorem 3.5. Suppose that an environment w = {(Ppn, Qn, Rn)}nez satisfies
(2.6) then:
(a) P (Xy — +00 as t = +00) > 0 iff

> An Ay < o (3.24)
n=1

(b) Po (X = —00 ast — +00) >0 iff > [|AZ,..A; || <oo.

n=0
For stationary ergodic environment we recover the following result from [3].

Theorem 3.6 ([3], Theorem 2.). Suppose that Condition C is satisfied. Then
for P-almost all w the following holds:

RW is recurrent, that is P, ,(liminf, , X; = —o0 and limsup,_, X; = 00) =
L iff AT =0

RW is transient to the right, that is P, .(Xy — 400 as t — 00) = 1, iff AT <0,
RW is transient to the left, that is P, (Xt = —o00 ast — o00) =1, iff AT > 0.
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Indeed, if AT < 0 then the terms of the first series in Theorem 3.5 decay
exponentially and the terms of the second series grow exponentially. Hence X; —
+00 with probability 1. Likewise, if AT > 0 then X, — —oo with probability 1.
Finally if AT = 0 then the terms of either series do not tend to 0 due to [19].

4. The deterministic analysis of the invariant measure equation

As has been mentioned above, we start with the deterministic environment.
Namely, consider the equation

Tn :7Tn+1Qn+1+7Tan+7Tn,1Pn,1, —00 < n < 00, (41)

where the sequence (P, @, R,) is fixed.

We have changed the notation p,, in (2.9) to 7, in (4.1) in order to distin-
guish the properties of the deterministic solutions to (4.1) from those where the
dependence on w is important. We need the following

Definition 4.1. A solution 7, is tempered if limj, | lnl‘;\n” =0.

To an extent, equations (4.1) were analyzed in [3, section 3] and the deter-
ministic result of Lemma 4.4 below, though not stated explicitly in [3], is hidden
inside the proof of Lemma 3 from this work. We shall prove some parts of Lemma
4.4 and hint on how to do the rest. This makes our paper more self-contained
and the parts we prove are useful for what follows.

Lemma 4.2. If w satisfies (2.6) and m, is a sequence of vectors such that for
all n, T, = Tpy10n (or for all n, T4 = T, ) then m, solves (4.1).

Remark 4.3. Condition (2.6) is not used in the proof of this (and the next)
lemma in any explicit way. However, it is needed to ensure the existence of the
matrices «,, and their properties on which the proof depends.

Proof. Tt follows from (3.3) and (3.7) that

anPn = Qn-{-l’ynpn = Qn—&-lgn (42)
and hence
A = Qni1Yn- (4.3)
Let us now substitute m, = w41, and 7,1 = Tp410m0,—1 into (4.1). We get
7Tn+1Qn+1 + Ry + 1 P

= 7Tn+l(Qn+1 + aan + anan—lpn—l) = Tpn+4+10p = T,

where we use Q11 + anRy + @nan_1P,—1 = ay, which is equivalent to (4.3).
Similarly, if 7,1 = T, ; then the sequence of vectors 7, solves (4.1). O

Lemma 4.4. If w satisfies (2.6) then equations (4.1) have a unique positive
solution which has the following properties:
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(i) [Imoll =1
(i) for all n one has
Tn = Tnt1Qn, Tnil = Tnlp - (4.4)

Proof. Step 1. Let us show that non-negative solutions satisfying (4.4) exist and
are unique. Obviously, we need to do that only for one of these relations, say

Tp = Tpt10p. Set
ln ;
= 4 Ty 020, (4.5)
lpa_1...ap, ifm <O,

where [,, is defined in (3.9). Note that then 7wy = Iy and for n > 0 we have

ln-l—lan _ S‘"Z" _ L =T
Hln+1ananfl~~~aOH )\n)\n—l AO ||lnan71 ~~040|| "

Tin4+1Qn =

where the above equalities follow from (3.11) and (3.12). In the case n < 0, the
relation (4.4) for m, is straightforward.

Step 2. The proof of uniqueness of m,. Note first that the =, defined in
(4.5) is collinear to [,,. Indeed, if n > 0 then this is obvious and if n < 0 then
loo—1...an = A_1... Al by (3.11). Hence I,, = 7, /||7n |-

Suppose now that 7, is another sequence of positive vectors such that 7, =
Tnt10y, for all n € Z and ||7g|| = 1. Then 7, = Taaq_1 . . . o, for any a > n and

hence
= /Hﬁ' || _ ﬁ'aaa_l...an
T |Faa_1 ... anll’

According to (3.9), the limit of the right hand side of this equality as a — oo is

l,. Hence 7, /||7n || = ln. But then 7, = m,.
Similar argument applied to matrices o, proves the existence and uniqueness
of a non-negative sequence 7,; such that H7T0_ H =land m, =7, .

Step 3. To finish the proof of Lemma 4.4, it remains to check that m, = 7 .

The detailed proof of this fact can be found in [3]. Here, we briefly explain a
slightly modified version of the proof from this work.

Restrict the original Markov chain & to the box a < n < b with reflecting
boundary conditions. To do this, replace the triples (Py, Qq, Ra) and (Py, Qy, Rp)
by (Pa,Qa,Ra) = ((4,0,0) and (Py, Qp, Ry) = (0,¢; ,0). Present the invari-
ant measure of this chain as a sequence of vectors (7,,)q,<n<p, Where @, =
(Fn(i))1<ism and (i) = Po(€o = (n,14)).

Vectors 7, satisfy (4.1) with boundary conditions 7, = Ta11Qa+1, 7p =
Tp_1Pp_1. Next, show that there is a solution 7,, for the invariant measure of
the Markov chain such that 7,, = 7,115, for a <n < b — 1. Since the Markov
chain on a finite box has a unique invariant measure, this solution also satisfies

Tnt1 = Tn@, 1 Wwhen a+1 < n <b. Finally, consider the sequence 7,, = ”77:—3”
and pass to the limit a — —oo, b — oco. It is easy to see that such a limit exists
and the obtained sequence coincides with 7, and 7, . (]

imsart-generic ver. 2014/10/16 file: INvarMesRWREshort.tex date: September 19, 2018



D. Dolgopyat and I. Goldsheid/Invariant measure for random walks on a strip 15

Our next lemma is purely algebraic.

Lemma 4.5. Suppose that a sequence m,, n € Z, solves (4.1). Define vectors
hy and h,, by

def def

hp = Tp — Tng1Qn, h, = T —Th_10Q,. (4.6)
Then the following equations hold:
hn = hn—lpn—lﬁyna h; = h;+1Qn+17;a (47)

Proof. Due to (4.3) we can present Q,+1 = @, — @Ry — apayn—1P,—1. Then
(4.1) implies

Tp = 7Tn+1(an - aan - anan—lpn—l) + 77an + 7Tn—lf)n—l
which can be rearranged as
Tn—Tn4+10np = (ﬂ'n*ﬂ'n—&-lan)Rn“i’(ﬂ'n*7Tn+1an)an—1pn—1+(77n—1*ﬂ'nan—l)Pn—l-

We thus have
hn = hnRy + hpoy1Pp1 + hp_1 Py,

By (4.2), ap—1Pp—1 = QnCr—1 and so hy,(I — R, — QnCn—1) = hp—1P,—1. Hence
hn = hn*lpnfl(-[ - Rn - QnCnfl)_l = hnflpnfl’%r
The second relation is proved similarly. O

The following lemma describes a fundamental property of equation (4.1): this
equation has a first integral.

Lemma 4.6. The quantities
c=h,P,1 and ¢ =h, Q,1 (4.8)
do not depend on n (are preserved by equations (4.1)). Moreover
¢ =Pyl — mp11Qni1l and ¢ = —c”. (4.9)
Proof. We have
hy P = hp—1 Pr—1n Py = hn—1 Pri—1Gns (4.10)

where the first equality follows by (4.7) and the second equality follows by (3.3).
Since ¢, is a stochastic matrix we get

hnPrl = hn,1Pn71Cn1 =hp_1P, 11

which proves the first statement in (4.8). Similarly, v, Q, = (,, is stochastic
and hence

h, Qnl = hr:+1Qn+1'777Qn1 = h;+1Qn+11~ (4.11)
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Let us now turn to (4.9). It follows from (4.6) and (4.2) that

¢c=h,P,1=m,P,1—mp110,P,1

(4.12)
=mp Pl — 7Tn+1Qn+1<n1 =7, Pl — 7Tn+1Qn+11~

This proves the first relation in (4.9).
Next, by (4.6), b,y = Tn41 — Tra,, ., and hence

¢ = h;rlQnJrll = Tp41Qn11 — 7TnO‘77+1Qn+11~

It follows from (3.16) and (3.18) that o, Qny1 = Pn(, . Therefore
¢ =M1 @il = T PGy 1 = T Qa1 = m Pl = —c. O
Definition 4.7. A solution 7, is monotone increasing if h,P, > 0 and it is

monotone decreasing if h, P, < 0. If these inequalities are strict then we say
that m, is strictly monotone increasing or strictly monotone decreasing.

Lemma 4.8. Suppose that condition (2.6) is satisfied and that vectors m,, n €
Z, solve (4.1) and m, is either tempered or monotone. Then

R = YnYn, hy = yp v, - (4.13)
Proof. (a) Suppose that 7, is tempered. Iterating (4.7) we obtain for any k > 1
that
hn - hnkankankarl e (nflfyn-
It follows from (3.5) that (u—k+1- (a1 = (Yn(1)1,...yn(m)1) + 7%, Where 7y
is an m x m matrix with ||r|| < C6* with C and 6 < 1 depending only on the
¢ from condition (2.6). Hence

P = bk Po—io (Yn (1)1, ... yn(m)1) +75) Yo
= (yn(l)hnfkpnfk]-a e yn(m)hnfkpnfkl)’yn + hnkanfkrk’Yn (414)
= YnVn + Pk Pr—kTkVn = WYnVn + O(€(|n|+k)59k),

Here the term cy,7v, is due to the equality h,_xP,_ 1 = ¢ and the estimate
O(+) follows from (4.6) and the fact that 7, is tempered which imply that

IAn—kll = l[mn—k — Tn—kr10n k| < [|mn—kll + [|[Tn—ks1lllon—kll < C(E)e(lnHk)e'
We now choose € > 0 such that e < 1 and pass in (4.14) to the k — oo limit.
This gives hy, = ¢YnVn-

(b) Suppose that 7, is, say, monotone increasing. By (4.10), h, P, = hyy—1Pn—1,.
Since h,P,1 = ¢, this together with the positivity of h,, P, implies that h, P, =
¢Z, where Z, is a probability vector and z, = Z,_1(,. Since there is only one
sequence of probability vectors satisfying (3.6) we conclude that Z, = yp41.
Hence, by (4.7), we have that h,, = cy,Vn. O

Remark 4.9. In (4.14), neither h,, nor y,7, depend on k. This proves that in
fact hy—pPn—griyn = 0 for all £ > 1 (note that r, depends also on n but our
notation ignores this fact as it is not essential for our purposes).
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Lemma 4.8 implies the following

Corollary 4.10. If a sequence m,, n € Z is a tempered solution to (4.1) and
hp = Ty — Tpy1au, then either all hy, > 0, or all h,, <0, or all h,, = 0.

Remark 4.11. The relation ¢ = 7,P,1 — m,4+1Qn+11 (and similarly for ¢7)
shows that ¢ and ¢~ are linear functionals on the space of solutions to (4.1).
Since these functionals play symmetric roles, we shall suppose from now on,
without loss of generality, that ¢ > 0.

We are now in a position to describe all tempered solutions to (4.1).

Theorem 4.12. Suppose that m,, n € Z, is a tempered sequence of positive
vectors solving (4.1). Set ¢ = 7, Py1 — mp41Qn+11 > 0. Then:

(i) either ¢ =0 and the solution , satisfies
T = Tpt1Qn
(i) or ¢ >0 and (4.1) has a solution of the form
Ton = ¢(hp + P10 + oo+ P Qo1 Qpy + 220), (4.15)

where Ry, = YnYn with y, defined by (3.5).

(iii) The following conditions are equivalent
(A) (4.1) admits a solution of the form (4.15);
(B) The following series converges

> lle.ao|l < oo (4.16)
k=0

(C) Py (Xt = 400 ast — oc0) > 0.

Proof of Theorem 4.12. (i) If ¢ = 0 then all h,, = 0 by Lemma 4.8 and the first
statement follows.
(ii) Suppose now that ¢ > 0. Due to Lemma 4.8, we can rewrite (4.6) as

T = Tpt1Qn + Ap = Tna10n + YnYn- (4.17)
Iterating (4.17) gives
Tn = N + 1@ + oo + Bk Qg k—1--Qp + Tt kot 1 Utk Qg —1 Oty (4.18)
and hence, because m,45+10n+kQntk—1.--0n > 0, we have
T > hy + hpr1an + oo+ by pnik—1...00 (4.19)

Thus the existence of a positive solution 7, implies that series (4.15) converges.
But then 7, — apTnr1 = hy (direct computation) and hence the sequence
Tn, N € Z, solves (4.1).
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(iii) The equivalence of (B) and (C) follows from Theorem 3.5 and Remark
3.3. Therefore, it is sufficient to prove that (A) is equivalent to (B).
Suppose first that series (4.16) converges. Then for k > 0

”}_ln—!—kan—!—k—l“-anu < Hﬁn+k”|‘an+k—lman|‘ < Collanyr—1.-.0nll, (4.20)

where the constant C,, depends only on the e. The convergence of (4.15) follows.
Suppose now that ¢ > 0 and (4.15) converges. Since hpik = YntrkVntk >
YUn+k > €1%, where 1* is a row vector whose all components are 1, we have

||7ln+kan+k—1-~-an|| > 5||1*an+k—1~-~an|| = 6||05n+k—1-~-an||*~ (421)
We use the notation || Bl def |B*||, where B is a matrix. Since all norms in a
finite-dimensional space are equivalent, the convergence of (4.16) follows. O

Remark 4.13. (a) Inequality (4.19) implies that 7, > 7,. In this sense, T,
from (4.15) is the smallest possible positive solution corresponding to the given
¢>0.

(b) Denote 6,, = 7, — Tp. Since J,, = dp+10;,, we have

On = 5n+2an+1an = 6n+2Qn+27n+1Qn+17n = 6n+2Qn+2An+17n-

Since A, 11 > 0 and ~,, > I we conclude that if §,, > 0 and §,, # 0 then §,, > 0
(for all n € Z).
Next, (4.15) and (4.18) imply that for £ > 0 (and any n)

o0

Tp — Ty, = Mk 10n4+EQptk—1...0p — C E hn+j+1an+j...an
Jj=k

Sending k — oo and taking into account the fact that the series in (4.15)
converges we obtain

Tn — TTn = lim Tn4+k+10n4+k0n4+k—1.--Cn.
k—o0

Note that ||apir@nig—1...cn|| — 0 as k& — oo. If now m, — 7, > 0 then
we must have that ||m,x+1] — o0 as & — oo and moreover, ||mpipt1]|l ~
|tk Qntk—1---0nl| 1. So, if we know that || qramnik—1...cn| decays expo-
nentially in & then the only tempered solution to (4.1) is given by (4.15) (if it
exists).

5. Probabilistic analysis of the invariant density equation

We now return to the study of the invariant density equation (2.9) in random
environment. In particular, condition C is assumed throughout this section.
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5.1. Positive tempered solutions to (2.9)

Lemma 5.1. If A\ < 0 then for P a.e. w, the series (3.24) converges and the
solution given by (4.15) is tempered.

Proof. The convergence of (3.24) follows from the fact that the n-th term of
this sum is exponentially small. To show that the solution given by (4.15) is
tempered we consider two cases.

(I) On the left from 0 we use the identity (4.18)

n—1
Py = Z h,(n,k)oz,(n,k“) e Oy F PO Oy,
k=0
where n > 0 and we use the convention a_,,_j1a_,, = I. By Remark 3.3, we can
write

ool <O exp [ S,
k=0 j=k

By the ergodic theorem, the expression in the parenthesis equals to

n k
DA =Y A=A (n—k)+ e+,
j=0 j=0

where, for any given & > 0, both |r,| and |ri| are less than &n provided that n
is large enough. It follows that ||p_,|| < C(n + 1)e?™. Since & can be chosen
arbitrarily small lim,, oo n"*In||p_,|| = 0 as needed.

(IT) On the right from 0 we use (4.15) to see that

n+k

loul <Y exp [y,
k=0 j=n

The expression in the parenthesis equals to kAT + 7, + 7,1, where, for any
given &, both |r,| < én and |r,4x| < &(n + k) provided that n is large enough.
Considering separately the cases k < n and k > n we get ||p,,|| < Ce**"n. Since
£ can be chosen to be arbitrarily small lim, . n~ ' In|p,|| = 0 as needed. O

Our next lemma provides classification of all solutions to (2.9) for general
ergodic environments by establishing the relation between the sign of the con-
stant ¢ and the sign of the Lyapunov exponent A*. Relations (3.23) and (4.9)
allow us to consider only the case ¢ > 0.

Lemma 5.2. (The Classification Lemma)

(a) For P a.e. w there exists a unique, up to multiplication by a positive
constant, tempered positive solution to (2.9).

(b) sign(c) = —sign(AT).

(c) If ¢ # 0 then there exists a sequence of functions p, (w) satisfying both
(2.9) and (2.10). In particular, if ¢ > 0 then this solution is given by

pn(w) =hy +hpy1an + .. + hpgrrongg—1...0n + ... (51)
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Proof. By Theorem 4.12, if there is a positive tempered solution to (2.9) with

¢ > 0, then £ escapes to +o0 with positive probability. By Theorem 3.6 this is

only possible if At < 0. Conversely, if AT < 0 then by Lemma 5.1, (2.9) admits

a positive tempered solution. Thus a positive tempered solution to (2.9) with

¢ > 0 exists iff At < 0. The uniqueness follows from part (ii) of Theorem 4.12.
Likewise, a positive tempered solution to (2.9) with ¢ < 0 exists iff AT > 0.
Also by Theorem 4.12, the solution with ¢ = 0 must satisfy

D) = Prs ()an(®),  Puis (@) = @)y () for all n and P-a.a. w.
(5.2)
This solution is tempered iff the Lyapunov exponents of both o and o~ are
non-positive, that is, iff AT = 0.
This proves parts (a) and (b). To prove part (c) (for ¢ > 0) we observe that
the solution given by (5.1) is stationary. O

5.2. The existence of the invariant density

In Section 4 there was no necessity to emphasize the dependence of the constant
¢ on the sequence w. But for the study of the invariant density the control of the
dependence on w of the sequence p,, (w) solving (2.9) is crucial. In principle, also
¢, as a function of the whole sequence, could depend on w in a non-trivial way.
However, the following simple observation shows that for stationary solutions
of (2.9) this is not so.

Lemma 5.3. Suppose that an m-dimensional vector p(w) : @ — R™ is measur-
able and for P-almost all w the sequence p,(w) = p(T"w), n € Z, solves (2.9).
Then there is a constant ¢ such that h,(w)P,(w)1 = ¢ for P-almost all w.

Proof. We know from Lemma 4.6 that h,(w)P,(w)1 does not depend on n for
all those w for which the sequence p,,(w) = p(T"w), n € Z solves (2.9). On the
other hand,

() = () = Py (@)an(w) = po(T7w) — py (T"w)arg (T™w) = ho(T"w).

We thus have ho(w)Py(w)1l = hy(w)Pi(w)l = ho(Tw)Py(Tw)1. Since T is er-
godic, there exists a constant ¢ such that ho(w)Py(w)1l = ¢ for P-almost all w.
g

We are now ready to describe the necessary and sufficient conditions for the
existence of the invariant density. We consider the transient and the recurrent
cases separately.

Theorem 5.4. Suppose that condition C is satisfied and that AT < 0 (so that
& is transient to the right). Then
(i) The Markov chain (@, Y:) has the invariant density if and only if

ZE(Hanan,l...aOH) < 0. (5.3)
n=0
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(i) The invariant density is unique and is given by

p(w) = ¢ (ho(w) + h1(w)ag(w) + ... + hi(w)og—1(w)...a0 (W) + .. )(,5 )
where hy,(w) = yp(w) k(W) = yo(T*w) Y0 (TFwW), ar(w) = ao(T*w) and -

Cil =E (}_101 + }_110401 + ..+ }_lkak_l...ao]_ +.. ) . (55)

Proof. If AT < 0 then, by the Classification Lemma 5.2, (2.9) has a unique, up
to a multiplication by a positive constant, solution which is stationary (satisfies
(2.10)). This solution is given by (5.1). The invariant density exists iff this
solution is also integrable, E(p) < co. By (5.1), (4.20), (4.21)

5 Z lanan—1...ap|| (w) < p(w) < C’Z [lotnan—1...c0|| (w).
n=0

n=0

Thus integrability of p is equivalent to (5.3). This proves part (i). Part (ii) is a
direct consequence of Lemma 5.2. O

Finally, the recurrent case is characterized as follows. We set A(w) < Xo (w)

(see (3.10)).

Theorem 5.5. Suppose that \T =0 (so that £ is recurrent). Then the Markov
chain (@, Y;) has an invariant density if and only if there is a non-negative
function 8 : Q +— R such that

AMw) = Nﬂ(w) for P-a.a. w and E(B) < oc. (5.6)
B(Tw)
Proof. Suppose that (5.6) holds. Then it follows from (3.11) and condition (5.6)

that

%H%:%%:éﬁﬁ%%mﬁwﬁﬂ“@%m%:mwwm (5.7)
Remember that I, = I(T"w) (see (3.9)). Set
p(w) = Z7' B(Tw)l(w), where Z =E[B(Tw) Y l(w,i)]. (5.8)
=1

Then the second equation in (5.7) can be written, for all n, as p,_; = p,an_1,
where p, = p(T"w). Hence, the sequence p,,, n € Z, solves (2.9) and hence p
defined by (5.8) is the density of the invariant measure of our Markov chain.

Suppose now that p(w) is a density and the random walk is recurrent. Set
P, = p(T"w). Then the sequence {p,,, n € Z} is a positive tempered solution
0 (2.9). Since A = 0 we have, by Lemma 5.2(iii) that p,, = p, . Rewrite
this as

Pri1 el Py

Ay = .
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The last relation is just the same as (3.11) and since there is only one sequence
l,, satisfying (3.11) we have that

S S A
[, ]

n —

We can now set
Bw) = llpg(T~'w)| = miax{p(T‘lwvi)}-

(We could have set B(w) = ||po(w)| = max;{p(w,i)} but this would be incon-
sistent with (5.8).) O

6. Applications
6.1. Positive and null recurrence

Recall that an irreducible Markov chain (MC) is positive recurrent if it satisfies
the following equivalent conditions.

(i) There is an invariant probability measure for £ (that is, (4.1) admits a
positive solution with > 1o, ™ (j) = 1);

(ii) The expected return time to each site is finite.

Theorem 6.1. £(t) is positive recurrent iff

Z lag ..., || < oo and ZHoz 1.0 p| < o0 (6.1)

Proof. (I) Suppose that £ is positive recurrent and let 7 = (m,, —00 < n < oo, )
be the corresponding invariant measure. We claim that then

TPl = T 1Qn1. (6.2)

Denote P (:) the distribution of the walk & with initial distribution 7. Let
p(n,t) = Pr(X: <n). Since 7 is invariant, p(n,t) does not depend on ¢. Thus

0= p(n7t+ 1) - p(n7t) = 7rn+1Qn1 — T Prl

proving (6.2). Hence, by (4.12), ¢ = 0 and by Theorem 4.12(i) we have m,, =
Tn—10v, . Iterating we obtain

wn:w(]af...a;. (63)

Since 7, € {' we must have
o
ZHaf...a;H < 0.
n=1
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Likewise
oo
Z la—q ...y < oo.
n=1

(IT) Let 7 be the unique positive solution to (4.1) with ¢ = 0. Then it satisfies
(6.3) as well as 7_,, = mpa_1 . ..@_,,. Hence if (6.1) holds then =, € [}(S) and
&(t) is positive recurrent. ]

It is a standard fact that the walk on a strip is positive recurrent iff its
restrictions to both positive and negative semi-strips are positive recurrent.
Therefore we obtain the following result.

Corollary 6.2. (a) The restriction of £(t) to the positive semistrip is positive

recurrent iff
o0
D llar o |l < oo
n=1

(b) The restriction of £(t) to the negative semistrip is positive recurrent iff

o0
Z la—i...a_,| < oo
n=1

Proof. We prove (a), the proof of (b) is similar.

Consider a modified MC, where the transition probabilities for n > 0 are the
same as for the original walk, and for n < 0 the modified transition probabilities
Q,, do not depend on n and have a drift to the right. Then for the modified

[e.e]

walk Z |G—1...a_p| < co. Hence the positive recurrence is equivalent to the
n=1

oo

convergence of Z lag ...y || < co. On the other hand since the restriction of
n=1

the modified walk to the negative semistrip is obviously positive recurrent, the

positive recurrence on the strip is equivalent to the positive recurrence of the

restriction of our original walk on the positive semistrip. O

Corollary 6.3. Suppose that an environment w = {(Py, Qn, Rn)}nez, satisfies
(2.6) then the restriction of the walk on the positive semistrip is null recurrent

if

oo 1 oo
Z(Hafo@”) =00 and ZHal_...a;H:oo.
n=1 n=1

Proof. Combining Theorem 3.5, Remark 3.3 and Corollary 6.2 we see that null
recurrence is equivalent to

oo (oo}
ZH@,L...qu =00 and ZHal_...a;H = 00.
n=1 n=1

It remains to observe that the product ||cu,...cq|| || ... a;, || is uniformly bounded
from above and below, see [3, equation (3.19)] (note that [3] uses the notations
G, B instead of our o, and «)). O
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For strips of width 1, Remark 3.2 shows that the null recurrence condition is
equivalent to the divergence of both

SII(%) ma SII(2).

n=tj=1 \Pi n=tj=1 \4i
Namely, the divergence of the first series is equivalent to recurrence and the
convergence ot the second series is equivalent to positive recurrence. Thus we
recover the well known criterion for null recurrence of birth and death chains
(see [13], Sections 6.4 and 6.5).

Corollary 6.4. In a stationary ergodic environment, the restriction of the walk
to the positive semistrip is positive recurrent iff \T > 0.

We omit the derivation of Corollary 6.4 from Corollary 6.2 as it is the same
as the derivation of Theorem 3.6 from Theorem 3.5.

6.2. Answers to some questions from [33]

The following model generalizes the one studied by Ya. Sinai in [33]. Let (as
in Introduction) T' be a measure preserving ergodic automorphism acting on a
measure space (M, M, p). (Here and throughout this section the notations are
as in [33]. In particular elements of M are denoted by x.)

Suppose that we are given a function on M taking values in J (see (2.4)):

x +— (P(z),Q(z), R(x)). Define a random walk on M L VRN [1,...m] as follows:

if at time ¢ the particle is at (x,4) € M then at time ¢ + 1 it jumps to (T'z, j)
with probability P(x,1,7), to (T~ 'z, j) with probability Q(x,1,j), and to (z, j)
with probability R(x,1, 7).

To transform this RW into a RW on the strip S = Z x [1, ...m] we set

(Po(), Qo(z), Ro(x)) = (P(x), Q(z), R(x))

(and thus (P, (z), Qn(z), Ry(x)) = (P(T"x), Q(T"x), R(T"x))). The RW start-
ing from (x,4) € M is thus mapped into a walk starting from (0,7). The ergod-
icity condition is automatically satisfied but in addition we have to impose on
our matrices the ellipticity condition (2.6).

After that, all the results about the existence of the invariant density on
the space of environments on the strip are automatically translated into the
statements about the invariant density on M.

The above construction also answers the more general question from [33]. We
state it now in a form which is slightly more precise than in the Introduction.
Consider a random walk on M where a particle can jump from x € M to
T'z, (|i| < m) with probability p(z,), > .-, p(z,i) = 1. This walk transforms
into a walk on R with jumps of length < m in exactly the same way as above.
As we have already mentioned before, the latter walk is reduced to a walk on a
strip of width m and this answers the question.
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Let us return to the model considered in [33, 17, 18]. This model is obtained
from the above model on M by setting m = 1.
As in [33], we shall consider two cases.

6.2.1. The symmetric (recurrent) case

In [33] the RW on M is called symmetric if

1—p(@) 0y _
/Mln () p(dx) = 0.

Since AT = 0 (as it is equal to this integral), Theorem 3.6 implies that the
corresponding random walk on Z is recurrent. Recall that, according to Remark

3.2, Mz) = 2T'2) Theorem 5.5 implies the following statement.
p(z)

Corollary 6.5. Consider the Markov chain on M with p satisfying strong el-
lipticity condition: there is € > 0 such that ¢ < p < 1 — &. Suppose also that
A" = 0. Then the invariant measure of the Markov chain on M has a density
with respect to u if and only if there exists a non-negative function B:M—R
such that

q(Tx BN T ~
(T'z) = ~( ) -a.a. / B(x)p(dr) < co. (6.4)
p(x)  B(Tz) M
Remark 6.6. The homological equation considered in [33, equation (2)] reads
p) _ _h(z)

o) = RT3y This equation and (6.4) are equivalent in the sense that when-
ever one of them has a solution so does the other. A more general equivalence
of (5.6) and the equation A\(w) = B(Tw) (where A(w) is as in (3.14)) was shown

B(w)
in [11, Lemma 3.2].

6.2.2. The non-symmetric (transient) case

In [33] the RW on M is said to be non-symmetric if

/M In %u(dz) > 0.

This inequality implies that AT < 0 and by Theorem 3.6 the corresponding walk
on Z is transient to the right. By Theorem 5.4 the invariant density now exists

if and only if
/ <Z = > j(dz) < o0 (6.5)

n=0 k=1
and has the form

_ b 21— p(TFx)
=@ <2_IT_[ P(T%2) ) (00
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Remark 6.7. The fact that the finiteness of the expectation (6.5) implies the
existence of the invariant density of the form (6.6) (the if direction of this
statement) was first proved in [1, Theorem 3.1] and later (and independently)
in [17]. As has been shown above, the only if direction follows from the fact that
the invariant density has to satisfy the invariant density equation and the only
“relevant” solution it has is given by (6.6). In other words, if the expectation
(6.5) is infinite then the walk on the space of environments does not have an
absolutely continuous invariant measure.

6.2.3. Non-symmetric (transient) walks generated by a uniquely ergodic T

The random walks on a d-dimensional torus generated by irrational rotations
(as in [33]) are a very particular case of the walks on compact metric spaces
generated by uniquely ergodic automorphisms.

So suppose now that M is a compact metric space and 7' is a uniquely ergodic
automorphism of M. We recall that T is said to be uniquely ergodic if there is
only one T-invariant measure p on M. Uniquely ergodic automorphisms have
the following important property: if f : M — R is a continuous function then

n—1
1 Z f(Tiz) — / f(y)p(dy) uniformly in x € M.
n =0 M

Consider again the RW on M and suppose that the triple (P(z), Q(x), R(x))
is continuous in z and satisfies the ellipticity conditions (2.6). Then also the
function \(z) (see (3.14)) is continuous in x. We suppose now that the corre-
sponding walk on the strip is transient to the right:

AT = / In A(z)p(dz) < 0.
M

Now, due to (3.12) and to unique ergodicity, the following sequence converges
uniformly in x and n:

k—1

1 -

Eln Hntkontk—1 ... anl = Z g InA,p; — AT as k — oo.
i=0

This uniform convergence together with Remark 3.3 imply that also the series in
(5.1) converges uniformly in « and hence p(z) is a continuous function of = and
in particular is integrable. We thus proved that in the asymmetric (transient)
case the MC on M generated by a uniquely ergodic automorphism T always has
an invariant density. Moreover, this density is continuous.

6.3. The Green Function

Consider the case where the random walk escapes to the right, that is, X; —
+00 as t — oo. In this case each site is visited only finitely many times with
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probability one and one can consider the Green function g((l,%); (n,j)) which is
the expected number of visits to the site (n,j) given that the walk starts from

(1,4).

Lemma 6.8. The following limit exists and does not depend on 1
gn(4) = 1im_g((l,4), (n, ).
——00

Proof. Let o, be the time of the first visit by the walker to level n. (If the walker
starts from (I,4) with [ < n then o, is finite with probability one since the walk
escapes to the right). Then

A = P(E(on) = (n, k)IEO) = (1, )g((n, k) (n,))-

k=1

Since the second factor in the last expression does not depend on [ and the first
one converges as | — —oo to y, (k) where y,, is given by (3.5), the result follows.
O

Lemma 6.9. Let g, be the vector with components g,,(i). Then g,, is a monotone
solution to (2.9) and the corresponding value of ¢ = 1.

Proof. Let 13, be the ti_me of the k™ visit to the set L, ULy, +1 (see the definitions
in section 2.1). Then & := &(7) is a Markov chain. Let

Un(Z?J) = P(EkJrl = (’Il,j)|£]€ = (TL,’L)) = Rn(%]) + ZQn(i,S)Cnfl(S,j),
) ] i (
Vn(lvj) = P(§k+1 = (n7])|£k = (7”L+ 17i)) = Qn-‘rl(i’j)' (68)
Thus
9n((1,); (n,5)) = P(E(on) = (n,7)[£(0) = (1, $))+D_ P(Ers1 = (n, 5)E(0) = (I, 5)).
k=1

Using (6.7) and (6.8) we can rewrite the last sum as

ZZ (& = (n,2)[€(0) = (1, 8))Un (i, ) + P(&k = (n+1,0)[£(0) = (I, 9))Va(i, 5)] -

k=11i=1

Therefore

9((n,5); (s)) = P(&lonm) = (n,5)[£(0) = (I, )

P
2[00 (0 )Un9) + 9 1,9 5V )]

Letting I — —oo we obtain

m

00 (1) = yn (1) + D 180 (D)Un (i, 5) + 8n11 () Va (3, 5)]

=1
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Remembering (6.7) and (6.8) we obtain

On = nBn + 80QnCn1 + 9nt1Qns1 + Yn-

Hence
gn(I - Rn - QnCn71> = gn+lQn+1 + Yn-

Multiplying by v, on the right, we obtain g, = gn+1n + Yn¥n. Thus letting
bn = gn — Gnt+1Q, We obtain b, = y,v,. Now Lemma 4.8 gives ¢ = 1. O

Remark 6.10. Lemma 6.9 shows that g, is given by (4.15) with ¢ = 1. The
same result was derived in [10] under slightly more restrictive assumptions. Here
we see that this result follows immediately from the theory developed in this

paper.

Remark 6.11. If the environment is stationary and the random walk escapes to
the right, (that is, AT < 0) then the solution given by Lemma 6.9 is stationary
by construction. In contrast, Lemma 4.4 provides another solution with ¢ = 0
but this solution is not stationary, since it decays exponentially by the definition
of AT.

6.4. The speed of the random walk

We shall now consider the following question: given that the RW £ (defined in
(2.3)) is transient to the right, what is the speed at which it escapes to +o00?

In this section, it will be important to use a more complete notation for the
RW, namely we write &, (0,:)(t) = (Xu,i(t),Yo,i(t)) for the coordinates of the
walk starting from (0,4) in a given environment w and evaluated at time t. We
recall the natural definition of the speed: v = lim;_, X“f(t) if this limit exists.

In the case of the RWRE on a strip, the answer to this question was found by
a different method in [15] and independently in [30]. Here, we shall show how
one can compute the speed in terms of the invariant density.

Theorem 6.12. Suppose that the Markov chain (v, Y:) defined by (2.7) has
the invariant density p. Then for any initial point (0,1), for P-a.a. w, and for
Po,(0,i)-0-a. trajectories &, ;(+) the following limit exists:

Xwi t . )
v = tlim % =c¢, where ¢ is the constant defined in (5.5).
—00

Proof. We shall use the following fact.

Lemma 6.13. If the Markov chain (o, Y;) has the invariant density p then for
P-a.a. w and all starting points (0,4) the speed v

X
v = lim Koilt)

t—o0 t

=E,(X(1)) with Py (0,:)-probability 1,

where B, is the expectation with respect to the measure p(w,)P(dw) P, (0,5)(dE)
and X (1) is the first coordinate of £(1).
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For a beautiful proof of this Lemma we refer the reader to [5], page 14.
The proof presented there is explained in a somewhat different setting but the

adjustments needed for our case are routine.
So, for us it remains to compute the expectation. To this end, note first that

Ey.(0.0) (X, (0.0 (1 ZPou — Qoli, )

and hence

3

E,(X(1)) :E p(w, i)B,, m)(X(l)))
z 1

3

= p Z Po 7 J Qo(i,j))
1 Jj=1

(P(Po — Qo)1) = E(pFol) — E(pQol).
Since E(pQol) = E(p(Tw)Qo(Tw)1) = E(p;Q11) we have
=E(pPol —p;@11) =c¢

because pPyl — p;@Q11 = ¢ by (4.12). O

Appendix A: Derivation of the invariant density equation.

Proof of Lemma 2.5.. By the definition of the invariant measure we have that
for any continuous function f : € — R the following equality holds:

;Af(w,j)P(w,j)P(dw) —;/Q(Kf)(w,i)p(w,i)ﬂb(dw)

m

-3, Qu((0,0). (6. ) 1T, | ol )B(d).

ke{-1,0 1} 1<j<m

(A.1)

Rearranging the sums and taking into account that T is preserving P, we can
present the right hand side of (A.1) as

m m

S0 S [ Qul00 (kN e )l B =

j=1i= 1ke{ 1,0,1}

Z Z Z QT—kw((Oa 7;)7 (k,j))f(w,j)p(T_kw, ’L)P(dw) =

j=1i=1ke{-1,0,1} "

m

3 / ST S T w0, 1)@ (0,), (5, ) | £ ().

j=17% \ke{-1,01} i=1
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Since f(w,j) are arbitrary continuous functions, it follows that for P-almost all
w

,O(W,j) = Z Zpa—‘_kwai)QT*kw((O’i)? (kaj))
ke{—1,0,1} i=1
By (2'2) we have QT—lw((07i)7(17j)) = Pfl(i7j)7 Qw((07i)7(07j)) = Ro(i,j),
and Q7. ((0,7),(—=1,7)) = Q1(¢,4) and thus

m m m

p(w, 1) =Y p(Tw,)Qu(i, ) + Y p(w,i)Ro(i, 5) + > p(T~ w, i) P-1(i, 5)-

i=1 i=1 i=1

It remains to notice that the last equation can be re-written in the vector form
as

p(w) = p(Tw)Q1 + p(w)Ro + p(T ™ w)P_1. (A.2)

Finally, replacing in this equation w by T"w we obtain (2.9).
We thus proved that (A.1) implies (A.2) and (2.9).
Suppose now that we are given a sequence p,, (w) which satisfies (2.9), (2.10)

and (2.11). This in particular means that (A.2) holds true and we obtain (A.

by reversing each step in the above proof.

o=

Appendix B: Recurrence of general walks.

Here we prove Theorem 3.5.

Proof. Tt suffices to prove part (a), the proof of part (b) is similar.
Given a,b € Z and n € [a,b], let [,, be the vector with components

[,(j) = P (€ visits level b before a| & = (n,j)) .

It is proven in [3] that
by = @nPnt1-- - pp—11,
where ¢, is defined recursively by

on = (I — Ry — Quon_1) ' P, if n > a + 1 starting with ¢, = 0.

(I) Suppose that series (3.24) converges. Set A,, = (,, — ¢n, where ¢, is as in
(3.2). Then ¢, = ¢, — A, and

= (G =An)(Crr1 = Apyr) o (o1 — Ap1)1
> (T=[[AnD™ = [[Apga]]) .- (1 = [[Ap—1])1.

by

(B.1)

Since

An = [(I - Rn - Qngn—l)71 - (I - Rn - Qnsﬁn—l)il]Pn
= (I -R, - QnCnfl)_lQn(Cnfl - (Pnfl)(l - R, - Qn@nfl)_lpn
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we see that A, = A, A,_1p,—1 and hence
An = AnAn—l .o Aa-‘rlAa(Pa-i-l e Pn. (BQ)

Thus, for a = 0 we get ||A,|| < ||A, ... A1] and so if (3.24) converges then (B.1)
implies that there is a constant x > 0 such that [,, > k1 uniformly in b. Taking
b — +oo we obtain that P(X; — +o0) > 0.

(II) Suppose now that P(X; — oo) > 0. It follows that I > 1 for some
k > 0. We need the following

Lemma B.1. There is a constant € > 0 such that
Al > &A1

Proof. Since A,1 = A, A 10,11 = Apu with u = A, 19,11 > 0, we have

Sr Anlid) T A A e

m R m . - . 2 9
Yim Anlk, ) D051 Ak, )y i Ap(k,7) — Const

where the last inequality is due to (3.13). Hence
”An” maxg Zj An(kv.]) — Const

Thus (¢, — An)1 =1 - A,1 < (1 —¢£JJ]A,|])1 and we obtain by induction
that

é. O

lo=(Co—Ag).--(Cp—1—Ap_1)1 < (1T —=E||Ag|])--- (1 —E[JAp_1]|)1.

Hence -
[Ta-zla.) >«
n=0
and therefore -
> A < oo. (B.3)
n=0

On the other hand (B.2) implies

1AL = 1A01] > [ An . AL T (0= [JAKID) = el An . Al
k=1

where ¢ = []p—; (1 — ||Ak]]) > 0 because of (B.3). From the last two displays
we obtain that (3.24) converges as needed. O
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