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Abstract. An averaging problem with Markov fast motion is
considered. The diffusive limit is obtained for the evolution of adi-
abatic invariants under the assumption that the averaged motion
is ergodic on almost every energy level.

1. Introduction.

Averaging theory constitutes one of the most developed branches of
differential equations. The general setting is the following. Consider
an equation

(1) ẋ = εX(x, ξt)

where ξt is a process changing with unit speed. In applications it
is often important to allow a coupling between ξ and x. For example,
ξt can be a random process whose distribution depends on x or it can
satisfy a differential equation whose coefficients depend on x.

If ε is small, numerical solution of (1) is costly because x changes
after time 1/ε whereas any numerical scheme should have steps o(1)
to capture the oscillations of ξ. Therefore one would like to eliminate
ξ by asserting that the solution of (1) satisfies

(2) x(t/ε) ∼ x̄(t)

where x̄(t) satisfies the averaging equation

(3) ˙̄x = X̄(x̄) with X̄(x̄) = Average(X(x̄, ξ))

and the meaning of the operation Average(. . . ) depends on the prob-
lem at hand. In case X does not depend on the first variable, x is given
by the expression

x(t/ε) = ε

∫ t/ε

0

X(ξs)ds

which is covered by the ergodic theorem. So the general averaging
problem can be considered as a non-linear version of the ergodic theory.
Hence, the methods used to analyze ergodic properties of a certain
process can be extended to get an averaging theorem on scale 1/ε.
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However, in many cases one wants to justify the averaging approach
on longer time scales. This problem is quite subtle. Indeed the long
time behavior of the averaged equation (3) can be quite sensitive to
small perturbations. (For example, (3) could have invariant measures of
full support whereas its small perturbations can have sinks (see e.g. [12]
for the discussion of this phenomenon).) In this case terms neglected
in (2) can dramatically alter long time dynamics. Hence one has to
require nice dynamical properties of (3) in order to get the long-scale
averaging so the problem is non-trivial.

One important case where long time analysis is required is the prob-
lem of adiabatic invariance. Namely we say that a vector valued func-
tion h(x) is an almost adiabatic invariant if < ∇h, X̄ >= 0. In this
case (2) and (3) say that h does not change on scale 1/ε so it is an
interesting question how long it takes before h changes significantly.

For the reason explained above previous papers dealing with this
problem assumed that the averaged dynamics is very simple, namely
quasiperiodic. In this paper we present a general approach to the prob-
lem of adiabatic invariance. It extends a method developed by Anosov
[1] to prove short time averaging for ODEs by combining it with the mo-
ment technique used in averaging theory by Khasminskii and others.
In order to present the main idea without unnecessary technicalities
we discuss the simplest case where our approach work. In particular in
order to simplify the computations we deal with discrete rather than
continuous time.

Acknowledgment. I thank Mark Freidlin and Yuri Kifer for useful
comments. This research is supported by NSF, Sloan Foundation and
IPST.

2. The main theorem.

Consider a recurrence

(4) xn+1 = xn + εF (xn, ξn) + ε2G(xn, ξn) + ε3H(xn, ξn, ε), x ∈ R
d

where ξn are i.i.d. random variables of compact support. We assume
that there is K > 0 such that

(5) ||F ||C4 ≤ K, ||G||C3 ≤ K, ||H||C1 ≤ K.

Then averaging principle ([9]) says that with probability close to 1,
x[t/ε] is close to y(t) where y solves the the averaged equation

(6) ẏ = F̄ (y), where F̄ (y) = E(F (y, ξ)).
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Let h1, h2 . . . hm be first integrals of (6)

< ∇hi, F̄ >= 0

which are independent in the sense that

(7) rk

(

∂h

∂x

)

= m

at every point. We also assume that

||∇h||C3 ≤ K.

(6) implies that hi change little on times of order 1/ε. So it is inter-
esting to describe their evolution on longer time scales. We impose
two additional conditions. Let Φ(t) denote the flow generated by F̄ .

Observe that (7) implies that level sets Mc = {~h = c} are smooth
submanifolds.

(COMP) Mh are compact and Φ restricted to Mh preserves a prob-
ability measure µh which is smooth and depends smoothly on h. More
precisely let ζ(h) be a smooth probability density on R

m which is pos-
itive everywhere. Let dµ = ζ(h)dhdµh. We require that

(8) dµ = ρ(x)dx

where ρ is a smooth positive density (it is easy to see that this condition
is independent of the choice of ζ).

(ERG) (Φ, µh) is ergodic for almost every h.
Define

ai(x) = E

(

< ∇hi(x), G(x, ξ) > +
1

2
D2h(∇F (x, ξ),∇F (x, ξ))

)

,

σ2
ij(x) = E(< ∇hi(x), F (x, ξ) >< ∇hj(x), F (x, ξ) >).

Let

ā(h) =

∫

a(x)dµh(x), σ̄2(h) =

∫

σ2(x)dµh(x).

Define hε(t) by setting hε(nε
2) = h(xε,n) and interpolating linearly in

between. Let p(x) be a probability density on R
d. Let x0 be chosen

according to p.

Theorem 1. As ε→ 0 the process hε converges weakly to the random
process h satisfying the following SDE

dh = ā(h)dt+ σ̄(h)dw.
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The assumptions of Theorem 1 appear quite reasonable at least in
the volume preserving setting. In fact (COMP) guarantees some sta-
tionarity of h dynamics preventing the points of Mh from running off
to infinity. Otherwise some extra assumptions on behavior of Φ at
infinity would be necessary. (ERG) says that there are no additional
first integrals so to describe the evolution of h we need no extra infor-
mation. Finally since we only require ergodicity for almost all h, the
assumption that p ∈ L1(Rd) is needed to guarantee that we give the
points with ergodic behavior positive weight.

3. Previous results.

Before giving the proof let us compare our result with the previous
works. The readers should keep in mind however that the papers de-
scribed below deal with a more general setting. Namely independence
is often replaced by sufficiently fast mixing, L∞ bounds (5) are replaced
by Lp bounds for some p < ∞ and they work with continuous rather
than discrete time. However we ignore these technical differences in
the discussion below in order to compare the ideas.

The first work on this problem was done by Anosov [1]. He deals with
the case when the RHS of (4) does not depend on ξ. The idea to use
Corollary 3 to justify the averaging is taken from [1]. An improvement
our paper is that we deal with three scale problem (ξ changes on the
unit scale, x changes on the scale 1/ε and h changes on scale 1/ε2),
whereas in [1] only the last two scales are present. Therefore in [1]
Corollary 3 holds for all initial conditions whereas in our case it holds
for most initial conditions. However this weaker version of Corollary
3 suffices to establish averaging. Let us also mention that the idea
to use Anosov’s approach in stochastic averaging is due to Kifer [11].
However he makes an extra assumption that (∇h, F ) depends on x only
via h which makes the problem effectively two scale by eliminating the
intermediate x-scale.

Another important advancement in this subject is the work of Khas-
minskii [9, 10] which gave the first rigorous results on stochastic av-
eraging. While [9] deals with short time averaging, the setting of [10]
is close to ours except that he has an extra assumption F ≡ 0. Some
technical improvements in this setup are presented in [4].

[6, 5] deal with the case where the averaged motion is periodic and
[7, 8] treat quasiperiodic case.

[6] also presents another version of the averaging theorem where our
condition (8) is replaced by the requirement that the distribution of
xn has density for all n > δ/ε2. This assumption can be verified only
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in special cases by quite delicate arguments [3]. Also our result has
additional aesthetic appeal since all our assumptions are imposed on
the averaged system whereas [6] impose an additional very strong re-
striction on the original system (4). On the other hand our theorem
requires that x0 has absolutely continuous distribution while the re-
sult of [6] works for arbitrary initial distribution. It is an important
open problem to find viable conditions on distributions of F,G, and H
implying absolute continuity assumption of [6].

4. A priori bounds.

Given a set Ω we shall denote its compliment by Ωc. Let Fn denote
the sigma-algebra generated by ξ0, ξ1 . . . ξn−1.

Let vector sequence Sε,n satisfy

(9) Sn+1 = Sn + εP (xn, ξn) + ε2Q(xn, ξn) + ε3R(xn, ξn, ε).

Let D ⊂ R
d be a domain such that

||P ||C3(D) ≤ K̃, ||Q||C2(D) ≤ K̃, ||R||C0(D) ≤ K̃

for some K̃. Assume in addition what

(10) P̄ (x) = E(P (x, ξ)) = 0.

Observe that we require one derivative less than for (5) because we
shall apply the estimates below to an expression containing dF

dx
. Let τε

be the first moment when xn leaves D. Denote S̃n = Smin(n,τε).
The next two lemmas are standard (see e.g [9], Section 2) but since

the proofs in our case are much simpler than in more general settings
considered elsewhere we provide the proofs in the appendix in order to
make our presentation self-contained. Fix T > 0.

Lemma 1. For all n1 < n2 ≤ T/ε2

(a) E(S̃n2
− S̃n1

|Fn1
) = O(ε2(n2 − n1)).

(b) E(|S̃n2
− S̃n1

|2|Fn1
) = O(ε2(n2 − n1)).

(c) E(|S̃n2
− S̃n1

|4|Fn1
) = O(ε4(n2 − n1)

2).

Lemma 2. Define Sε(t) be setting Sε(nε
2) = S̃ε,n and interpolating

linearly in between. Then {Sε(t)} is a tight family.

Corollary 3. Given δ > 0 there exists a constant C(δ) such that for
all n ≤ T/ε2 for all subsets Ω ⊂ R

d

(11) P(xn ∈ Ω) ≤ C(δ)µ(Ω) + δ.
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Proof. Recall (8). F̄ preserves µ which means

divρF̄ = 0 where divρF̄ = divF̄ +
< F̄ ,∇ρ >

ρ
.

Observe that (4) determines dynamics of each xn but we can also
use it to define a stochastic system of diffeomorphisms by iterating all
initial conditions using the same {ξn}. Let Ψ(n) denote the resulting

family of diffeomorphisms. Let P̃ denotes the distribution of xn if x0 is
distributed according to µ. Denote

Sn = ln

(

ρ(xn)

ρ(x0)

dxn

dx0

)

.

Observe that

Sn+1−Sn = ln

(

ρ(xn+1)

ρ(xn)

)

+lndet
(

1 + εF (x, ξ) + ε2G(x, ξ) + ε3H(x, ξ, ε)
)

.

Given r consider D(r) = {x : |h(x)| < r}. Then Sn satisfies (9) in D(r)
with

P (x, ξ) = divρF (x, ξ).

Applying Lemma 2 we see that given δ, r there exists L such that

P̃( max
n≤T/ε2

|Smin(n,τε,r)| > lnL) ≤ δ

2

where τε,r = min(n : |h(xn)| ≥ r). By Lemma 2 we can choose r so
that

P̃( max
n≤T/ε2

|h(xn)| ≥ r) ≤ δ

2

Then

P̃(Mc) ≤ δ where M =

{

1

L
≤
∣

∣

∣

∣

ρ(xn)

ρ(x0)

dxn

dx0

∣

∣

∣

∣

≤ L for all n ≤ T/ε

}

.

We have

P̃(xn ∈ Ω) =

∫∫

1Ω(Ψ(n)x0)dµ(x0)dξ ≤
∫∫

1M(x0, ξ)1Ω(Ψ(n)x0)dµ(x0)dξ+P̃(Mc).

The second term is less than δ. Changing variables z = Ψ(n)x0 we
rewrite the first term as

∫∫

1M(x0, ξ)1Ω(z)
dµ(x0)

dµ(z)
dµ(z)dξ.

Since 1M(x0, ξ)
dµ(x0)
dµ(z)

≤ L by the definition of M we can bound the

last expression by

L

∫∫

1Ω(z)dµ(z)dξ = Lµ(Ω).
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This proves (11) with P̃ instead of P. To get the result for P observe
that given δ there exists a constant C̃(δ) such that for any set Σ we
have

P(Σ) ≤ C̃(δ)P̃(Σ) + δ.

�

Let φ(h) be a smooth function of compact support. Denote

Lφ =
∑

i

ai(x)
dφ

dhi

+
1

2

∑

ij

σ2
ij(x)

d2φ

dhidhj

, L̄φ =

∫

Lφdµh.

Lemma 4. For 0 ≤ n1 ≤ n2 ≤ n

E

([

φ(h(xn2
)) − φ(h(xn1

)) − ε2
n2
∑

j=n1

(Lφ)(xj)

]

|Fn1

)

= O(ε3n).

Proof. We have

φ(h(xj+1)) − φ(h(xj)) = ε
∑

i

dφ

dhi

< ∇hi, F (xj, ξj) >

+ε2

[

1

2

∑

i,k

d2φ

dhidhk

< ∇hi(xj), F (xj, ξj) >< ∇hk(xj), F (xj, ξj) >

+
∑

i

dφ

dhi
(xj)

(

< ∇hi(xj), G(xj, ξj) > +
1

2
D2h(xj)(F (xj, ξj), F (xj, ξj))

)

]

+O(ε3).

Hence

E(φ(h(xj+1)) − φ(h(xj))|Fj) = ε2
E((Lφ)(xj)) +O(ε3).

Summation over j completes the proof. �

5. Proof of Theorem 1.

Let h(t) be any limit point of {hε(t)}. By [13], Lemma 6.1.5, it is
enough to show that for any smooth function φ of compact support

φ(h(t)) −
∫ t

0

(L̄φ)(h(s))ds

is martingale. To this end we have to show that for all 0 ≤ s1 < s2 <
sp ≤ t1 < t2 ≤ T for all bounded functions ψi of compact support

E

(

p
∏

i=1

ψi(si)

[

φ(h(t2)) − φ(h(t1)) −
∫ t2

t1

(L̄φ)(h(t))dt

]

)

= 0.
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In terms of our discrete system we need to show that

J = E



Rε



φ(h(xt2/ε2)) − φ(h(xt1/ε2)) − ε2

t2/ε2

∑

j=t1/ε2

(L̄φ)(h(xj))







→ 0.

where Rε =
∏

i φi(h(xsi/ε2)). We have

J = E



Rε



φ(h(xt2/ε2)) − φ(h(xt1/ε2)) − ε2

t2/ε2

∑

j=t1/ε2

(Lφ)(xj)









+E



ε2Rε





t2/ε2

∑

j=t1/ε2

[

(L̄φ)(h(xj)) − (Lφ)(xj)
]







 = I + II.

By Lemma 4

I = E



RεE







φ(h(xt2/ε2)) − φ(h(xt1/ε2)) − ε2

t2/ε2

∑

j=t1/ε2

(Lφ)(xj)





∣

∣

∣

∣

∣

Ft1/ε2







→ 0.

So we need to show that II → 0. By (ERG) given δ1, δ2 there exists T0

such that if

Ω = {x :

∣

∣

∣

∣

1

T0

∫ T0

0

(Lφ)(Φ(s)x) − (L̄φ)(h(x))

∣

∣

∣

∣

< δ1}

then µ(Ωc) ≤ δ2. Denote

τk =
t1
ε2

+
kT0

ε
, ξk =

τk+1−1
∑

j=τk

[

(L̄φ)(h(xj)) − (Lφ)(xj)
]

.

Then II = ε2
∑

k E(Rεξk). Next

E(Rεξk) = E(Rεξk1Ω(xτk
)) + E(Rεξk1Ωc(xτk

)) = IIa + IIb.

By Corollary 3 for any δ

|IIb| ≤
∏

i

||ψi|| (C(δ)δ2 + δ)
T0

ε
.

Now

IIa = E (1Ω(xτk
)RεE (ξk|Fτk

)) .

To estimate the inner expectation we split it as follows

E(ξk|Fτk
) = E

([

τk+1−1
∑

j=τk

(Lφ)(xj) −
1

ε

∫ T0

0

(Lφ)(Φ(t)xτk
)dt

] ∣

∣

∣

∣

∣

Fτk

)

+
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[

1

ε

∫ T0

0

(Lφ)(Φ(t)xτk
)dt− T0

ε
(L̄φ)(h(xτk

))

]

+

E

(

τk+1−1
∑

j=τk

[

(L̄φ)(h(xj)) − (L̄φ)(h(xτk
))
]

|Fτk

)

= r1 + r2 + r3.

For small ε we have |r1| ≤ δ1T0/ε by Averaging Principle (see e.g [9]),

|r2| ≤ δ1T0/ε if xτk
∈ Ω by the definition of Ω and |r3| ≤ ConstT

3/2
0 /

√
ε

by Lemma 1 and Cauchy–Schwartz. Hence

E(Rεξk) ≤
∏

i

||ψi||
(

C(δ)δ2 + δ + 2δ1 + Const
√

T0ε
) T0

ε
.

Summation over k gives

|II| ≤
∏

i

||ψi||
(

C(δ)δ2 + δ + 2δ1 + Const
√

T0ε
)

T.

Since δ, δ1 and δ2 are arbitrary the result follows. �

Appendix A. Moments.

Proof of Lemma 1.

S̃n2
− S̃n1

= ε

n2−1
∑

j=n1

P̃ (xj, ξj) + ε2

n2−1
∑

j=n1

Q̃(xj, ξj) + ε3

n2−1
∑

j=n1

R̃(xj, ξj)

where we denoted Z̃(xj, ξj) = Z(xj, ξj)1j<τε
, Z ∈ {P,Q,R}. Hence by

the triangle inequality it suffices to show that

(12) Ẽ

(

n2−1
∑

j=n1

P̃ (xj, ξj)

)

= 0,

(13) Ẽ





(

n2−1
∑

j=n1

P̃ (xj, ξj)

)2


 = O(n2 − n1),

(14) Ẽ





(

n2−1
∑

j=n1

P̃ (xj, ξj)

)4


 = O
(

(n2 − n1)
2)

where Ẽ denotes E(·|Fn1
). Since the estimates are done componentwise

it suffices to consider the case when S and P are scalar functions. Then

Ẽ

(

n2−1
∑

j=n1

P̃ (xj, ξj)

)

=
∑

j

Ẽ
(

E(P̃ (xj, ξj)|Fj)
)

= 0
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in view of (10). Next,

Ẽ((

n2−1
∑

j=n1

P̃ (xj, ξj))
2) =

∑

j1,j2

Ẽ(P̃ (xj1 , ξj1)P̃ (xj2, ξj2))

If j1 6= j2 then taking E(·|Fmax(j1,j2)) we obtain that the above term is
0. So there are only n2 −n1 non-zero terms and (13) follows. Similarly

Ẽ





(

n2−1
∑

j=n1

P̃ (xj, ξj)

)4


 =
∑

j1,j2,j3,j4

Ẽ(P̃ (xj1, ξj1)P̃ (xj2 , ξj2)P̃ (xj3, ξj3)P̃ (xj4 , ξj4))

Renumber the indices so that j1 ≤ j2 ≤ j3 ≤ j4. Then the previous
argument shows that terms with j3 6= j4 are zero. Hence

Ẽ((

n2−1
∑

j=n1

P̃ (xj, ξj))
4)

= 6

n2−1
∑

j3=n1

j3−1
∑

m1=n1

j3−1
∑

m2=n1

Ẽ(P̃ (xm1
, ξm1

)P̃ (xm2
, ξm2

)P̃ 2(xj3 , ξj3))+O((n2−n1)
2)

where the second part counts terms with j2 = j3. The first part equals

6

n2−1
∑

j3=n1

Ẽ





(

j3−1
∑

m=n1

P̃ (xm, ξm)

)2

P̃ 2(xj3 , ξj3)



 ≤ Const

n2−1
∑

j3=n1

Ẽ





(

j3−1
∑

m=n1

P̃ (xm, ξm)

)2




≤ Const

n2−1
∑

j3=n1

j3 ≤ Const(n2 − n1)
2

where the second inequality follows from (13). This completes the proof
of Lemma 1. �

Proof of Lemma 2. This Lemma follows from Lemma 1 and [2], Theo-
rem 12.3. �

References

[1] Anosov D. V. Averaging in systems of ODE with rapidly oscillating solutions,

Izvestiya Math. 24 (1960) 721–742.
[2] Billingsley P. Convergence of probability measures, John Wiley & Sons (1968)

New York-London-Sydney.
[3] Bogachev V. I., Krylov N. V. & Rockner M. On regularity of transition prob-

abilities and invariant measures of singular diffusions under minimal condi-

tions, Comm. PDE 26 (2001) 2037–2080.
[4] Borodin A. N. A limit theorem for the solutions of differential equations with

a random right-hand side, Th. Prob. Appl. 22 (1977) 482–497.



EVOLUTION OF ADIABATIC INVARIANTS IN STOCHASTIC AVERAGING. 11

[5] Borodin A. N. & Freidlin, M. I. Fast oscillating random perturbations of

dynamical systems with conservation laws, Ann. Inst. H. Poincare Probab.
Statist. 31 (1995) 485–525.

[6] Cogburn R. & Ellison J. A. A stochastic theory of adiabatic invariance,

Comm. Math. Phys. 149 (1992) 97–126.
[7] Cogburn R. & Ellison J. A. A four-thirds law for phase randomization of

stochastically perturbed oscillators and related phenomena, Comm. Math.
Phys.166 (1994) 317–336.

[8] Freidlin M. I. & Wentzell A. D. Averaging Principle for Stochastic Perturba-

tions of Multifrequency Systems, Stoch. Dyn. 3 (2003) 393–408.
[9] Khasminskii R. Z. Stochastic processes defined by differential equations with

a small parameter, Th. Prob. Appl. 11 (1966), 211–228.
[10] Khasminskii R. Z. A limit theorem for solutions of differential equations with

a random right hand part, Teor. Verojatnost. i Primenen 11 (1966) 444–462.
[11] Kifer Yu. Stochastic versions of Anosov’s and Neistadt’s theorems on averag-

ing, Stoch. Dyn. 1 (2001) 1–21.
[12] Lyubich M. The quadratic family as a qualitatively solvable model of chaos,

Notices AMS 47 (2000) 1042–1052.
[13] Stroock D. W. & Varadhan S. R. S. Multidimensional diffusion processes,

Grundlehren der Mathematischen Wissenschaften 233, (1979) Springer-
Verlag, Berlin-New York.


