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Abstract. We establish stable ergodicity of diffeomorphisms with
partially hyperbolic attractors whose Lyapunov exponents along
the central direction are all negative with respect to invariant SRB-
measures.

1. Introduction

Let f be a diffeomorphism of a compact smooth Riemannian mani-
fold M . A compact invariant subset L ⊂ M is called an attractor for f
if there exists an open neighborhood U of L such that f(U) ⊂ U and

L =
⋂
n≥0

fn(U).

U is said to be a basin of attraction. The maximal open set with this
property is called the topological basin of attraction for L. An invariant
set L = Lf is called partially hyperbolic if f |L is partially hyperbolic,
i.e., the tangent bundle TL admits an invariant splitting

TL = Es ⊕ Ec ⊕ Eu

into respectively, strongly stable, center, and strongly unstable subbun-
dles (see the next section for details). Finally, a compact invariant
subset L is said to be a partially hyperbolic attractor if L is an attrac-
tor for f and f |L is partially hyperbolic. Note that the subbundle Eu

is integrable; the leaves of its integral lamination W u are called the
global strongly unstable manifolds. A partially hyperbolic attractor is
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the union of the global strongly unstable manifolds of its points, i.e.,
W u(x) ⊂ L for every x ∈ L.

We are interested in studying ergodic properties of the map f |L with
respect to some “natural” invariant measures. In [7], the conservative
case was studied (where L is the whole manifold and f preserves a
smooth measure) under the assumption that there are negative (re-
spectively positive) central exponents, i.e., at least on a set of positive
measure, all vectors in the central subbundle have negative (respec-
tively positive) Lyapunov exponents.

In the present paper we are interested in the dissipative case: starting
with any measure κ in a neighborhood U of L, which is absolutely
continuous with respect to the Riemannian volume m, we consider its
evolutions under the map, i.e., the limit measures (with respect to the
weak star topology) of the sequence of measures

µn =
1

n

n−1∑
k=0

fk
∗ κ. (1)

It is easy to see that any limit measure µ of the sequence µn is concen-
trated on L. These limit measures have the following crucial property:

Proposition 1. For almost every x ∈ L the conditional measure µu(x)
generated by µ on the global strongly unstable manifold W u(x) is equiv-
alent to the Riemannian volume mu(x) on W u(x) (see Section 3 for
details).

Any measure with the above property is called a u-measure.
Proposition 1 was proved in [16] for the case when the measure κ in

(1) is volume, and was extended to the case of general smooth measures
in [5] (see Lemma 11.12).

As an immediate application of this observation we obtain the fol-
lowing property of u-measures. Given an invariant measure µ on L,
define its basin by

B(µ) = {x ∈ M : An(ϕ)(x) →
∫

M
ϕ dµ as n →∞ ∀ continuous ϕ};

here

An(ϕ)(x) =
1

n

n−1∑
k=0

ϕ(fk(x))

are the Birkhoff averages of ϕ.
Since the averages An(ϕ) are uniformly bounded, pointwise conver-

gence implies convergence in mean, so Proposition 1 has the following
consequence.
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Proposition 2 ([5], subsection 11.2.3). Any measure whose basin has
positive volume is a u-measure.

While Proposition 1 guarantees that any partially hyperbolic attrac-
tor has a u-measure, measures with basins of positive volume need not
exist (just consider the partially hyperbolic attractor for the product
of the identity map and a diffeomorphism with a hyperbolic attractor).
However, the following partial converse to Proposition 2 holds true.

Proposition 3. If there is a unique u-measure for f in L, then its
basin has full volume in the topological basin of attraction of L.

This statement is proven in [10] for the case when L is the whole
manifold M , but the argument works in the general case as well.

We now describe another way to construct u-measures. Fix a point
x ∈ L and consider a local strongly unstable leaf V u(x) through x (this
is the connected component containing x of the intersection of W u(x)
with a sufficiently small ball centered at x; see the next section for
details). One can view the Riemannian volume mu(x) on V u(x) – the
leaf volume – as a measure on the whole of L. Consider the sequence
of measures on L

νn =
1

n

n−1∑
k=0

fk
∗m

u(x). (2)

Clearly, any limit measure ν of the sequence νn is concentrated on L. It
is shown in [16] that any such measure is a u-measure. Indeed, one can
prove that this remains true if we replace the local unstable manifold
V u(x) with any local manifold passing through x and sufficiently close
to V u(x) in the C1 topology.

Moreover, for any ergodic u-measure ν and almost every x ∈ L the
sequence of measures (2) converges to ν. Therefore, the class of all
limit measures for sequences of type (2) coincides with the class of all
u-measures, while the class of limit measures for sequences of type (1)
may be smaller. Observe that in the case of (completely) hyperbolic
attractors the classes of limit measures for sequences of types (1) and
(2) coincide.

We also point out the following property of u-measures.

Proposition 4 ([5], Lemma 11.13). Every ergodic component of a u-
measure is again a u-measure.

The idea of constructing invariant measures by iterating unstable
leaves goes back to pioneering works of Margulis (see English transla-
tion of his dissertation in [15]) and Sinai [18].
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It is well known that any C1 diffeomorphism g, which is sufficiently
close to f in the C1 topology, possesses a partially hyperbolic attractor
Lg, which lies in a small neighborhood of Lf . Of course, Lf is the
attractor L that we have studied above. The following statement shows
that u-measures depend continuously on the perturbation.

Theorem 5. Let fn be a sequence of C1+α diffeomorphisms converging
to a diffeomorphism f in the C1+α topology. Assume that f possesses
a partially hyperbolic attractor L. Then for large n, each map fn pos-
sesses a partially hyperbolic attractor Ln. If µn is a u-measure for fn

and the sequence of measures µn converges in the weak∗ topology to a
measure µ then µ is a u-measure for f on L.

This result, although well known, is not published anywhere, so for
completeness we give its proof in Section 4.

The problem of classifying u-measures (in particular, proving unique-
ness or showing that there are only finitely many of them) plays a
crucial role in various areas of mathematics including number theory,
rigidity theory, and averaging theory.

In this paper we are interested in studying local ergodicity and stable
ergodicity of dynamical systems possessing partially hyperbolic attrac-
tors. We begin with local ergodicity.

Let f be a C1+α diffeomorphism of a compact smooth Riemannian
manifold M possessing a partially hyperbolic attractor L and let µ
be a u-measure on L for f . We say that f has negative (positive)
central exponents (with respect to µ) if there exists an invariant subset
A ⊂ L with µ(A) > 0 such that the Lyapunov exponents χ(x, v) < 0
(respectively, χ(x, v) > 0) for every x ∈ A and every vector v ∈ Ec(x).

Theorem 6. Assume that f has negative central exponents on an in-
variant set A of positive measure with respect to a u-measure µ for f .
Then the following statements hold:

(1) Every ergodic component of f |A of positive µ-measure is open
(mod 0); in particular, the set A is open (mod 0) (that is there
exists an open set U such that µ(A4U) = 0).

(2) If for µ-almost every x the trajectory {fn(x)} is dense in supp(µ),
then f is ergodic with respect to µ.

We provide the following criterion, which guarantees the density hy-
pothesis in Statement (2) of the previous theorem.

Theorem 7. Assume that for every x ∈ L the orbit of the global
strongly unstable manifold W u(x) is dense in L. Then for any u-
measure µ on L and µ-almost every x the trajectory {fn(x)} is dense
in L.
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This result is an immediate corollary of the following more general
statement. Given ε > 0, we say that a set is ε-dense if its intersection
with any ball of radius ε is not empty.

Theorem 8. Let f be a C1 diffeomorphism of a compact smooth Rie-
mannian manifold M possessing a partially hyperbolic attractor L. The
following statements hold:

(1) Let U ⊂ L be an open set. Assume that for every x ∈ L there
exists n = n(x, U) such that fn(W u(x))∩U 6= ∅. Then for any
u-measure µ on L and µ-almost every x ∈ L there is m = m(x)
such that fm(x) ∈ U .

(2) For every δ > 0 and every ε ≤ δ the following holds: assume
that for every x ∈ L the orbit of the global strongly unstable
manifold W u(x) is ε-dense in L. Then for any u-measure µ on
L and µ-almost every x the trajectory {fn(x)} is δ-dense in L.

(3) Assume that for every x ∈ L the orbit of the global strongly
unstable manifold W u(x) is dense in L. Then supp(µ) = L for
every u-measure µ.

Let us point out that the proof of Theorem 8, given in Section 4.3,
shows that the requirement “for every x ∈ L the orbit of W u(x) is
ε-dense in L (or everywhere dense in L)” is equivalent to “for every
x ∈ L the positive semi-orbit of W u(x) is ε-dense in L (or respectively,
everywhere dense in L)”.

In the case of a hyperbolic attractor, topological transitivity of f |L
guarantees that there is a unique u-measure for f on L. In contrast,
in the partially hyperbolic situation, even topological mixing is not
enough to guarantee that there is a unique u-measure. Indeed, con-
sider F = f1 × f2, where f1 is a topologically transitive Anosov dif-
feomorphism and f2 a diffeomorphism close to the identity. Then any
measure µ = µ1×µ2, where µ1 is the unique SRB measure for f1 and µ2

any f2-invariant measure, is a u-measure for F . Thus, F has a unique
u-measure if and only if f2 is uniquely ergodic. On the other hand, F
is topologically mixing if and only if f2 is topologically mixing. How-
ever, the assumption in Theorem 7 is strong enough to guarantee that
a u-measure with negative central exponents is unique.

Theorem 9. Let f be a C1+α diffeomorphism of a compact smooth
Riemannian manifold M possessing a partially hyperbolic attractor L.
Assume that:

(1) there exists a u-measure µ for f with respect to which f has
negative central exponents on an invariant subset A ⊂ L of
positive µ-measure;
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(2) for every x ∈ L the orbit of the global strongly unstable manifold
W u(x) is dense in L.

Then µ is the only u-measure for f and f has negative central exponents
at µ-almost every x ∈ L. In particular, (f, µ) is ergodic, supp(µ) = L,
and the basin B(µ) has full volume in the topological basin of attraction
of L.

Theorems 6, 7, and 9 are essentially contained in [6], but we provide
somewhat different proofs that are better adapted to establishing our
main Theorems 10 and 11, which are new.

We now consider the stable ergodicity problem. This is closely re-
lated to the question of uniqueness of u-measures, not just for f , but
also for its small perturbations. A crucial ingredient is an estimate
of the size of local stable and unstable manifolds, which depends only
on their Lyapunov exponents along a typical trajectory (see Proposi-
tion 14). This implies that every ergodic component of a u-measure
contains a ball whose radius depends only on the Lyapunov exponents
along a typical trajectory in that component.

Let g be a small perturbation of f in the C1+α topology. The main
result of this paper is:

Theorem 10. Let f be a C1+α diffeomorphism possessing a partially
hyperbolic attractor Lf . Assume that there exists a unique u-measure
µ for f with respect to which f has negative central exponents almost
everywhere. Then any C1+α diffeomorphism g, which is sufficiently
close to f in the C1+α topology, also has negative central exponents on
a set that has positive measure with respect to a u-measure µg. This
measure is the unique u-measure for g, g|Lg is ergodic with respect
to µg and the basin B(µg) has full volume in the topological basin of
attraction of Lg.

Combining this result with Theorem 9 we obtain the following state-
ment.

Theorem 11. Let f be a C1+α diffeomorphism possessing a partially
hyperbolic attractor Lf . Assume that:

(1) there exists a u-measure µ for f with respect to which f has
negative central exponents on an invariant subset A ⊂ Lf of
positive µ-measure;

(2) for every x ∈ Lf the global strongly unstable manifold W u(x) is
dense in Lf .

Then any C1+α diffeomorphism g, which is sufficiently close to f in
the C1+α topology, also has negative central exponents on a set of full
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measure with respect to a u-measure µg. This measure is the unique
u-measure for g, g|Lg is ergodic with respect to µg, and the basin B(µg)
has full volume in the topological basin of attraction of Lg.

The measure µ in Theorem 9 and measures µg in Theorems 10 and
11 are SRB measures for f (see [2] for the definition of SRB measures).

One can show that in Theorem 9 the map f is Bernoulli with respect
to its unique u-measure µ. Indeed, in this case for every n ≥ 1 the
map fn satisfies the conditions of Theorem 9 and hence is ergodic with
respect to µ. It is well known that an ergodic diffeomorphism with
nonzero Lyapunov exponents can fail to be Bernoulli only if one of its
powers is nonergodic; see [2]. Similarly, one can show that in Theorems
10 and 11 the map f is Bernoulli with respect to its unique u-measure µg

thus establishing the stably Bernoulli property of the diffeomorphism
f satisfying conditions of these theorems.

We now consider partially hyperbolic attractors whose Lyapunov
exponents in the central direction are all positive. Since the stable
and unstable directions play different roles in dissipative systems, this
case cannot be reduced to the case in which the central exponents are
negative by simply replacing f by f−1 as was done in the conservative
situation in [7]. It turns out that a straightforward version of Theorem 6
is not true. To see this, consider the direct product F of two volume
preserving Anosov diffeomorphisms f1 and f2. Let Es

i and Eu
i , i = 1, 2

be the corresponding stable and unstable subspaces. Assume that the
expansion rates along Eu

1 are stronger than those along Eu
2 . Set

E− = Es
1 ⊕ Es

2, Ec = Eu
2 , E+ = Eu

1 .

Then TM = E− ⊕ Ec ⊕ E+ is a partially hyperbolic splitting for F .
Consider an F -invariant measure µ = µ1 × µ2 where µ1 is the volume
that is preserved by f1 and µ2 is a nontrivial mixture of any two ergodic
measures of full support for f2. It is easy to see that µ is a u-measure
for F with positive central exponents whose ergodic components are
not open (mod 0).

Nevertheless, Alves, Bonatti and Viana obtained analogues of The-
orems 6 and 9 under the stronger assumption that there is a set of
positive volume in a neighborhood of the attractor with positive cen-
tral exponents (see [1] for precise statements).

We believe that a stable ergodicity result analogous to Theorem 10
should hold for partially hyperbolic attractors with positive central
exponents. We hope that the general approach used in this paper and
[7] to study stable ergodicity will extend to the case of attractors with
nonzero Lyapunov exponents of both signs. The first step of proving
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local ergodicity is already much more difficult even in the context of
conservative systems. We believe, however, that if this step can be
made, then it should be possible to follow the remaining steps of our
approach.

Acknowledgments. We would like to thank the referee of the paper
for many valuable comments that helped us improve the exposition and
correct some arguments.

2. Examples

Most of the theorems in this paper have two kinds of assumptions:
analytical (existence of u-measures with negative central exponents)
and topological (e.g., density of unstable leaves). In this section we
describe several examples of systems satisfying these assumptions.

2.1. Negative central exponents. Our results clearly hold true for
uniformly hyperbolic (Axiom A) attractors (for which Ec = 0). In
particular, our approach gives a different proof of the uniqueness of
SRB measures for topologically transitive Axiom A attractors.

There are three ways to construct non-Axiom A examples.

(1) Perturbations of Anosov systems. Take an Anosov diffeomor-
phism and make a perturbation, which is large enough in the smooth
category, so that it destroys uniform contraction in the stable sub-
space Es but, which is small enough in the L1 sense, so that the ex-
ponents in the former stable direction are still negative. To this end,
Bonatti and Viana [6] consider an Anosov diffeomorphism of T3 with
one-dimensional unstable and two-dimensional stable directions. They
construct a perturbation, which destroys the stable foliation near a
fixed point via the Hopf bifurcation. They show that if the perturba-
tion is confined to a sufficiently small neighborhood of the fixed point
then the central exponents of any u-measure are negative for parame-
ters near the bifurcation value.

(2) Small perturbations of systems with zero central exponents. Viana
[20] gave the first robust non Axiom A examples of attractors with
nonzero central exponents. Shub and Wilkinson [19] considered the
direct product F0 = f × id, where f is a linear Anosov diffeomorphism
and the identity acts on the circle. The map F0 preserves volume. Shub
and Wilkinson showed that arbitrary close to F0 (in the C1 topology)
there is a volume-preserving diffeomorphism F whose only central ex-
ponent is negative on the whole of M . For this map its central foliation
is not absolutely continuous — the phenomenon known as “Fubini’s
nightmare”.
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The result in [19] was extended by Ruelle [17] who showed that
for an open set of one-parameter families of (not necessarily volume
preserving) maps Fε through F0, each map Fε possesses a u-measure
with negative central exponent (note also that f need not be linear).

It is shown in [12] that, in the class of skew products, negative central
exponents appear for generic perturbations and that there is an open
set of one-parameter families of skew products near F0 = f × id (f is
an Anosov diffeomorphism and id is the identity map of any manifold)
where the central exponents are negative with respect to any u-measure
(it is required that for the averaged system the omega limit set consists
of a finite number of fixed points, e.g., the averaged system can be
gradient). The results in [12] extend (virtually with no changes) to the
case where the first factor is an Axiom A attractor.

In [11] a one-parameter family fε is considered where f0 is the time-1
map of the geodesic flow on the unit tangent bundle over a negatively
curved surface. It is shown that in the volume preserving case, gener-
ically, either fε or f−1

ε has negative central exponent for small ε and
that there is an open set of nonconservative families where the central
exponent is negative for any u-measure.

(3) Systems with zero central exponents subjected to rare kicks. Given
diffeomorphisms f and g, let Fn = fn ◦ g. It is shown in [11] that if
f is either a T1 extension of an Anosov diffeomorphism or the time-1
map of an Anosov flow and g is close to id, then for typical g and
any sufficiently large n, either Fn or F−1

n has negative central exponent
with respect to any u-measure.

2.2. Density of unstable leaves. Bonatti and Diaz [3] have shown
that there is an open set of transitive diffeomorphisms near F0 = f× id
(f is an Anosov diffeomorphism and id is the identity map of any mani-
fold) as well as near the time-1 map of a topologically transitive Anosov
flow. This result was used in [4] to construct examples of partially
hyperbolic systems with minimal unstable foliation (i.e., every unsta-
ble leaf is dense in the manifold itself). Namely, let f be a partially
hyperbolic diffeomorphism with one-dimensional central direction. A
submanifold with boundary S is called a u-section if it is transversal
to unstable leaves, f(S) ⊂ S and

⋂
n>0 fn(S) is a finite union of circles

and segments tangent to the central direction. A u-section is called
complete if it intersects every unstable leaf. Frequently (e.g., for the
systems discussed above) a complete u-section can be constructed by
taking a small neighborhood of a compact periodic central leaf C in-
side W s(C). It is shown in [4] that the set of diffeomorphisms with
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minimal unstable foliation contains an open and dense subset of stably
transitive diffeomorphisms having a complete u-section.

The above construction gives an open set of systems with mini-
mal unstable foliation for the above mentioned examples with one-
dimensional central direction. The next result shows that such exam-
ples appear for large measure sets in a typical one-parameter family
of perturbations. Let f0 be either 1) a skew product with the map in
the base being a topologically transitive Anosov diffeomorphism or 2)
the time-1 map of an Anosov flow. If f is a small perturbation of f0

then f is partially hyperbolic and by [13], the central distribution of f
is integrable. Furthermore, the central leaves are compact in the first
case and there are compact leaves in the second case.

Theorem 12. Assume that there is a compact periodic central leaf
C for f such that fn(C) = C and the restriction fn|C is a minimal
transformation. Then the unstable foliation for f is minimal.

2.3. Density for systems with negative central exponents. The
constructions in the previous subsection work for arbitrary partially
hyperbolic systems. The next theorem, which is a slight generalization
of a result from [9], works for systems with negative central exponents.

We say that f has the uniform usu-accessibility property if there
exist numbers r1, r2 such that for all x, y ∈ L,

∃z, w ∈ L : z ∈ W u(x), w ∈ W s(z), y ∈ W u(w)

du(x, z) < r1, ds(z, w) < r2, du(w, y) < r1, (3)

where ds and du are the distances in W s and W u respectively, induced
by the Riemannian metric.

Theorem 13. Assume that the central exponents are negative with
respect to any u-measure and that f has the uniform usu-accessibility
property. Then for any u-measure µ the forward semi-orbit of any
unstable leaf is dense in supp(µ). In particular, µ is the unique u-
measure for f and B(µ) has full volume in the topological basin of
attraction of L.

2.4. Attractors. In many of the examples discussed above, L is the
whole phase space. Multiplying the maps in these examples by a map
of an open disc with a contracting fixed point (or by the north-south
map on a sphere) produces examples where the attractor is a proper
subset and, of course, the same holds for small perturbations.
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3. Preliminaries

See [14, 2, 8, 16] for more details.
A diffeomorphism f of a compact smooth Riemannian manifold M

is called (uniformly) partially hyperbolic on a compact invariant subset
L = Lf if for every x ∈ L the tangent space at x admits an invariant
splitting

TxM = Es(x)⊕ Ec(x)⊕ Eu(x)

into strongly stable Es(x) = Es
f (x), central Ec(x) = Ec

f (x), and strongly
unstable Eu(x) = Eu

f (x) subspaces. This means that the manifold M
is endowed with a Lyapunov-Mather Riemannian metric such that the
following is true: there exist numbers 0 < λs < λ′c ≤ 1 ≤ λ′′c < λu such
that for every x ∈ L,

v ∈ Es(x) ⇒ ‖dxf(v)‖ ≤ λs‖v‖,
v ∈ Ec(x) ⇒ λ′c ‖v‖ ≤ ‖dxf(v)‖ ≤ λ′′c ‖v‖,
v ∈ Eu(x) ⇒ λu‖v‖ ≤ ‖dxf(v)‖.

In the case L = M the diffeomorphism f is called partially hyperbolic.
Let L be a partially hyperbolic set for f . Given x ∈ L, one can

construct local strongly stable and local strongly unstable manifolds at
x. We denote them by V s(x) and V u(x) respectively. They can be
characterized as follows: there is a neighborhood U(x) of the point x
and a constant C > 0 such that

V u(x) = {y ∈ U(x) : d(f−n(x), f−n(y)) ≤ Cλ−n
u d(x, y),∀n ≥ 0},

V s(x) = {y ∈ U(x) : d(fn(x), fn(y) ≤ Cλn
s d(x, y),∀n ≥ 0}.

We define the global strongly unstable manifold at x by

W u(x) =
⋃
n≥0

fn(V u(f−n(x))).

Recall that a partition ξ of L is called a foliation if there exist δ > 0,
q > 0, and an integer k > 0 such that for each x ∈ L:

(1) There exists a smooth immersed k-dimensional manifold W (x)
containing x for which ξ(x) = W (x) ∩ L where ξ(x) is the
element of the partition ξ containing x. (The manifold W (x)
is called the (global) leaf of the foliation at x; the connected
component of the intersection W (x) ∩ B(x, δ) that contains x
is called the local leaf at x and is denoted by V (x); the number
δ is called the size of V (x).)

(2) There exists a continuous map φx : L ∩ B(x, q) → C1(D, M)
(where D is the n-dimensional unit ball) such that V (φx(y)) is
the image of the map φx(y) : D → M for each y ∈ L ∩B(x, q).
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The global strongly stable and global strongly unstable manifolds form
two transversal foliations of L.

We denote by

χ(x, v) = lim sup
n→∞

1

n
log ‖dfnv‖

the Lyapunov exponent of a nonzero vector v at x ∈ L and by χi
f (x)

the values of the Lyapunov exponents at x. Note that the functions
χi

f (x) are invariant. There exists a subset L̃ ⊂ L of full measure,
which consists of Lyapunov regular points (see [2]). Among other things
Lyapunov regularity of x means that

χ(x, v) = lim
n→±∞

1

n
log ‖dfnv‖

for all nonzero v ∈ TxM .
An invariant measure µ supported on L is called hyperbolic if µ-

almost every x ∈ L has the property that χ(x, v) 6= 0 for all nonzero
v ∈ TxM . For every x ∈ L̃ with non-zero exponents, the tangent space
at x admits an invariant splitting

TxM = E−
f (x)⊕ E+

f (x)

into stable and unstable subspaces. Let λ−(x) = eχ−(x) and λ+(x) =
eχ+(x) where χ−(x) and χ+(x) are respectively the largest negative Lya-
punov exponent and the smallest positive Lyapunov exponent at x. For
each ε > 0 there are Borel functions C(x) > 0 and K(x) > 0 such that

(1) for each n > 0,

‖dfnv‖ ≤ C(x)λ−(x)neεn‖v‖, v ∈ E−(x),

‖df−nv‖ ≤ C(x)λ+(x)−neεn‖v‖, v ∈ E+(x);
(2)

∠(E−(x), E+(x)) ≥ K(x);

(3) for each m ∈ Z,

C(fm(x)) ≤ C(x)eε|m|, K(fm(x)) ≥ K(x)e−ε|m|.

For every x ∈ L̃ one can construct local stable and unstable manifolds
V −(x) and V +(x). They can be characterized as follows: there is
a neighborhood U(x) of the point x such that for any n > 0 and
y ∈ V +(x),

d(f−n(x), f−n(y)) ≤ C(x)λ+(x)−neεn d(x, y),

while for y ∈ V −(x),

d(fn(x), fn(y) ≤ C(x)λ−(x)neεn d(x, y).
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The sizes of the local stable and unstable manifolds vary with x in a
measurable way. If δ(x) is the size of a local stable or unstable manifold
at x, then for every m ∈ Z,

δ(fm(x)) ≥ δ(x)e−ε|m|.

The families of local stable and unstable manifolds possess the abso-
lute continuity property.

In this paper we deal with the case χi
f (x, Ec(x)) < 0 for some x ∈ L

(usually for almost every x with respect to an invariant measure µ
on L). For such x we have E−(x) = Es(x) ⊕ Ec(x). In particular,
V +(x) = V u(x). We will use the notation V sc(x) for the local stable
manifold V −(x). Note that V +(x) ⊃ V u(x) and V −(x) ⊃ V s(x).

Let us stress that the sizes of the local strongly stable and strongly
unstable manifolds are bounded from below and that the families of
these local manifolds possess the absolute continuity property.

We denote by mu(x) the Riemannian volume on V u(x) induced
by the Riemannian metric on V u(x) as a smooth submanifold in M .
Given x ∈ L and sufficiently small r > 0, consider the partition ξu

of B(x, r)
⋂L (B(x, r) is the ball centered at x of radius r) by local

strongly unstable manifolds V u(y), y ∈ B(x, r)
⋂L. An invariant mea-

sure µ on L is called a u-measure if the conditional measure µu(x)
induced by µ on the element ξu(x) of the partition ξu containing x is
equivalent to mu(x) for µ-almost every x.

As in [7] the following statement plays a crucial role in our anal-
ysis of u-measures. It gives a condition, which guarantees that, for
any u-measure µ and µ-almost every point x, the size of the local sta-
ble manifold V −(fn(x)) is sufficiently large for some (indeed infinitely
many) n. Consider the set L(f, r0) of those points x ∈ Λ for which the
size of the local stable manifold V −(x, f) is at least r0.

Proposition 14. Let f be a C1+α diffeomorphism possessing a par-
tially hyperbolic attractor. Then for every a > 0 there exist r0 =
r0(a, f) > 0, p0 = p0(a, f) > 0, which depend continuously on f in
the C1+α topology, such that the following statements hold:

(a) Let µ be a u-measure for f with respect to which f has nega-
tive central exponents on an invariant subset A of positive µ-
measure. Assume that

|χ(x, v)| ≥ a (4)

for µ-almost every x ∈ A and all nonzero v ∈ TxM . Then for
µ-almost every x ∈ A there is an n ≥ 0 such that f−n(x) ∈
L(f, r0);
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(b) Let µ be an ergodic measure such that (4) holds for µ-almost
every x ∈ A and all nonzero v ∈ TxM . Then µ(L(f, r0)) ≥ p0.

Proof. Part (a) is proven in [7], Lemma 2 (the proof is essentially
contained in [1]). In fact, the numbers n satisfying our requrements
are the so-called hyperbolic times for f . Now Corollary 3.2 in [1] shows
that if (4) holds then the hyperbolic times appear with the frequancy
which is bounded from below by some number p0 depending only on a
and f. Thus µ-almost every point visits L(f, r0) with frequency at least
p0(a, f). Now part (b) follows from Birkhoff’s ergodic theorem. �

4. Proofs

4.1. Proof of Theorem 5. The openness of partial hyperbolicity is
established in [13]. We need to prove the continuity of u-measures.
It suffices to show that for any x ∈ L and any ball B(x, r) at x of
sufficiently small radius r, such that µ(∂B(x, r)) = 0, the restriction
µ|B(x, r) generates conditional measures on unstable leaves V u(y, f)
for f , y ∈ B(x, r) ∩ L, which are absolutely continuous with respect
to the leaf volume. Take a submanifold T ⊂ B(x, r) transversal to
V u(x, f). Then T is also transversal to the unstable leaves V u(x, fn)
for fn for large n. We have that (see [16])

dµn(y)|B(x, r) =
1

cn(y)
dµu

n(y) dλn(y), y ∈ T,

where λn is a Borel measure on T and µu
n(y) is the Borel measure on

V u(y, fn) with density

ρn(z) =
∞∏
i=0

Jac(df−1
n |Eu

n)(f−i
n (y))

Jac(df−1
n |Eu

n)(f−i
n (z))

(5)

with respect to the leaf volume mu
n(y), i.e., dµu

n(y)(z) = ρn(z)dmu
n(y)

(here Eu
n is the unstable subspace for fn). Also,

cn(y) =
∫

V u(y,fn)
ρn(z) dmu

n(z).

Using the fact that the maps fn are of class C1+α and converge to f in
the C1+α topology, it is not difficult to show that ρn(z) → ρ(z) where

ρ(z) =
∞∏
i=0

Jac(df−1|Eu)(f−i(y))

Jac(df−1|Eu)(f−i(z))
. (6)

Indeed, it suffices to observe that: 1) the infinite products (5) and
(6) converge uniformly in i and z and 2) given β > 0, there exist
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γ = γ(β) > 0 and M = M(β) > 0 such that for every g ∈ C1+α, which
γ-close to f in the C1+α topology, any z ∈ L, y ∈ V u(z, g) and m ≥ M ,∣∣∣∣∣ρ(z)−

m∏
i=0

Jac(dg−1|Eu
g )(g−i(y))

Jac(dg−1|Eu
g )(g−i(z))

∣∣∣∣∣ < β.

By passing to a subsequence we may assume that the sequence of mea-
sures λn converges to a measure λ. Since µ(∂B(x, r)) = 0, for any
ε > 0 there is δ > 0 such that for all n,

µn(∂δB(x, r)) < ε,

where ∂δ denotes the δ-neighborhood of the boundary. Hence, for any
continuous function ϕ the sequence

cn(y)
∫

V u(y,fn)
ϕ(z) dµu

n(z) = cn(y)
∫

V u(y,fn)
ϕ(z)ρn(z) dmu

n(z)

is uniformly integrable in n. It follows that

µ(B(x, r)) =
∫

T
c(y)µu(y) dλ(y),

where µu(y) is the measure on V u(y) with density ρ with respect to
the leaf volume. �

4.2. Proof of Theorem 6. Let us call a point z Birkhoff regular if
the Birkhoff averages

ϕ−(z) = lim
n→−∞

−1

n

0∑
k=n+1

ϕ(fk(z)) and ϕ+(z) = lim
n→+∞

1

n

n−1∑
k=0

ϕ(fk(z))

are defined and equal for every continuous function ϕ on M . Applying
Birkhoff’s ergodic theorem to a countable dense subset of the contin-
uous functions shows that the set B of Birkhoff regular points has full
measure in L with respect to µ.

Let B̃ = B∩L̃, where L̃ is the set of Lyapunov regular points defined
in Section 3. Then µ(L\B̃) = 0. Furthermore µ-almost every x ∈ B̃ has
the property that µu-almost every point of V u(x) belongs to B̃ (recall
that µu is the conditional measure on V u(x) generated by the measure
µ); since µ is a u-measure, this means that mu-almost every point of
V u(x) belongs to B̃ (recall that mu is the leaf volume on V u(x)). Note
that two Lyapunov regular points that are in the same unstable leaf
must have the same Lyapunov exponents. It follows that if x ∈ A∩ B̃,
then V u(x) ∩ B̃ ⊂ A.

We will show that any point x ∈ A ∩ B̃ with the property that mu-
almost every point of V u(x) belongs to B̃ has a neighborhood in L
on which the backwards Birkhoff average ϕ− is µ-almost everywhere
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constant for any continous function ϕ. We can choose a number δ > 0
and a measurable set Y ⊂ V u(x) ∩ B̃ such that mu(Y ) > 0 and V −(y)
has size at least δ for every y ∈ Y (x). We can now choose r > 0
small enough so that V −(y) ∩ V u(x′) 6= ∅ for any y ∈ Y and any
x′ ∈ B−(x, r)∩L, where B−(x, r) is the ball in V −(x) centered at x of
radius r.

Consider the sets

B =
⋃

y∈Y

V −(y) (7)

and

C =
⋃

x′∈B−(x,r)∩L
V u(x′). (8)

Let C̃ be the subset of C obtained by restricting the union in (8) to
those unstable leaves V u(x′) in which mu-almost every point belongs
to B̃.

The set C is open in L, and µ(C \C̃) = 0. By the absolute continuity
property of the local stable manifolds, mu(B ∩ V u(x′)) > 0 for all
x′ ∈ B−(x, r)∩L. If V u(x′) ⊂ C̃, then B∩V u(x′) must contain a point
z ∈ B̃. Let y be the point in Y such that z ∈ V −(y). Then for any
w ∈ V u(x′) we have

ϕ−(w) = ϕ−(z) = ϕ+(z) = ϕ+(y) = ϕ−(y) = ϕ−(x).

We see that ϕ− is constant on C̃ and hence µ-almost everywhere con-
stant on C.

To prove the second statement, we first observe that f |A is topolog-
ically transitive and hence, by Statement 1 of the theorem, is ergodic.
It therefore suffices to show that A = L (mod 0). Assume for a con-
tradiction that D := L \ A has nonzero measure. Since A is open
(mod 0), it follows from the hypothesis that almost every trajectory is
dense, that we can choose n ≥ 1 such that

µ{x ∈ D : fn(x) ∈ A} > 0.

However, this contradicts the f -invariance of A (and of D). �

4.3. Proof of Theorem 8. The second statement is an immediate
corollary of the first statement. To prove the first statement assume
by contradiction that there exists a u-measure ν such that the set Y
of points whose positive semi-trajectories never visit U has positive
ν-measure. We need the following lemma.
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Lemma 1. There exists η > 0 such that for every x ∈ L and δ > 0 we
have that

mu(Bu(x, δ) \ Y )

mu(Bu(x, δ))
> η,

where Bu(x, δ) is a δ-ball in the leaf V u(x) centered at x and mu is the
leaf volume in V u(x).

This lemma immediately implies the desired result. Indeed, since Y
has positive ν-measure, by the definition of u-measure there is a point
x such that mu(V u(x) \ Y ) > 0 and in fact, x is a density point of
V u(x) \ Y contradicting the lemma.

Proof of the lemma. Given x ∈ L and δ > 0, set Ax,δ = Bu(x, δ) \Y .
Observe that there is γ > 0 such that for all x,

mu(Bu(x, δ))

mu(Bu(x, δ(1 + γ)))
≥ 1

2
.

Given ∆ > 0, we can choose m ≥ 1 such that, for all y ∈ L,

fm(Bu(y, δγ/2)) ⊃ Bu(fm(y), ∆). (9)

We can then choose a cover by ∆-balls,

fm(Bu(x, δ)) ⊂
⋃
i

Bu(fm(xi), ∆).

By (9), we obtain that

Bu(fm(xi), ∆) ⊂ fm(Bu(x, δ(1 + γ))).

In particular,

mu(Ax,δ(1+γ))

mu(Bu(x, δ))
≥

mu(
⋃

i f
−m(Afm(xi),∆))

mu(
⋃

i f−m(Bu(fm(xi), ∆)))
.

Moreover, using the Besicovitch Covering Lemma, we can assume with-
out loss of generality that for this cover each point lies in at most K
balls, for some fixed constant K > 0. We then have a lower bound

mu(
⋃

i f
−m(Afm(xi),∆))

mu(
⋃

i f−m(Bu(fm(xi), ∆)))
≥ 1

K

∑
i m

u(f−m(Afm(xi),∆))∑
i mu(f−m(Bu(fm(xi), ∆)))

.

Using standard bounded distortion estimates we can write

mu(f−m(Afm(xi),∆))

mu(f−m(Bu(fm(xi), ∆)))
=

∫
Afm(xi),∆

Jac(df−m)dmu∫
Bu(fm(xi),∆) Jac(df−m)dmu

≥ c
mu(Axi,∆)

mu(Bu(xi, ∆))
,
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where

c = inf
m≥0

inf
y1,y2∈Bu(x,∆)

Jac(dy1f
−m)

Jac(dy2f
−m)

> 0

Observe that the set Y is compact and that the leaf volumes mu(y)
vary continuously with y ∈ Y . It follows that we can choose ∆ > 0
such that

ρ := min
y∈L

{
mu(Ay,∆)

mu(Bu(y, ∆))

}
> 0.

Combining all of the above inequalities we get

mu(Ax,δ(1+γ))

mu(Bu(x, δ(1 + γ)))
≥ cρ

2K
.

Since δ > 0 can be chosen arbitrarily small, the proof of the lemma is
complete. The last statement of the theorem is an immediate corollary
of Lemma 1 and the fact that every u-measure is a limit of the sequence
of measures (2). �

4.4. Proof of Theorem 9. Let µ be a u-measure for f with negative
central exponents on a subset A ⊂ L of positive measure. By Theo-
rems 6 and 7, f has negative central exponents µ-almost everywhere
and is ergodic with respect to µ. Let now ν be a u-measure for f (we
do not assume at this point that ν has negative central exponents on a
set of positive ν-measure). Consider the sets Y , B, and C constructed
in the proof of Theorem 6, see (7) and (8). By the hypotheses of the
theorem, for every z ∈ L the intersection W u(fn(z)) ∩ V −(y) is not
empty for some n ∈ Z and for every y ∈ V u(x) ∩ Y . Moreover, by
the absolute continuity property of local stable manifolds, for every
z ∈ L the intersection W u(fn(z)) ∩ B has positive leaf volume. Since
ν is a u-measure, it follows that f has negative central exponents on
an invariant subset Aν ⊂ L of positive ν-measure. Applying again
Theorems 6 and 7, we conclude that f has negative central exponents
ν-almost everywhere and is ergodic with respect to ν. Note that f
has negative central exponents almost everywhere with respect to the
measure 1

2
(µ + ν) and is ergodic with respect to this measure. This

implies that µ = ν. The fact that the basin of µ has full volume follows
from Proposition 3 and the fact that supp(µ) = L from Statement 3 of
Theorem 8. �

4.5. An auxiliary lemma. The following result is needed to prove
Theorems 10 and 13.

Lemma 2. Let L be a partially hyperbolic attractor for f such that
f |L has only finitely many ergodic u-measures µ1, µ2, . . . , µN . Then



STABLE ERGODICITY FOR PARTIALLY HYPERBOLIC ATTRACTORS 19

the forward semi-orbit of every unstable manifold is dense in supp(µj)
for some j ∈ {1, 2, . . . , N}.

Proof. For any x the set

L(x) =
∞⋂

N=0

∞⋃
n=N

fn(W u(x)). (10)

is closed and invariant. Thus µj(L(x)) is either 0 or 1 for each j. How-
ever, µj(L(x)) cannot be zero for all j since otherwise the sequence
(2) would converge to a u-measure, which is singular with respect
to every µj. Hence, µj(L(x)) = 1 for some j and we conclude that
µj(L(x)

⋂
B(µ)) = 1. Ergodicity of µj then implies that every point in

B(µj) is dense in supp(µj). �

4.6. Proof of Theorem 10. We need an auxiliary result.

Lemma 3. There exists a u-measure ν for g and a subset Ag ⊂ Lg

of positive ν measure on which g has negative central exponents. More
precisely,

χ(x, v) < −a, x ∈ Ag, v ∈ Ec
g(x),

where a = a(f) > 0 is a constant.

Proof. By Proposition 4, f is ergodic with respect to its unique u-
measure and all central exponents of f are negative almost everywhere
with respect to this measure. Therefore, there exists α > 0 such that
for almost every x ∈ Lf ,

lim
n→+∞

1

n
ln ‖dfn|Ec

f (x)‖ < −α.

Integrating over Lf we obtain

lim
n→∞

1

n

∫
Lf

ln ‖dfn|Ec
f (x)‖ dµ(x) < −α.

In particular, there exists n0 > 0 such that

1

n0

∫
Lf

ln ‖dfn0|Ec
f (x)‖ dµ(x) < −α

2
.

Without loss of generality we may assume that n0 = 1, so that∫
Lf

ln ‖df |Ec
f (x)‖ dµ(x) < −α

2
.

If a diffeomorphism g is sufficiently close to f in the C1 topology, then
by Theorem 5, for any u-measure ν on Lg we have∫

Lg

ln ‖dg|Ec
g(x)‖ dν(x) < −α

4
.
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Take a u-measure ν for g on Lg. It follows that there exists a subset
Ag with ν(Ag) > 0 such that for every x ∈ Ag

lim
n→+∞

1

n

n−1∑
j=0

ln ‖dg|Ec
g(g

j(x))‖ ≤ −α

4
.

Hence,

lim
n→+∞

1

n
ln ‖dgn|Ec

g(x)‖ ≤ −α

4
for every x ∈ Ag and the desired result follows. �

We proceed with the proof of the theorem. Let ν be a u-measure in
Lemma 3. By Proposition 4, we may assume that ν is ergodic. Let r0

be the number given by Proposition 14 and let δ = r0(p, f)/2.
Take a small ε. By Theorem 5, we can choose the perturbation

g so close to f in the C1+α topology that the ν-measure of the ε-
neighborhood of supp(µ) becomes as close to 1 as we wish. On the
other hand, by Proposition 14, ν(L(g, r0/2)) ≥ p0(a, f)/2. This implies
that that there is a point x ∈ L(g, r0/2) such that d(x, supp(µ)) < ε.
Consider the sets Y , B and C constructed in the proof of Theorem 6
(see (7) and (8)) using the point x. We can always choose x such that
almost all points in Y are Birkhoff generic for the measure ν. Finally,
we assume that the number r in the construction of the sets B and C
is such that C ⊃ B(x, ε).

Let ν̃ be another ergodic u-measure for g. We wish to show that
ν̃ = ν. Since C is an open set, applying Theorem 8 to the measure ν̃,
we obtain that ν̃-almost every orbit visits C. Repeating the argument
in the proof of Theorem 9, we find that ν̃-almost every trajectory is
Birkhoff generic with respect to ν and hence ν̃ = ν =: µg. In other
words, µg is the only ergodic u-measure for g. By Proposition 4, there
are no non-ergodic u-measures for g. The desired result follows now
from Theorem 6. �

4.7. Proof of Theorem 13. We need an auxiliary result. Let P be
the set of points having weak stable manifolds of size at least r0.

Lemma 4. There are numbers ρ0 and r0 such that for any x

mu(Bu(x, ρ0) ∩ P ) > 0.

Proof. Given an ergodic u-measure µ, let C = C(µ) be the set
defined by (8). Then the proof of Theorem 9 shows that the trajectories
of C(µ) are disjoint for different measures µ. Since the volume of C(µ)
is bounded from below, there are only finitely many u-measures (this is
the argument in [6], see Theorem A). Now Lemma 2 tells us that there
is a measure µ such that the forward semi-orbit of Bu(x, ρ0) is dense
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in supp(µ). In particular, it intersects C(µ) in a subset of positive leaf
volume and the proof of Theorem 6 shows that this subset has positive
measure intersection with P . �

We now take any x ∈ L and an ergodic u-measure µ. Iterating
the chain (3) forward if necessary, we may assume that r2 is suffi-
ciently small so that the Hausdorff distance between Bu(z, ρ0) and
Bu(w, ρ0) is less than r0. By the absolute continuity property of local
stable manifolds, W u(x) = W u(z) contains a positive set of points from
B(µ). Since the forward semi-trajectories of points in B(µ) are dense
in supp(µ), we have the density statement.

To get the uniqueness of µ we observe that if there were another
ergodic u-measure ν, then by the first part of the theorem, the forward
trajectory of C(ν) would intersect C(µ). �

4.8. Proof of Theorem 12. Given x ∈ L, consider the set L(x) de-
fined by (10). It is closed, invariant, and saturated by unstable leaves.
By [13], the center unstable foliation of f is topologically conjugate to
the center-unstable foliation of the unperturbed system and hence, it
is minimal. It follows that L(x)

⋂ C 6= ∅. Since this set is closed and
invariant, it contains C and since it is saturated by the unstable leaves,
it coincides with the whole manifold. �
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