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Abstract. First return and first hitting times, local times and
first intersection times are studied for planar finite horizon Lorentz
processes with a periodic configuration of scatterers. Their asymp-
totic behavior is analogous to the asymptotic behavior of the same
quantities for the 2-d simple symmetric random walk (cf. classical
results of Darling-Kac, 1957 and of Erdős-Taylor, 1960). Moreover,
asymptotical distributions for phases in first hittings and in first
intersections of Lorentz processes are also described. The results
are also extended to the quasi-one-dimensional model of the linear
Lorentz process.

Subject classification: 37D50 billiards, 60F05 weak theorems

1. Introduction

The (periodic) Lorentz process (PLP) is the Zd−covering of a Sinai
billiard, in other words of a dispersing billiard, given on Td = Rd/Zd.
If the horizon is finite, i. e. the free flight vector κ(x) is bounded,
then the Lorentz process is a most instructive model of the Brownian
Motion. Indeed, for d = 2 and in the diffusive scaling, this (mechanical)
process converges weekly to the Wiener process ([BS 81] and [BCS 91])
in the same way as a gem of classical probability theory, the (stochastic)
simple symmetric random walk (SSRW) does.

It is natural to expect that more refined properties of the SSRW also
hold for the PLP. Nice examples are the local central limit theorem
([SzV 04]), Pólya’s recurrence theorem ([Sch 98], [Con 99], [SzV 04])
and the law of iterated logarithm ([Ch 06], the 1-dimensional case and
[MN 05], the general case).

The main aim of this paper is the study of further delicate probabilis-
tic properties of the PLP. The results are interesting not in themselves,
only, but can also be used for treating the locally perturbed Lorentz
process ([DSzV 06]).
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63066 and TS 049835, and to Hungarian Science and Technology Foundation for
grant No. A-9/03.
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For simplicity, let us consider a Sinai billiard on T2 with a finite num-
ber of disjoint, strictly convex, C3 scatterers and with a finite horizon.
For our study it will be more convenient to work with the discrete-time
mapping (the Poincaré section of the billiard flow). Denote its phase
space by Ω0, the discrete-time mapping Ω0 → Ω0 by f0, and finally the
Liouville-measure on Ω0 by µ0. Let then Ω denote the phase space of
the (infinite) Lorentz-process, i. e. the Z2−covering of Ω0 (of course,
Ω0 = Ω/Z2). The analogous objects for Ω are denoted by µ and f .
There is a natural projection πΩ : (Ω, f, µ)→ (Ω0, f0, µ0). We can also
think of (Ω0, µ0) as embedded into (Ω, µ) as the 0-th cell.

Of course, Ω(0) = Q(0) × S+ (here the subscript (0) means that the
objects in question are defined and the corresponding claims are true for
both Ω and Ω0) where Q(0) denotes the configuration component (i. e.
the boundary of the billiard table) and S+ is the space (semicircle) of
outgoing velocities. The natural projection Ω(0) → Q(0) will be denoted
by πq.
Q0 is, in fact, the fundamental domain of the configuration space of

the Lorentz process and further we denote Qm = Q0 + m (m ∈ Z2).
Then the meaning of the shifted billiard phase space Ωm and of the
Liouville measure µm living on Ωm; m ∈ Z2 is clear. Let Sn be the
location (i. e. the configuration component) of the Lorentz particle
after n collisions. More formally: let us define the free flight vector
κ : Ω(0) → R2 as follows: for x ∈ Ω let κ(x) = πq(f(x))− πq(x) and for
x ∈ Ω0 let κ(x) = κ(π−1

Ω (x)). Then for x ∈ Ω(0) we define

(1) Sn(x) =
n−1∑
k=0

κ(fk
(0)(x)).

Let m(S) = m if S ∈ Qm. Let further

(2) τ = min{n > 0 : m(Sn) = 0} (i. e. τ : Ω→ N)

In this paper we prove the following results.

Theorem 1. There is a constant c such that µ0(τ > n) ∼ c
log n

.

The form of c will be given in subsection 3.4.

Theorem 2. Let Nn(x) = Card(k ≤ n : m(Sk) = 0). Assume x is
distributed according to µ0. Then cNn

log n
converges weakly to a mean 1

exponential distribution.

Combining this with Hurewicz’ Ratio Ergodic Theorem (see [Pet 83],
Section 3.8) we obtain the following
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Corollary 3. If A ∈ L1(µ) and µ(A) 6= 0, then the sum
∑n−1

j=0 A(f jx)/(µ(A) log n)

converges weakly to an exponential random variable with mean 1
c
. If

µ(A) = 0, then
∑n−1

j=0 A(f jx)/ log n converges to 0 in probability.

For later reference it is worth mentioning that the exponential law is
a special case of the Mittag-Leffler distributions (as to their definition
see for instance [DK 57]). A random variable Y with Mittag-Leffler
distribution of parameter α ∈ [0, 1] is characterized by having moments

E(Y k) = bk
k!

Γ(αk + 1)
k ≥ 0

where b is a non-negative constant. (For α = 0 we have the exponential
law of parameter 1

b
, whereas for α = 1

2
, b = 1√

2
one obtains the one-

sided standard gaussian law.)
Let tm denote the random variable τ(x) under the condition that x

is distributed according to µm.

Theorem 4. As |m| → ∞, log tm/2 log |m|, converges weakly to

(3) ξ = 1/U

where U is a uniform random variable on [0, 1].

Analogues of Theorems 1, 2 and 4 for planar simple symmetric ran-
dom walks had been proved in [DK 57] and [ET 60].

Let νm denote the distribution of f τ (x) if x is distributed according
to µm.

Theorem 5. As |m| → ∞, νm converges weakly to a limiting measure
ν.

Even though our results are formulated for the Poincaré map they
can also be used to obtain information about the continuous time dy-
namics.

Let (M0, g
t
0) be the flow of the associated Sinai billiard and (M, gt)

be the Lorentz flow (in other words, their Poincaré section dynamics
are (Ω0, f0, µ0) and (Ω, f, µ) respectively). Let m0 and m denote the
corresponding Liouville measures. By a natural identification, the time
Tn of the n-th collision coincides for these flows. M0 can again be
identified as the 0-th cell of M and then Mm will denote the domain
which is obtained from M0 by shifting the positions of all points by
m ∈ Z2.

Let L̄ = πArea(Q(0))/l denote the mean free path where l is the total
perimeter of the scatterers in Q(0).

Corollary 3 and Theorem 4 imply the following statements about the
continuous time dynamics.
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Corollary 6. If A ∈ L1(m) and m(A) 6= 0, then the integral
∫ t

0
A(gsx)ds/(m(A) log t)

converges weakly to an exponential random variable with mean L̄/c. If

m(A) = 0, then
∫ t

0
A(gsx)ds/ log t converges to 0 in probability.

Corollary 7. Let t be the first continuous time when gtx ∈ M0 and
denote by tm the random variable t(x) where x is uniformly distributed
onMm. As |m| → ∞, log tm/(2 log |m|), converges weakly to a random
variable ξ whose distribution is given by (3).

2. Extensions

By a linear Lorentz process (LLP) we mean a particle moving in a
periodic configuration of scatterers either in a strip or in a cylinder.
In other words, one has a Z−periodic configuration of scatterers in
R × [0, 1] or in R × T. Correspondingly, all notations of the previous
section can be used in the same way as before by keeping in mind that
instead of Z2 we now factorize with Z. Again we assume finite horizon.
Theorems of the previous section have natural extensions to the LLP.

Moreover, the applicability of the results to the locally perturbed
Lorentz process also requires a slightly more general setup. To be more
precise, by the locally perturbed Lorentz process we mean a Lorentz
process where the dynamics, e. g. the scatterer configuration is per-
turbed in a bounded domain. This and related models are studied in
our forthcoming paper [DSzV 06] where our next results are used.

Let us fix a scatterer in the 0-th cell whose boundary will be denoted
by O(⊂ Q0). On the one hand, we will assume that x0 is distributed
according to the Liouville measure restricted to π−1

q O (or its shifted
version Om : m ∈ Z). Also, on the other hand, we will be interested
in the asymptotic behaviour of the distribution of

τ ∗ = min{k > 0 : Sk ∈ O}.

Denote by µO the Liouville measure conditioned onto π−1
q O..

Theorem 8. There is a constant c̄O such that P(τ ∗ > n) ∼ c̄O√
n
.

The form of c̄O will be calculated in section 11.

Theorem 9. Let Nn(x) = Card(k ≤ n : m(Sk) = 0). Then there
exists a constant c̄ > 0 such that c̄Nn√

n
converges to the Mittag-Leffler

distribution of index 1/2 with b = 1.

The form of c̄ will be given in subsection 3.4.
For the next two results we assume that x0 is uniformly distributed

on Ωm; m ∈ Z and denote by τ ∗m the distribution of τ ∗.
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Theorem 10. There is a constant D̄2 > 0 such that D̄2τ∗m
|m|2 converges

weakly to t – the first time then the standard Brownian motion visits
1.

The form of D̄ will be given in subsection 3.4.

Theorem 11. The distribution of xτ∗m has weak limits as m→ ±∞.

Our techniques can again be applied in other settings. Namely, let
us return again to the two-dimensional case. As an example, let x′, x′′

be two independent Lorentz particles. Suppose that, at time 0, x′

is uniformly distributed on M0 and x′′ is uniformly distributed on
Mm. Let τ(x′, x′′) be the first time when d(gt(x

′), gt(x
′′)) ≤ 1 (i. e.

τ(x′, x′′) :M0 ×Mm → N). The proofs of the following theorems are
similar to the proofs of Theorems 4 and 5.

Theorem 12. As |m| → ∞, log τ(x′, x′′)/2 log |m| converges weakly to
a random variable ξ whose distribution is given by (3).

Theorem 13. As |m| → ∞, the distribution of the vector
(π(gτ (x

′)), π(gτ (x
′′))) converges weakly to a limiting one.

3. Preliminaries

In this section notions and theorems are collected, which later will
be used or referred to.

3.1. Hyperbolicity of the billiard map. For definiteness, let Q0 =
T2\∪p

i=1Ōi where the closed sets Ōi are pairwise disjoint, strictly convex
with C3−smooth boundaries Oi. In Ω(0) it is convenient to use the
product coordinates which, for simplicity, we only introduce for Ω0.
Recall that

Ω0 = {x = (q, v)|q ∈ Q0, 〈v, n〉 ≥ 0}
where 〈·, ·〉 denotes scalar product, and n is the outer normal in the
collision point. Traditionally for q one uses the arclength parameter
and for the velocity the angle φ = arccos 〈v, n〉 ∈ [−π/2, π/2]. In these
coordinates the invariant measure is given by the density 1

2l
cosφ dq dφ,

where l is the overall perimeter of the scatterers. From our assumptions
it follows that 0 < min |κ| < max |κ| <∞.

For our billiards there is a natural Df0-invariant field Cu
x of unstable

cones (and dually also a field Cs
x of stable ones) of the form c1 ≤ dφ

dq
≤ c2

(or −c2 ≤ dφ
dq
≤ −c1 respectively) where 0 < c1 < c2 are suitable

constants.
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A connected smooth curve γ ⊂ Ω0 is called an unstable curve (or a
stable curve) if at every point x ∈ γ the tangent space Txγ belongs to
the unstable cone Cu

x (or the stable cone Cs
x respectively).

For an unstable curve γ (or a stable one) and for any x ∈ γ denote by
Jγf

n
0 (x) = ||Dxf

n
0 (dx)||/||dx||, dx ∈ Txγ the Jacobian of the map fn

0 at
the point x. Then the hyperbolicity of the dynamics means that there
are constants Λ > 1 and C > 0 depending on the billiard table, only,
such that for any unstable (or stable) curve γ and every x ∈ γ and every
n ≥ 1 one has Jγf

n
0 (x) ≥ CΛn (or Jγf

−n
0 (x) ≥ CΛn respectively).

Sinai billiards are hyperbolic and, consequently, the Lyapunov expo-
nents are non-zero. Since Sinai’s celebrated paper [Sin 70] one knows
that much more is true: the billiard is ergodic, K-mixing and has fur-
ther nice and strong properties. This theory is already standard and
for further results and methods it suffices to refer to [Sz 00]. In vari-
ous recent works, however, new and very efficient non-traditional tools
were developed, which will also be used in this work. Though we can
not give a detailed exposition, we briefly describe the most important
statements in the form we will use them. For more details we refer to
the original works.

3.2. Standard pairs. Let us start with a heuristic introduction. Sinai’s
classical billiard philosophy ([Sin 70] reacts to the fact that dispersing
billiards are hyperbolic (a nice property) but at the same time they
are singular dynamical systems (an unpleasant property). Neverthe-
less smooth pieces of unstable (and of stable) invariant manifolds do
exist for expansion prevails partitioning.

Though dispersing billiards are hyperbolic, they are not only singu-
lar but, added to that, close to the singularities the derivative of the
map also explodes. This circumstance is the most unpleasant when one
aims at proving the distortion estimates, basic for the techniques. To
cope with this difficulty [BCS 91] introduced the idea of surrounding
the singularities with a countable number of extremely narrow strips,
called homogeneity strips, roughly parallel to the singularities. In these
strips the derivative of the map can be large, but oscillates very little;
this fact makes it possible to establish the necessary distortion esti-
mates. The boundaries of these homogeneity strips provide further
singularities (causing further partitioning), the so-called secondary ones
in contrast to the primary singularities (in our case only tangencies).
The definition of homogeneity strips depends on a parameter denoted
usually k0. The larger k0 is, the smaller the neighborhood of (primary)
singularities is where one introduces the homogeneity strips. In certain
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bounds (e. g. in the growth lemmas) k0 should be selected sufficiently
large.

Let us now give precise definitions. For k ≥ k0 let

Hk = {(r, φ) :
π

2
− k−2 < φ <

π

2
− (k + 1)−2},

H−k = {(r, φ) :
π

2
− k−2 < −φ < π

2
− (k + 1)−2},

H0 = {(r, φ) : −(
π

2
− k−2

0 ) < φ <
π

2
− k−2

0 }.

Take L1, L2 � 1 and θ < 1 sufficiently close to 1.
An unstable curve is weakly homogeneous if it does not intersect any

singularity (i. e. neither primary nor secondary one).
A weakly homogeneous unstable curve γ is homogeneous if it satisfies

the distortion bound

log

∣∣∣∣Jγf0(x)

Jγf0(y)

∣∣∣∣ ≤ L1
d(x, y)

length2/3(γ)
x, y ∈ γ

and the curvature bound

∠(γ̇(x), γ̇(y)) ≤ L1
d(x, y)

length2/3(γ)
x, y ∈ γ

We observe that if the C2 norm of γ is bounded and γ does not cross
any boundary between homogeneity strips, then γ satisfies both the
distortion and the curvature bounds.

Let s+(x, y) be the first time f s
0 (x) and f s

0 (y) are separated by a
singularity.

A probability density ρ on a homogeneous unstable curve γ is called
a homogeneous density if it satisfies the density bound

| log ρ(x)− log ρ(y)| ≤ L2θ
s+(x,y).

We will call the connected homogeneous components of an unstable
(stable) curve the H-components of the curve. Given γ we let γn(x)
be the largest subcurve of fn

0 γ containing fn
0 x and such that f−n

0 γn(x)
does not contain singularities of fn

0 .
A standard pair is a pair ` = (γ, ρ) where γ is a homogeneous curve

and ρ is a homogeneous density on γ.
Given a standard pair and a measurable A : Ω0 → R we write

E`(A) =

∫
γ

A(x)dx

and length(`) = length(γ).
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In this work the precise definition of the standard pairs is not im-
portant but we shall take advantage of their invariance and equidistri-
bution properties listed below and in subsection 3.5.

The fundamental tool used in our work is the so-called growth lemma.
While the hyperbolicity of Sinai billiards means that infinitesimal tra-
jectories diverge exponentially fast, the growth lemma says that the
exponential divergence also holds — and in a sense even uniformly —
for most trajectories which are sufficiently close to each other.

The next proposition contains two formulations of the growth lemma.
The first and more classical one (parts (a) and (b)) deals with curves
while the second formulation (parts (c) and (d)) deals with standard
pairs.

Let γ be a homogeneous curve and for n ≥ 1 and x ∈ γ let rn(x)
denote the distance of the point fn

0 (x) from the nearest boundary point
of the H-component γn(x) containing fn

0 (x).

Proposition 3.1. (Growth lemma). If k0 is sufficiently large, then

(a) there are constants β1 ∈ (0, 1) and β2 > 0 such that for any
ε > 0 and any n ≥ 1

mes`(x : rn(x) < ε) ≤ (β1Λ)nmes(x : r0 < ε/Λn) + β2ε

(b) there are constants β3, β4 > 0, such that if n ≥ β3| log length(γ)|,
then for any ε > 0 and any n ≥ 1 one has

mes`(x : rn(x) < ε) ≤ β4ε

(c) If ` = (γ, ρ) is a standard pair, then

E`(A ◦ fn
0 ) =

∑
α

cαnE`αn(A)

where cαn > 0,
∑

α cαn = 1 and `αn = (γαn, ραn) are standard
pairs where γαn = γn(xα) for some xα ∈ γ and ραn is the push-
forward of ρ up to a multiplicative factor.

(d) If n ≥ β3| log length(`)|, then∑
length(`αn)<ε

cαn ≤ β4ε.

Parts (a) and (b) are due to [Ch 99]. The restatement in terms of
the standard pairs is taken from [ChD 05].

In order to apply standard pairs to the problem at hand observe that
the Liouville measure can be decomposed as follows

(4) µ0(A) =

∫
E`α(A)dσ(α)
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where σ is a factor measure such that

(5) σ(length(`α) < ε) < Const.ε.

We shall call measures satisfying (4) and (5) admissible measures.
We observe that Theorems 1–11 remain true if the initial distribution

is any admissible measure since in the proofs only the admissiblity of
the initial distribution is used.

3.3. Young towers and transfer operators. According to our re-
cent understanding the most efficient way for constructing Markov par-
titions for billiards is to use Young towers, cf. [You 98]. We are going
to introduce the main concepts without giving a full description.

The presence of singularities prevent stable and unstable curves to
admit a lower bound for their size in any part of the phase space.
Therefore the product structure which is the key ingredient of several
hyperbolic arguments can only be introduced on a complicated set.

First choose an unstable curve W , which is short enough to ensure
that a high amount of the points admit unstable curve of this length.
Then define a subset of this curve consisting of points, which remain a
certain (exponentially shrinking) distance apart the singularities.

Ω∞ := {y ∈ W | d(T ny,S) > δ1λ
−n ∀n ≥ 0}

where λ is the hyperbolicity constant. If δ1 is chosen small enough this
set has positive measure. By construction each point in Ω∞ admits a
stable curve of length δ1.

So far we have one unstable curve W , and a family of stable curves
{γs}. Let us consider all the nearby unstable curves, which are long
enough, and intersect all the stable curves in the previous family. These
two families of curves {γs} and {γu} define the hyperbolic product set
Λ = (∪γu) ∩ (∪γs).

This set is the base of the hyperbolic Young tower. To continue the
construction of the tower we are going to focus on recurring subsets of
Λ. We are only interested in those returns, which respect the product
structure. A subset of Λ is said to be an s-subset if it is the product of
the full family of stable curves and some part of the unstable family.
The notion of u-subset is defined mutatis mutandis in the same way.

A Markov return is an event when some fn
0 Λ ∩ Λ is a u-subset, and

it’s inverse image under f−n
0 is an s-subset. The possible non-Markov

returns are when the intersection is not a u-subset (this is printed as
the middle intersection), or when the inverse image is not an s-subset.
This latter event happens when a recurring part goes over the edge of
Λ in the stable direction.
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The inverse image of the Markov recurring part is not necessarily a
solid rectangle intersected with Λ. It can have infinitely many “holes”
in it.

The tower is built using these Markov type returns. The basic set Λ
is divided into s-subsets according to Markov returns, and each subset
is marked by the return time R. In this way R will be a function
on Λ which is constant on these s-subsets. Not all Markov returns are
considered, for sophisticated details please consult [You 98]. The tower
itself

∆
def
= {(x, l) : x ∈ Λ; l = 0, 1, . . . , R(x)− 1}

and the dynamics on the tower is

F (x, l) =

{
(x, l + 1) if l + 1 < R(x)
(fR

0 x, 0) if l + 1 = R(x)

Note that we have a decomposition into s-subsets which give rise to
a Markov partition on the tower. This tower is hyperbolic, and as a
usual tool in this field Young has also introduced a factorized version
of it ∆̄. Simply collapse the stable direction. We have the following
commutative diagram of measure preserving transformations:

(6)

(∆̄, µ̄∆)
π∆̄←−−− (∆, µ∆)

πΩ0−−−→ (Ω0, µ0)

F̄

x F

x f0

x
(∆̄, µ̄∆)

π∆̄←−−− (∆, µ∆)
πΩ0−−−→ (Ω0, µ0)

The projection to the original phase space is not 1-1 since the first
return need not to be Markov.

Functions φ : Ω0 → Rd on the original phase space Ω0 can be lifted
to ∆. Functions on ∆ which are constant along stable directions can
be considered as functions on ∆̄. For any function ψ on ∆ there exists
functions h and ϕ, such that ϕ−ψ = h−h◦F , and ϕ is constant along
stable directions. In this equation the regularity of the functions can
be examined, but we will skip the details, and only introduce distance,
and function norms on the factorised tower ∆̄.

The factorised tower ∆̄ has a Cantor structure, and a Markov parti-
tion. The Cantor hierarchy can be redefined with the separation time
s(x, y) = min{k ≥ 0 | F̄ kx and F̄ ky lie in different elements of the
Markov partition}. This is more or less the same as the separation
time defined above for the same notation. With any 0 < β < 1 the
function βs is a metric providing the original Cantor topology.
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On ∆̄ Young uses two kind of norms: the C norm is

‖ϕ‖C
def
= sup

l,j

∥∥∥ϕ|∆̄l,j

∥∥∥
∞
e−lε

where ‖ . ‖∞ is the essential supremum wrt µ̄∆, and the indices (l, j)
refer to the elements of the Markov partition. The L norm is a sum of
this, and the h-norm:

‖ϕ‖h
def
= sup

l,j

(
sup

x,y∈∆̄l,j

|ϕ(x)− ϕ(y)|
βs(x,y)

)
e−lε;

where the inner sup is again essential supremum wrt µ̄∆ × µ̄∆. To a
Hölder function on the original billiard phase-space, we can associate
a function on ∆̄ as described above, such that for any β smaller than
a certain number (computed from the original Hölder exponent) the
resulting function has a finite h-norm.

In these definitions the role of ε is the following: without ε the Jaco-
bian of the mapping would be 1 except when recurring to the base of
the tower. However estimates expressed in the terms of this norm see a
uniform expansion. To make the mapping expanding, when recurring
to the base, we have to choose ε smaller then the Lyapunov exponent.

The Perron-Frobenius (or transfer) operator P is defined on functions
on ∆̄ with finite L-norm as the adjoint of F̄ wrt the measure µ̄∆. This
means

P (ϕ)(x) =
∑

y|F̄ y=x

ϕ(y)

J(y)

where J is the Jacobian i. e. the Radon-Nikodym derivative dF̄−1
∗ µ̄∆

dµ̄∆
.

Another important operator which is heavily used in referenced the-
orems is the Fourier transform of the transfer operator:

(7) Ptϕ = P (eitκϕ)

where κ : Ω(0) → R2 is thee free flight vector, more precisely a function
on ∆̄ which is obtained from the free flight function, as desribed above.
All these operators are quasicompact on the L-space.

3.4. Local Limit Theorem and related results. Recall (1). CLT
for the Lorentz process ([BS 81, BCS 91]) states that there is a pos-
itive definite matrix D2 such that Sn/(detD

√
n) converges to a 2-

dimensional standard Gaussian distribution. In fact, by using the
shorthand κn = κ(fn(x)), we have then

(8) D2 = µ0(κ0 ⊗ κ0) + 2
∞∑

j=1

µ0(κ0 ⊗ κn).
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The importance of the Fourier transform operator (7) is that∫
eitSndµ̄∆ =

∫
P n(eitSn)dµ̄∆ =

∫
P n

t (1)dµ̄∆.

The spectral analysis of the Fourier transform operator leads to the
understanding of the characteristic function of the sum Sn.

The results of the spectral analysis can be summarized in the follow-
ing theorem proved in [SzV 04].

Proposition 3.2. There are constants ε > 0, K > 0, and θ < 1 such
that

(a) There are functions ρt : [−ε, ε]2 → L and λt : [−ε, ε]2 → C, such
that ∥∥∥∥P n

t (h)− λn
t ρt

∫
hdµ̄∆

∥∥∥∥
L
≤ Kθn‖h‖L

for all h ∈ L, |t| < ε and n > 0. Moreover ρt = 1 + O(t), and
λt = 1− 1

2
(D2t, t) + o(t2) as t→ 0.

(b) For t 6∈ [−ε, ε]2 we have

‖P n
t (h)‖L ≤ Kθn‖h‖L

for all n > 0.

These tools has been used in [SzV 04] to obtain the following result.

Proposition 3.3. Let x be distributed on Ω0 according to µ0. Let the
distribution of m(Sn(x)) be denoted by Υn. There is a constant c such
that

lim
n→∞

nΥn → c−1l

where l is the counting measure on the integer lattice Z2 and → stands
for vague convergence.

Remark. In fact, c−1 = 1

2π
√

detD2
.

The following result is a slight extension of Theorem 4.2 of [SzV 04]
and can be proven similarly.

Proposition 3.4. For each fixed k the following holds:
If n1, n2 . . . nk →∞, then

µ0(m(Sn1) = m(Sn1+n2) = · · · = m(Sn1+n2+···+nk
) = 0) ∼

k∏
j=1

c−1

nj

.

By copying the proofs of Propositions 3.3 and 3.4, one easily obatins
the following two statements for the LLP.
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Proposition 3.5. By adapting the notations of Proposition 3.3 to the
LLP, there is a constant c̄ > 0 such that

lim
n→∞

√
nΥn → c̄−1l

where l is the counting measure on the integer lattice Z and → stands
for vague convergence.

Remark. In fact, c̄−1 = 1√
2π
√

detD2
.

Proposition 3.6. For each fixed k the following holds. If n1, n2 . . . nk →
∞, then

µ0(m(Sn1) = m(Sn1+n2) = · · · = m(Sn1+n2+···+nk
) = 0) ∼

k∏
j=1

c̄−1

√
nj

.

3.5. Properties of standard pairs. In the sequel we are still consid-
ering billiards (Ω0, f0, µ0) and functions A : Ω0 → Rd, most frequently
with d = 2. Let us introduce the space of functions (over (Ω0, f0, µ0))
we are to consider. Take θ < 1 close to 1. Let s(x, y) be the smallest
n such that either fn

0 x and fn
0 y or f−n

0 x and f−n
0 y are separated by a

singularity. Define the dynamical Hölder space of functions A : Ω0 → R
H = {A : |A(x)− A(y)| < Constθs(x,y)}.

Let An(x) =
∑n−1

j=0 A(f j
0x).

Proposition 3.7. Let ` be a standard pair, A ∈ H and take n such
that | log length(`)| < n1/2−δ. Then the following statements hold true:
(a) There is a constant such that∣∣∣∣E`(A ◦ fn

0 )−
∫
Adµ0

∣∣∣∣ ≤ Constθn| log length(`)|

(b) Let A,B ∈ H have zero mean. Then

E`(AnBn) = nDA,B +O(| log2 length(`)|)
where

DA,B =
∞∑

j=−∞

∫
A(x)B(f j

0x)dµ0(x).

(c) Let x be distributed according to ` and wn(t) be defined by

wn

(
i

n

)
=

Si√
n

with linear interpolation in between. (Si is given by ( (1)). Then, as
n → ∞, wn converges weakly (in C([0, 1] → R2) to the 2-dimensional
Brownian Motion with zero mean and covariance matrix D2 given by
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(8). Moreover, for the Prohorov metric, known to be equivalent to
the weak convergence, the preivous convergence is unform for standard
pairs satisfying the condition | log length(`)| < n1/2−δ. Finally, a simi-
lar result holds for the LLP, too.

(d) If 1 < R < n1/6−δ then

P`(|An − n
∫
Adµ0| ≥ R

√
n) ≤ c1e

−c2R2

.

(e) If A is a Hölder continuous function on Ω supported on Ω0 then

nE`(A ◦ fn)→ c−1

∫
Adµ(0)

where c is the constant from subsection 3.3. For the LLP we have

√
nE`(A ◦ fn)→ c̄−1

∫
Adµ(0)

Parts (a) and (c) are proven in [Ch 06]. For part (b) see Lemma 6.12
of [ChD 05]. (The error estimate of part (b) is not stated explicitly in
[ChD 05] but it can be easily deduced from the proof of Lemma 6.12.)
Part (d) is proven in [ChD 05], Section A.4 for a particular A but the
proof in the general case is exactly the same. Part (e) follows from
Proposition 3.3 by approximating δ-functions on unstable curves by
Hölder functions.

3.6. Coupling. A coupling approach introduced in [You 99] is power-
ful tool for studying Sinai billiards. By combining the statements of
[Ch 06] with those of [SzV 04] we extend this method to the Lorentz
process (the difference between the coupling lemma of [Ch 06] and our
Lemma 8.1 is that in the first one the phase space is compact whereas
in our paper it is non-compact). Here we formulate a preliminary result
to be used in the proof of Lemma 8.1, our actual coupling lemma.

Assume A ∈ H. In general, for a standard pair ` = (γ, ρ), in the
whole paper denote by [`] the value of m ∈ Z2 for which γ ∈ Ωm.

Lemma 3.8. Given δ0 > 0 there exist constants q > 0, n0 ≥ 1 C > 0,
θ < 1 and κ > 0 such that for any m ∈ Z2 and arbitrary pair of
standard pairs `1 = (γ1, ρ1), `2 = (γ2, ρ2) satisfying for some m ∈ Z2

(9) [`1] = [`2] = m

and length(`j) ≥ δ0, there exist probability measures ν1, ν2 supported
on fn0γ1 and fn0γ2 respectively, constant c, families of standard pairs
{`βj = (γβj, ρβj)}β and positive constants {cβj}β : j = 1, 2, satisfying
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(i) E`j
(A◦fn0) = cνj(A)+

∑
βj

cβjE`βj
(A) j = 1, 2

with c ≥ q;
(ii) There exist a measure preserving map π : (γ1, f

−n0
∗ ν1)→ (γ2, f

−n0
∗ ν2)

such that for every n ≥ n0

(10) d(fnx, fnπx) ≤ Cθn

(iii) For every ρ > 0∑
β: length(`βj)<ρ

cβj ≤ Const(δ0)ρ
κ j = 1, 2.

We shall say that subsets of mass c of `1 and `2 are coupled to each
other.

Observe that part (ii) of Lemma 3.8 implies in particular that

|ν1(A ◦ f τ )− ν2(A ◦ f τ )| ≤ K||A||Hθ|m|.
Lemma 3.8 is proven in [Ch 06] for f0 in place of f but the proof shows
that the same result holds for f since if fk(x) and fk(πx) are close and
the projections of their orbits to the Sinai billiard stay close for n ≥ k,
then the orbits themselves are close. (We note that part (iii) is usually
stated differently. Namely there exists a function n(x) such that E`j

(A◦
fn(x)) =

∑
βj
cβj

E`βj
(A) where the `βj

family consists of standard pairs

of length greater than δ0. However the proof also gives our formulation
since the main contribution to pairs with length(`βj) < ρ comes from
the points where n(x) ∼ Const log ρ [see, [ChD 05] Section A.3].)

For Sinai billiards Lemma 3.8 can be used recursively to establish
exponential mixing. For the Lorentz process we can not do it since we
are unable to propagate condition (9). Instead we use the local limit
theorem to ensure (9) which implies that correlations go to 0 albeit at
a slower rate.

Now we explain one important difference between the statements of
the ’Precoupling Lemma’ 3.8 and ’Coupling Lemma’ 8.1. To derive the
Coupling Lemma we apply Coupling Lemma 3.8 repeatedly to improve
the value of q (roughly speaking, applying the lemma k times changes q
to 1− (1−q)k). However usually the support of νj is not disjoint from
γβj and so when we use Lemma 3.8 repeatedly the coupling map from
part (ii) becomes multivalued. To avoid this multivaluedness one can
define π not from γ1 to γ2 but from γ1 × [0, 1] to γ2 × [0, 1] so that the
points at different heights can be coupled to different partners. Such
an extension is not necessary in our formulation of Lemma 3.8 since we
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only make one step in the coupling procedure but it will be needed in
Lemma 8.1.

3.7. Random walks. A simple symmetric random walk (SSRW) on
Z1 is the sequence of partial sums

Sn = X1 + · · ·+ Xn

where Xj are i.i.d. taking values ±1 with probability 1/2 each.
We shall use the following well-known elementary properties of SSRW.

Proposition 3.9. (a) For any A,B > 0,

P(SSRW visits A before −B) =
B

A+B
.

(b)

P(S1 ≥ 0, . . . ,S2n ≥ 0) =

(
2n

n

)
1

22n
∼ 1√

πn
.

(c) As n → ∞, Sn√
n

converges to a Gaussian random variable with

zero mean and variance 1
(d) There is a constant θ < 1 such that

P (−B < Sn < A for n = 1 . . . N) ≤ θ[N/ max(A,B)].

Parts (a)–(c) are standard (see e.g. [Fel 57], Section III.4). To prove
(d), let k = [N/max(A,B)]. For k = 1 the result follows from (c) and
for general k it follows by induction using the Markov property of the
SSRW.

4. Proof of Theorem 1

Proof. We are going to define partial transfer operators on the factor-
ized Young tower of the Sinai billiard ∆̄. Let

Uk(φ) = P k(φ1Sk=0), Fj(φ) = P j(φ1τ=j), Rk =
∑
j>k

Fj.

We define a stopping time

νn = min{l > n | Sl = 0}.
Then the following identity holds:

(11)
(
F̄ νn

)∗
=

n∑
k=0

Rn−kUk.

We need to estimate P(τ > n) =
∫
Rn(1). The proof will follow classi-

cal renewal theory (cf chapter 16 of [Spi 64]).
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Lemma 4.1. If ϕ is a Hölder function (with respect to the Young
metric) on the factorised Young tower, then

(12) Un(ϕ) =
c−1

n

(∫
ϕdµ

)
1 + o

(
1

n

)
.

The error term is meant in the L-norm.

Proof. Since 4π21Sk=0 =
∫∫

[−π,π]2
eitSkdt we have

Un(φ) =
1

4π

∫∫
[−π,π]2

P n
t (φ)dt.

Therefore the result follows from Proposition 3.2. �

Using the positivity of transfer operators we get Rl > Rm, if l <
m in the sense that Rl − Rm is a positive operator. In particular
1 ≥

∑n
k=0Rn−kUk(1). Using the monotonicity of Rk this sum can be

estimated
∑n

k=0Rn−kUk(1) ≥ Rn

∑n
k=0 Uk(1), and so (12) implies:

lim sup c−1 log n

∫
Rn(1) ≤ 1.

On the other hand 1 ≤
∑k

j=0Rn−kUj(1) +
∑n

j=k+1R0Uj(1). Let us

choose k = k(n) = n−
[

n
log n

]
. By (12) the second term in the inequality

is o(1), and since log k ∼ log n ∼ log(n− k) we get

lim inf c−1 log n

∫
Rn(1) ≥ 1.

The result follows. �

5. Proof of Theorem 2

Proof. We shall show that, for each k, µ0

((
cNn

log n

)k
)
→ k! The proof

is by induction on k. For k = 1, 2 this is shown in [SzV 04], subection
5.3. We have

(13) µ0(N
k
n) =

n∑
j1,j2...jk=1

µ0(m(Sj1) = m(Sj2) = · · · = m(Sjk
) = 0).

Let i1 = j1, i2 = j2− j1, . . . , in = jn− jn−1. We shall use an elementary
estimate which can be proven by induction on k

(14)
∑

ij≥1,i1+i2+ik≤n

1

i1

1

i2
. . .

1

ik
∼ (log n)k

Fix L� 1. Then by induction the contribution to (13) of where there
are two indexes at most L apart is bounded by Const(L)(log n)k−1.
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On the other hand Proposition 3.4 together with (14) imply that the
contribution of terms where any two indexes are at least L apart

Constkk!(log n)k(1 + oL→∞(1)).

This completes the proof. �

Remark. Similar results for negatively curved surfaces are obtained
in [AD 97]. Our proof uses moment method of [DK 57]. Other ap-
proaches (cf [Aa 81], [Aa 97]) require more information about the sta-
tistical properties of the first return map to Ω0. Such information can
be obtained (see [DSzV 06]) but it would make the proof much more
complicated.

6. Proof of Theorem 4

Let us describe briefly the idea of the proof. Decomposition (4)
shows that it suffices to assume that x is distributed according to some
standard pair ` satisfying

(15) [`] = m ∈ Z2, length(`) ≥ 1

|m|100

Proposition 3.7(c) tells us that after the appropriate rescaling D−1Sn

converges to a standard 2 dimensional Brownian Motion. Now for the
Brownian Motion w(t) it is easy to compute the distribution of time
it takes to reach a ball of radius 1 starting from distance R from the
origin. Namely, log |w(t)| is martingale, so P(w(t) escapes from the ball
of radius Rr before reaching the unit ball) = log R

r log R
= 1

r
.

Since supt≤T |w(t)| grows like
√
T it is easy to see that the limit-

ing distribution of the logarithm of the hitting time rescaled by logR
converges to (3).

Unfortunately Sn can be approximated by a Brownian Motion on
the time interval [0, T ] with an error which grows like a power of T ,
only, so this approximation can not directly justify Theorem 4.

To overcome this problem we consider a family of ellipses with ge-
ometrically decreasing sizes and use the convergence to the Brownian
Motion to estimate the passage of each individual annulus. The invari-
ance of the standard pair given by Proposition 3.1(c)-(d) plays a key
role in our analysis.

Now we give the formal proof.

Proof of Theorem 4. Denote ||m|| = |D−1m| where | · | is the standard
Euclidean distance.
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We need an auxiliary result. Let ` be a standard pair satisfying (15).
Denote

Ck = {x : |x| = 2k||m||}, k ∈ Z.
Let H be the maximal free flight (in the || · || norm). Define sj(x) as
follows. s0(x) = 0 and if sj(x) is already defined so that d(Ssj

, Ck) ≤ H
for some k, then let sj+1(x) be the first time after sj(x) such that either
||m(Sn)|| ≤ 2k−1||m|| or ||m(Sn)|| ≥ 2k+1||m||.

Lemma 6.1. The following estimates hold uniformly for all standard
pairs satisfying (15)

(a) P`(s1 > n) ≤ Const min

(
θn/|m|2 +

1

|m|100
, θn/(|m|2 log n) +

1

n100

)
.

(b) For all δ > 0 P`(s1 < |m|2−δ) < 1
|m|100 .

(c) For a suitable ζ > 0 one has

P`( ||m(xs1)|| ≤ ||m(x)||/2 ) =
1

2
+O(|m|−ζ).

(d)

E`(A ◦ f s1) =
∑

α

cαE`α(A)

where `α are standard pairs and∑
length(`α)<|m|−100

cα = O(|m|−97).

The proof of Lemma 6.1 is given in the next section. Here we deduce
the theorem from the lemma.

Lemma 6.1 allows us to approximate log2 ||Ssn|| by a random walk.
This estimate works well if ||Ssn|| is large. Next we prove an a priori
estimate which will be used to handle the case when ||Ssn|| is small.

Lemma 6.2. Let n be the largest number such that sn < τ(x). Then
there exists C > 0 such that P`(n > C log5 |m|)→ 0 as m→∞.

Proof. Let h0 = 0, and the ladder index hj be the first time h(∈ Z+)
when ||m(Ssh

)|| < ||m(x)||/2j. We claim that

(16) P`(h1 > log4 |m|) ≤ Const

log2 |m|
.

We note that here we can also use log2 ||m||.
Indeed parts (c) and (d) of Lemma 6.1 imply that log ||Ssn|| can be

well approximated by a random walk in the sense that for any sequence
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of ups and downs of length n the probability that log ||Ssj
||, j ≤ n

follows this sequence is

1

2n

(
1 +O

(
n2kζ |m|−ζ

))
where −k is the minimum of the corresponding walk. In our case k = 1.
Now (16) follows from Proposition 3.9(b).

Combining (16) with Lemma 6.1(d) we obtain that for any R and
any j satisfying log2 ||m|| − 0 ≥ j ≥ log2 ||m|| − log2R

(17) P`(hj−hj−1 < [log2 ||m||−(j−1)]4) ≥ 1− Const

[log2 ||m|| − (j − 1)]2
.

Therefore

P`(min{Sk | 1 ≤ k ≤
log2 ||m||∑
r=log2 R

r4} < R) ≥ 1−
log2 ||m||∑
j=log2 R

C

r2
≥ 1−

∞∑
r=log2 R

C

r2
.

The last sum can be made as small as we wish by choosing R large.
Moreover by Lemma 6.1(d) given R, ε1 we can find δ0 such that if η

is the first time when ||Sη|| ≤ R then

E` (A ◦ fη) =
∑

α

cαE`α(A)

where ∑
length(`α)≤δ0

cα ≤ ε1.

Now observe that the set of standard pairs satisfying

(18) |[`]| ≤ R, length(`) ≥ δ0

endowed with topology of weak convergence of E`-measures is compact.
Therefore given R, δ0, ε we can find M such that for any standard pair
satisfying (18) we have

P`(τ > M) < ε

The lemma follows. �

Let m̄ = 2log
1/20
2 ||m||. Using again the approximation by simple ran-

dom walk we see that the probability that ||m(xn)|| reaches m̄ be-
fore reaching ||m||r is r−1

r
+ o(1). (Observe that approximation error is

O(nm̄−ζ) and by Proposition 3.9 it is enough to restrict our attention
to n � log3 ||m||.) On the other hand, by Lemma 6.2, the probability
that the particle starting from a ball of radius m̄ reaches the ball of
radius mr before time τ(x) converges to 0 as |m| → ∞. It follows that

(19) P`

(
max
k≤τ

log ||m(Sk)|| > r log ||m||
)
→ 1

r
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By Lemma 6.2, with probability close to 1 we have

(20) max
j<n

(sj+1 − sj) ≤ τ(x) ≤ C log5 ||m||max
j<n

(sj+1 − sj)

By Lemma 6.1(a)&(b), for every fixed δ > 0 the probability that

(21) (max
j<n
||m(Ssj

||)2−δ ≤ max
j<n

(sj+1 − sj) ≤ (max
j<n
||m(Ssj

||)2+δ

converges to 1 as |m| → ∞.
Combining (19) with (20) and (21) we obtain (3). �

Remark. The distributions similar to those described in this section
appear in the study of random walk on the group of affine transforma-
tions of the real line (cf. [Gr 74]).

7. Escape from an annulus.

Proof of Lemma 6.1. The idea of the proof of (a) is borrowed from
the inductive proof of Proposition 3.9(d), and is based on Proposition
3.1(d).

We have to prove two inequalities

(22) P`(s1 > n) ≤ Const

(
θn/|m|2 +

1

|m|100

)
and

(23) P`(s1 > n) ≤ Const

(
θn/(|m|2 log n) +

1

n100

)
.

To prove (22) it is enough to restrict our attention to n ≤ |m|3 since
the RHS of (22) stays constant for n > |m|3. Let

pk = P`(s1 > k|m|2).
Using the Markov decomposition

E`(A ◦ fk|m|2) =
∑

α

cαE`α(A),

Proposition 3.1(d) and the fact that by Proposition 3.7(c) there is θ < 1
such that for any ` with length(`) ≥ |m|−101

P`(s1 ≤ |m|2) ≥ 1− θ
we obtain

pk+1 ≤ θpk + Const|m|−101.

(22) follows.
The proof of (23) is similar. We replace k|m|2 by kC|m|2 log n for

sufficiently large C and use the fact that for any ` with length(`) ≥
n−101

P`(s1 ≤ C log n|m|2) ≥ 1− θ
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(b) follows from Proposition 3.7(d).
(c) Let k = ||m||ζ 0 < ζ < 1/5. We consider Sjk stopped when

either ||m(Sjk)|| ≤ ||m||/2 − Hk or ||m(Sjk)|| ≥ 2||m|| + Hk. Let
s̄ be the corresponding stopping time. Call Z = S(j+1)k − Sjk. Let
Xj = log ||Sjk||2. Note that

||S(j+1)k||2 = (D−1Sjk,D−1Sjk) + +2(D−1Sjk,D−1Z) + (D−1Z,D−1Z).

Taking Taylor expansion of

Xj+1 −Xj = log

(
1 +

2(D−1Sjk,D−1Z) + (D−1Z,D−1Z)

(D−1Sjk,D−1Sjk)

)
and using the bounds

Sjk = O(|m|), Z = O(k), |Sjk| ≥
m

2
−Hk

we get

(24) Xj+1 −Xj =

2(D−1Sjk,D−1Z)

||Sjk||2
+

(D−1Z,D−1Z)

||Sjk||2
− 2

(D−1Sjk,D−1Z)2

||Sjk||4
+O

(
k3

|m|3

)
.

To estimate the first term in (24) let Z̄ = Sjk − S(j−1)k. Then

(D−1Sjk,D−1Z)

||Sjk||2

=
(D−1S(j−1)k,D−1Z)

||S(j−1)k||2
+

(D−1Z̄,D−1Z)

||S(j−1)k||2
−

−2
(D−1S(j−1)k,D−1Z)(D−1S(j−1)k,D−1Z̄)

||S(j−1)k||4
+O

(
k3

|m|3

)
= I + II + III +O

(
k3

|m|3

)
.

By Proposition 3.1(c)

E((A ◦ f (j−1)k
0 )1s̄>(j−1)k) =

∑
α

cαE`α(A).

Take some α. Observe that on γα, S(j−1)k equals to a constant, say Sα,
where

||m||
2
−Hk ≤ ||Sα|| ≤ 2||m||+Hk.

By Proposition 3.7(a)

E`α(I) = O

(
1

|m|
θk log length(`α)

)
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E`α(II) = O

(
1

|m|2
log length(`α)

)
E`α(III) = O

(
||Sα||2

|m|4
log length(`α)

)
= O

(
1

|m|2
log length(`α)

)
.

Using Proposition 3.1(d) and Abel resummation formula we get

(25) E`

(
2(D−1Sjk,D−1Z)

||Sjk||2
1s̄>(j−1)k

)
= O

(
1

m2

)
.

To estimate other terms in (24) we use the decomposition

E((A ◦ f jk
0 )1s̄>jk) =

∑
β

cβE`β
(A).

Proposition 3.7(b) gives

E`β

(
(D−1Z,D−1Z)

)
=

2∑
p,q=1

D−2
pq E`β

(Z(p)Z(q))

= k
2∑

p,q=1

D−2
pq D2

pq +O(log2 length(`β)) = 2k +O(log2 length(`β))

and

E`β

(
(D−1Sβ,D−1Z)2

)
=

2∑
p1,q1,p2,q2=1

D−2
p1q1
D−2

p2q2
Sβ(p1)Sβ(p2)E`β

(Z(q1)Z(q2))

= k
2∑

p1,q1,p2,q2=1

D−2
p1q1
D−2

p2q2
Sβ(p1)Sβ(p2)D2

q1q2
+O(log2 length(`β))

= ||S2
β||k +O(log2 length(`β)).

Hence

E`β

([
(D−1Z,D−1Z)

||Sjk||2
− 2

(D−1Sjk,D−1Z)2

||Sjk||4

]
1s̄>jk

)
= O

(
log2 length(`β)

|m|2

)
.

Using Proposition 3.1(d) and Abel resummation formula we get

E`

([
(D−1Z,D−1Z)

||Sjk||2
− 2

(D−1Sjk,D−1Z)2

||Sjk||4

]
1s̄>jk

)
= O

(
1

|m|2

)
.

Combining this with (25) we get

E`((Xj+1 −Xj)1s̄>jk) = O

(
1

|m|2

)
.
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It follows that

E`(Xmin(s̄,|m|2+δ)) = 2 log ||m||+O

(
1

||m||ζ−δ

)
.

On the other hand by part (a)

Xmin(s̄,|m|2+δ) = 2 log ||m|| ± log 4 +O

(
log ||m||
||m||1−ζ

)
except on the set of probability O(|m|−100). Therefore

P`(||m(Ss̄)|| ≤ ||m||/2−Hk) =
1

2
−O

(
1

|m|ζ−δ

)
.

Since ||m(Ss1)|| ≤ ||m||/2 if ||m(Ss̄)|| ≤ ||m||/2−Hk, we conclude that

P`(||m(Ss1)|| ≤ ||m||/2) ≥ 1

2
−O

(
1

|m|ζ−δ

)
.

A similar argument shows that

P`(||m(Ss1)|| ≥ 2||m||) ≥ 1

2
−O

(
1

|m|ζ−δ

)
.

This proves (c).
To prove (d) observe that each γα = γj(x) and by part (a)

P`(j > |m|3) ≤
1

|m|100

Now the result follows by Proposition 3.1 (d).
�

8. Proof of Theorem 5

Proof. In view of decomposition (4) it suffices to show that if |m1|, |m2| →
∞ and if `1, `2 are standard pairs such that

(26) [`j] = mj, length(`j) > |mj|−100, j = 1, 2

then

(27) |E`1(A(f τ (x)))− E`2(A(f τ (x)))| → 0

as |m1|, |m2| → ∞.
We claim that it can be assumed without the loss of generality that

(28)
1

2
<
||m1||
||m2||

< 2.
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Indeed, suppose that, say ||m2|| > 2||m1||. Let τ̃(x) be the first time
such that ||(Sτ̃(x))|| ≤ 2||m1||. It suffices to show that

E`2(A ◦ f τ̃ ) =
∑

α

cαE`α(A)

where

sup
m1,`2

∑
length(`α)<|m|−100

cα → 0 as |m1| → ∞

but this follows easily from the analysis of Section 6 (in particular
Lemma 6.1(d)).

To prove (27) we extend the coupling lemma Lemma 3.8 to the
Lorentz process.

Lemma 8.1. Given ζ > 0 and ε > 0 there exists R such that for any
two standard pairs `1 = (γ1, ρ1), `2 = (γ2, ρ2) satisfying (26), (28) and
|mj| > R the following holds.

Let n̄ = |m1|2(1+ζ). There exist positive constants c̄ and c̄βj, proba-
bility measures ν̄1 and ν̄2 supported on f n̄γ1 and f n̄γ2 respectively, and
families of standard pairs {¯̀βj}β; j = 1, 2 satisfying

(29) E`j
(A ◦ f n̄) = c̄ν̄j(A) +

∑
β

c̄βjE¯̀
βj

(A) j = 1, 2

with c̄ ≥ 1− ε. Moreover there exists a measure preserving map

π̄ : (γ1 × [0, 1], f−n̄ν̄1 × λ)→ (γ2 × [0, 1], f−n̄ν̄2 × λ)

where λ is the Lebesgue measure on [0, 1] such that if π̄(x1, s1) = (x2, s2)
then for any n ≥ n̄

d(fnx1, f
nx2) ≤ Cθn−n̄,

where C, θ are the constants from Lemma 3.8.

Lemma 8.1 implies that

|E`1(A ◦ f τ )− E`2(A ◦ f τ )|

≤

∣∣∣∣∣∑
β

cβ
[
E`1(A ◦ f τ−n̄)− E`2(A ◦ f τ−n̄)

]∣∣∣∣∣+ Const||A||Hθn̄

+(P`1(τ < 2n̄) + P`2(τ < 2n̄))||A||∞
≤ 2ε||A||∞ + Const||A||Hθn̄ + (P`1(τ < 2n̄) + P`2(τ < 2n̄))||A||∞
Hence (27) follows from Theorem 4 and Lemma 8.1 by choosing ζ

and ε sufficiently small. �

It remains to prove Lemma 8.1.
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Proof. The Lemma is obtained by a repeated application of Lemma
3.8. Fix ε1 � ε. By Growth Lemma (Proposition 3.1) we can find a
number δ0 such that if n > Const| log length(`)| then

E`(A ◦ fn) =
∑

α

cαE`α(A)

and

(30)
∑

length(`α)<δ0

cα < ε1.

Let q be the constant from Lemma 3.8.
Take R such that the probability that the absolute value of a Gauss-

ian random variable with mean 0 and variance D2 exceeds R is less
than ε1.

Take k such that (1− q
2
)k < ε. Take ζ̄ such that (1+ ζ̄)k < 1+ ζ. Set

nj = |m1|2j(1+ζ̄), j = 1 . . . k. Combining Proposition 3.7(e), (30) and
the definition of R we obtain

E`j
(A ◦ fn1) =

∑
m

∑
α

cαmjE`αmj
(A)

where P`αmj
(m(x) = m) = 1 and

∑
|m1|<|m|<Rm1+ζ̄

1

∣∣∣∣∣∣
∑

length(`αm1)<δ0

cαm1 −
∑

length(`αm2)<δ0

cαm2

∣∣∣∣∣∣ < 100ε1.

Applying Lemma 3.8 to couple
∑

α cαm1E`αm1 and
∑

α cαm2E`αm2 we
obtain

E`j
(A◦fn1) =

∑
m

cmνjm(A)+
∑

β

cβjE`βj
(A)+

∑
κ

cκjE`κj
(A) j = 1, 2

where νm1 and νm2 satisfy the conditions of Lemma 3.8,∑
m

cm > q − 100ε1,
∑

κ

cκj < 100ε1

and

|`βj| < R|m1|1+ζ̄ .

Splitting each cβj into several pieces if necessary we can assume that
cβ1 = cβ2. Next we apply the same procedure with `1, `2 replaced by
`β1, `β2 and n1 replaced by n2. Continuing this k times we obtain (29)
with

1− c̄ ≤ (1− q + 100ε1)
k + 100kε1.

The result follows. �
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9. Continuous time.

Here we prove Corollaries 6 and 7. Let r : Ω→ R+ be the free path
length. If A ∈ L1(m), let Ā =

∫ r

0
A(gsx)ds. Then

µ(Ā) = m(A)L̄.

Let p :M→ Ω be the place of the first backward collision.
Given t let n(t) be the number such that Tn ≤ t < Tn+1. By the

ergodicity of (Ω0, f0, µ0) we have Tn/n → L̄ almost surely. In other
words

(31)
n(t)

t
→ 1

L̄

almost surely.

Proof of Corollary 6. By the Ratio Ergodic Theorem it suffices to prove
Corollary 6 for one function A satisfying µ(A) 6= 0. In particular, we
can assume that A is positive and bounded. Then∫ t

0

A(gsx)ds =

n(t)−1∑
j=0

Ā(f jp(x)) +O(1).

Hence it is enough to show that∑n(t)−1
j=0 Ā(f jp(x))

log t

converges to the exponential random variable with mean L̄m(A)/c. By
(31)

P

(∑t/(2L̄)
j=0 Ā(f jp(x))

log t
≤
∑n(t)−1

j=0 Ā(f jp(x))

log t
≤
∑2t/L̄

j=0 Ā(f jp(x))

log t

)
→ 1

as t → ∞. By Corollary 3 both the first and the third terms in the
last formula converge to the exponential random variable with mean
L̄m(A)/c. The result follows. �

Proof of Corollary 7. log tm
log |m| = log n(tm)

log |m| +
log( tm

n(tm))
log |m| . �

10. Linear Lorentz process: limit theorems.

Theorem 9 follows from the local limit theorem for the LLP and the
relation ∑

ni≥1,n1+n2+···+nk≤n

∏
j

1√
nj
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∼ nk/2

∫
. . .

∫
t1<t2<···<tk<1

1√
t1

1√
t2 − t1

. . .
1√

tk − tk−1

dt1 . . . dtk

= nk/2 Γ(1/2)k

Γ(k
2

+ 1)

which can be proven by induction. (Note the well-known fact: Γ(1/2) =√
π).

Remark. Observe that, in fact, it is not necessary to require that
x0 ∈ Ω0 it suffices to assume that m(S0) �

√
n. Moreover, a similar

result also holds for Card(j ≤ n : Sj ∈ O).
We now prove Theorem 10. Let τ̄ be the first time m(Sτ̄ ) = 0 and

let τ̄m be the distribution of τ̄ . We claim that

(32)
τ ∗m − τ̄m
m2

⇒ 0

Indeed since O ⊂ Q0 we have τ̄ ≤ τ ∗ whereas by the above remark for
any ε > 0

µm(τ ∗ − τ̄ > ε|m|2) = µm(Card(0 ≤ j ≤ ε|m|2 : xτ̄+j ∈ O) = 0)

= µm

(
Card(0 ≤ j ≤ ε|m|2 : Sτ̄+j ∈ O√

ε|m|
) = 0

)
→ 0.

By (32) it suffices to prove Theorem 10 with τ ∗m replaced by τ̄m. But
then the result follows from the functional Central Limit Theorem.

The proof of Theorem 11 is similar to but easier than the proof of
Theorem 5. Indeed here we can assume that

|d(`1, O)− d(`2, O)| � dα(`1, O)

for some α < 1 but then d(`1, `2) � dα(`1, O) so we can easily couple
`1 and `2.

11. Linear Lorentz process: return time tail.

To prove Theorem 8 we need an auxiliary fact. Let tn be the first
positive integer time j when m(Sj) = n.

Lemma 11.1. (a) For any standard pair ` satisfying m(`) = 0 there
exists the limit

c̄(l) = lim
n→∞

nP`(tn < τ ∗).

(b) There exists a constant C1 such that for any standard pair `

P`(tn < τ ∗) ≤ C1 log(length(`))

n
.
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(c) There exists a constant C2 such that for any standard pair ` and
for any number K ≥ 1

P`(tn < τ ∗ and tn ≥ Kn2) ≤ C2 log(length(`))

K100n
.

To deduce Theorem 8 from the lemma take a small ε. Then

P(τ ∗ > n) ≥ P(t[ε√n] < t0)P(τ ∗(xt[ε
√

n]
) > n|t[ε√n] < t0).

The first factor is asymptotic to c1
[ε
√

n]
by the lemma while the second

factor is asymptotic to the probability that the maximum of the stan-
dard Brownian motion on the unit interval is less than ε. The last
probability is asymptotic to c2ε. Thus

√
n lim inf

n
P(τ > n) ≥ c1c2.

Take ε̄ � ε. To get an estimate from above we need to take into
account the probability that for some p ≥ 1 we have t[ε√n] ∈ [pε̄n, (p+
1)ε̄n] in which case it suffices that

τ ∗(xt[ε
√

n]
) > n(1− ε̄p).

However by Lemma 11.1

ε
√
nP(t[ε√n] < t0 and t[ε√n] ∈ [pε̄n, (p+ 1)ε̄n])

is less than Const
(

ε2

pε̄

)100

so we can neglect contributions for p 6= 0

proving Theorem 8.

Proof of Lemma 11.1. The proof of the lemma will be based on a fur-
ther lemma.

Lemma 11.2. Fix δ0 > 0. We claim that given ε0 there exists m0 ∈ Z+

such that for all m and n such that either m0 < m < n − m0 or
n+m0 < m < −m0 the inequality

(33) 1− ε0 ≤
|n|
|m|

P`(tn < τ ∗) ≤ 1 + ε0.

holds for all ` such that

[`] = m and length(`) ≥ δ0.

Proof of Lemma 11.2. To prove the estimate from below in (33) assume
that m > 0 and observe that similarly to Lemma 6.1 we have

P`(t2|m| < τ ∗ and rt2|m|(x) ≥
1

|m|100
) =

1

2
+O(|m|−ζ).
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Iterating this estimate we obtain

(34) P`

(
t2k|m| < τ ∗ and rt

2k|m|
(x) ≥ 1

(2j|m|)100

)

=

(
1

2

)k k∏
j=1

(1 +O((2k|m|)−ζ)).

Taking k = log2(|n|/|m|) we obtain the lower bound in (33).
To prove the upper bound let n1 be the first time n then

either Sn ∈ O or rn(x) ≥ δ0 and m(Sn) ≥ 2|m|.
If m(Snj

) 6= 0 define nj+1 be the first time n then

either Sn ∈ O or rn(x) ≥ δ0 and m(Sn) ≥ 2m(Snj
).

Then by induction

(35) P`(Snk
∈ O) =

(
1

2

)k

[1 +O(|m|−ζ)].

On the other hand let k = log2(
√
n/|m|). We have

m(Snk
)

2k|m|
=

k−1∏
j=0

m(Snj+1
)

2m(Snj
)
.

Let Ak denote the event that t2k|m| < τ ∗. Taking θ̄ = 0.9, say we have

P`

(
Ak and log

(
m(Snk

)

2k|m|

)
≥ R

)
≤
∑

j

P`

(
Ak and log

(
m(Snj+1

)

2m(Snj
)

)
≥ Rθ̄j

1− θ̄

)
To estimate the jth term we should replace one of 1/2 factors in (35)
by

P`

(
log

(
m(Snj+1

)

2m(Snj
)

)
≥ Rθ̄j

1− θ̄

)
= P`

(
m(Snj+1

)− 2m(Snj
) ≥ R̄

)
where

R̄ = 2m(Snj
)

[
exp

(
Rθ̄j

1− θ̄

)
− 1

]
.

Next take a small η > 0. Writing

P`

(
m(Snj+1

)− 2m(Snj
) ≥ R̄

)
= P`

(
m(Snj+1

)− 2m(Snj
) ≥ R̄ and r(Snj+1

) > ηR
)

+P`

(
m(Snj+1

)− 2m(Snj
) ≥ R̄ and r(Snj+1

) ≤ ηR
)

we see that both terms are exponentially small by the Growth Lemma
(Proposition 3.1) (to estimate the second term observe that while r(Snj+1

)
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is relatively large it should stay less than (2k|m|)−100 for next ConstR̄
iterations). Hence we have

P`

(
Ak and log

(
m(Snk

)

2k|m|

)
≥ R

)
≤
∑

j

O(exp(−Const(θj2jr|m0|))) = O(exp(−Constm0))

where the penultimate estimate follows from the Growth Lemma. Next
for any ` with

length(`) ≥ δ0 P`(m(x) = m̄) = 1

for some m̄ ≥
√
n we have

P`(tn < τ ∗)− P`(tn < τ ∗ and rj(x) ≥
1

n100
for j = 1 . . . tn) = O(n−97)

so similarly to Section 6 we have

P`(tn < t0) =
m̄

n
(1 +O(|n|−ζ)).

Thus similarly to the way we derive the Theorem 8 from Lemma 11.1
we can show that the contribution to (33) of the terms where rt

2k|m|
(x)

is small for some k can be neglected. (33) follows. �

To derive parts (a) and (b) of Lemma 11.1 let t be the first integer
time j when

m(Sj) ≥ m0 and rj(x) ≥ δ0

and apply (33) to each homogeneuos component of f t`. (Observe that
by Lemma 6.1(a)

P(m(Sj) ≤ m0 for j = 1 . . . n) ≤ Const

[
θn/(m2

0 log n) +
1

|n|100

])
.

It remains to prove part (c) of Lemma 11.1. To this end observe that
tn ≥ Kn2 implies that there is j such that

tn/2j − tn/2j+1 ≥ θ̄jKn2

1− θ̄
.

To estimate the probability of such an event we replace one of the 1/2
factors in (34) by

P`

(
tn/2j − tn/2j+1 ≥ θ̄jKn2

1− θ̄

)
.

By Lemma 6.1(a) the last expression is

O
(
θK(2θ̄)j

)
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and part (c) follows. �

Remark. The constant c̄O can be computed using the local limit
theorem.

Indeed the proof of Lemma 11.1 shows that c̄(`) depends continu-
ously on `. That is if length(`1) is close to length(`2), γ1 is close to γ2

and the densities at corresponding points are close then c̄(`1) is close to
c̄(`2). It follows that if ν is an admissible measure with decomposition

ν(A) =

∫
E`α(A)dσ(α)

then there exist the limit

(36) c̄(ν) = lim
n→∞

√
nν(τ ∗ > n)

and this limit depends continuously on σ. Next consider the identity

n∑
j=0

P(Sj ∈ O and Sk 6∈ O for k = j + 1 . . . n) = 1.

Lemma 11.3. There is a constant C such that for all n we have

µ0(Sn ∈ O and rn(x) ≤ δ) ≤ Cδ

n
.

Proof. If rn(x) ≤ δ then an orbit of x passes close to the singularity
near time n. Namely

{rn(x) ≤ δ} ⊂
⋃
j

{d(xn−j,S) ≤ θj}.

So we need to estimate

µ0(Sn ∈ O and d(xn−j,S) ≤ θj).

By the time reversal symmetry the last expression is the same as

µ0(S0 ∈ O : m(Sn) = 0 and d(xj,S) ≤ θj).

By the Growth Lemma the contribution of terms with j > log2 n can
be neglected. Now by Proposition 3.7(e)

µ0(S0 ∈ O,m(Sn) = 0 and d(xj,S) ≤ θj) ≤ Constθj/n.

�

Now by the local limit theorem given Sj ∈ π−1O we have that xj is
asymptotically uniformly distributed on O and by Lemma 11.3 most
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of the points belong to the long curves. Hence (36) togather with
continuity of c̄(ν) implies

c̄O√
2πD̄

length(O)

length(Q0)

∑
j

1√
j

1√
n− j

∼ 1.

It follows that

c̄O =

√
2πD̄

Γ(1/2)2

length(Q0)

length(O)
.

Use finally the fact Γ(1/2) =
√
π.

12. Two particles.

The proofs of Theorems 12 and 13 are similar to the proofs of Theo-
rems 4 and 5 respectively. The most significant change is that Theorem
4 relies on Lemma 6.1. The proof of part (c) of that lemma, however,
uses the exponential mixing for the discrete time system. Since expo-
nential mixing is currently unknown for continuous time system, we
indicate a direct proof of Lemma 6.1 for the continuous time system.

We need some notation. Let `1 and `2 be standard pairs for x′, x′′

respectively. We denote P = P`1 × P`2 . Denote L = ||m(x′0) −m(x′′0)||
and fix a small δ > 0. We say that some event happens almost certainly
if P–probability of its complement is O(θLδ

). Let x′n, x
′′
n denote the

position of the particles after n collisions.
Let n̂ be the first time when either ||m(x′n)−m(x′′n)|| ≥ 2L+L0.9 or

||m(x′n)−m(x′′n)|| ≤ L
2
−L0.9. Then the argument of Lemma 6.1 shows

that

P(||m(x′n̂)−m(x′′n̂)|| ≤ L

2
− L0.9) = 1/2 +O(L−ζ).

Also by Proposition 3.7(d) almost certainly

(37) n̂ ≤ L2(1+δ).

Now let t′n (t′′n) denote the time it takes the particle x′ (x′′) to collide
n times. Proposition 3.7(d) and (37) imply that almost certainly

|t′n̂ − t′′n̂| ≤ L(1+δ).

It follows that the faster particle almost certainly does not wander
farther than L(1+δ)3/2 from its position at time min(t′n̂, t

′′
n̂) during the

time (max(t′n̂, t
′′
n̂)−min(t′n̂, t

′′
n̂)) it takes the slower particle to collide n̂

times. If δ is so small that L(1+δ)3/2 < L0.9, then we have

P(d(x′(t), x′′(t)) reaches L/2 before 2L) ≥ 1/2 +O(L−ζ).

Likewise

P(d(x′(t), x′′(t)) reaches 2L before L/2) ≥ 1/2 +O(L−ζ).
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This establishes Lemma 6.1 for continuous time system. The rest of
the proof of Theorem 12 is similar to the proof of Theorem 4.

To prove Theorem 13 observe that the proof of Lemma 8.1 gives the
following result about the continuous time system.

Lemma 12.1. Given L > 0, ζ > 0 and ε > 0 there exist a constant
R such that for any two standard pairs `1 = (γ1, ρ1), `2 = (γ2, ρ2)
satisfying (26), (28) and |mj| > R the following holds. Let ∆ : γ1 → R
be a function such that ||∆||∞ < L and ∆(x, y) ≤ Lθs+(x,y).

Let n̄ = |m1|2(1+ζ). There exist positive constants c̄ and c̄βj, proba-
bility measures ν̄1 and ν̄2, supported on gn̄γ1 and gn̄γ2 respectively, and
families of standard pairs and {¯̀βj}β,j=1,2 satisfying

(38) E`j
(A ◦ gn̄) = c̄ν̄j(A) +

∑
β

c̄βjE¯̀
βj

(A) j = 1, 2

with c̄ ≥ 1− ε. Moreover there exists a measure preserving map

π̄ : (γ1 × [0, 1], g−1
n̄ ν̄1 × λ)→ (γ2 × [0, 1], g−1

n̄ ν̄2 × λ)

such that if π̄(x1, s1) = (x2, s2) then for any t > n̄

d(gt+∆x1, gtx2) ≤ ε

The proof of Lemma 12.1 is exactly the same as the proof of Lemma
8.1 taking into account the remarks below.

(1) Of course if the coupling in Section 8 is done carelessly then it can
take different amount of time for a point and its partner to complete the
first n iterations. However using a multidimensional version of the local
limit theorem (Theorem 1.1 of [SzV 04]) instead of two-dimensional one
(our Proposition 3.3) one can show that it is possible to arrange that
the times differ by at most ε. To do so one need a three dimensional
local limit theorem applied to the triple consisting of the flight vector
and the flight time.

(2) As in the discrete time case the distance between gt+∆(x1) and
gt(x2) decreases with time, however the distance along the time di-
rection remains constant. Hence in the continuous case the matched
points do not converge indefinitely always keeping some small distance
apart from each other.

(3) Note the time delay ∆ in the statement of Lemma 12.1. It is
needed because we work with Poincare map whereas Theorem 13 is
formulated for the whole 3+3 dimensional phase space, so to apply
Lemma 12.1 to the initial conditions not lying on the boundary of
scatteres we need to wait until the first collision and it will take different
points different time.
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Given Lemma 12.1, the proof of Theorem 13 is similar to the proof
of Theorem 5. Namely it suffices to show that if xj are distributed
according to `j and d(`1, `2), d(`3, `4)� 1 then the distributions of

π(gτ(x1,x2)x1, gτ(x1,x2)x2) and

π(gτ(x3,x4)x3, gτ(x3,x4)x4)

are close.
As in the proof of Theorem 5 we can assume that d(`1, `2) and

d(`3, `4) � 1 are comparable. By translation invariance we can as-
sume also that `1 and `3 are close. Then we apply Lemma 12.1 to
couple `1 to `3 and `2 to `4 and conclude as in the proof of Theorem 5.

Acknowledgement. The authors are most grateful to the referee for
his useful remarks.
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