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Abstract

We consider the evolution of a connected set on the plane carried byca spa
periodic incompressible stochastic flow. While for almost every realizaifon
the stochastic flow at time most of the particles are at a distance of orgér
away from the origin, there is a measure zero set of points that escapimity

at the linear rate. We study the set of points visited by the original set by time
t and show that such a set, when scaled down by the factgrhafs a limiting
nonrandom shape®@© 2004 Wiley Periodicals, Inc.

1 Introduction

This paper deals with the long-time behavior of a passive scalar carried by
an incompressible random flow. As has been demonstrated for a largeotlas
stochastic flows with zero mean, under some mixing conditions on the flow, the
displacement of a single particle is typically of ordgt for larget. In [8] we
show that for almost every realization of the random flow, if one consities
image of an open set under the action of the flow, then its spatial distribution,
scaled by the square root of time, converges weakly to a Gaussian distribOn
the other hand, it has been shown in the work of Cranston, Scheutzeins&8tz,
and Lisei [6, 7, 11, 14] that in any open set there are points that esodpfinity at
a linear rate. In [9] we show that linear escape points form a set of fuisorff
dimension. Denote the original set B One can think of2 as an oil spill or a
pollutant, say, on the surface of the ocean. The evolution of the set tiredaction
of the flow will be denoted by;.

We shall study the set of “poisoned” points, that is, those visited by the image
of Q before timet

W) =|_JQs.
s<t
As shown in [6, 7] the diameter of this set grows linearly in time almost surely. We
shall be interested in its limit shape (scaledthy
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Consider a stochastic flow of diffeomorphisms BA generated by a finite-
dimensional Brownian motion

d
(1.1) dx = ) Xk(X) o dfi(t) + Xo(xp)dt

k=1
\Lvhere Xo, ..., Xg4 are C* smooth, divergence free, periodic vector fields and
O(t) = (B1(t), ..., 04(t)) is a standardRY-valued Brownian motion with filtra-

tion 7. Let fi  x be the solution at time of the stochastic flow (1.1) with the
initial datax; = x.

We impose several assumptions on the vector fidgs. .., X4, which are
stated in the next section (cf. [8]). All those, except the assumptionrof dréft,
arenondegeneracy assumptioasd are satisfied for a generic set of vector fields
Xo, ey Xd.

The main result of this paper is the following:

THEOREM 1.1 (Shape Theoreml.et the original set2 be bounded and contain
a continuous curve with positive diameter. Under AssumptfottsroughE from
Sectionl.1 on the vector fields, there is a compact, convex, nonrandon,set
independent of2, such that for any > 0 almost surely

1.2) A—atBCW(2) C (1+e)tB
for all sufficiently large t.

In [8] we prove that for a uniform initial measure on a curve, the imageef th
measure under the flow is asymptotically Gaussian. In Section 3 we uselta resu
of this type, together with subadditivity arguments, to obtain a linear lower bound
on the expected time for the image of the curve to reach a faraway point. We the
show that this bound in turn implies the lower bound in (1.2) for thé/Bet

The key element in the proof of the upper bound of (1.2)Wgris to show
that the setV; for larget is almost independent of the original set (which, as will
be demonstrated, can be taken to be a curve). In order to prove thiiome s
that given two bounded curvesandy’, we can almost surely find a contour that
containsy’ inside and that consists of a finite number of integer shiftg odnd a
finite number of stable manifolds of the stochastic flow (1.1) (whose lengtls tend
to zero as they evolve with the flow). In this way we see that if a point is visiged b
the image of/’, then its small neighborhood is earlier visited by the imagg.of

In Section 4 we describe the construction of the contour and provide dloé pr
of the upper bound of (1.2). Section 2 contains necessary preliming@iese
more technical estimates are collected in appendices.

1.1 Nondegeneracy Assumptions

In this section we formulate a set of assumptions on the vector fields
Xo, ..., Xq that, in particular, imply the central limit theorem for measures car-
ried by the flow (1.1) (see [8]). Such estimates are used in the proof chigee
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theorem. Recall thaX, ..., X4 are assumed to be periodic and divergence free.
We shall assume that the period for all of the vector fields is equal to one.

Assumption A:Strong Hérmander condition for;x For allx € R? we have
Lie(Xq, ..., Xq)(X) = R?,

where LigXy, ..., Xg)(X) is the linear span of all possible Lie brackets of all
orders formed out oK, ..., X4 at X. See Section 2.3 for consequences of the
strong Hormander condition fog.

Denote the diagonal ifi? x T? by

A ={(x} x? e R? x R? : x! = x> (mod 1)} .

Assumption B:Strong Hormander condition for the two-point motiohhe
generator of the two-point motiofix}, x?) : t > 0} is nondegenerate away from
the diagonalA, meaning that the Lie brackets made out(df(x1), X1(x?)),
o (Xg(xh), Xq(x?)) generatdR? x R2.

To formulate the next assumption we need additional notation. [bet :
TXO]R2 — Ty R? be the linearization ok; att. We need the strong Hérmander
condition for the procesgx;, Dx;) : t > 0}. Denote byT X the derivative of the
vector field X, thought of as the map oRR? and bySR? = {v € TR? : |v| = 1}
the unit tangent bundle oR2. If we denote byX(v) the projection ofT X (v)
onto T, SR?, then the stochastic flow (1.1) d&&¢ induces a stochastic flow on the
unit tangent bundI&R? defined by the following equation:

d
d% = ) Xi(%) o déic(t) + Xo(%)dt.
k=1

With this notation we have the following condition:
Assumption CStrong Hérmander condition faix,, Dx;). For allv € SR? we
have
Lie(Xq, ..., Xq)(v) = T,SR?.
Let Lx, Xx(x) denote the derivative ofy along Xy at the pointx. Notice that
%Zﬁzl Lx Xk + Xo is the deterministic component of the stochastic flow (1.1)
rewritten in Ito’s form. Conditions A through C guarantee that the flow (1ak) h

Lyapunov exponents and one of them is positive (see Section 2.5).qee ¢hat
the flow have no deterministic drift, which is expressed by the following comditio

Assumption DZero drift

1 d
(1.3) f (E D LxXe+ Xo)(x)dx =0.

72 k=1
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We further require that

(1.4) ka(x)dx=0, k=1,...,d.

T2

The last assumption is concerned with the geometry of the stream lines for one
of the vector fieldsXy, . .., Xq. Fix a coordinate system on the 2-tofis= {x =
(X1, X2) mod 3}. Since the vector fields have zero mean and are divergence free,
there are periodistreamfunctionsHy, ..., Hy such thatXx(x) = (—Hy,, Hy ).
We require the following:

Assumption EMorse condition on the critical points of 1H All of the critical
points ofH; are nondegenerate.

Functions with this property are callédorse functions In Appendix E we
show that a generic function has this property.

2 Background

In this section we collect some background information used throughout the
paper.

2.1 Frostman Lemma

Given a probability measung let I ,(v) denote itsp-energy

dv(x) dv(y)
1) e () = // Ix —y[p

R2xR2
Given a compact seé® € R?, theg-Hausdorff measuréi9(Q) of it is defined as

follows: For anye > 0 denote byJ, the set of balls of radius at mostcovering
Q. Denote byR, the set of radii of balls fron, and let

G e q
(2.2) HY(@) = lim inf Her ,

reRy

where the infimum is taken over &ll. covers. We shall use the following fact from
fractal geometry.

LEMMA 2.1 [12, theorem 8.8 and inequalities on p. 1@Yen positive ¢gp, m,
and | with g > p there exists a constant J(q, p, m, 1) such that if2 € R? is
a set withdiam(2) < | and the q-Hausdorff measured?) > m, then there is a
measurev on  of p-energy h(v) < J.
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2.2 Markov-Martingale Bound
The following estimate will be repeatedly used in the paper.

LEMMA 2.2 Let{&;};cz, be a sequence of random variables such that

E@Et1181...6) <0,

and that for any m the sequen(|§;|™}; is bounded by a constant.K Then for
anye > Othere existx = « (e, m, K) > 0 such that for each & Z, we have

n
P{ Zéj > sn} <xn ™,
=1

ProOF Define a set of random variablgg} = {§ — E(& | &---&-1)};.
ThenM, = Z?:l ¢ is a martingale whose quadratic variation is equgNg, =
"L ¢f. By the martingale inequality

EM2™ < CLE(M)M < C/.n™.
Therefore, by the Chebyshev inequality

P{ Zé“j > 8n} <P{Mi™ > (en)®™} <kn™™.
=1

Sinceg; < ¢j the result also holds for the original sequeigg;. O

2.3 Positive Transition Density

Let vector fieldg Xk}‘l;’:o beC® smooth on a manifolt!l, and suppose they sat-
isfy the strong Hormander condition. For- 0O let p;(x, dy) be timet transition
probability for the processg; defined in (1.1). Then by the Hérmander hypoellip-
ticity principle
dp.(x, y)

dy
is a smooth function. By [10, theorem 11.3] M is compact then there exists a
positive continuous function(t), t > 0, such thap(x, y,t) > c(t). (See also [4,
corollary 3.1]).

pX, y, 1) =

2.4 Closeness to the Deterministic Control

Let the vector fieldst = {Xk}‘k‘:l be C*® smooth onT?, and suppose they
satisfy the strong Hérmander condition. Defineas follows. Let

Ly ={Xy--- Xq}

be the linear span of the vector fieldsLIf_; is already defined, ldty be the union
of Lx_1 with the set of Lie brackets

Lk = Lia U{[X, Y], X, Y € Ly}
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Denotel. = Uk€Z+ L. By X-simple controlwe mean a piecewise* mapZ(t, x)

from [0,1] to vector fields or? such that on each piec&(t, x) = v(t)Y(x) for

some piecewise continuous functioft) on [0,1] andY € L. If Z is a simple
control, letd(Z, t) denote the flow generated By= Z(t, x).

The following is a slight generalization of [15]:

THEOREM 2.3 Let Z(t, X) be anX-simple control. Givere > 0 there exist
81, 82 > 0 such that for the stochastic flofd.1)

s
fosX — cI>(Z, —)x
81

The proof of this theorem is given in Appendix A.

IP{ sup

xeT2,s€[0,51]

<8}232.

2.5 Lyapunov Exponents

For measure-preserving stochastic flows with condition A, Lyapunosreus
A1 anda; exist by the multiplicative ergodic theorem. Since our vector fields are di-
vergence free, the sum of Lyapunov exponents A, is zero (see, e.g.,[3, p. 191]).
Under conditions A through C the leading Lyapunov exponent is positidea
most surely does not depend on the initial vector. That is, there existsO such
that for allx andv for almost all realizations of (1.1), we have

1
M= tI|m n log|dfotX(v)],

where X is the solution at timé of the stochastic flow (1.1) with the initial data
Xo = X.

To see that, is positive, we note that theorem 6.8 of [2] states that under
condition A the maximal Lyapunov exponehi can be zero only if one of the
following two conditions is satisfied:

(a) there is a Riemannian metddnvariant with respect to alK, or
(b) there is a direction field(x) on T? invariant with respect to aky.

However, (a) contradicts condition B. Indeed, (a) implies that all the Laehats
of {(Xk(x1), Xk(x?))}k are tangent to the leaves of the foliation

{(x}, x?) € T? x T? : d(x, x?) = cons}
and don't form the whole tangent space. On the other hand (b) castt@dndi-

tion C, since (b) implies that all the Lie brackets are tangent to the graphTdfis
positivity of A, is crucial for our approach.

2.6 No Superlinear Growth

We now state the lemma, proven in [7], which shows thatannot grow faster
than linearly.
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LEMMA 2.4 [7]Lety be the initial curve and
@y = Sup sup [|Xs — Xol| -
Xo€y 0<s<t
(i) There is a constant C such that almost surely
. )
lim sup —‘<cC.

t—>o0

(i) For any positive r andy, we have

ro?
Supis (exp[thax(l, In(cbt/t))mD =%

Note that due to periodicity of the vector fielfg, both estimates are uniform
with respect tg/. Indeed, we could at first consideicoinciding with the boundary
of the periodicity cell, from where the statement follows forjall

2.7 Central Limit Theorem
The next lemma, proven in section 5 of [8], describes the speed of gatipa
of a measure carried by the flow. Recall (2.1).

LEMMA 2.5 [8] Letv be a probability measure supported inside the ball®
R? whose p energy is bounded for some- 9, that is,

(2.3) lp(v) <Cp < +00.
Let f(x) be a continuous, nonnegative function with compact support. Then there

exists a nondegenerafex 2 matrix D such that for any, m > 0 there exists
T =T(f, p,Cp, R, p,m) such that forall t> T

(2.4) ]P’” f(ﬁ)du—f“>p}5t—m,
[

where f denotes the integral of f with respect to the Gaussian measure with zero
mean and variance D.

PrROOF. The last inequality of section 7 in [8] establishes (2.4) for functions of
the form f (X) = exp(iéx). Also, lemma 12 of [8] shows that there existssuch
that for allm we have

X \° m
Piv (ﬁ) > K < Cmt .
Let R = 2./sup[T[Kp. Then with probability at least + C,it ™ we have
Xt o
fl—|dv=<-=.
f (ﬁ) b= 4
x|>R

We can uniformly approximaté on the ballBg(0) by a trigonometric polyno-
mial, which implies the result. O
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We shall use the following important consequence of Lemma 2.5. We shall call
a curvelongif its diameter is bounded and greater than or equal to 1.

COROLLARY 2.6 Givene > 0 and an integer m> 0 there exist G, and T such
that if y is a curve withdiam(y) > ¢ then

P{ytislongforallt>T}>1-C,T ™.

PrROOF. The condition diary) > ¢ implies that the 1-Hausdorff measure
H(y) > e. Hence by the Frostman lemma there is a consiant0, independent
of y, and a measuresupported ory such thatl;>(v) < a. Take two nonnegative
functions f; and f, with disjoint, compact, nonempty supports. By Lemma 2.5 for
allmandN = N, we have

P{yn N+/n supp fj) # @ foralln e N,n> N} > 1—constN™",

that is, except for the set of small probability, digm) > const/n at integer
moments of time. On the other hand, by Lemma 2.4 fomall

P{there ist € [n, n + 1] such thatR (1, yn) > n¥*} < consn™,

whereR(#, vn) = SUR.,, iNfxey, dist(x, y). Combining the last two inequalities,
we obtain Corollary 2.6. O

3 Lower Bound

3.1 Linear Growth and an Estimate from Below

Let the initial set be a curve C R?, and letA be a faraway point in the plane.
We shall estimate the tail of the probability distribution of the time it takes for the
curve to reach amR-neighborhood ofA in terms of the distance betweenand A
(the constanR will be selected later).

By Corollary 2.6 we may assume without loss of generality that the original
curve is long. Given a long curve and a pointA, we definerR(y, A) to be the
first moment of time when the image gfreaches thd&k-neighborhood ofA, and
at the same time the image pfis long, that is

(3.1) Ry, A) = inf{t > 0:dist(y, A) < R, diam(y;) > 1}.
PROPOSITION3.1 Consider a long curver € R?, and a point Ac R?. Letd =

max{1, dist(A, y)}. There is a constant R~ 0, and for any positive integer m
there is G, > 0O, independent of, A, and d, for which

(3.2) P{tR(y,A) > CpBd} <Cpp™d™™ foranyp > 1.
The proof of Proposition 3.1 will rely on Lemma 3.2 stated below.
ChooseAp € y. Now, given a triplet( Ao, o, to), whereyy = y is along curve

in R?, Ag is a point ony, andty = 0 is the initial time, we define inductively the
sequencég(A;, v, tj)} as follows: Suppose that\;, y;, t;) is defined so that

e yj is a connected interval of the imagejgt 1, i.e.,y; C fy ;.4 ¥-1,
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FIGURE3.1

° Aj € Vi and
e y; islong.

Givena € (0, %) define the truncated-cone
(3.3) Kj(a) = {x e R?: dist(x, A)) > Land/(xAA) < a},

where/(x Aj A) is the angle between the segmeig, x] and[A;, A]. See Fig-
ure 3.1.
Lett;, be the first moment such that
o i1 —1t >1,
o diam( ftj,tmyj) > 1, and
L ftj,tj+1yj m K] () # 2.
Let Aj11 be an arbitrary point iry; (tj+1) N Kj(a), let Br(Aj4+1) denote the
closedR-ball aroundA; ;1, and lety; 1 be a long curve that satisfies

Ai+1 € ¥i+1 C Ty, N Bu(A 1)
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LEMMA 3.2 Fix 0 < @ < 7. For any positive integer m we have
E(ti+a—t)™) | Fy) < Cm.

ProOOF It is sufficient to prove thaE(t;") < Cy, with Cy, independent of the
original long curveyy and of the pointA. Without loss of generality we may
assume that the original curve is contained in a ball of radius 2 centeveddar
the origin. Note that there is a finite set of functions with compact suppocts su
that for any coneKo(w), defined in (3.3), with the vertex insidg,(0) there is a
function f from this set for whichr suppf C Ko(e) forallr > 1.

Sinceyy is long, the Frostman lemma (Section 2.1) implies that there exists a
probability measure on yg whose%-energy is bounded; therefore Lemma 2.5 can
be applied. Corollary 2.6 implies that for largand for each of the functions from
the finite set we have

P{n N {vt suppf} =2} <t™.
Since fort > 1 for one of the functions we have thaft suppf} ¢ Ko(x), we get
thatfort > T
P{y N Ko(e) =2} <t™".
Corollary 2.6 implies that for large
P{diam(p;) <1} <t™™.
Sincem is arbitrary, this implies the required result. O

PROOF OFPROPOSITIONS.1: Letr; = dist(A;, A). There exist positive con-
stantsR and K such that ifrp > R, thenE(r; — rg) < —K. Indeed, due to
lemmas 2.4 and 3.2, the tail of the distribution of gfs, A1) decays faster than
any power, uniformly inAg, yo. By selectingR large enough and small enough,
we can assure that digt;, A) < dist(Ag, A) — 2K with probability arbitrarily
close to 1. The contribution to the expectation from the complementary event is
estimated using the decay of the tail of the distribution of(digt A;).

Leto e N be the first moment whem < R, o = minj{rj < R}. Then

(3.4) S = I'min(j,o) + K min(j, o)

is a supermartingale. Notice that by Lemmas 2.4 and 3.2 the seqfjeac§ —
S -1 satisfies the assumptions of Lemma 2.2 with the conantandK, can be
chosen independently of the distartteT herefore, there is > 0 such that

K
P{rmm(j,g) + K min(j, o) > 71 -|—d} <kj™™ forall j > 1

Take an arbitrary > 1 and letjo = [22 8] + 1. SiNCer min(jo,) iS NONNEQative,
the evento > jo} is contained in the event

o K]
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Thus,

P{o > jo} <«jo™.
We conclude that for som@,, > 0
(3.5) P{o > CpBd} < Cpnp™™d™™ for 8,d > 1.

This inequality is different from (3.2) in that (3.5) provides an estimate fer th
number of steps, rather than time, needed to reacR-arighborhood ofA. By
Lemma 3.2 we can apply Lemma 2.2 with= t,,; — t, — C for some positiveC

to obtain that for anyn there exist such that

P{t, > 2Cn} <kn™™.

This, together with (3.5), implies the statement of the proposition. O

Let WR(y) be theR-neighborhood o#Vi(y), that is, the set of points whose
R-neighborhood is visited by the image of the original set before time

WR(y) = {x e R? : dist(x, y5) < R for somes < t}.

CoROLLARY 3.3 There exist positive constants ¢ and R such that almost surely
for t large enoughVR(y) contains the ball of radius ct centered at the origin, i.e.,
Bct(0) € WR(y) for large t.

PROOF. Consider a covering 0B (0) by balls of radiusR/2. By Proposi-
tion 3.1 for each of the balls of radiuRk/2, the probability that it is not visited
by the curve by timé decays faster than any powertofprovided that is small
enough andR is large enough. On the other hand, for eacand R the hum-
ber of balls needed to cové (0) grows liket? times a constant. Therefore, the
probability that theR-neighborhood of some point iB.;(0) is not visited by the
curve before time decays faster than any powertofThe corollary follows by the
Borel-Cantelli lemma. O

From now on we fixR for which Proposition 3.1 and Corollary 3.3 hold.

Note that the bounds we obtained in the proof of Proposition 3.1 are uniform
over all long curves. Let us employ this fact in the following corollary. Cgtbe
the family of long curves that lie completely insid@r(0) (we may assume that
R>1).

COROLLARY 3.4 The family of stopping times, defined811),
{ Ry, tv)

t }t>1,|v|—1,yeCR
is uniformly integrable.
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3.2 Stable Norm

We shall now use the asymptotics of the stopping tiftedefined in (3.1) in
order to define the limiting shap® ¢ R?. Recall thatzR is the time it takes a
curve to reach th&-neighborhood of a faraway point. Consider

[v|R = supErR(y, v).
yeCr

The stationarity of the underlying Brownian motion and the periodicity of the
vector fields imply that

Er?R(y, (t1 + t)v) < EtR(y, i) + Et(n, tav)
wherey, € Cr is some integer translation of a part &, . ¥. By Proposi-
tion 3.1
ErR(y, (1 +t)v) < Ee*R(y, (L +t)v) + C
for someC > 0. It follows that the functiontv|R + C is subadditive. Let

_|ty|R
(3.6) ||v||R=t||m| |

Similarly, forO<s < 1,
lt(sv1 + (1 — S)va) R < tsvg|R + [t(L - s)vo| R+ C,

o)

Isv1 + (1 = 9)v2[I® < sflvall® + (L = 9) v ¥.
Let B = {v € R?: ||v||R < 1}. By the remarks abovB is convex. By Lemma 2.4
B has nonempty interior. By Corollary 388 is compact. It will be shown that the
norm|jv||R and the sei3 are independent dR.

LEMMA 3.5 For any curvey € Cg, anye > 0, apd almost every realization of the
Brownian motiorp (t) there exists T= T(y, ¢, 0(t)) > 0such that(1 — e)tB C
WRy) fort > T.

PrROOF It suffices to show that for all with ||v||R < 1 and anym there isCy,
such that

(3.7) P{zR(y,tv) > (14 )t} < Cpt™.

All the estimates below are uniform insuch that|v||R = 1. By the definition of
[lv||R there existdy such that

(3.8) EtR(y, tv) < t(1+ %)
for anyt > to andy € Cr. Define the stopping timef? as

th =inf{t > 0: 11 N Br(tpv) # @; diam(y;) > 1}.

Recall thatBg(tpv) is the R-ball centered atyv. Let y® be a long part of/.
contained inByr(tgv) that has a nonempty intersection willg(tov). Similarly,
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we definer ] to be the first time following* when the image of ¥ is long and
intersectsBr(2tov). Lety @ be a long part inside the imag‘glRJZRy@ of y®, and
so on. We have therefore constructed a sequence of stopping timethatich

n

Ry, npv) < Z (f—y).

j=1
By (3.8), due to the periodicity of the underlying vector fields, for largeugnt,

we have
E(rR - ) <t 1+§
i —h-v =l 3 )

Now the result follows by Lemma 2.2 and Proposition 3.1. d

Now we prove that Lemma 3.5 remains valid even whenRheeighborhood
of Wi(y) is replaced by, (y) itself.

THEOREM3.6 For anyy € Cg and anys > 0 we have almost surelil — e)t5 C
Wi (y) for large enough t.

This theorem is a consequence of Lemma 3.5 and the fact that when a long
curve reaches aR-neighborhood of a point, then the distribution of the time it
takes for the curve to sweep the entire neighborhood has a fast siegr¢ail.

Thus Theorem 3.6 follows from the standard Borel-Cantelli argumentsttand
following sweeping lemma:

LEMMA 3.7 Lety be along curve such thalist(y, A) < R. Let
o =inf{t > 0: Br(A) C Uys}.

s<t
Then for any n> 0 and some & that does not depend gnwe have
(3.9) Plo >t} <Cut™™.

The proof of this lemma is the subject of Appendix B.

4 Upper Bound

4.1 Stable Manifold

We first recall some properties of stable manifolds. Recall fhak be the
solution at timeu of the stochastic flow (1.1) with the initial data = x. Recall
thati, > 0 is a maximal Lyapunov exponent, as discussed in Section 2.5. Conse-
quentlyr, = —i; < 0. Let 0 < A1 < A1. Then, by the stable manifold theorem
[5, sec. 2.2], for every and everyx almost surely the set

WS(x, 1) =
ly e R?: d(feuy, frux) < C(y)e 1Y for someC(y) andu > t}
is a smooth curve passing through
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4.2 Estimates in Probability
We first establish the asymptotics of the expectationy, tv).

THEOREM4.1 The limit

_ EtRy,t
||mw

t—o00

is uniform iny € Cr, whereCr is defined before Corollarg.4.

R
= [l

The proof of Theorem 4.1 is based on the following proposition (provem a
the theorem). LeWS!' be a connected part of the stable maniféid(x, 0) of a
pointx such that it satisfies sy diam( foWSh) < L.

PrROPOSITION4.2 For anye > Othere is L= L(g) such that for any two long
curvesys, y» € Cor

P{there exists Wt connectingy; andy,} > 1—¢.

PrROOF OF THEOREM 4.1: Denote by S the boundary of the square,
S = 3[—2R, 2RJ?. SincetR(S, tv) < tR(y,tv) for y € Cgr, by Corollary 3.4
the family of random variables

{fR(V, tv) — tR(S tv) }
t t=1lvl=LyeCr
is uniformly integrable. We shall demonstrate that for any O

@.1) P{IR(y,tv);rR(S,tv)
From the uniform integrability and (4.1), it then follows that
EtR(y, tv) — ETR(S, tv)
t
which implies the statement of the theorem. It remains to prove (4.1).

Givene > 0 we selectl. = L(g/3) according to Proposition 4.2. We sgt
equal toy andy, equal to a translation of by a unit vector in either the horizontal
or vertical direction. In either case we can apply Proposition 4.2. Bedildesto
the periodicity of the flow, we can apply Proposition 4.2 to any integer translatio
of the pair(y4, y2). We obtain that with probability not less than-12¢/3 there
exists a contouF, which containsS and is contained ifi-10R — L, 10R + L]2.
The contoul” consists of a finite number of integer translationg adnd a finite
number of integer translations of two stable manifalds- andW;'-. The former
manifold connecty with its horizontal translation, and the latter one connects
with its vertical translation.

Since fo:I" consists of integer translations &f;y at most distance 3®+ 3L
away from each other and stable manifolds have length no greatek thesmhave

3Ry to) < TR, tw).

> e} — 0 uniformlyinjv|| =1, y €Crg.

— 0 wuniformlyin|v|| =1, y €Cr,



A LIMIT SHAPE THEOREM 15
Sincel” containsS, we have
P{T" as above exists and?(T", tv) < tR(S, tv)} > 1 — %8 .
By Proposition 3.1 for sufficiently largewe have

P{zR(y, tv) — 3Ry, tv) > et} <

wl ™

Combining the last three inequalities, we obtain
R __ _R
P{r (y,tv) t TR(S, tv) >8} -
which implies (4.1). This completes the proof of Theorem 4.1. g

PROOF OFPROPOSITION4.2: We need to introduce some notation. Figure D.1
of Appendix D can be helpful here. Recall that we denote the streaatidunof
X1 by H;. The streamlines oX; are level sets oH;. See Appendix E for prop-
erties of level sets of functions satisfying condition E. Any regular cldees set
yo Of Hi on the torus has a neighborhood where we can define action-angte coor
dinates(l, ¢) € [0, 1] x S* such that the dynamics under the floty is described
by ¢ = w(l), | = 0. Let p be a maximum point oH;. By assumption E a small
neighborhood ofp consists of closed level sets, so we can introduce action-angle
coordinates. LeU be the maximal neighborhood @f where action-angle coor-
dinates can be introduced. Theb contains saddle critical points (or point) of
H,. Observe that all level sets h are homotopic to a point (one such homotopy
is obtained by moving along the integral curvesvdfl;). So the level sets lift to
closed level sets oR2. Abusing notation, we will denote the lifts &f andaU to
the plane by the same letters.

Let us fix a pointx € aU, which is not a saddle point. Let us consider a cone
K*X={y:|ly—x|| <a; (y—X,n) > b|ly—x|}, wheren is the unit inward normal
atx, anda, b > 0 are constants. L&t} andK} be the two sides of the cone, that
is, the points whergy — x, n) = b|ly — x|, and letK} be the remaining part of
the boundary of the cone, whejfg — x|| = a.

Let WS (x, t) be the connected componentWf(x, t) N Ba(X) containingx. In
Appendix C we prove the following:

LEMMA 4.3 If a = a(e) and b = b(e) are small enough, and %) is large
enough, then each of the following events has probability at teast /10:

At = {W3(x, 0) N aK* C {x} UK, W5(x,0) N K] £ o},
A? = | supdiam( fo JWE(x, 0)) < L%e)} .

u>0

(4.2)

Due to stationarity in of the flow, we also have

i £ o=
(4.3) PA}=1-15, 1=12
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where
A = {WE(x, 1) NIK* C {x} UKZ, WE(x,t) N K3 # o}
A? = { supdiam( f JWS(x, 1)) < L%e)} .

u>t
In Appendix D we prove the following statement:

LEMMA 4.4 There is T(e) > 0 such that for any pair of curveg,, y» € Cor With
probability at leastl — ¢/10 there is t < T(e) such that both ;)1 and fy»
contain connected subsewg and y;, respectively, which belong to the cone K
and such that

yNK#2 and WNKI#o, i=12

Assume this lemma is proven. Due to (4.3), with probability at leastel/2
there is some < T (¢) such thatfq )1 and fo 12 both intersect the same connected
setW;(x, t) and the event#\ hold fori = 1, 2.

Note that the preimage unddg: of W3 (x, t) is a part of a stable manifold.
SinceT (¢) is finite,

P{ sup diam( fo, foWE(X, 1)) > L(e)} < %
O<u<t

for large enough. (¢). If necessary, we can makee) yet larger to satisfy_ (¢) >
LOe). Therefore, with probability at least-1¢ the curves; andy, are connected
by a part of a stable manifod/>-© such that

supdiam( fo W) < L(e),

u>0

which completes the proof of Proposition 4.2. O

COROLLARY 4.5 For any curvey € Cg we havdim_, ., TR(y, tv)/t = ||v||Rin
probability.

PrRoOF. By Corollary 3.4 for any curver € Cy the family of measures oR
induced by{zR(y, tv)/t}i=1 is tight. Letv, be a limit distribution of this family.
On one hand, Lemma 3.5 implies that suppc [0, |[v||R]. On the other hand, by
Theorem 4.1 we havés dv, (s) = ||[v||R. Thusv, = §,r. O

COROLLARY 4.6 For any curvey € Cr and anys > Owe have
Jim POWE(y) € A+ e)tB} =1,
PROOF. Let @ be the following event:

t .
Q= {rR(y,tv) < —— for somev with ||[v||R = 1}.
1+¢
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We need to show{2;} — 0 ast - 4o00. Take O< § « ¢. For eacht > O let
{vj} be as-netinaB, and let2} be the following event:

Q= {rR(y,tv,-) < for some; }

t
1+¢/2
Note thatIP{Q?} — 0 by Corollary 4.5. If for some with ||v]| = 1 at time
tR(y,tv) < t/(1+ ¢) the curvey gets totv, then the probability thay hits tv
with v; one of the closest to beforet /(14 ¢/2) is close to 1 by Proposition 3.1.
More exactly, for anym for sufficiently smalls, we have

P{Q | Q) >1—Cput™.

ThereforeP{Q2;} — 0ast — oo, which is required. This completes the proof.]

4.3 Curve-to-Line Passage Time

As the reader will see in this section, we essentially use periodicity of the flow
(1.1). Given a curvey and a linel in the plane, we defineR(y,1) to be the
stopping time when the image pfreaches th&-neighborhood of and the image
of y islong. As in Section 3.2 we define

IR = supEzR(y,1)
yeCr

and, provided that the following limit exists, we define

R [tHR
(4.4) == lim —.
t—>oco
The following results for||l|R can be proven exactly like the corresponding

results (formula (3.6) and Corollary 4.5) fyo || R.

LEMMA 4.7
(i) The limitin(4.4)exists and, thereforgl] || R is well-defined.
(i) Foranyy e Cgwe havdim,_, ., tR(y, tl)/t = ||I||R in probability.

The next lemma relatgg || R to the normjjv||R.
LEMMA 4.8 For any line | in the plane,
7 = inf o) ¥
PROOF. Corollary 4.6 along with Lemma 4.7(ii) implies thatl||? §

inf,o [[v]|R. From Lemmas 3.5 and 4.7(ii) it follows th#t||R > inf,q |Jv|IR,
which completes the proof. O

Provided that the following limit exists, we define:

E( R, tl
R = fim SR
—00
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wherel’ is the line parallel td passing through origin. Note thaf*(’, tl) is
defined as the first instance when the image tdaches amR-neighborhood ofl,
the same way asR(y, tl) was defined for a compagt

LEMMA 4.9 For any line | on the plane we have the equality
IS = e

PROOF. Let us cover the lind’ by the union of fundamental domains (unit
squares whose vertices have integer coordinates) in such a way ématseuare
has a nonempty intersection with Let IT be the boundary of such a union of
fundamental domains. Sinde lies in between two integer shifts bfof distance
not greater than 2, Proposition 3.1 and the periodicity of the flow imply that as

t—> o0

R/ _ +R
ET (", th tr (1T, th) o

Let S be the boundary of a fundamental domain that contains the origin. Again,
Proposition 3.1 and the periodicity of the flow imply

RS th) — R, 1)

i —
Subtracting one from the other, we get
Rt — R(S, th)

i g

Pass to the limit as — oco. Due to Lemma 4.7(i) we get the required statement.
O

E 0.

E 0.

4.4 Almost Sure Convergence

LEMMA 4.10 For any curvey € Cg, anye > 0, and almost every realization of
the Brownian motiom (t) there exists T= T (y, ¢, 6(t)) > 0 such thatWtR(y) -
Ll+etBfort >T.

PROOF The proof is somewhat analogous to the proof of Corollary 4.6.
Choose small 0< § <« ¢ and let{v;} be ans-net ondB. Let B; be the region
bounded by support lines & passing throughtw;}. In other words, we consider
a polygon with side of length of ordérsuperscribed arounl. Sinces is small,
it suffices to prove that almost surelyR(y) C (1 + ¢/2)tB; for larget. This in-
clusion follows from Lemma 4.8 if for each of the supporting lihes B we show
that almost surely the following inequality holds for sufficiently latge

R ¢ R
(4.5) Ryt = (1= 2) iR
Lett* be such that
R/ _ & R *
E<R(’tl) > (1 8)t||||| fort > t*,
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wherel’ is the line parallel td passing through the origin. Then by Proposition 3.1
the set of random variables = tR(’, jt*I) — «R(’, (j + Dt*l) satisfies the
hypotheses of Lemma 2.2. Lemma 2.2 implies that

R/ g €Y ipx R
P{r (', jt I)<(l—é>1t Il }

decays faster than any power jofDue to periodicity of the flow, this implies (4.5)
for any curvey € Crg. O

PrROOF OFTHEOREM1.1: By Theorem 3.6 and Lemma 4.10 for any bounded
curvey with positive diameter we almost surely have

(4.6) L—etBCc Wi(y) C 1+ e)tB

for all sufficiently larget.

The setB was defined to be a unit ball in the nofm ||R. However,W,(y)
does not depend oR. Therefore, 5 does not depend oR. Inclusion (4.6) can
be applied to a closed curyg containing a bounded s&t inside, as well as to a
continuous curve, contained insid&2. Therefore, the statement of the theorem
follows from inclusions (4.6). O

Appendix A: Control Theorem

PrROOF OFTHEOREM2.3: We divide the proof into four steps:

e Step 1. Reduce the theorem for a gene¥asimple control to a control
with constani (t) = 1.

e Step 2. Further reduce it to a control consisting of just one vector field,
e.g.,Xl.

e Step 3. Change Wiener measiren (91(t), ..., 64(t)) € RY to an equiv-
alent oneP, which singles out the first component.

e Step 4. Show that under time rescalifigonverges to a measure concen-
trated on the space of continuous path whosedastl components are
identically zero.

A.1 Reduction to “Constant” Velocity

By definition it suffices to show that for any vector fiefde Ly, any piecewise
continuous functiorv(t) on [0,1], and any > 0, there exist;, §, > 0 such that

for Z(t, x) = v(t)Y(X)
S
fosX — <I><Z, 8_1)X

Sincev can be approximated by piecewise constant functions, we see by rgscalin
that it is enough to establish (A.1) for= 1.

(A.1) }P’{ sup

xeT?2, se[0,81]

<8}Z52.
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A.2 Reduction from a General Control Z(t, x) = Y(x) to One Field
Control Z(x) = X1(X)

We prove (A.1) for the cask = 2. The general case can be proved using the
same method. Lef € L,. Renumerating Xy} if necessary, one can assume that
Y = X1, Y = X,, 0orY = [ Xy, X5]. In the latter case,

. t t t £\
q)(Y, t) = Nlinoo {(D<X2, —N)Q(Xl, —N)Q(Xz, N)(D<XL N)} .

Again rescaling the time, we see that it suffices to prove (A.1) in the casel
andY = X; or X,. It suffices to prove that for any > 0 there exis1,8, > 0

such that
S
fO,SX — CD(X]_, —)X
51

A.3 Shift of the Wiener Measure
Let wi(t) = 01(t) — t/81. Then (1.1) becomes

(A.2) IP{ sup

xeT?2, se[0,81]

<8}Z82.

d
1
dx = Xo(x)dt + = X10)dt + X1(x) o dwn () + D Xu(x) o déie(t) .
1 k=2
Sincefd; — w; is absolutely continuous i€[0, §;] with the Jacobian explicitly
given by the Girsanov formula, to prove (A.2) it suffices to show thaafgre > 0

there exis®By, §; > 0 such that
S
fosX — <I>(X1, —)x
41

(A.3) I?’{ sup
xeT2, se[0,81]

whereP is the Wiener measure dmw1, 6y, ..., 64). Renamaw; to 61 again, and let

A, be the event that the solutions of

<8}Z5/2,

d

1
dx = = Xa(x)dt + Xo(x)dt + 3 Xi(x) o dé(t)
1 k=1

aree-close to the solutions afx, = (1/81) X1(X)dt for t € [0, §;]. Thus we need
to show that for every > O there exisb,, §;, > 0 such that

(A'4) P{A;L} > 6.

A.4 Time Rescaling
After time change = 8,7, we can rewrite (A.4) as
(A.5) P{A2} > 65,

whereA, is the event that the solutions of
d

(A6)  dxe = Xy(x)dT + 81 Xo(Xe)dT + /81 Y Xi(Xr) 0 dbh(7)
k=1
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aree-close to the solutions of
(A7) dx, = X1(X;)dt

fort € [0, 1]. However, asi; — 0 the solutions of (A.6) converge weakly to the
solutions of (A.7). So given positiveands,, we see that (A.5) holds if we choose
31 sufficiently small. O

Appendix B: Proof of Sweeping Lemma 3.7

PrRoOOF. We divide the proof into six steps. Here is a brief outline of the proof.

e Step 1. Reduce the problem of sweeping faball Bg(A) to the problem
of sweeping a little squatd C Br(A).

e Step 2. Define a little squaté.

e Step 3. Reduce the problem of sweeping a little squiaveth large prob-
ability to a problem of sweeping the little squddein a fixed time with
positive probability. Proof of the latter step is decomposed into two stages.

e Step 4 (or Stage 1). Take a bigger squ@re> U and using the strong
Hormander condition show that with positive probability the image of a
long curve in a unit time connectC with U .

e Step 5 (or Stage 2). Using Theorem 2.3, reduce sweeping of a littleJbox
to a control problem.

e Step 6. Construct a sweeping control.

B.1 From Sweeping the BallBr(A) to Sweeping a Little SquareU =
U(B)
SinceBgr(A) is compact, it is enough to establish a local version of (3.9). In

other words, it suffices to show that for any poite Bg(A) there exists a neigh-
borhoodU = U (B) such that if

aU:inf{t>0:U cUys},
s<t

then for allm there is a constant,, such that ify satisfies the assumptions of
Lemma 3.7, then

(B.1) P{oy >t} < Cpt™.

B.2 Definition of a Little Square U = U (B)

Before giving the proof of (B.1), let us describe the choicdJgB). By the
strong Hormander condition, given a poBithere are vector fieldg;, Y, € L that
are transversal @&. We can choose coordinates= (z;, z>) nearB so thatB is at
the origin,

9 9
Yi=—, Yo=a(z,2)—, a0,0=1.
d0Z1 02
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By shrinking the coordinate neighborhood if necessary, we can agbab®@99 <
a < 1.01. By rescaling the coordinates, we can assume that

Rangez) = [—20, 20]2.
LetU = z71([-1, 1]°).

B.3 From Large to Positive Probability

Now we prove (B.1) folJ defined in B.2. Select a poird, € y such that
dist(Ag, A) < R. Lett;, be those of the stopping timgs(defined in Section 3.1)
that satisfy disty, , A) < R. From Proposition 3.1 it follows that for amg > 0

(B.2) E(t, —t, )™ < Cnm
for someC,,,. We claim that there exists > 0 such that
(B.3) Plou <tj, lou = 4, ,} > 0.

Formula (B.3) implies that
Ploy < tj,} > 1-06".

By Lemma 2.2 there exists a const&hsuch that for alm there isCy, with the
property
P{tj,, > Cn} <Cmn ™.
Since the last two inequalities imply (B.1), it remains to prove (B.3).
By definitiont;, —t;, , > 1. Hence (B.3) follows from the following estimate:
there exist®¥ > 0 such that for any long curve such that dist/, A) < R, we
have

(B.4) IP’{U CUyS} > 6.

s<1
B.4 Stage 1 of Sweeping a Little Squar® (Getting Close)
We shall now prove (B.4). Let
C(B) =z ([-551.

ThusU < C(B). Take two pointsx’,x” € y such that digx’, B) < R,
dist(x’, x”) = % By the strong Hérmander condition for the two-point motion
there existgyg > 0 such that

P{fo12X € U, fo12X" € C(B)} > po.

Let y be the piece ofx,, joining Xi/, 10 X{,. Let y be a minimal subcurve of
lying insideC(B) and joining the boundary @ (B) with U (B) (minimality means
that no proper subcurve ¢f has these properties). By minimaligy ) 9C(B) is
one point, which we caly.

dC(B) consists of four segments corresponding to the four sides of the square
To fix our notation, assume thgite z~1({—5} x [—5, 5]). Other cases are similar.
Let 7 be the minimal subcurve joiningto z({—1} x [—5, 5]) (see Figure B.1). In
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C(B)

12
/S
y
é

FIGURE B.1. Definition ofy.

order to prove (B.4), it suffices to prove the following: There exists 0 such
that if y is any curve joiningz({—5} x [-5, 5]) to z({—1} x [-5, 5]), then

1/2

(B.5) IP{U C U;?s} > 0.
s=0

B.5 Stage 2: Sweeping a Little Square and Reduction to a Control
Problem

Recall the definition oftY'-simple controlZ(t, x) before Theorem 2.3. We
shall construct at’-simple controlZ(t, x) with the property that for any family
{W(s, x)}L_, of continuous maps of the plane such that

1 1
(B6) 12(¥(s X))~ AP(Z.9X)| <5, wehave UcC UUwex.

xey s=0

Then Theorem 2.3 would imply (B.5).
Choose some parametrizatign= y (u), u € [0, 1]. Let

E(S,U) =DP(Z,9)y ), (s,U)=W(s, yU).
We want to construct a control such that
1 1
(B.7) uc J Ut w
s=2/3u=0

for each¥ satisfying (B.6). Lef" denote the boundary c[)g, 1] x [0, 1]. To show
(B.7) we exhibit a control such that for &l € U the index

(B.8) ind¢(I'), B) = 1.
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&)

FIGURE B.2. Proof of Lemma 3.7£(I") consists of two almost trans-
lates ofy and two almost vertical segments.

To obtain (B.8) for eacly such that

1
(B.9) [z(¢) — z(§)| < >
we construcZ such that
(B.10) indg(),B)=1 and distz(¢(I")), z(U)) > 1

(see Figure I§.2). Note that (B.10) implies that angatisfying (B.9) is homotopic
to £ in R? — B and so (B.8) holds.

B.6 Construction of a Sweeping Control

It remains to construct a control satisfying (B.10). Let= z7[—2, 2]2. Let

—24Y,(-), O0<t<1i
Z(t,-) = {9Y1(-),
45Y>(-),
We claim thatZ (t, x) has the required properties. Lk, u) = (a(s, u), b(s, u)).
Since—5 < b(0, u) < 5, it follows that—5—-8x 1.01 < bA(2/3, u) <5-8x0.99
The second inequality shows thad2/3, u) lies belowU. Similar computations

show thatt (1, u) lies abovel, &(s, 0) lies to the left ofJ, andé(s, 1) lies to the
right of U. This proves (B.10). O

Appendix C: Stable Manifolds and Cones

Here we prove Lemma 4.3 about local properties of stable manifolds. In this
sectionP denotes the measure on solutions of (1.1) wkgis chosen according to
the invariant measure on the torus dhddenotes the measure on solutions of (1.1)
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wherexy = x. We need to prove that for ary> 0 there existi(e), b(e), andL (¢)

such that
&
P{Aj(a, b, L 1-—
{ j(a’ ’ )} > 10 ’
whereA; are defined by (4.2). We divide the proof into four steps.

j=12

e Step 1. Define geometric quantities of stable manifolds.

e Step 2. Establish probabilistic estimates for these geometric quantities.

e Step 3. State sufficient conditions for events in Lemma 4.3 to hold in terms
of these quantities.

e Step 4. Reformulate these sufficient conditions and prove them.

C.1 Geometric Characteristics of Stable Manifolds
Givenx, let

r(x,t) =sup{r > 0: We(x,t) N 3B, (x) # o} .

Recall thatW?(x, t) denotes a connected componentgf(x, t) N B, (x). Given
r > 0, letk(x, r, t) be the maximal curvature &/°(x, t) and

L(x,r,t) = supdiam f; ;W>(x, t) .

u>t

By stationarity the distributions of(x, t), «(x, r, t), andL(x,r, t) do not de-
pend ort. We writer (X), « (X, r), andL(x, r) forr (x, 0), «(x, r, 0), andL (x, r, 0).
By the stable manifold theorem,is positive and botlx andL are finite almost
surely. Therefore, for any, &g > 0 there exist positivey, kg, andL such that

P{r(x) =ro} = 1—¢o,
Pl (X, 1) < ko} > 1 — eo,
P{L(X,r) < Lo} >1—¢o.
In the next step of the proof, we use the strong Hormander condition wuxn
that these constants can be chosen independently of

C.2 Probabilistic Estimates on Geometric Characteristics
of Stable Manifolds

LEMMA C.1 Foranyr, g > Othere exist positiveyt x1, and Ly such that for each
point x € R? we have

Py{r(x) > r1} > 1— o,
Pyl (X, 1) <k1} > 1— &g,
Py{L(X,r) < L1} > 1—&o.

TIt can be shown that(x, t) = +oo almost surely but we shall not use this fact.
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PROOF. We prove the first statement only. Proofs of the other statements are
similar.

By the strong Hormander condition, which guarantees that the time one tran-
sition density for the process is a smooth positive function, and by the Marko
property there is & such that the following holds:

For any measurable se® on the space of the realizations of the flow with
P{Q2} > 1 — o we have thaP,{h12} > 1 — Ceo, where h is the time one shift on
the space of the realizations of the flow

Let be such that

- &0
P 1 1-—
{r(y, D) >r} > C

(herey is considered to be uniformly distributed on the torus). Then foname
have .
Pofr(xe, ) = F} 21— =

2
Since fy 1 is a diffeomorphism, there exist¢$ such that

&
(C1) P{| fosllc: <N} =1~ 2.

However, if

[ foallcs = N,
then fofll cannot decrease lengths by more than a factd¥ @éince fp 1 can in-
crease lengths by at most a factor bf) Hence our claim follows with
M = F/N Il

Lemma C.1 implies the second part of (4.2). Now we proceed to establish the
first part of (4.2).
C.3 Sufficient Geometric Conditions for the First Event of (42)

Recall thatK*(a, b, n) is the cone appearing in the first event of (4.2). We
claim that for any, ¥ anda < 7 there exise andb such that if

(C.2a) L(W3(x),n) < «a,
(C.2b) k(X,r) <«,
(C.2c) rx)>r,

then the first event of (4.2) holds.

To establish the claim, consider coordinate sysgnz, such thatx is at the
origin andn coincides with thez; -axis. Letvy, v, be the coordinates of the unit tan-
gent vector tdV3(x) pointing insideK* and leto be the arc length parametrization
of WS(x). Then by (C.2a)

vy > cos@), |vz| < sin(a),
and so by (C.2b)

o

dz .
b > coSjw) — ko, <sin(x) + ko .
do
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Hence
2 2

KO . KO
Z; = COgOl)O’ — 7 y |22| < S|n(O()U + 7 .

Therefore we can choose b so thatz; reachesa beforez; /v/z2 + 75 reached.
This implies that the half ofV;(x) lying inside K* crossek} but avoidsK ] and
KJ. Similarly, the second part &/ (x) lies in —K* and so never crossés*. This
proves the claim.

Note that Lemma C.1 implies that (C.2b) and (C.2c) hold with probability ar-
bitrarily close to 1 for appropriateandx. It remains to show that by increasing
we can make the probability of (C.2a) arbitrarily close to 1.

C.4 Sufficient Condition for (C.2a) and Proof

Let Es(x) denote the stable direction:atIn view of the above claim, in order
to establish (4.2), it remains to show that for agythere ise < 7 /2 such that for
anyx we have

(C.3) P{/(Es(X),n) <a}>1—¢g.

More generally, we shall show that there exists a con&lasich that for al(x, v)
and alle there exist®3 such that

(C.4) P{/(Es(X),v) < B} < &0.

Applying (C.4) withv orthogonal tan we obtain (C.3).

To establish (C.4), observe that by the strong Hérmander condition tkiste e
a unique invariant measugeon the unit tangent bundgT?, and this measure has
a smooth density. Let

B(B,e) = {(X,v) : P{£(Es(X), v) < B} > ¢&}.

Note that for fixedx the cardinality of the largest@separated set insid@
(X, v) € B(B, e)} is less than As. Thus

a(B(B,¢e)) < constg .

Thus

P{(Xl, dfo\ylv) € B(,B]_, 8)} -0 asﬂl — 0.
Hence we can fing; such that

P{LTWe04, D). dfow) < B} < 5

To conclude, we need the following elementary fact: Gigzr SL,(R), consider
its action on the projective lin@(v) = Qu/||Qu]. Then the derivative of this
action is given byDQ(v)v" = Pqg,(Qv)/||Qul|, where Py, is the orthogonal
projection in the direction oQu. In particular,

(C.5) IDQI < Q.
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FIGURED.1

By (C.5) there exists an absolute constarguch that if

B1
L(TWA(xq, 1), dfgqv) > B1 then /Z(Es(X),v) > —————.
( ) ) Clldf, {112

TakeN such that

B(IdT Y = N} < 2.
Then (C.4) follows with8 = B1/(C N?). This completes the proof.

Appendix D: The Cone K* and the Images of the Curves; and y»

In this appendix we prove Lemma 4.4. Recall the notation used in the proof of
Proposition 4.2 (see Figure D.1).

As in the proof of Lemma 3.7, it is sufficient to prove the following statement:
there ar@ > 0 andT > 0 such that

PBNKi#0, nNKS#2,i=12}>0

for anyy1, y» € Cog for somet < T. Without loss of generality, we may assume
that Hy(x) = 0 whenx € 9U and thatH;(x) > O for x € U. LetUp, n, =

{x : x € U, hy < Hi(X) < hy}. Note that forh; andh, small enoughlUy, n,

is homeomorphic to an annulus. Since the time it takes a solutiah;gtit =
X1(%t), Yo = X, to make one rotation along the stream line tends to infinity when
dist(x, aU) — 0, for sufficiently smalh; andh, we can introduce the angle-action
coordinates irtJp, n, such that the dynamics under the flody is described by

¢=w(), =0, ¢ecl02r], |elhyhy],
with the property that
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We say that a curve fully crossék, n, if it is contained in the closure dfi,, n,
and its endpoints belong fdd; = h;} and{H; = hy}, respectively. For a curve
y in Uy, n,, we define its winding numben(y) as the change of thg-coordinate
over the curve. In this notatiow (KJ)|, [w(K})| < 1. Thus, iflw(y)| > 2, then
y crosses bothK} andKJ. Also, for anyv € R and any curvey fully crossing
Uh,.h,» We have

w(@ Xy, Dy) — w(y) = v(why) —w(hy),

where® (v X4y, t) is the flow generated by = v X1(X).
Therefore, due to (D.1), there exiats> 0 such that for any fully crossing
Uh, ., at least two of the three curves

(D.2) DXy, Dy, D2uXy, 1y, DPBvXy, Ly
have winding numbers larger than 2 in absolute value, and thereforebaibes )
andKJ. The same is true for any curves sufficiently close to those in (D.2).
Therefore, by Theorem 2.3 we conclude that with positive probabilitevery
pair of curvesy; andys, both of which fully cross$Jy, n,, the times; images of the
curves under the action of the stochastic flow (1.1) cross Kgtand K.
It remains to prove the following:

LEMMA D.1 There exist positive;cand T such that for alj, y» € Cor we have
P{A} > ¢,

whereA is the event that for some< T both ty; and fy» contain subcurves
that fully cross Y, n,.

PrROOF. Similarly to the way it was done in the proof of Proposition 3.1 for
one curve, it is easy to show that there is a sequence of stoppingdirsaesh that
Tj41 — 1 > 1, E(tj41 — 7)™ < Cm, and each of the curves(r;) is long and
intersectsBr(0). TakeAjj € y(tj) such that

. 1
dlSt(A]_j + 72, A +Z2) = 10
Let Uy andU;, be the bounded and the unbounded componeni¥’ of Uh,.hys
respectively. By the strong Hoérmander condition

(D.3) P{fy q+12A] €Up, i =1,2} > 3.

By Corollary 2.6 we can chood¢ € N such that
(D.4) P{diam(y; (t)) > diam(U) forallt > N, i = 1,2} > 1— %
Then (D.3) and (D.4) imply that

C2
P{yi (tn+1/2) fully crossUn, n,} > 3



30 D. DOLGOPYAT, V. KALOSHIN, AND L. KORALOV

ChooseT such that

1 Co
P Tl <2
{T“z— }—6

Then Lemma D.1 follows witlt; = ¢,/6. O

Appendix E: Morse Functions on the Two-Dimensional Torus

In this appendix we present some basic facts about so-called Morsgofus
on the two-dimensional torug2. An excellent account about Morse functions
is Milnor's book [13]. LetH : T? — R be aC> smooth function or?, let
C>(T?) be the space of such functions willi° topology, andk = (X1, xz) € T?
be a standard coordinate system. A point T? is calledcritical if the gradient
of H vanishes ax, i.e., VH(X) = (dx,H(x), 9x,H(x)) = 0. A functionH is
called aMorsefunction if all its critical points are nondegenerate, i.e., the Hessian
matrix afi i H (x) has full rank. It follows from the definition that critical points are
isolated. Each critical point is either a local minimum (respectively, maximum) or
a saddle point. In particular, we have that each Morse function has ortigii
many critical points.

LEMMA E.1 There is an open and dense set of Morse functionsi(T%). In
other words, a generic function is Morse.

PrROOF. As we shall see, this lemma follows by the transversality theorem.
To each smooth map!i : T? — R one associates a so-called 2-jétH =
(H,VH,afinH) : T? - R x R? x R%. Now consider conditiorE = {X :
VH(x) = 0 and rankaxzin H(x) < 2}. This condition consists of three indepen-
dent equations or, equivalently, it has codimension 3, which is greatertiiea
dimension ofT?. By the transversality theorem [1], the property that the image
of j?H does not intersecE is open and dense. But jPH missesx, thenH is
Morse. U

A different way to prove this lemma is in [13, sec. 5].

An image of a critical point undeH is called acritical value. All the other
values in the imageH (T?) are calledregular. It follows from the theorem on
implicit functions that the preimage (or level sét) = H%(a) c T? of regular
valuea is a smooth curve. Since each Morse function has only finitely many critical
points, it has only finitely many critical values.

LEMMA E.2 Let a be a regular value of a € smooth Morse function. Then for
smalle > Oand any|a’ — a| < ¢, level sets ik = H~%(@’) are smooth curves.
Moreover, each connected component of'Ha — ¢, a + ¢]) is diffeomorphic to a

cylinder(¢, 1) € [0, 1] x T with level sets k being circles{l = I4}.
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PROOF Since critical points are isolated, for each regular valwsl nearby
valuesa’ are regular. By the implicit function theorem for thesdéevel sets{L ]}~
are smooth curves and depend smoothlyabnTherefore, we could choose local
coordinates irH ~1([a — ¢, a + ¢]) so that one coordinate parametrizes the value
of H and the other parametrizes the length of the corresponding level curigs.

Notice that if X is a vector field orT? andH is its stream function, then trajec-
tories of X belong to level sets dfi. Therefore, if in this lemma we choose time
parametrization on level curves (circles), then we ggion-angle coordinates
Namely, the vector fielX in the new coordinate system becorges: w(l), | =
0 for some smooth functiom(l).

LEMMA E.3 Let U be the maximal open set containingH[a — ¢,a + ¢]) C
U c T2 where action-angle coordinates can be defined. Then the bourdhry
contains a saddle.

PROOF. By maximalitydU must contain critical points. If all those points were
maxima and minima, then the closugewould be diffeomorphic to the 2-sphere,
a contradiction. The result follows. O
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