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Abstract. It is well known that random walks in one dimen-
sional random environment can exhibit subdiffusive behavior due
to presence of traps. In this paper we show that the passage times
of different traps are asymptotically independent exponential ran-
dom variables with parameters forming, asymptotically, a Poisson
process. This allows us to prove weak quenched limit theorems in
the subdiffusive regime where the contribution of traps plays the
dominating role.

1. Introduction

Let ω = {pi}, i ∈ Z be an i.i.d. sequence of random variables,
0 < pi < 1. The sequence ω is called environment (or random envi-
ronment). Let (Ω,P) be the corresponding probability space with Ω
being the set of all environments and P the probability measure on Ω.
The expectation with respect to this measure will be denoted by E.
Given an ω we define a random walk X = {Xn, n ≥ 0} on Z in the
environment ω by setting X0 = 0 and

Pω(Xn+1 = Xn+1|X0 . . . Xn) = pXn Pω(Xn+1 = Xn−1|X0 . . . Xn) = qXn

where qn = 1− pn. Denote by X = {X} the space of all trajectories of
the walk starting from zero. A quenched (fixed) environment ω thus
provides us with a conditional probability measure Pω on X. The ex-
pectation with respect to Pω will be denoted by Eω. In turn, these
two measures naturally generate the so called annealed measure on the
direct product Ω×X which is a semi-direct product P := PnPω. How-
ever, with a very slight abuse of notation, P and E will also denote
the latter measure and the corresponding expectation; the exact mean-
ing of the corresponding probabilities and expectations will always be
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clear from the context. The term annealed walk will be used to dis-
cuss properties of the above random walk with respect to the annealed
probability.

From now on we assume that
(A) E(ln(p/q)) > 0.

(B) E
(
q
p

)s
= 1 for some s > 0.

(C) There is a constant ε0 such that ε0 ≤ pn ≤ 1− ε0 with probabil-
ity 1.

(D) The support of ln(q/p) is non-arithmetic.
Assumption (A) implies (see [25]) that Xn →∞ with probability 1.

Assumption (B) means that even though the walker goes to +∞ there
are some sites where the drift points in the opposite direction. We
note that (A) and (B) are essentially equivalent to each other. Indeed,

since E
(
q
p

)h
is a convex function of h, (B) implies (A). On the other

hand, the existence of finite s in (B) follows from (A) if and only if
P(q > p) > 0. It is convenient to have both these conditions on the
list for reference purposes.

(C) is a standard ellipticity assumption which prevents the walker
from getting stuck at finitely many vertices for a long time. Most of our

results can be proved under a weaker assumption, namely E
(
( q
p
)s ln q

p

)
<

∞ as in [15]. However, this would lead to more technical, longer, less
transparent proofs; also the estimates of some remainders (see e. g.
Theorem 2) would become weaker.

(D) is a technical assumption which we don’t use in our proofs but
which is used in the proof of Lemma 3.6 borrowed from [13]. It is
satisfied by a generic distribution of pn.

We will be mostly interested in the case s ∈ (0, 2] which implies that
the annealed distribution of Xn does not satisfy the standard Central
Limit Theorem ([15]). Since Xn is transient it looks monotonically in-
creasing on a large scale and hence it makes sense to study the hitting
time T̃N := min(n : Xn = N) which can roughly be viewed as the in-
verse function of Xn. This approach was used already in the pioneering
papers [25] and [15]. In particular, in [15] the annealed behavior of Xn

was derived from that of T̃N . The latter is described by the following

Theorem 1. ([15]) The annealed random walk X has the following
properties:

(a) If s < 1 then the distribution of T̃N

N1/s converges to a stable law
with index s.
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(b) If 1 < s < 2 then there is a constant u such that the distribution

of T̃N−Nu
N1/s converges to a stable law with index s.

(c) If s > 2 then there is a constant u such that the distribution of
T̃N−Nu
N1/2 converges to a normal distribution.
(d) If s = 1 then there is a sequence uN ∼ cN lnN such that the

distribution of T̃N−uN

N
converges to a stable law with index 1.

(e) If s = 2 then there is a constant u such that the distribution of
T̃N−Nu√
N lnN

converges to a normal distribution.

The proof of this theorem given in [15] makes use of the connec-
tion between random walks in random environment and branching pro-
cesses. Another proof of Theorem 1 was given in [7, 4]. These papers
make use of the notion of potential introduced by Ya. G. Sinai in [26]
for the study of the recurrent case (when E(ln(p/q)) = 0).

The results for quenched limits (that is when a typical environment
is fixed) are relatively recent. To prove an almost sure quenched limit
theorem for T̃N one can make use of the representation

(1.1) T̃N =
N∑
i=1

τi,

where τi is the time the walk starting from i − 1 needs in order to
reaches i for the first time. The advantage of this approach is due
to the fact that if the environment ω is fixed then τi are independent
random variables and this was used by many authors starting from the
pioneering paper [25].

If s > 2 then one can prove the almost sure Central Limit Theorem
(CLT) for T̃N checking that the sequence {τi} in (1.1) satisfies the
Lindeberg condition for almost all ω (and for that one only needs the
environment {pi} to be stationary, see e.g. [9]). Proving the CLT
for Xn in this regime is a more delicate matter and this was done
in [9] for several classes of environments (including the i.i.d. case)
and independently in [16] for the i.i.d. environments. It has to be
mentioned that, in the case of i.i.d. environments, it is easy to derive
the annealed CLT from the related quenched CLT but this may not be
easy for other classes of environments and in fact may not always be
true.

In this paper, unlike in [15], we thus don’t have to analyze the case
s > 2. However, we explain at the end of Section 6 that it is not diffi-
cult to adapt the argument of that section to handle also the diffusive
regime.
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For s < 2, an important step was made in [17] and [19] where it
was proved that it is impossible to have almost sure quenched limit
theorems in this regime. Namely, for almost all ω no non-trivial distri-

butional limit of T̃N−uN

vN
exists for any choice of sequences uN(ω) and

vN(ω).
In [6] it was proved that in the sub-ballistic regime 0 < s < 1 the

coordinate of the random walk becomes, as time t → ∞, localized at
the bottom of one of the finitely many valleys which are defined in
terms of Sinai’s potential.

The main goals of this paper is to present a complete description
of the limiting behaviour of the random walk which turns out to be
much more interesting than expected before. As will be seen below,
the particularity of the sub-diffusive regime is that it is the asymptotic
behaviour of the random environment that implies the limiting be-
haviour of the random walk. We show that T̃N viewed as a function of
two(!) random parameters, X(·) and ω (the trajectory of the walk and
the environment), does exhibit a limiting behaviour as N →∞ which
for 0 < s < 2 can be described explicitly in terms of a point Poisson
process (Theorem 2). Namely, it turns out that for large fixed N and
ω ∈ ΩN (where P(ΩN) → 1 as N → ∞) the properly normalized T̃N
is a linear combination of independent exponential random variables
with coefficients of this combination depending only on ω and forming
a point Poisson process. As a corollary, one obtains the results from
[17] and [19] as well as a new proof of Theorem 1. In the case s = 2 we
show that the CLT holds (Theorem 3); however, we provide a heuristic
argument which shows that, in contrast with the case s > 2, the CLT
does not hold for almost all ω but rather just for ω ∈ ΩN .

The backbone of our approach is formed by the study of occupation
times; such studies were initiated in [21, 23, 8]. In view of this technique
it is more natural to consider the occupation time TN of the interval
[0, N) rather than T̃N . These two random variables have the same
asymptotic behaviour (see Lemma 2.1) and therefore the results for
T̃N follow easily from those for occupation times.

The main difference between our and other existing approaches is
that:
− We introduce a Poisson process describing the “trapping proper-

ties” of the environment.
− This process allows us to separate explicitly the contribution to

the occupation time (or, equivalently, hitting time) coming from the
environment and the walk (and thus prove Theorem 2).
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− It also allows us to answer some other interesting questions about
the limiting behaviour of the walk (e.g., about the limiting behaviour
of the distribution of the maximal occupation times, Theorem 4).

Similar results are valid in a more general setting of random walks
in random environment on a strip and in particular for walks with
bounded jumps. This will be a subject of a separate paper.

The layout of the paper is the following. In Section 2 we state our
main results. In Section 3 we collect background information and prove
some auxiliary results. In Section 4 we deduce Theorem 2 dealing with
the case s < 2 from the fact that the set of sites with high expected
number of visits has asymptotically Poisson distribution (Lemma 4.4).
The proof of Lemma 4.4 itself is given in Section 5. The case when
s = 2 (Theorem 3) requires a different approach (namely, we use big
block-small block method of Bernstein) which is presented in Section
6. In Section 7 we explain how to modify the proof of Theorem 2 to
obtain Theorem 4. In Appendix A we derive some previously known
theorems from our results. Appendix B contains the derivation of the
quenched limit theorem from our main result (Theorem 3).

We shall use the following convention about the constants appearing
in the paper. The values of the constants can change from entry to
entry unless it is explicitly stated otherwise.

After completing the paper we learned that Corollary 1 was proved
independently by J. Peterson and G. Samorodnitsky [18] and by N. En-
riquez, C. Sabot, L. Tournier, O. Zindy [5] using a different approach.

2. Main results

Throughout the paper the following definitions and notations will be
used.

Definition. The occupation time TN of the interval [0, N) is the total
time the walk Xn starting from 0 spends on this (semi-open) interval
during its life time. In other words, TN = #{n : 0 ≤ n < ∞, 0 ≤
Xn ≤ N − 1}

Remark. We thus use the following convention: starting from a site j
counts as one visit of the walk to j.

The occupation time of a site j is defined similarly and is denoted
by ξj. Observe that TN (and ξj) is equal to the number of visits by
the walk to [0, N) (respectively, to site j). Since our random walk
is transient to the right, both TN and ξj are, P-almost surely, finite
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random variables. It is clear from these definitions that

TN =
N−1∑
j=0

ξj.

The following lemma shows that TN and the hitting time T̃N have the
same asymptotic behaviour.

Lemma 2.1. For any ε > 0

P

(
|TN − T̃N |
N1/s

> ε

)
→ 0 as N →∞.

Proof. It is easy to see that

T̃N = #{n : 0 < n ≤ T̃N , Xn ∈ [0, N−1]}+#{n : 0 < n ≤ T̃N , Xn < 0}
and

TN = #{n : 0 ≤ n ≤ T̃N , Xn ∈ [0, N−1]}+#{n : n > T̃N , Xn ∈ [0, N−1]}.

Since the first terms in these formulae are equal, |TN − T̃N | can be
estimated above by a sum of two random variables: the number of
visits to the left of 0 and the number of visits to the left of N after T̃N :

|TN − T̃N | ≤ #{n : n ≥ 0, Xn < 0}+ #{n : n > T̃N , Xn < N}

The first term in this estimate is bounded for P-almost all ω. Since T̃N
is a hitting time, the second term has, for a given ω, the same distri-
bution as #{n : n > 0, Xn < N |X0 = N} (due to the strong Markov
property). Finally, the latter is a stationary sequence with respect to
the annealed measure and therefore is stochastically bounded. Hence
the lemma. �

Remark. The difference between TN and T̃N is thus negligible and
yet there is a sharp contrast between their presentations by sums in-
troduced above. Namely, unlike the τi’s, the ξj’s are not independent.
Moreover, as we shall see below, there are whole random regions on
[0, N ] where the knowledge of just one ξj essentially determines the
values all the others. In fact, namely this strong interdependence of
ξj’s implies some of the main results of this paper.

From now on we shall deal mainly with tN which is a normalized
version of TN , namely we set

tN =


TN

N1/s if 0 < s < 1,
TN−Eω(TN )

N1/s if 1 ≤ s < 2,
TN−Eω(TN )√

N lnN
if s = 2.
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It is also important and natural to have control over the Eω(TN). The
corresponding normalized quantity is defined as follows:

uN =


Eω(TN )

N1/s if 0 < s < 1,
Eω(TN )−uN

N
if s = 1,

Eω(TN )−E(TN )

N1/s if 1 < s < 2,
Eω(TN )−E(TN )√

N lnN
if s = 2,

where uN is the same as in Theorem 1. Set

(2.1) F ω
N(x) = Pω (tN ≤ x) .

We can consider F ω
N as a random variable with values in the space X of

distributions on the line. Endowed with topology of weak convergence
X is a topological space with topology given by the metric

(2.2) d(F1, F2) = inf{ε : F2(x− ε)− ε < F1(x) < F2(x+ ε) + ε}.
The result from [17, 19] cited above states that these processes are
not concentrated near one point (at least for 0 < s < 2). We shall
show that nevertheless the limiting behaviour of the sequence tN can
be described in terms of a marked point Poisson process which we shall
now introduce.

We start with a point Poisson process. Given a c > 0, let Θ = {Θj}
be a point Poisson process 1 on (0,∞) with intensity c

θ1+s . For a given
collection of points {Θj} let {ΓΘj

} be a collection of i.i.d. random
variables with mean 1 exponential distribution which are labeled by
the points {Θj}. In the sequel we shall use a concise notation {Γj} for
{ΓΘj

}. We can now consider a new process (Θ,Γ) = {(Θj,Γj)} which
is often called the marked point Poisson process. We note that (Θ,Γ)
is in fact a point Poisson process on (0,∞) × (0,∞) with intensity

c
θ1+s × e−x. We shall denote by E(·), Var(·), etc. the expectations,
variances, etc. with respect to the distribution of (Θ,Γ) and by PΘ(·)
the conditional probability distribution of Γ conditioned on Θ.

Set

(2.3) Y =

{∑
j ΘjΓj if 0 < s < 1∑
j Θj (Γj − 1) if 1 ≤ s < 2

.

Observe that Y is finite almost surely. Indeed, there are only finitely
many points with Θj ≥ 1. Next, if 0 < s < 1 let

Ỹ =
∑
Θj<1

ΘjΓj.

1For reader’s convenience we collect some facts about the Poisson processes in
section 3.1.
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Then

E(Ỹ ) =

∫ 1

0

cθdθ

θ1+s
=

c

1− s
<∞.

In case 1 ≤ s < 2 let

Ỹδ =
∑

δ<Θj<1

Θj(Γj − 1).

Then E(Ỹδ) = 0 and

Var(Ỹδ) =

∫ 1

δ

cθ2dθ

θ1+s
=

c

2− s

(
1− δ2−s) .

Denote by Θ(δ) a point Poisson process on Rδ := [δ,∞) with intensity
c

θ1+s and let (Θ(δ),Γ) be a point process with Γ being as above. (Θ(δ),Γ)
can be viewed as a restriction of (Θ,Γ) a smaller phase space. It is
important that Θ(δ) and (Θ(δ),Γ) converge weakly, as δ → 0, to Θ
and (Θ,Γ) respectively. Namely, for a given Θ define the conditional
distribution function of Y by FΘ(x) = PΘ(Y ≤ x) ≡ P (Y ≤ x |Θ).
Since Θ is a random parameter, FΘ is a random variable taking values
in X . Next, for 1 ≤ s < 2 set

FΘ
δ (x) = P (

∑
δ<Θj

Θj(Γj − 1) ≤ x |Θ)

and FΘ
δ (x) is defined similarly for 0 < s < 1. Then for P -almost all Θ

d(FΘ
δ , F

Θ) → 0 as δ → 0.
Let Fδ be the set of all finite subsets of Rδ and Θ(N,δ) : Ω 7→ Fδ

be a sequence of point processes defined on the space of environments
Ω and taking values in Fδ. The standard definitions of the relevant
sigma-algebra and measurability can be found e.g. in [22]. In the
constructions below such sequences will be arising in a natural way
and it will always be clear that the relevant mappings are measurable.
Set |Θ(N,δ)| ≡ Card(Θ(N,δ)). We need the following

Definition. A sequence of random point processes Θ(N,δ) = {Θ(N,δ)
j }

defined on Ω converges weakly to a Poisson process Θ(δ) if for any
k ≥ 1 and any bounded continuous symmetric function Hk : Rk

δ 7→ R
of k variables

lim
N→∞

E
(
Hk(Θ

(N,δ)) I|Θ(N,δ)|=k
)

= E
(
Hk(Θ

(δ)) I|Θ|=k
)
.

Suppose next that Γ(N,δ) is a collection of random variables defined

on Ω and labeled by the points of Θ(N,δ) = {Θ(N,δ)
j }:(

Θ(N,δ),Γ(N,δ)
)

= {(Θ(N,δ)
j (ω),Γ

(N,δ)
Θj

(ω))}
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As in the definition of (Θ,Γ), we shall write {Γ(N,δ)
j } for {Γ(N,δ)

Θj
}. Fi-

nally, the process (Θ(N,δ),Γ(N,δ)) = {(Θ(N,δ)
j ,Γ

(N,δ)
j )} can be viewed as

a mapping

(Θ(N,δ),Γ(N,δ)) : Ω 7→ Fδ × F̃,

where F̃ is the set of all finite subsets of [0,∞). The weak convergence
of this sequence of processes to (Θ(δ),Γ) is defined as above with the
only difference that now we have to deal with symmetric continuous
functions Hk : (Rδ × [0,∞))k 7→ R.

Definition. {Γ(N,δ)
j (ω)} is said to be asymptotically i.i.d. with distri-

bution ν and asymptotically independent of the environment if for
any k ≥ 1 and any bounded continuous symmetric function Hk :
(Rδ × [0,∞))k 7→ R of k pairs of variables (Θ,Γ) = ((Θ1,Γ1), ..., (Θk,Γk))

lim
N→∞

E
[
I|Θ(N,δ)|=k

∣∣Eω

(
Hk((Θ

(N,δ),Γ(N,δ)))
)
− H̄k(Θ

(N,δ))
∣∣] = 0,

where

H̄k(Θ1, . . . ,Θk) =

∫
. . .

∫
Hk((Θ1,Γ1), . . . , (Θk,Γk))dν(Γ1) . . .ν(Γ1).

Note that here Hk((Θ
(N,δ),Γ(N,δ))) is well defined because |Γ(N,δ)| =

|Θ(N,δ)| = k. We can now state our main result.

Theorem 2. For 0 < s < 2 and a δ > 0 there is a sequence ΩN,δ ⊂ Ω
such that limN→∞P(ΩN,δ) = 1 and a sequence of random point pro-
cesses

(Θ(N,δ),Γ(N,δ)) : Ω× X 7→ Fδ × F̃,

such that
(i) The component Θ(N,δ) depends only on ω and converges weakly to
a point Poisson process Θ(δ) on [δ,∞) with intensity c̄

θ1+s (with some
constant c̄ > 0).

(ii) The component Γ(N,δ) = {Γ(N,δ)
j } is a collection of asymptotically

i.i.d. random variables with mean 1 exponential distribution which also
are asymptotically independent of the environment.
(iii) The tN and uN can be presented in the following form:
(a) If 0 < s < 1 then for ω ∈ ΩN,δ

(2.4)

tN =
∑
j

Θ
(N,δ)
j Γ

(N,δ)
j +RN , where RN ≥ 0 and E(1ΩN,δ

RN) = O(δ1−s)

uN =
∑
j

Θ
(N,δ)
j + R̂N , where R̂N ≥ 0, E(R̂N) = O(δ1−s)
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(b) If s = 1 then for ω ∈ ΩN,δ and a given 1/2 < κ < 1

tN =
∑
j

Θ
(N,δ)
j (Γ

(N,δ)
j −1)+RN , where E

[
1ΩN,δ

Eω(R
2
N)
]κ

= O(δ2κ−1)

uN =
∑
j

Θ
(N,δ)
j − c̄| ln δ|+ R̂N , where E(|R̂N |2) = O(δ)

(c) If 1 < s < 2 then for ω ∈ ΩN,δ

tN =
∑
j

Θ
(N,δ)
j (Γ

(N,δ)
j − 1) +RN , where E

[
1ΩN,δ

Eω(R
2
N)
]

= O(δ2−s)

uN =
∑
j

Θ
(N,δ)
j − c̄

(s− 1)δs−1
+ R̂N , where E(R̂2

N) = O(δ2−s)

Remark. The estimates of the remainders in the statements of Theo-
rem 2 are not uniform in N but are uniform in δ. More precisely, e. g.
the relation E(|R̂N |2) = O(δ) means that for any δ > 0 there is Nδ and

a constant C (which does not depend on δ) such that E(|R̂N |2) ≤ Cδ
if N > Nδ.

Remark. Note that the dependence of Θ(N,δ) on ω persists as N →∞
whereas Γ(N,δ) becomes “almost” independent of ω. More precisely,
for K � 1 and sufficiently large N the events Bk := {|Θ(N,δ)| = k},
0 ≤ k ≤ K, form, up to a set of a small probability, a partition of Ω.
Obviously

lim
N→∞

P{|Θ(N,δ)| = k} =
e−c̃δ

−s
(c̃δ−s)k

k!
,

where c̃ = c̄/s. In contrast, if ω ∈ Bk then Γ(N,δ)(ω,X) is a collection
of k random variables which converge weakly as N → ∞ to a collec-
tion of k i.i.d. standard exponential random variables. Thus the only
dependence of Γ(N,δ)(ω,X) on ω and δ which persists as N → ∞ is
reflected by the fact that |Θ(N,δ)| = |Γ(N,δ)|.

It is natural to expect that Theorem 2 implies weak convergence of
the relevant distributions. Namely, both F ω

N(x) defined by (2.1) and
FΘ(x) = P (Y ≤ x |Θ) can be viewed as monotone random processes
with x playing the role of the time of the process and with random
parameters ω and Θ respectively or, eqivalently, as random variable
taking values in X . We say that F ω

N ⇒ FΘ as N → ∞ if for any
continuous function ϕ : X 7→ R

lim
N→∞

E(ϕ(F ω
N)) = E(ϕ(FΘ)).

The following corollary follows from Theorem 2.
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Corollary 1. (a) If 0 < s < 2, s 6= 1 then F ω
N converges weakly to FΘ.

(b) If 1 < s < 2 then
(
F ω
N ,

Eω(TN )−E(TN )

N1/s

)
converges weakly toFΘ, lim

δ→0

∑
Θj>δ

Θj −
c̄

(s− 1)δs−1

 .

(c) If s = 1 then there exists uN ∼ c̄N lnN such that
(
F ω
N ,

Eω(TN )−uN

N

)
converges weakly toFΘ, lim

δ→0

∑
Θj>δ

Θj + c̄ ln δ


where E

(∑
δ<Θj<1 Θj

)
= −c̄ ln δ.

The proof of this corollary follows from a general statement about
weak convergence of monotone random processes. A brief explanation
of relevant ideas is given in Appendix B.

Remark. Similar limiting distributions were obtained in [24] for a
simpler model of ‘random climbing’ where the particle moves forward
with unit speed and with intensity 1 it slides back to a nearest point
of intensity λ Poisson process.

We also recover the result of [19].

Corollary 2. For 0 < s < 2 and P-almost every environment ω the
sequence tN(ω,X) has no limiting distribution as N → ∞. Moreover,
fix a finite sequence aj > 0. Let F be the distribution function of

(2.5)

{∑
j ajΓj, 0 < s < 1,∑
j aj(Γj − 1), 1 ≤ s < 2.

Then with probability one there exists a sequence Nk(ω) such that d(F ω
Nk(ω),F) →

0 as k →∞.
Consequently, for P-almost every environment ω any distribution

that can be obtained as a limit of distributions of type (2.5) can also be
obtained as a weak limit of tNk

(ω,X) as k →∞, where Nk depends on
ω and {aj}.

The proof of this statement will be given in the Appendix A.

We complete the picture by stating the result for the case s = 2.
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Theorem 3. If s = 2 then there are constants D1, D2 such that (tN , uN)
converge weakly to (N1,N2) where N1 and N2 are independent Gauss-
ian random variables with zero means and variances D1 and D2 respec-
tively. Moreover, tN is asymptotically independent of the environment.

Remark. For s = 2 the fact that uN is asymptotically normal was
proved in [12] and so to prove Theorem 3 it is enough to show that for
any ε > 0

(2.6) P

(
sup
x
|F ω
N(x)− FN1(x)| > ε

)
→ 0 as N →∞.

Indeed F ω
N and uN = Eω(TN )−E(TN )√

N lnN
are evidently asymptotically inde-

pendent since the distribution of the latter depends only on the envi-
ronment and the distribution of the former is asymptotically the same
for the set of ωs of asymptotically full measure.

It is well known that the reason why the hitting times do not always
satisfy the Central Limit Theorem is the presence of traps which slow
down the particle. It will be seen in the proofs that Theorems 2 and
3 state that if traps are ordered according to the expected time the
walker spends inside the trap then the asymptotic distribution of traps
is Poissonian with intensity c

θ1+s . This result holds regardless of the
value of s. However, if s ≥ 2 then the time spent inside the traps is
smaller than the time spent outside of the traps.

Let as before ξn be the number of visits to n and ξ∗N = max[0,N ] ξn.

Theorem 4. If s > 0 then
ξ∗N
N1/s converges to maxj Θ̂j, where Θ̂ is

a Poisson process on (0,∞) with intensity c̄
θ1+s for some constant c̄.

Accordingly

P
(
ξ∗N < xN1/s

)
→ exp

[
− c̄

s
x−s
]
.

Theorem 4 shows that the fact that traps are Poisson distributed is
useful even for s > 2.

Corollary 3. If 0 < s < 1 then as N →∞

lim sup
ξ∗N
TN

> 0

almost surely.

Remark. Corollary 3 is a minor modification of the result of [8].
Namely, in [8] the authors consider not all visits to site n but only
visits before T̃N . By Lemma 2.1 this difference is not essential since
most visits occur before T̃N .
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3. Preliminaries.

3.1. Poisson process. The proofs of the facts listed below can be
found in monographs [20, 22].

Let (X,µ) be a measure space. Recall that a Poisson process is a
point process on X such that
(a) if A ⊂ X, µ(A) is finite, and N(A) is the number of points in A
then N(A) has a Poisson distribution with parameter µ(A);
(b) ifA1, A2 . . . Ak are disjoint subsets ofX thenN(A1), N(A2) . . . N(Ak)
are mutually independent.

If X ⊂ Rd and µ has a density f with respect to the Lebesgue
measure we say that f is the intensity of the Poisson process.

Lemma 3.1. (a) If {Θj} is a Poisson process on X with measure µ

and ψ : X → X̃ is a measurable map then Θ̃j = ψ(Θj) is a Poisson

process with measure µ̃ where µ̃(Ã) = µ(ψ−1Ã).
In particular if X = X̃ = R and ψ is invertible then the intensity of

Θ̃ is

(3.1) f̃(θ) = f(ψ−1(θ))

∣∣∣∣dψdθ
∣∣∣∣−1

.

(b) Let (Θj,Γj) be a point process on X × Z. Then (Θj,Γj) is a
Poisson process on X ×Z with measure µ× ν where ν is a probability
measure if and only if {Θj} is a Poisson process on X with measure µ
and {Γj} are Z-valued random variables which are i.i.d. with distribu-
tion ν and independent of {Θk}.

(c) If in (b) X = Z = R then Θ̃ = {ΓjΘj} is a Poisson process. Its
intensity is

f̃(θ) =

∫
f
(
θΓ−1

)
Γ−1ν(dΓ).

Lemma 3.2. Let Θ be Poisson process on X, ψ : X → R a measurable
function with

∫
|ψ(θ)|dµ(θ) <∞ then

V =
∑
j

ψ(θj)

is finite with probability 1, the characteristic function of V is given by

(3.2) E(exp(ivV )) = exp

[∫ (
eivψ(θ) − 1

)
dµ(θ)

]
,

and

(3.3) E(V ) =

∫
ψ(θ)dµ(θ).
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If in addition to the above conditions
∫
ψ2(θ)dµ(θ) <∞ then

(3.4) Var(V ) =

∫
ψ2(θ)dµ(θ)

Remark. Proofs of the statements listed in Lemmas 3.1 and 3.2 can
be found in [20].

Lemma 3.3. (a) If 0 < s < 1 and Θj is a Poisson process with
intensity θ−(1+s) then

∑
j Θj has a stable distribution of index s.

(b) If 1 < s < 2 and Θj is a Poisson process with intensity θ−(1+s)

then

lim
δ→0

∑
δ<Θj

Θj

− 1

(s− 1)δs−1


has a stable distribution of index s.

(c) If s = 1 and Θj is a Poisson process with intensity θ−2 then

lim
δ→0

∑
δ<Θj

Θj

− | ln δ|


has a stable distribution of index 1.

Remark. The proof of Lemma 3.3 follows from a direct computation
of the characteristic function of the relevant sums in (a), (b), (c) us-
ing formula (3.2). We also note that the expressions under the limit

sign in (b) and (c) are equal to
∑

δ<Θj
Θj − EΘ

(∑
δ<Θj

Θj

)
. One

thus could say that the existence of the limit means that the series∑
j(Θj − EΘ(Θj)) converges. However, for this interpretation of one

has to introduce an ordering relation on the random sets {Θj} (see
[22]).

3.2. Backtracking. As was mentioned before the analysis of our pa-
per relies on the fact that the random walk is unlikely to backtrack.
The precise statement we shall use is the following.

Lemma 3.4. ([8], Lemma 3.3) There exist C > 0, β < 1 such that

P(X visits n after n+m) ≤ Cβm.

Remark. Here and below letters β, β̄, β1, β2, etc. always denote a
positive constant which is strictly smaller than 1. The precise meaning
of these is always clear from the context.
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3.3. Occupation times. Recurrence relation. As before, let ξn be
the number of visits to the site n and set ρn = Eωξn. Observe that ξn
has geometric distribution with parameter 1/ρn.

Lemma 3.5. If X0 = 0 then for n ≥ 0

(3.5) ρn = p−1
n qn+1ρn+1 + p−1

n = p−1
n (1 + αn+1 + αn+1αn+2 + ...),

where αj =
qj
pj
.

Proof. Let η+
n and η−n be the number of passages of the edge [n, n+ 1]

in the forward, respectively, backward direction. Denote σ±n = Eωη
±
n .

We have

ρn =
∑
j

Pω(Xj = n) and σ+
n =

∑
j

Pω(Xj = n,Xj+1 = n+ 1).

Thus σ+
n = ρnpn. Likewise σ−n = ρn+1qn+1. Since Xn → +∞ we have

that η+
n − η−n = 1 for n ≥ 0. Hence ρnpn − ρn+1qn+1 = 1 which implies

the first relation in (3.5). Iterating this relation k times gives
(3.6)
ρn = p−1

n αn+1 . . . αn+k−1qnρn + (1 + αn+1 + · · ·+ αn+1 . . . αn+k−1)p
−1
n .

Since E(lnα) < 0 we see that the first term in (3.6) tends to 0 as
k →∞ almost surely and this proves the second relation in (3.5). �

For future references, we record a useful bound for ρn−k in terms

of ρn. For k ≥ 1 set An,k :=
∏k−1

j=1 αn−k+j (with An,1 = 1),Bn,k :=

1 + αn−k+1 + · · · + αn−k+1 . . . αn−1. Then (3.6), with n replaced by
n− k, can be rewritten as

(3.7) ρn−k = p−1
n−kqnAn,kρn + p−1

n−kBn,k.

Set c̄ := ε−1
0 , where ε0 is from condition (C). It follows from (3.7) that

(3.8) ρn−k ≤ c̄An,kρn + c̄Bn,k

and (3.8) implies that

(3.9) ρn−k ≤ c̄An,kρn + c̄kε−k0 .

Note that An,k and ρn are independent random variables.
Next, we introduce

(3.10)
zn := 1 + αn+1 + αn+1αn+2 + ...+ αn+1...αn+m + ....

= 1 + αn+1 + αn+1αn+2 + ...+ αn+1...αn+mzn+m

In particular, we have that zn = 1 + αn+1zn+1, where αn+1 and zn+1

are independent random variables and the sequence {zn}−∞<n<∞ con-
sidered backward in time forms a Markov chain. Note that ρn = p−1

n zn
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is a function on the phase space of the Markov chain {pn, zn} (where
pn and zn are independent).

We also need a slightly more general Markov process un defined by

(3.11) un = σn+1 + αn+1un+1

where the pair (σn+1, αn+1) is independent of {un+m}∞m=1.
The stationary distributions of zn, ρn, and un have a very important

heavy tail property which plays a crucial role in our proofs and is
described by the following

Lemma 3.6. Suppose that 0 < c0 ≤ σn ≤ c1 for some c0, c1 with
probability 1 and that conditions (A) – (D) are satisfied. Then

(a) Let ν denote the stationary measure for the process un. Then
there is a constant C such that limx→+∞ x

sν(u > x) = C, where s > 0
satisfies E(αs) = 1 (as in condition (B)).

(b) There exists a c > 0 such that limx→+∞ x
sP(zn > x) = c.

(c) There exists c∗ > 0 such that limx→+∞ x
sP(ρn > x) = c∗.

Proof. (a) is proven in [13] (under more general conditions). (b) is a
particular case of (a). (c) follows from (b) since ρn = p−1

n zn and

P(p−1
n zn > x) = E[P(zn > xpn|pn)] ∼ E(cx−sp−s) = cx−sE(p−s),

where the first equality is due to the total probability formula and the
second to the independence of pn and zn. We also see that c∗ = cE(p−s).
�

Lemma 3.7. There exist ε1 > 0, ε2 > 0, 0 < β < 1 such that for any
δ > 0 there are Nδ and C = Cδ > 0 such that for N > Nδ one has:
(a) If k ≤ ε1 lnN then

P(ρn ≥ δN1/s, ρn−k ≥ δN1/s) ≤ Cβk

N
;

(b) If k ≥ ε1 lnN then

P(ρn ≥ δN1/s, ρn−k ≥ δN1/s) ≤ CN−(ε2+1).

Proof. (a) It follows from (3.9) that if ε1 is chosen so that −ε1 ln ε0 ≤ 1
3s

and N is sufficiently large then

ρn−k ≤ c̄ρnAn,k + c̄ε1(lnN)ε−ε1 lnN
0 ≤ c̄ρnAn,k + c̄N

1
2s .

Next, there exist β1, β2 < 1 such that

(3.12) P(αn−1 . . . αn−k ≥ βk1 ) ≤ βk2 .
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Indeed, if 0 < h < min(1, s) and β1 is such that E(αh) < βh1 < 1 then
it follows from the Markov’s inequality that

(3.13) P(αn−1 . . . αn−k ≥ βk1 ) ≤ (E(αh))k

βhk1

≡ βk2 .

We can now choose Nδ so that for N > Nδ we shall have

P(ρn ≥ δN1/s, ρn−k ≥ δN1/s) ≤ P(ρn ≥ δN1/s, c̄ρnAn,k + c̄N
1
2s ≥ δN1/s)

≤ P(ρn ≥ δN1/s, c̄ρnAn,k ≥
δ

2
N1/s)

Finally, the right hand side in the above inequality is estimated as
follows:

P(ρn ≥ δN1/s, c̄ρnAn,k ≥
δ

2
N1/s)

= P(ρn ≥ δN1/s, c̄ρnAn,k ≥
δ

2
N1/s, An,k ≤ βk1 )

+ P(ρn ≥ δN1/s, c̄ρnAn,k ≥
δ

2
N1/s, An,k > βk1 )

≤ P

(
ρn ≥

β−k1 δN1/s

2c̄

)
+ P(ρn > δN1/s and An,k > βk1 ) ≤ Const

βks1 + βk2
N

,

where the last step makes use of Lemma 3.6 (hence the dependence of
the Const on δ) and of independence of ρn and An,k.

(b) For any ε3 > 0 we can write

(3.14)

P(ρn ≥ δN1/s, ρn−k ≥ δN1/s)

≤ P(δN1/s ≤ ρn ≤ δN
1+ε3

s , ρn−k ≥ δN1/s) + P(ρn > δN
1+ε3

s )

≤
¯̄c

N1+ε3
+ P(δN1/s ≤ ρn ≤ δN

1+ε3
s , ρn−k ≥ δN1/s),

where the last step follows from Lemma 3.6. It is clear from (3.8) that
the last term in (3.14) can be estimated above by
(3.15)

≤ P(δN1/s ≤ ρn ≤ δN
1+ε3

s , c̄An,kρn + c̄Bn,k ≥ δN1/s)

≤ P(δN1/s ≤ ρn ≤ δN
1+ε3

s , c̄An,kδN
1+ε3

s + c̄Bn,k ≥ δN1/s)

= P(δN1/s ≤ ρn ≤ δN
1+ε3

s )P(c̄An,kδN
1+ε3

s + c̄Bn,k ≥ δN1/s),

where the last step is due to the independence of ρn and (An,k, Bn,k).
Next, let 1 > h > 0 be such that β̄ = E(αh) < 1, then E(Bh

n,k) ≤
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(1− β̄)−1. By Markov’s inequality
(3.16)

P(c̄An,kδN
1+ε3

s + c̄Bn,k ≥ δN1/s) ≤ c̄h
E(δhN

1+ε3
s

hAhn,k +Bh
n,k)

δhNh/s

≤ ¯̄cN
ε3h

s β̄k + ¯̄cN
−h
s .

Since k ≥ ε1 lnN , we have that N
ε3h

s β̄k ≤ N
ε3h

s
+ε1 ln β̄ = N−ε̄ (with ε3

sufficiently small so that to make ε̄ strictly positive). Finally, it follows
from Lemma 3.6, (3.15) and (3.16) that
(3.17)

P(δN1/s ≤ ρn ≤ δN
1+ε3

s , ρn−k ≥ δN1/s) ≤ ConstN−1−min(ε̄, h/s).

The proof of (b) now follows from (3.17) and (3.14). �

Next, we need the fact that ρn is exponentially mixing by which we
mean that for a typical realization of α the dependence of ρn−k on ρn
decays exponentially. To prove this we use (3.7). We formulate this
statement as follows. Given a ρ̂n define for k > 0

(3.18) ρ̂n−k = p−1
n−kρ̂nqnAn,k + p−1

n−kBn,k.

We are mainly interested in the case when the difference between ρ̂n
and ρn is large. More specifically we assume that ρ̂hn ≥ E(ρhn)+2, where
0 < h < min(1, s) is as in (3.13). Then the following holds.

Lemma 3.8. Let ρ̂n−k be defined by (3.18) and ρn be the stationary
sequence satisfying (3.7). Then there exist K > 0 and β1, β3 < 1 such
that for k > K ln ρ̂n

P
(
|ρn−k − ρ̂n−k| ≥ βk1

)
≤ βk3 .

Proof. It follows from (3.7) and (3.18) that

|ρn−k − ρ̂n−k| ≤ c̄An,k |ρn − ρ̂n| .

Consider the same 0 < h < 1, β1, and β2 as in (3.12), (3.13) and set
β3 = (1 + β2)/2. Then

P
(
|ρn−k − ρ̂n−k| ≥ βk1

)
≤ P

(
c̄An,k |ρn − ρ̂n| ≥ βk1

)
≤ βk2 [E(ρhn)+ρ̂

h
n] ≤ βk3 .

Here the first inequality is obvious. The second one is due to the
Markov inequality, to (3.12), and to the independence of ρn and An,k.
Finally, one easily checks that the third one holds for k > K ln ρ̂n, where
K := 2h/ ln(0.5+0.5β−1

2 )+1 (this is where the condition ρ̂n ≥ E(ρhn)+2
is used). �
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3.4. Occupation times. Correlations. The proofs of Lemmas 3.10
and 3.11 will make use of several elementary equalities and inequalities
concerned with a Markov chain Y = {Yt, t ≥ 0} with a phase space
{1, 2, 3} and a transition matrix

(3.19)

 p̄ q̄ 0
¯̄q ¯̄p ε
0 0 1

 .

Namely, let η̄ and ¯̄η be the total numbers of visit by Y to sites 1 and 2
respectively. Set U1 = E(η̄|Y0 = 1), U2 = E(η̄|Y0 = 2), V1 = E(¯̄η|Y0 =
1), V2 = E(¯̄η|Y0 = 2). It follows easily from the standard first step
analysis that

(3.20) U1 =
ε+ ¯̄q

εq̄
, U2 =

¯̄q

εq̄
, V1 = V2 =

1

ε
.

Next, set Wi = E(η̄ ¯̄η|Y0 = i), where i = 1, 2. Once again, by the first
step analysis, one easily obtains that

(3.21) W1 = p̄W1 + q̄W2 + V1, W2 = ¯̄qW1 + ¯̄pW2 + U2.

Solving (3.21) gives

(3.22) W1 = V1(U1 + U2), W2 = U2(V1 + V2)

and hence

(3.23) Cov(η̄, ¯̄η|Y0 = 1) = Cov(η̄, ¯̄η|Y0 = 2) = V1U2.

It is a standard fact that η̄ conditioned on Y0 = 1 has geometric distri-
bution whose parameter is thus U−1

1 . If our Markov chain starts from 1
it must visit 2 before being absorbed by 3. Hence the distribution of ¯̄η
conditioned on Y0 = 1 is the same as the distribution of ¯̄η conditioned
on Y0 = 2 and is geometric with parameter V −1

2 = ε. We therefore
have that Var(η̄|Y0 = 1) = U2

1 − U1 and Var(¯̄η|Y0 = 1) = V 2
2 − V2. We

can now compute the correlation coefficient of η̄ and ¯̄η which, taking
into account (3.20), can be presented as follows:
(3.24)

Corr(η̄, ¯̄η|Y0 = 1) =
V1U2√

(U2
1 − U1)(V 2

2 − V2)
=

¯̄q
¯̄q + ε

(1−U−1
1 )−

1
2 (1−V −1

2 )−
1
2 .

This formula implies lower and upper bounds for correlations in two
different regimes: (a) when ¯̄q/ε → 0 and (b) when ε → 0 while q̄, ¯̄q
remain separated from 0. Here is the precise statement we need.
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Lemma 3.9. (a) Suppose that U1 ≥ 1 + c, V2 ≥ 1 + c, where c > 0.
Then

(3.25) Corr(η̄, ¯̄η|Y0 = 1) ≤ Const
¯̄q

ε
≡ Const ¯̄qV1.

where the constant in this formula depends only on c.
(b) If ¯̄q ≥ c and q̄ ≥ c for some c > 0 then for ε small enough, or,

equivalently, U1 large enough

(3.26) Corr(η̄, ¯̄η|Y0 = 1) ≥ 1− ε

c
, Corr(η̄, ¯̄η|Y0 = 1) ≥ 1− 1

cU1

.

Proof. (a) Inequality (3.25) is an immediate corollary of (3.24).
(b) (3.24) can be written as

Corr(η̄, ¯̄η|Y0 = 1) =
¯̄q

¯̄q + ε
(1− εq̄

¯̄q + ε
)−

1
2 (1− ε)−

1
2 .

If ε
¯̄q
< 1 then it follows from here that

(3.27) Corr(η̄, ¯̄η|Y0 = 1) = 1−
(

1− q̄ + ¯̄q

2

)
ε
¯̄q

+O

((
ε
¯̄q

)2
)
.

Due to (3.20) and conditions of the Lemma we have ε =
¯̄q
q̄

(
U−1

1 +O(U−2
1 )
)

and hence

(3.28) Corr(η̄, ¯̄η|Y0 = 1) = 1−
(

1− q̄ + ¯̄q

2

)
1

q̄U1

+O(U−2
1 ).

(3.26) is now a simple corollary of (3.27) and (3.28). �

The next two lemmas follow from Lemma 3.9 and reflect the fact
that the correlations between the number of visits to nearby sites are
strong but decay rapidly as the spatial distance increases.

Lemma 3.10. There is a C > 0 such that for P-almost all ω and
n ≥ 0

(3.29) Corrω(ξn, ξn+1) ≥ 1− C

ρn
.

Proof. Let ω be such that the random walk X runs away to +∞ with
Pω probability 1 (which is the case for P-almost all ω). For a given
n ≥ 0 consider a Markov chain Y = {Yt, t ≥ 0}, with the state space
{n, n + 1, as}, where n, n + 1 are sites on Z and as is an absorbing
state. Let k0 < k1 < ... < kτ be the sequence of all moments such
that Xkj

∈ {n, n + 1}; we set Yt = Xkt if t ≤ τ and Yt = as if t > τ .
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It is easy to see that the transition matrix of Y is as in (3.19) with
transition probabilities given by

p̄ = qn, q̄ = pn, ¯̄q = qn+1,

¯̄p = Pω{Xk starting from n+ 1 returns to n+ 1 before visiting n},

ε = Pω{Xt starting from n+ 1 never returns to n+ 1}.

Also, in this context, η̄ = ξn, ¯̄η = ξn+1 and hence V1 = ρn. Next,
q̄, ¯̄q are separated from 0 because of condition (C) from Section 1. All
conditions of Lemma 3.9 are thus satisfied and hence, for ρns which are
sufficiently large, (3.29) follows from (3.26). �

Lemma 3.11. (a) There exist sets ΩN , K > 0 such that P(Ωc
N) ≤

N−100 and if ω ∈ ΩN then for all 0 ≤ n1, n2 ≤ N with n2 > n1+K lnN
we have

Corrω(ξn1 , ξn2) ≤ N−100.

(b) If K is sufficiently large then for each N there exist random vari-
ables {ξ̄n}Nn=0 such that for each ω ∈ ΩN and any sequence 0 ≤ n1 <
n2 · · · < nk ≤ N with nj+1 > nj + K lnN, the variables {ξ̄nj

}kj=0 are
mutually independent and

(3.30) P(ξ̄n = ξn for n = 0, . . . , N) ≥ 1− C

N100
.

Proof. (a) Consider a Markov chain Y which is defined as in the proof
of Lemma 3.10 with the difference that its state space is {n1, n2, as}
and that η̄ = ξn1 , ¯̄η = ξn2 . Then by (3.25)

Corrω(ξn1 , ξn2) ≤ Const ¯̄qρn2 .

But, by Lemma 3.6, ρn ≤ N
103
s except for the set of measure O(N−103).

Now Lemma 3.4 guarantees that we can choose K so that if the sites
are separated by K lnN then ¯̄q < N−(101+103/s) except for the set of
measure O(N−103). This proves (a) for fixed n1, n2 on a set of measure
≥ 1−O(N−103) which in turn implies the wanted result.

(b) Let ξ̄n be the number of visits to the site n before the first visit
to n+ K lnN

2
. It follows from this definition that {ξ̄nj

}kj=0 are mutually
independent. Next,

P(ξ̄n = ξn) ≤ P(X visits n after n+ 0.5K lnN)

Now (3.30) follows from Lemma 3.4. �
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4. Proof of Theorem 2.

Our goal is to show that the main contribution to TN comes from
the terms where ρn is large. However, the set where ρn is large has an
additional structure. Namely, if ρn is large the same is true for ρn±1

and more generally for ρn1 and ρn2 when n1 and n2 are close to n;
this implies that the corresponding ξn1 and ξn2 are strongly correlated.
But if n1 and n2 are far apart then ρn1 and ρn2 , and also ξn1 and ξn2 ,
are almost independent. In the arguments below we need to take care
about this additional structure.

But first we show that terms where ρn < δN1/s can be neglected.
The following convention will be used throughout this section: the

summations are over suitable n, n1, n2 in [0, N − 1].

Lemma 4.1. Let δ > 0. Then there is Nδ such that for N > Nδ the
following holds:

(a) If 0 < s < 1 then

E

 ∑
ρn<δN1/s

ξn

 ≤ ConstN1/sδ1−s.

(b) If 1 < s < 2 then there is a set Ω̃N,δ such that P(Ω̃c
N,δ) ≤ N−100

and

E

1Ω̃N,δ
Eω

 ∑
ρn<δN1/s

(ξn − ρn)

2 ≤ ConstN2/sδ2−s.

(c) If 0 < s < 1 then

E

 ∑
ρn<δN1/s

ρn

 ≤ ConstN1/sδ1−s.

(d) If 1 < s < 2 then

Var

 ∑
ρn<δN1/s

ρn

 ≤ ConstN2/sδ2−s.

(e) If s = 1 then given 1
2
< κ < 1 there is a set Ω̃N,δ such that

P(Ω̃c
N,δ) ≤ N−100 and

(4.1) E

(
1Ω̃N,δ

(
Varω

( ∑
ρn<δN

(ξn − ρn)

))κ)
≤ ConstN2κδ2κ−1,
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(4.2) E

( ∑
ρn<δN

(ρn − E (ρIρ<δN))

)2
 ≤ ConstN2δ.

Proof. Set χn = Iρn<δN1/s ; this concise notation will be used only within
the proof of Lemma 4.1.

(a) Denote Yδ =
∑

ρn<δN1/s ξn. Then

E(Yδ) = NE(ρIρ<δN1/s).

By Lemma 3.6 this expectation is bounded by ConstN1/sδ1−s proving
our claim.

(b) Denote Ỹδ =
∑

ρn<δN1/s(ξn − ρn). Then Eω(Ỹn) = 0 and so it

suffices to show that Varω(Ỹδ) = o(δ2−sN2/s) except for ω from a set of
small probability. Due to Lemma 3.11 for most ωs we have
(4.3)

Varω(Ỹδ) =

∣∣∣∣∣o(1) +
∑

n2−K lnN<n1<n2

2χn1χn2Covω (ξn1ξn2) +
∑
n

χnVarω (ξn)

∣∣∣∣∣
≤ 1 + Const

∑
n2−K lnN<n1≤n2

ρn1ρn2χn1χn2

where the summation is over pairs with ρni
< δN1/s. The last step uses

Cauchy-Schwartz inequality and the fact that ξn has geometric distri-
bution, namely |Covω (ξn1ξn2)| ≤

√
Varω (ξn1) Varω (ξn2) ≤ ρn1ρn2 .

Next, we estimate the expectation of the last sum in (4.3). Using
(3.7) we can write

ρn−kρn = p−1
n−kρ

2
nqnαn−1 . . . αn−k+1 + (αn−1 . . . αn−k+1 + · · ·+ 1)p−1

n−kρn.

Since ρn and {αj, j < n} are independent we obtain

E (ρn−kρnχn) ≤ Const

[
βk−1E

(
ρ2
nχn
)

+ E (ρnχn)
k−2∑
j=0

βj

]
,

where β = E(α) < 1. Thus

(4.4) E

(
K lnN∑
k=0

(ρn−kρnχn)

)
≤ Const

[
E
(
ρ2
nχn
)

+ lnNE (ρnχn)
]
.

Hence

E

( ∑
n2−K lnN<n1≤n2

ρn1ρn2χn1χn2

)
≤ E

( ∑
n2−K lnN<n1≤n2

ρn1ρn2χn2

)
≤ Const

∑
n2

[
E
(
(ρn2)

2 χn2

)
+ lnNE(ρn2)

]
≤ Constδ2−sN2/s.
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(c) The proof of (c) is the same as proof of (a).
(d) We assume first that

(4.5) ν([δN1/s −N−100, δN1/s +N−100]) ≤ N−50

where ν is a stationary distribution of ρn.
We claim that if (4.5) holds and n2 > n1 + K̄ lnN then

(4.6) Cov (ρn1χn1 , ρn2χn2) <
1

N3

provided that K̄ is large enough.
Indeed let {ρ̂n}n∈[n1,n2−1] be a sequence such that ρ̂n2 has distribution

ν and is independent of {ρn},
ρ̂n = p−1

n qn+1ρ̂n+1 + p−1
n

for n ≤ n2 − 1 and

(4.7) P(|ρn1 − ρ̂n1| > β k̄1 ) < β k̄2

with k̄ = K̄ lnN −1 (existence of such a sequence follows from Lemma
3.8). Denote

ηn = ρnχn, η̂n = ρ̂nIρ̂n<δN1/s , A = {|ηn1 − η̂n1| > N−100}.
Note that by (4.5) A ⊂ A′

⋃
A′′, where A′ = {|ρn1 − ρ̂n1| > N−100} so

that by (4.7)
P(A′) ≤ N−100,

provided that K̄ is large enough, and A′′ = {|ρ̂n1 − δN1/s| < N−100} so
that P(A′′) ≤ N−50 due to (4.5).

Since η̂n1 is independent of ηn2 we have

|Cov(ηn2 , ηn1)| = |Cov(ηn2 , ηn1 − η̂n1)| = |E(ηn2(ηn1 − η̂n1))|
≤ E(ηn2|ηn1 − η̂n1|IAc) + E(ηn2|ηn1 − η̂n1|IA′) + E(ηn2|ηn1 − η̂n1|IA′′).

Since ηn < δN1/s, η̂n < δN1/s the first term is at most δN1/sN−100, the
second term is at most δ2N2/sP(A′) ≤ δ2N2/sN−100 and the third term
is at most δ2N1/sP(A′′) ≤ δ2N2/sN−50 proving (4.6).

(4.6) implies that if K̄ is sufficiently large then

Var

(∑
n

ρnχn

)
≤ 1 +

∣∣∣∣∣∣
∑

|n1−n2|<K̄ lnN

Cov(ρn1χn1 , ρn2χn2)

∣∣∣∣∣∣ .
The estimate of the last sum is exactly the same as in part (b). This

completes the proof of part (d) under the assumption that (4.5) holds.
To prove (4.6) without this assumption take δ̄ = δ̄N satisfing (4.5)

and such that
δ − 2N−50 < δ̄ < δ.
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(The existence of δ̄ with the required properties follows from the fact
that we can partition [δ − 2N−50, δ] into disjoint segments of length
2N−100 and note that by the pigeonhole principle all segments can not
have large measure).

Split ηn = η̄n + ¯̄ηn where

η̄n = ρnIρn<δ̄N1/s , ¯̄ηn = ρnIδ̄N1/s≤ρn<δN1/s .

Then since the cut off at δ̄N1/s satisfies (4.5) we have

Var(
∑
n

η̄n) ≤ Cδ2/sN2/s

so it remains to show that

(4.8) Var(
∑
n

¯̄ηn) ≤ Cδ2/sN2/s.

Introducing

η̃ = ρ̂nIδ̄N1/s≤ρn<δN1/s , Ã′′ = {|η̃−δ̄N1/s| < N100 or |η̃−δN1/s| < N100}

and proceeding as in the proof of (4.6) we see that if |n2−n1| > K̄ lnN
then

|Cov(¯̄ηn2
, ¯̄ηn1

)| ≤ 2δN2/sN−100 + E(¯̄ηn2
|¯̄ηn1

− η̃n1|IÃ′′).
The last term can be bounded by

δN1/sE(¯̄ηn2
IÃ′′) = δN1/sE(¯̄ηn2

)P(Ã′′)

where we have used independence of ¯̄ηn2
and η̃n1 . Next by Lemma 3.6

E(¯̄ηn2
) ≤ δN1/sP(¯̄ηn2

6= 0) ≤ CδN (1/s)−1

and P(Ã′′) ≤ C
δN
. Accordingly

|Cov(¯̄ηn2
, ¯̄ηn1

)| ≤ CδN (2/s)−2

so that ∑
|n2−n1|>K̄ lnN

|Cov(¯̄ηn2
, ¯̄ηn1

)| ≤ CδN (2/s).

On the other hand arguing as before we obtain∑
|n2−n1|≤K̄ lnN

|Cov(¯̄ηn2
, ¯̄ηn1

)| ≤ Cδ2−sN (2/s).

This proves (4.8) completing the proof of part (d) of Lemma 4.1.
(e) In view of (4.3) in order to prove (4.1) it suffices to estimate

E

( ∑
n1≤n2<n1+K lnN

χn1χn2ρn1ρn2

)κ
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We have

E

( ∑
n1≤n2<n1+K lnN

χn1χn2ρn1ρn2

)κ

≤
∑

n1≤n2<n1+K lnN

E (χn1χn2 (ρn1ρn2)
κ) .

Using that E(ακ) < 1 we can proceed as in part (b) to estimate the
last sum by

C
∑
n

[
E
(
(ρn)

2κ χn
)

+ (lnN)E ((ρn)
κ χn)

]
≤ C̃N2κδ2κ−1.

This completes the proof of (4.1).
Next we prove (4.2). We assume that (4.5) holds, this assumption

can be removed in the same way as it was done in part (d). Since the
estimate of Cov(ηn1 , ηn2) in case |n2 − n1| > K̄ lnN did not use the
fact that s > 1 we need to bound∑

|n1−n2|≤K̄ lnN

Cov(ηn1 , ηn2) =
∑

|n1−n2|≤K̄ lnN

E(ηn1 , ηn2) + o(N lnN).

Without loss of generality we can assume that n1 ≤ n2. To simplify
notation we put n2 = n, n1 = n − k. Using the same notation as in
(3.8) it is enough to bound

(4.9) E((ρ2
nAn,k + ρnBn,k)χnχn−k).

Since E(α) = 1 we have E(Bn,k) ≤ Ck. Since Bn,k is independent of ρn
the second term in (4.9) can be bounded by

E(ρnχn)E(Bn,k) ≤ Cδ lnNk ≤ C̃δ ln2N

so the main contribution come from the first term. We shall use the
fact that there are constants ε > 0 and β̄ < 1 such that for some
constant C

(4.10) E(An,kIAn,k<eεk) < Cβ̄k.

We split

E(ρ2
nAn,kχnχn−k) = E(ρ2

nAn,kIρn<δNe−εkχn−k)+E(ρ2
nAn,kIδNe−εk≤ρn<δNχn−k).

The first term is bounded by

E(ρ2
nIρn<δNe−εk)E(An,k) = E(ρ2

nIρn<δNe−εk) ≤ CδNe−εk.

Since ρn−k ≥ An,kρn the second term is bounded by

E(ρ2
nχnAkIAN,k<eεk) = E(ρ2

nχn)]E(AkIAN,k<eεk) ≤ CδNβ̄k.

Summing over n and k we get
N∑
n=1

∑
k≤K̄ lnN

E(ρ2
nAn,k + ρnBn,kχnχn−k) ≤ CδN2
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as claimed. It remains to establish (4.10). The estimate (3.12) implies

that there exists ε̂ > 0 and β̂ < 1 such that

P(An,k > e−ε̂k) ≤ β̂k.

Hence

E(An,kIAn,k<eεk) = E(An,kIAn,k<e−ε̂k)+E(An,kIe−ε̂k≤An,k<eεk) ≤ e−ε̂k+eεkβ̂k

which decays exponentially provided that ε is small enough. This
proves (4.10). �

Lemma 4.1 allows us to concentrate on sites where ρn ≥ δN1/s. In
view of Lemma 3.6 for each fixed δ we expect to have finitely many such
points on [0, N ] (namely the expected number of points is O(δ−s)).

Definition. Let M = MN := ln lnN. We shall say that n is a massive
site if ρn ≥ δN1/s. A site n ∈ [0, N − 1] is marked if it is massive and
ρn+j < δN1/s for 1 ≤ j ≤ M. For n marked the interval [n −M,n] is
called the cluster associated to n.

Note that this definition implies that the distinct clusters are disjoint.
It may happen that not all massive sites belong to one of the clusters.

This situation is controlled by the following

Lemma 4.2. There is β < 1 such that for n ∈ [0, N − 1]

(4.11) P
(
ρn ≥ δN1/s and n is not in a cluster

)
≤ Const

βM

N
.

Proof. Suppose that n is a massive point which is not in a cluster. Then
consider all massive points ni such that n < n1 < ... < nk < n + M .
Note that such points exist because otherwise n would have been a
marked point. Let now n∗ > nk be the nearest to nk massive point.
Then by construction n∗ ≥ n+M . Also n∗ ≤ n+2M because otherwise
nk would have been a marked point and n would belong to the nk-
cluster. Hence the event

{n is massive and not in a cluster} ⊂
⋃

n′∈[n+M,n+2M ]

{ρn ≥ δN1/s, ρn′ ≥ δN1/s}.

By Lemma 3.7(b) we obtain

P (n is massive and not in a cluster)

≤
n+2M∑
n′=n+M

P
(
ρn ≥ δN1/s, ρn′ ≥ δN1/s

)
≤ Const

βM

N

which proves our statement. �
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It is clear from the just presented proof that the event
{there is n which is massive and not in a cluster}

belongs to the set of environments
(4.12)
Ω̄δ
N := {∃n1, n2 : M < n2 − n1 ≤ 2M and ρn1 ≥ δN1/s, ρn2 ≥ δN1/s}.

Then again by Lemma 3.7(b) we have that
(4.13)

P
(
Ω̄δ
N

)
≤

N−1∑
n=0

n−M∑
n1=n−2M

P{ρn1 ≥ δN1/s, ρn ≥ δN1/s} ≤ ConstβM .

Obviously P(Ω̄δ
N) → 0 as N →∞.

It is clear from the definitions that P(n is massive and in a cluster) ≥
P(n is marked). The following lemma shows that in fact these quanti-
ties are of the same order of smallness.

Lemma 4.3.
(4.14)

P
(
ρn ≥ δN1/s and n is in a cluster

)
≤ ConstP (n is marked) .

Proof. The event

{n is massive and in a cluster} ⊂
M⋃
k=0

{ρn ≥ δN1/s, n+ k is marked}.

Since ρn is a stationary sequence we have

P{ρn ≥ δN1/s, n+ k is marked} =

P{ρn−k ≥ δN1/s |n is marked} ×P{n is marked}.

Fix h ∈ (0, s) and let β = E(αh). Note that β < 1. We shall now prove
that

P{ρn−k ≥ δN1/s |n is marked} ≤ Constβk.

Since M is growing very slowly we have for N ≥ Nδ that Mε−M0 �
0.5δN1/s. Then (3.9) implies that ρn−k ≤ c̄An,kρn + 0.5δN1/s and
therefore

P{ρn−k ≥ δN1/s |n is marked} ≤ P{c̄An,kρn > 0.5δN1/s|n is marked}.

For n marked ρn+1 < δN1/s and hence ρn < 2ε−1
0 δN1/s. Since An,k and

{ρj}j≥n are independent we have, with C = 2c̄ε−1
0 :

P{c̄An,kρn > 0.5δN1/s|n is marked}
≤ P{CAn,kδN1/s > 0.5δN1/s|n is marked} = P{An,k > 0.5C−1} ≤ Constβk.
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(Once again, last step is due to the Markov inequality.) Finally we
obtain

P (n is massive and is in a cluster) ≤

≤ Const(
M∑
k=0

βk)×P{n is marked} ≤ ConstP{n is marked}.

�

We shall now turn to the analysis of the properties of clusters. The
next lemma is the main technical result of the paper. It will be proved
in Section 5. We need one more

Definition. For each marked point n, we set
(4.15)

an = ρn/δN
1/s, bn =

ΣM
j=0ρn−j

ρn
and mn = ΣM

j=0ρn−j = δN1/sanbn.

We call mn the mass of the cluster.

Lemma 4.4. For a given δ > 0 the following holds:
(a) The point process {( n

N
, an, bn) : n is marked } converges as

N →∞ to a point process {(tj, ãj, b̃j)} where tj form a Poisson process
with a constant intensity c̃δ−s.

(b) For a given (finite) collection {tj} the corresponding collection

{(ãj, b̃j)} consists of i.i.d. random variables which are independent
of {tj} (except that both collections have the same cardinality). The

distributions of the pair (ã, b̃) does not depend on δ.
(c) Consequently2 {

(
n
N
, mn

N1/s

)
} converges to a Poisson process Λδ =

{(tj,Θj)} on [0, 1]× [δ,∞). Moreover if Θ̄j =
Θj

δ
then the distribution

of Θ̄j is independent of δ. Let ζ denote this distribution. Then there is
a constant c̄ such that

(4.16) lim
x→+∞

xsζ(Θ̄j > x) = c̄.

Lemma 4.5. As δ → 0 Λδ converges to a Poisson process Λ on [0, 1]×
(0,∞). Let {Θj} be the projection of Λ onto the second coordinate.
Then there exists c such that {Θj} is a Poisson process with intensity

c
θ1+s .

Proof. Consider the measure ζδ(A) = ζ(Gδ(A)), where Gδ(θ) = ( θ
δ
)

and Gδ(A) denotes the image of A under Gδ. By Lemmas 4.4(c) and
3.1(a) Λδ is a Poisson process with measure λδ where dλδ = c̃δ−sdtdζδ.

2the first statement of part (c) of Lemma 4.4 follows from parts (a) - (b) and
Lemma 3.1.
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By (4.16), as δ → 0, λδ ⇒ λ where dλ = cdt dθ
θ1+s , where c = sc̃c̄, c̃

is the constant from Lemma 4.4(a) and c̄ is the constant from Lemma
4.4(c). Hence, as δ → 0, Λδ ⇒ Λ, where Λ is a Poisson process with
measure λ. Now the result follows from Lemma 3.1(a). �

Remark. Once we know that Λδ has a limit as δ → 0 the intensity of
the limiting process can also be found by a scaling argument. Namely,
for each κ, we have Λ = limδ→0 Λκδ. Λδ depends on δ in two ways. First
its intensity is proportional to δ−s. Second, Θj/δ = ãj b̃j. Recall that

the distribution of ãj b̃j is independent of δ. Therefore replacing δ by κδ
replaces Θ → κΘ and multiplies the intensity by κ−s. In other words
rescaling {Θj} by κ amounts to multiplying its intensity by κ−s. Now
the result follows from (3.1).

We are now in a position to finish the proof of Theorem 2. We shall
do that in the case 0 < s < 1. In all other cases the proof is similar.

Present the time spent by the walk in [0, N) as

(4.17) TN =
N−1∑
n=0

ξn = S1 + S2 + S3,

where

S1 =
∑

n: ρn<δN1/s, n 6∈ any cluster

ξn

S2 =
∑

n: ρn≥δN1/s, n is not in a cluster

ξn

S3 =
∑

n:n is in a cluster

ξn.

By Lemma 4.1, (a) we have that E(S1) ≤ ConstN1/sδ1−s. Next by
(4.12), (4.13) we have that

P(S2 > 0) ≤ P
(
Ω̄δ
N

)
→ 0 as N →∞.

We readily have that for ω 6∈ Ω̄δ
N

tN = N− 1
sS3 +N− 1

sS1 = N− 1
sS3 +RN ,

where RN := N− 1
sS1 and satisfies the requirements of (a), Theorem 2.

Next, consider S3 which comes from the sum over the clusters and
is the main contribution to TN . Let us present it as follows:

N− 1
sS3 =

∑
n:n is marked

N− 1
s

M∑
j=0

ξn−j.
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In turn
M∑
j=0

ξn−j =
M∑
j=1

(
ξn−j
ρn−j

− ξn
ρn

)
ρn−j +

ξn
ρn

M∑
j=0

ρn−j

Next, using Lemma 3.10 and the fact that ξn is a geometric random
variable and therefore Varω(ξn) = ρ2

n − ρn one obtains∥∥∥∥ ξn−jρn−j
− ξn
ρn

∥∥∥∥ ≤ n−1∑
k=n−j

∥∥∥∥ ξkρk − ξk+1

ρk+1

∥∥∥∥ ≤ Const
n−1∑
k=n−j

1
√
ρk
.

Here and below ‖f‖ :=
√

Eω(|f |2) with f being a function on the space
of trajectories of the walk.

For n− j belonging to a cluster, that is (n− j) ∈ [n−M,n], we have
that ρn−j ≥ cεM0 ρn ≥ cN−ε̄ρn. (Remember that if ε1 in Lemma 3.7 is
small enough then ε̄ can be made very small which is what we shall
use in this proof.) Thus∥∥∥∥∥
M∑
j=1

(
ξn−j
ρn−j

− ξn
ρn

)
ρn−j

∥∥∥∥∥ ≤ Const
N ε̄/2

√
ρn

M∑
j=1

Mρn−j ≤ Const
N ε̄

√
ρn

M∑
j=1

ρn−j

If for n marked we set

ζn = m−1
n

M∑
j=1

(
ξn−j
ρn−j

− ξn
ρn

)
ρn−j

then ‖ζn‖ ≤ Const N ε̄
√
ρn
→ 0 as N →∞ and we have∑M
j=0 ξn−j

N1/s
=

(
ξn
ρn

+ ζn

)
mn

N1/s
,

Next ξn/ρn is asymptotically exponential with mean 1 since ξn is geo-
metric with parameter 1/ρn. Also by Lemma 3.11(b) { ξn

ρn
}n is marked are

asymptotically independent. On the other hand { mn

N1/s}n is marked are
asymptotically Poisson by Lemma 4.4. In other words,

(Θ̂N,δ, Γ̂N,δ) =

({
mn

N1/s
,
ξn
ρn

+ ζn

}
n is δ−marked

)
.

satisfy the condition of Theorem 2 except that (i) is replaced by the
condition

(̃i) ΓN,δj converges weakly to a Poisson process on [δ,∞) with measure

µδ. Moreover for each [s, t] ∈ (0,∞) µδ([s, u]) → µ([s, u]) as δ → 0
where µ([s, u]) =

∫ u
s

c
x1+sdx (the last statement follows from Lemma

4.5).
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This statement appears slightly weaker than we need but a general
argument from real analysis allows to upgrade (̃i) to (i).

Namely (̃i) shows that for each ε and δ̄ there is a number N(ε, δ̄)
such that for any collection of disjoint intervals [s1, u1], . . . , [sl, ul] in
[δ̄,∞) with µ([sj, uj]) > ε for each k1, . . . , kl we have

(4.18)

∣∣∣∣∣P (ΛN,δ̄(sj, uj) = kj for all j ∈ [1, l]
)
−

l∏
j=1

λ
kj

j,δ̄

kj!
e−λj,δ̄

∣∣∣∣∣ < ε.

where ΛN,δ̄(sj, uj) is the number of δ̄-clusters with mass between sj
and uj and λj,δ̄ = µδ̄([sj, uj]). Choose a sequence εk converging to 0

(for example, εk = 1
k

will do) and let δk be such that for each δ̄ < δk
and each [s, u] ∈ [δ̄,∞) we have

(4.19) |µδ̄([s, u])− µ([s, u])| < εk.

Then for N > N(εk, δk) both (4.18) and (4.19) are valid. Let k(N) be
the largest number such that N > N(εk, δk). Then (4.18) and (4.19)
imply that

(ΘN,δ,ΓN,δ) =

({
mn

N1/s
,
ξn
ρn

+ ζn

}
n is δk(N)− marked, mn>δN1/s

)
satisfies (i).

5. Poisson Limit for expected occupation times.

To understand the asymptotic properties of the distribution of an
defined in (4.15) we need the following

Lemma 5.1. (a) For each m > 0 and y ≥ 1
(5.1)

µm(y) := lim
N→∞

NP
( ρn
N1/s

≥ δy, ρn+1 < δN1/s, . . . , ρn+m < δN1/s
)

= δ−scE[(Ds
0y
−s − max

1≤j≤m
Ds
j)Imax1≤j≤m Dj<D0y−1 ],

where Dj := p−1
n+jαn+j+1...αn+m (and by convention Dm := p−1

n+m).
(b) There exists µ∞(y) = limm→∞ µ

m(y).
(c) µ∞(1) > 0.

Proof. (a) We shall make use of (3.10) and the relation ρn = p−1
n zn.

For a fixed m and 0 ≤ j ≤ m we can write

ρn+j = p−1
n+jαn+j+1...αn+mzn+m +O(1).
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The inequalities ρn/N
1/s ≥ δy and ρn+j < δN1/s in (5.1) are equivalent

to

zn+m ≥ N1/sδ(D−1
0 y+O(N−1/s)) and zn+m < N1/sδ(D−1

j +O(N−1/s))

respectively. Thus

P
( ρn
N1/s

≥ δy, ρn+1 < δN1/s, . . . , ρn+m < δN1/s
)

=

P

(
δ(D−1

0 y +O(N−1/s))N1/s ≤ zn+m < N1/sδ min
1≤j≤m

(D−1
j +O(N−1/s))

)
.

Since zn+m and {pn+j}j≤m are independent, we can compute the fol-
lowing limit by conditioning on {pn+j}j≤m and using Lemma 3.6:

lim
N→∞

NP
(
ρnN

−1/s ≥ y, ρn+1 < δN1/s, . . . , ρn+m < δN1/s|{pn+j}j≤m
)

=

δ−sc(Ds
0y
−s − max

1≤j≤m
Ds
j)Imax1≤j≤m Dj<D0y−1

and the convergence is uniform in {pn+j}j≤m.
To compute the limit (5.1), it remains to take the expectation with

respect to {pn+j}j≤m:

lim
N→∞

NP
(
ρnN

−1/s ≥ y, ρn+1 < δN1/s, . . . , ρn+m < δN1/s
)

=

δ−scE[(Ds
0y
−s − max

1≤j≤m
Ds
j)Imax1≤j≤m Dj<D0y−1 ].

This completes the proof of part (a).
(b) The probability P

(
ρn

N1/s ∈ [c, d], ρn+1 ≤ δN1/s, . . . , ρn+m ≤ δN1/s
)

is a monotonically decaying function of m. Hence the proof.

(c) If µ∞(1) = 0 then NP(n is marked) → 0 as N →∞. Then

P(ρn ≥ δN1/s) ≤ P(ρn ≥ δN1/s and n is not in a cluster)

+ P(ρn ≥ δN1/s and n is in a cluster)

≤ Const
βM

N
+ ConstP(n is marked),

where the estimates for the first and second term are provided by Lem-
mas 4.2 and 4.3 respectively. But then NP(ρn ≥ δN1/s) → 0 as
N →∞ contradicting Lemma 3.6. This proves (c). �

Lemma 5.1 gives the limiting distribution of ã in Lemma 4.4. Namely,
P(ã > y) = 1 if y ≤ 1 and for y > 1 we have
(5.2)

P(ã > y) = lim
N→∞

P(ρn > N1/sδy |n is marked) = µ∞(y)/µ∞(1).

Next we address the distribution of b̃.



34 D. DOLGOPYAT1 AND I. GOLDSHEID2

Lemma 5.2. (a) The distribution of
PM

j=0 ρn−j

ρn
conditioned on ρn ≥

δN1/s converges as N →∞ to the distribution of

1 + p−1
−1q0 + p−1

−2q0α−1 + · · ·+ p−1
−kq0α−1 . . . α−k+1 + ...

(b) Let

(5.3) b̄j = p−1
j−1 + pj−2αj−1 + pj−3αj−1αj−2 + . . .

so that the distribution of b̃ is the same as the distribution of 1 + q0b̄0.
Then there is a constant ĉ > 0 such that limx→+∞ x

sP(b̄0 > x) = ĉ.

Proof. According to (3.7)

ρn−j = p−1
n−jqnαn−1 . . . αn−j+1ρn +O(KM).

Since KM � N1/s we see that∑M
j=0 ρn−j

ρn
= 1+p−1

n−1qn+p
−1
n−2qnαn−1+· · ·+p−1

n−Mqnαn−1 . . . αn−M+1+o(1).

As N → ∞, also M = MN → ∞ and so the limiting distribution of
the above expression is the same as the distribution of

(5.4) 1 + p−1
−1q0 + p−1

−2q0α−1 + · · ·+ p−1
−kq0α−1 . . . α−k+1 + ...

This completes the proof of (a). Next note that b̄n+1 = αnb̄n + p−1
n .

Hence (b) follows from part (a) of Lemma 3.6. �

Next take ε5 < ε4 < ε2 where ε2 is from Lemma 3.7(b). Divide
[1,∞) (the set of all possible values of an) into finitely many disjoint
intervals I1, I2, . . . , Id1 . Divide [0, N ] into a union of long intervals Lj
of length N ε4 separated by short intervals of length N ε5 . (Intervals are
numbered in decreasing order). By Lemma 3.6 the total number of
clusters originated in short intervals tends to 0 in probability since the
total number of sites in the union of short intervals is o(N). Observe
that by Lemmas 3.7 and 5.1

P
(
n is marked, an ∈ Im and ρn−k ≤ δN1/s, k = M . . .N ε4

)
∼ µ∞(Im)

N

(
1−O

(
βM
))
.

Lemma 5.2 now implies that if we divide [1,∞) × [1,∞) into finitely
many disjoint rectangles J1, J2 . . . Jd1 then

P
(
n is marked, (an, bn) ∈ Jm and ρn−k ≤ δN1/s, k = M . . .N ε4

)
∼ µ̃∞(Jm)

N

(
1−O

(
βM
))

where µ̃∞ is a measure on [1,∞)× [1,∞).
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Let Vj be the vector whose m-th component is

Card(n ∈ Lj : n−marked, (an, bn) ∈ Jm).

Then

P(Vj = em) ∼ µ̃(Jm)N ε4−1, P(|Vj| > 1) = o(N ε4−1)

so

(5.5) E(exp(i〈v, Vj〉) = 1 +N ε4−1
∑
m

µ̃(Jm)(eivm − 1) + o(N ε4−1).

where vm denotes the m-th component of vector v.
Next, divide [0, 1] into intervalsK1, K2 . . . Kd2 . Pick d2 vectors u(1), u(2) . . . u(d2)

and let v(j) = u(l) if jN ε4 ∈ Kl. We claim that

(5.6) lnE(exp(i

j∑
k=1

〈v(k), Vk〉) =

j∑
k=1

∑
m

µ̃(Jm)(eiv
(j)
m − 1) + o(jN ε4−1).

This holds because Vj is almost independent of V1, V2 . . . Vj−1. Namely,
by Lemma 3.8 the value of ρn at the left endpoint of Lj could influence
Vj only if ρn−k is βN

ε5

1 -close to the boundary of Im. However if N is
large then the probability that there is n − k ∈ Lj such ρn−k is close
to the boundary of Im is o(N ε4−1) and hence arguing as in the proof of
(5.5) we obtain (5.6). Taking j ∼ N1−ε4 we obtain

lnE(exp(i

j∑
k=1

〈v(k), Vk〉) =

d2∑
l=1

d1∑
m=1

|Kl|µ̃(Jm)(eiu
(l)
m − 1) + o(1)

which implies parts (a) and (b) of Lemma 4.4.
It remains to prove (4.16). To do this note that Θ̄ has the same

distribution as ã + ãqb̄ where the distribution of ã and b̄ is given by
(5.2) and (5.3) respectively. Now the proof of (4.16) is the same as the
proof of part (c) of Lemma 3.6.

6. Case s = 2: proof of Theorem 3

To prove Theorem 3 we follow the approach used in [3].
We split

N∑
n=1

(ξn − ρn) = SL + SM + SH

where SH corresponds to the high values of ρn, namely, ρn >
√
N ln100N,

SM corresponds to the moderate values of ρn, namely,
√
N

ln100N
≤ ρn ≤√

N ln100N and SL corresponds to the low values of ρn, namely, ρn <
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√
N

ln100N
. We begin by showing that high and moderate values of ρn can

be ignored. First, by Lemma 3.6

P(SH 6= 0) ≤ NP(ρn >
√
N ln100N) ≤ C

ln200N
.

Second, arguing as in the proof of Lemma 4.1(b) we see that

E(S2
M) ≤ Const

∑
E
(
(ρn)

2 I√N/ ln100N<ρn<
√
N ln100N

)
≤ ConstN ln lnN

and hence SM/
√
N lnN converges to 0 in probability.

Therefore the main contribution comes from SL. To handle it use
Bernstein’s method. Divide the interval [0, N ] into blocks of length
LN = ln10N and lN = ln2N following each other. More precisely the
j-th big block is

Ij = [j(LN + lN), (j + 1)LN + jlN − 1]

and j-th small block is

Jj = [(j + 1)LN + jlN , (j + 1)(LN + lN)− 1].

Accordingly, we split SL = SbigL + SsmallL , where SbigL (SsmallL ) is the
contribution to SL coming from big (small) blocks. Arguing as in the
proof of Lemma 4.1(b) we see that

E(Varω(S
small
L )) ≤ C

∑
n∈small blocks

[
E((ρn)

2) + E(ρnlN)
]
Iρn<

√
N/ ln100N

≤ C

(
N lnN

lN
LN

+N
l2N
LN

)
and hence the main contribution comes from the big blocks.

Next we modify ξn as follows. If n ∈ Ij let ξ̃n be the number of visits

to the site n before our walk reaches Ij+1. Let ρ̃n = Eω(ξ̃n). Observe

that ξ̃n corresponds to imposing absorbing boundary conditions at the
beginning of Ij+1 so ρ̃n = p−1

n qn+1ρ̃n + p−1
n with absorbing boundary

condition at n̄ := (LN + lN)(j + 1). Hence

ρn − ρ̃n =
qn̄
qn
αn . . . αn̄−1ρn̄

and so by (3.12)

(6.1)

∣∣∣∣∣ ∑
n∈big blocks

[ρ̃n − ρn]

∣∣∣∣∣ < 1

except for the set of probability tending to 0 as N → ∞. Also by
Lemma 3.4

P(ξ̃n = ξn for n = 0 . . . N) → 1 as N →∞.
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Let
S̃ =

∑
n∈big blocks

(ξ̃n − ρ̃n)Iρ̃n<
√
N/ ln100N .

By the foregoing discussion it is enough to show that

(6.2)
with P probability close to 1 the quenched

distribution of S̃ is close to normal.

We claim that the following limit exists (in probability)

(6.3) lim
N→∞

Varω(S̃)

N lnN
= D2.

Before proving (6.3) let us show how to complete the proof of (6.2).
Let

S̃j =
∑
n∈Ij

(ξ̃n − ρ̃n)Iρ̃n<
√
N/ ln100N

be the contribution of the j-th block. Since summation is taken over n
with ρn <

√
N/ ln100N and ξ̃n has geometric distribution we have for

k ∈ N

(6.4) Pω

(
S̃j >

√
NLNk

ln100N

)
≤ Ce−kLN .

Indeed S̃j >
√
NLNk

ln100N
implies that ξ̃n >

√
Nk

ln100N
for some n in the block.

(6.3) and (6.4) show that
∑

j S̃j satisfies the Lindeberg condition. It

remains to establish (6.3). To this end we prove two facts.

(A) ∀ε > 0∃M : P

(∑
n1<n2−M Covω(ξ̃n1 , ξ̃n1)

N lnN
> ε

)
< ε and

(B) ∀k
∑

n Covω(ξ̃n, ξ̃n−k)

N lnN
⇒ E(α)kc∗

2
in probability

where c∗ is the constant from Lemma 3.6.
The remaining part of Section 6 is devoted to the proofs of statements

(A) and (B). We will drop tildes in ξ̃ and ρ̃ in order to simplify notation.

(Note that the results of Sections 3.3 and 3.4 are valid for ρ̃, ξ̃ since the
arguments in those sections did not depend on the boundary conditions.
cf. also (6.1)).

To obtain (A) we show that there is θ < 1 such that

(6.5) E(|Covω (ξn−k, ξn)| |Fn ) ≤ Cθk(ρn)
2

where Fn denotes the σ-algebra generated by {pm}m≥n.
Pick a small ε > 0 and consider two cases
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(I) ρn > (1 + ε)k. Then we use that

|Covω(ξn−k, ξn)| ≤
√

Varω(ξn−k)Varω(ξn) ≤ Cρn−kρn

and that
E(ρn−k|Fn) ≤ E(α)kρn + C.

(II) ρn ≤ (1 + ε)k. Then by (3.25)

|Covω(ξn−k, ξn)| ≤ CVarω(ξn)ρn−kq
∗

where q∗ is the probability to visit n− k before n starting from n− 1.
Hence

E(|Covω(ξn−k, ξn)||Fn) ≤ Cρn
√

E((ρn−k)2|Fn)E(q∗|Fn)
We have

E((ρn−k)
2|Fn) ≤ ρ2

n + Ck

since s = 2 whereas E(q∗|Fn) ≤ Cθk by Lemma 3.4.
Summing (6.5) over k we obtain (A).
To prove (B) observe that by Lemma 3.10 for fixed k we have

Covω(ξn−k, ξn) = ρn−kρn +O (ρn)

where the implicit constant depends on k. Let Zn = Covω(ξn, ξn−k).
Since E(ρn−k|Fn) = ρnE(α)k + C we get

E(ZnIρn<
√
N/ ln100N) = E((ρn)

2Iρn<
√
N/ ln100N)E(α)k +O (E (ρn)) .

Next

Var

(∑
n

Zn

)
=
∑

Var(Zn) + 2
∑
n1<n2

Cov(Zn1 , Zn2).

Observe that Zn1 and Zn2 are independent if n1, n2 belong to different
blocks and so we can limit summation over n1, n2 in the same block.
Since

Zn = ρ2
nαn−k . . . αn−1 +O(ρn)

Lemma 3.6 gives

Var(Zn) ≤ Const
N

ln200N
.

By Cauchy-Schwartz inequality

Cov(Zn1 , Zn2) ≤ Const
N

ln200N
.

Therefore

Var(
∑
n

Zn) ≤ Const
NL2

N

ln100N
.

This completes the proof of (B).
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Remark. The same argument allows one to handle the case s > 2.
Actually this case is simpler since there is no need to introduce cut-
offs. We do not provide the details here since the case s > 2 had been
studied in detail in [10, 16]3, where stronger almost sure quenched limit
theorems were obtained (as has already been mentioned in the Intro-
duction). However, such almost sure statement can not be extended
to s = 2 for two (related) reasons. First the quenched variance of ρn
is not integrable and so (6.3) can not be upgraded to almost sure con-
vergence [1]. Secondly even though the contribution of the site with
largest ρn is much smaller than the contribution of the remaining sites
with probability close to 1, still P(maxn ρn >

√
N ln100N) decays quite

slowly (as ln−200N) and so from time to time we will see the situation
where the site with largest ρn can not be ignored: the distribution of
the sequence TN would alternate between that of the normal and expo-
nential variables. So our method does not recover the results of [10, 16]
but it allows us to reprove Theorem 1 for all values of s (as in [15]).

7. Maximum occupation time.

Here we prove Theorem 4. Consider the following process Λ̂δ
N =

{(nj

N
,
m̂j

N1/s )} where nj are marked points and m̂j is the maximum of ρn
inside the j-th cluster. The proof of Theorem 4 relies on the following
fact.

Lemma 7.1. (a) As N →∞ Λ̂δ
N converges to a Poisson process Λ̂δ =

{tj,θj)} on [0, 1]× [δ,∞).

(b) As δ → 0 Λ̂δ converges to the Poisson process Λ̂.

(c) There exists a constant ĉ such that Λ̂ has the intensity ĉ
θ1+s .

The proof of this lemma is similar to the proofs of Lemmas 4.4 and
4.5 and therefore will be omitted.

Next we show that the low values of ρ are unlikely to contribute to
the maximal occupation times. Fix θ > 0. Denote

ΩN,k = {∃n ≤ N : N1/s2−(k+1) < ρn ≤ N1/s2−k and ξn > θN1/s}

and set

ΦN,k,n = {N1/s2−(k+1) < ρn ≤ N1/s2−k}.
Then by Lemma 3.6

P(ΩN,k) ≤ NP (ΦN,k,n)P
(
ξn > θN1/s|ΦN,k,n

)
≤ Const2ksP

(
ξn > θN1/s|ΦN,k,n

)
3[10] considers a class of environments which is much larger than the one treated

in our paper.
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Since ξn has a geometric distribution with parameter ρ−1
n we have that

P
(
ξn > θN1/s|ΦN,k,n

)
≤ (1− ρ−1

n )θN
1/s ≤ Conste−c2

k

.

Summing these bounds over k ≥ log2(1/δ) we see that the points from
outside of the clusters can be ignored. The rest of the proof of Theorem
4 is similar to the proof of Theorem 2. Namely Lemma 3.10 implies
that with high probability the maximum occupation time inside the
j-th cluster occurs at the site n̂j such that ρn̂j

= m̂j. This shows that if

δ is sufficiently small then with probability close to 1 ξ∗N = maxj m̂j

ξn̂j

m̂j

where the maximum is taken over the δ-clusters. For large N the
ξn̂j

m̂j

is asymptotically exponential with mean 1. Therefore letting N →∞
and δN → 0 we obtain that the distribution of

ξ∗N
N1/s is asymptotically

the same as that of
max
j

θ̂jΓj

where Λ̂ = {(tj, θ̂j)} and Γj are i.i.d random variables independent of

Λ̂ and having mean 1 exponential distribution. It remains to notice
that by Lemma 3.1 {θ̂jΓj} also form a Poisson process with intensity

c̄
θ1+s .

Appendix A. Annealed distribution.

Here we show how our results allow us to recover the known facts
about the annealed distribution.

A.1. Proof of Theorem 1. By Lemma 2.1 we can consider TN instead
of T̃N .

If 0 < s < 1 then our result follows from Theorem 2(a), Lemma
3.1(c) and Lemma 3.3(a).

If 1 < s < 2 we have

(A.1)
TN − E(TN)

N1/s
= tn − un =

∑
Θ

(N,δ)
j (Γ

(N,δ)
j − 1) +RN + R̂N .

By Theorem 2(b) given ε > 0 we can find δ0 such that for δ < δ0

P(|RN + R̂N | > ε) < ε.

Also by Theorem 2(b) as N →∞ the sum in (A.1) converges to

(A.2)
∑
Θj>δ

Θj(Γj − 1)

where Θj is a Poisson process on (0,∞) with intensity c̄
θ1+s and {Γj}

are iid random variables independent of {Θj} and having standard
exponential distribution. On the other hand by Lemmas 3.1(c) and
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3.3(b) if we drop the restriction that Θj > δ in (A.2) then the sum will
have a stable distribution of index s. Therefore to complete the proof
it suffices to show that given ε > 0 we can find δ0 such that for δ < δ0

(A.3) P(|R̄δ| > ε) < ε

where

R̄δ =
∑
Θj<δ

Θj(Γj − 1).

Note that E(R̄δ) = 0 due to independence of Γs and Θs while by (3.4)
Var(R̄δ) = Cδ2−s. This proves (A.3) completing the proof of Theorem
1 in case 1 < s < 2.

The proof in case s = 1 is similar to 1 < s < 2 case. In case s = 2 the
result follows from Theorem 3. Finally the case s > 2 was discussed in
the introduction.

A.2. Proof of Corollary 2. To prove Corollary 2 it suffices to show
that given ε > 0 the event

d(F ω
N ,F) < ε

occurs infinitely often.
Given an interval I = [n1, n2] let TI be the total time the walker

spends inside I before T̃n2 , the hitting time of n2. Note that the
quenched distribution functions F ω

TI1
. . . F ω

TIk
of TIj are independent if

the intervals I1, I2 . . . Ik have disjoint interiors. On the other hand we
can choose a sequence Nm growing so fast that

(A.4) P
(
d(F ω

Nm
, F ω

(m)) >
ε

4

)
<

1

m10
.

where F ω
(m) = F

T[Nm−1,Nm]/N
1/s
m
. Accordingly in view of the Borel-Cantelli

Lemma it suffices to show that the event

(A.5) d(F ω
(m),F) <

ε

2
occurs infinitely often.

By Corollary 1 there exists c = c(ε) > 0 such that

P
(
d(F ω

Nm
,F) <

ε

4

)
> c.

Now (A.4) implies that for large m we have

P
(
d(F ω

(m),F) <
ε

2

)
>
c

2

and hence (A.5) follows from Borel-Cantelli Lemma.
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A.3. Proof of Corollary 3. Let Nk be a rapidly growing sequence
(see condition (A.6) below for the precise requirement on the growth
of Nk.).

For n ∈ [Nk, Nk+1) let ξ̃n be the number of visits to the site n before

the first visit to Nk+1. Note that ξ̃n only depends on the environment
between in [Nk, Nk+1) since it counts visits to site n by the walk with
absorbing boundary at Nk+1 and reflecting boundary at Nk − 1. Let
ξ(k) = max[Nk,Nk+1) ξ̃n. Then ξ(k) ≤ ξ∗Nk+1

. Assume that Nk grows so
fast that

(A.6)
∑
k

P

(
TNk+1

− T̄ (k) >
T̄ (k)

2

)
<∞, where T̄k =

∑
n∈[Nk,Nk+1)

ξ̃n

(such a sequence exists because T̄ (k) ≥ Nk+1 − Nk). In view of the
(A.6) it suffices to show that

lim inf
ξ(k)

T̄ (k)
> 0

almost surely. By Theorem 4 and Lemma 2.1

P

(
ξ(k)

T̄Nk

> c1

)
> c2.

Corollary 3 now follows from the Borel-Cantelli Lemma.

Appendix B. Proof of Corollary 1.

We consider only the first statement of Corollary 1 and, moreover,
we suppose that 0 < s < 1. The proofs for all other cases are similar.
We observe the following.

(1) Denote by tN,δ =
∑

j Θ
(N,δ)
j Γ

(N,δ)
j and define F ω

N,δ by F ω
N,δ(x) =

Pω (tN,δ ≤ x) . Obviously tN − tN,δ = RN when ω ∈ ΩN,δ (see (2.4)).
Due to the estimate of RN and the fact that P(ΩN,δ) → 0 as N →∞
we have that for a given ε > 0 there are N(ε) and δ(ε) such that
P
(
d(F ω

N,δ, F
ω
N)
)
< ε for all N > N(ε) and δ < δ(ε).

(2) Consider Yδ =
∑

Θj>δ
ΘjΓj and let FΘ

δ (x) = P (Yδ ≤ x|Θ). If

δ(ε) is small enough then P (d(FΘ, FΘ
δ ) > ε) < ε if δ < δ(ε).

(3) Consider X [a,b] = {F : F (b) − F (a) ≥ 1 − ε } ⊂ X such that
P
(
X [a,b]

)
≥ 1− ε. Obviously, such a, b can be found for any ε > 0.

(4) The above properties imply that in order to establish that F ω
N

converges weakly to FΘ it suffices to show that the sequence of ransom
processes F ω

N,δ(·) restricted to [a, b] converges weakly to the restriction

of the processes FΘ
δ (·) to [a, b]. In turn, due to the monotonicity of



QUENCHED LIMIT THEOREMS FOR NEAREST NEIGHBOUR RANDOM WALKS IN 1D RANDOM ENVIRONMENT43

these random processes, this convergence follows from the convergence
of the finite-dimensional distributions of F ω

N,δ(·) to those of FΘ
δ (·).

(5) It remains to prove that for any xj ∈ [a, b], j = 1, ..., n, and any
uj ∈ [0, 1] j = 1, ..., n,

lim
N→∞

P
(
F ω
N,δ(xj) ≤ uj, j = 1, ..., n

)
= P

(
FΘ
δ (xj) ≤ uj, j = 1, ..., n

)
.

The latter follows from statements (i) and (ii) of Theorem 2.
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