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LIMIT THEOREMS FOR PARTIALLY HYPERBOLIC
SYSTEMS

DMITRY DOLGOPYAT

Abstract. We consider a large class of partially hyperbolic sys-
tems containing, among others, affine maps, frame flows on neg-
atively curved manifolds and mostly contracting diffeomorphisms.
If the rate of mixing is sufficiently high the system satisfies many
classical limit theorems of probability theory.

1. Introduction.

The study of the statistical properties of deterministic systems con-
stitutes an important branch of smooth ergodic theory. According to
a modern view, a chaotic behavior of deterministic systems is caused
by the exponential instability of nearby trajectories. The best illustra-
tion of this statement is provided by Axiom A diffeomorphisms where
the expansion of some directions and the contraction of complementary
ones are uniform. Both qualitative [2, 3, 8] and quantitative [64, 88, 91]
properties of such systems are well understood.

Much less is known in other cases in spite of significant advances in
the recent years. There are two main ways of weakening the uniform
hyperbolicity conditions [68]. The first one is the theory of nonuni-
formly hyperbolic systems of Pesin [66, 67]. (Some refinements of this
theory are given in [48, 74, 18, 63]). Now qualitative behavior of such
systems is quite well understood. Interesting results concerning quan-
titative theory are obtained in [17, 58, 91, 92].

The second direction of research is the theory of partially hyperbolic
systems. Here hyperbolicity should be uniform but only at some direc-
tions. The attraction of this theory is that the question about ergodic
properties of a single diffeomorphism is reduced to the understanding
of the ergodic behavior of usually large holonomy group [13], and the
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larger the group the less invariant sets it has. Even though currently
there are significant technical difficulties in justifying this reduction
the conditions of the theorems obtained this way are relatively easy to
check (see [75, 76, 90, 46, 14, 15]) without formidable analytic work
common in nonuniformly hyperbolic theory.

In any case, the results of [35, 75, 76, 7] show that there is a non-
trivial theory applicable to a large class of partially hyperbolic systems.
Our paper concerns limit theorems for partially hyperbolic systems.
More precisely, similarly to nonuniformly hyperbolic situation we study
the relation between mixing properties of the system and the limit
theorems it satisfies. The paper [58] shows that it is more convenient
to work with a qualitative versions of K-property.

The central to this approach is a notion of an almost Markov family.
This is a slight generalization of Markov family but its construction is
much simpler. An example of an almost Markov family is given by the
set of all domains with bounded geometry of the boundary.

Following [58] we assume that for some almost Markov family the im-
ages of all elements under the iterations of our system become uniformly
distributed. The rate of the convergence is essentially independent of
the choice of almost Markov family and so it is a natural measure of
the speed of K–mixing.

Remark. We note that the almost sure convergence suffices for K–
property; we require uniform convergence, so there are K–systems with
zero convergence rate [45]. In principal, in many places it should be
possible to replace uniform estimates by L1−bounds but the proofs
would become much more complicated. Also there are many simple
systems enjoying K–property yet not satisfying the Central Limit The-
orem and other limit theorems of probability theory. Thus in this paper
we restrict ourselves to uniform convergence.

The result of our study is the generalization of many limit theorems
which were previously known in the Anosov or Axiom A context ([78,
23, 70, 40, 55]) to a large class of partially hyperbolic systems. Some of
our results were known before (see Section 6). However our results seem
to be the most general ones currently available for partially hyperbolic
systems implying all that was known before and presenting a unified
proof for many seemingly different systems.

In the next section we define the class of the systems we consider. We
also recall the notion of u-Gibbs state introduced in [69] and playing
central role in our analysis. Section 3 describes some simple properties
of systems with unique u-Gibbs state. The statements of our main
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results are given in section 4 and 5. They are based on the assump-
tion that the system under consideration has unique u-Gibbs state with
good mixing properties (mixing is understood in the sense described
above). Section 4 contains various versions of the Central Limit Theo-
rem and Section 5 present various other results. In Section 6 we apply
our results to classical partially hyperbolic systems. The proofs of the
statements of Section 3 are given in Section 7–8. The statements of
Section 4 are proved in Sections 9-15. The statements of Section 5 are
proved in Sections 16-18.

The appendix collects various results related to the absolute con-
tinuity of the unstable foliations for which the author could not find
convenient references.

At the end of this section let us briefly describe possible extensions
of our results. First there are some natural classes of non-uniformly
partially hyperbolic systems or partially hyperbolic systems with sin-
gularities (e.g. some weakly interacting particle systems) where our
methods seem to be useful. However, specific features of each partic-
ular example seem to be very important in the proofs so we do not
pursue this subject here. Secondly, a pleasant feature of our approach
is that in most cases it is not required that the initial distribution is
invariant with respect to dynamics, we only ask that it has smooth
conditional measures on unstable leaves. Since we do not assume sta-
tionarity our methods seem to be useful in the study of time-dependent
([4, 5]) and, in particular, random case (cf. [29]). Thirdly, probably,
most of out results are valid for flows with assumption of K-mixing for
the flow being replaced by a weaker condition of K-mixing for a suit-
able Poincare map like in [78, 23, 50, 51] etc. Also some of our results
admit generalizations to the case where instead of one diffeomorphism
a family of partially hyperbolic systems is considered.

Acknowledgment. A part of this paper constitutes a part of my PhD
thesis at Princeton University. I thank my thesis advisor Ya. G. Sinai
for encouragement during my work and many helpful discussions. I
am grateful to Yu. Kifer, D. Kleinbock, M. Pollicott and R. Sharp for
useful conversations.

2. Partial Hyperbolicity.

Let M be a compact Riemannian manifold and f : M → M be
a C2– diffeomorphism. f is called partially hyperbolic if there is an
f–invariant splitting

TxM = Eu ⊕ Ec ⊕ Es
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and constants λ1 ≤ λ2 < λ3 ≤ λ4 < λ5 ≤ λ6, λ2 < 1, λ5 > 1 such that

∀v ∈ Es λ1||v|| ≤ ||df(v)|| ≤ λ2||v||,
∀v ∈ Ec λ3||v|| ≤ ||df(v)|| ≤ λ4||v||,
∀v ∈ Eu λ5||v|| ≤ ||df(v)|| ≤ λ6||v||.

We assume that Eu 6= 0. On the other hand the reader can assume in
what follows that Es = 0 replacing Ec by Ec ⊕ Es. We denote by W u

the foliation tangent to Eu. We say that F is a u-set if F belongs to a
single leaf of W u. By volume, diameter and so on of a u-set we mean
the volume, diameter etc. induced by the Riemann structure on W u.

The important property of W u is its absolute continuity. Call a set
A u-negligible if it intersects each W u-leaf at a set of zero leaf vol-
ume. We say that some property holds u-almost surely if it fails on
a u-negligible set. A measure ν is called u-absolutely continuous if it
assigns zero measure to u-negligible sets. Absolute continuity of W u

means that the Lebesgue measure is u-absolutely continuous. Absolute
continuity is the most basic property for the study of statistical prop-
erties of Lebesgue–almost every point. Thus it is useful to consider all
u-absolutely continuous measures. (Since in this paper we are dealing
with u-absolutely continuous measures only, we consider two sets equal
if they differ by a u-negligible set. In particular, we do not distinguish
between two u-sets if their difference has zero leaf measure.) Among the
absolutely continuous measures, the special role belongs to f -invariant
ones. u-absolutely continuous f -invariant measures are called u-Gibbs
states. u-Gibbs states were studied in [69]. Among the other things
they show that if F is a nice u-set and µ is the normalized Lebesgue
measure on F then any limit point of 1

n

∑n−1
j=0 f

j
∗µ is a u-Gibbs state.

In this paper we study partially hyperbolic systems satisfying two re-
quirements. First, they have the unique u-Gibbs state ν. Secondly, not
only the Birkhoff averages of µ but f j

∗µ itself converges to ν. To give
the precise formulation we need to define a collection of nice u-sets.

A collection P of u-sets is called an almost Markov family if there
are constants r1, r2, v, C, γ such that ∀P ∈ P

(a) diam(P ) ≤ r1;
(b) Vol(P ) ≥ v;

(c) P = Int(P ), moreover Vol{p : d(p, ∂P ) ≤ ε} ≤ Cεγ;
(d) for any u-set F there are disjoint sets Pi ∈ P such that

⋃

i Pi ⊂ F
and F\⋃i Pi ⊂ {p : d(p, ∂F ) ≤ r2};

(e)
⋃

P P = M.
An almost Markov family is called Markov if
(f) for any P ∈ P there are Pi ∈ P such that fP =

⋃

i Pi.
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Proposition 1. Any f has a Markov family.

(In [81] a family of sets satisfying (f) but not (a)–(e) was constructed.
The family satisfying (a)–(e) as well is obtained in [82]. Formally, [82]
proves the existence of Markov partitions for Anosov diffeomorphisms
(i.e. when Ec = 0). However, this is done by constructing the Markov
families for f and f−1 and showing that they can be fitted together
nicely. It can be seen that the construction of the Markov family for
f never uses the assumption that Ec = 0 so it is valid for arbitrary
partially hyperbolic f.)

Examples of almost Markov families.
(I) If r1and C are large and v is small then the collection of all sets

satisfying (a)–(c) is an almost Markov family.
(II) If dimEu = 1 then the set of all curves of length between 1 and

2 is a Markov family.
(III) If P is an almost Markov family and F is a domain in some

leaf of W u with piecewise smooth boundary then P ⋃{F} is an almost
Markov family.

We can associate to each u-set F a probability density as follows.
For x1, x2 ∈ F let

ρ(x1, x2) =
∞
∏

j=0

det(df−1|Eu)(f
−jx1)

det(df−1|Eu)(f−jx2)
.

Choose x0 ∈ F and let ρF (x) = Cρ(x, x0) where C =
(∫

F
ρ(x, x0)dx

)−1
.

(Here ’
∫

F
dx’ means the integration over the leaf of W u containing F

with the induced volume form.) Since ρ(x, x′0) = ρ(x, x0)ρ(x0, x
′
0) this

definition does not depend on the choice of x0. If A ∈ C(X) then
∫

F
A(fx)ρF (x)dx =

∫

A(y)ρF (y)dy.
Let P be an almost Markov family, P be a u-set satisfying (a)–(c),

and n be a natural number. By (d) ∃Pj ∈ P such that

(1) fnP = (
⋃

j

Pj)
⋃

Z.

where Z ⊂ {x : d(x, ∂fnP ) ≤ r2}. We call (1) an almost Markov
decomposition of fnP (with respect to P). Let cj =

∫

f−nPj
ρP (x)dx,

c =
∫

f−nZ
ρP (x)dx. Then

c ≤ C1mes(f−nZ) ≤ C1mes({x : d(x, ∂P ) ≤ r2
λn

5

}) ≤ C2(
r2
λn

5

)γ ≤ C3ζ
n

for some ζ < 1.
Now let us introduce the measures we consider. Choose an almost

Markov family P. Fix some constants R, α. Let E1(P, R, α) be the set
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of the measures given by the following expression: for A ∈ C(M)

`(A) =

∫

P

A(x)eG(x)ρP (x)dx,

where P ∈ P, |G(x1) − G(x2)| ≤ Rd(x1, x2)
α and `(1) = 1. We will

refer to the above functional as `(P,G) and write `(P ) for `(P, 0).
Let E2(P, R, α) be the convex hall of E1(P, R, α) and E(P, R, α) =

E2(P, R, α). Usually we will drop some of the parameters P, R, α if it
does not cause a confusion.

Examples of admissible measures.
(a) Probably the most important example is the following.

Proposition 2. Let P be a maximal family from Example I of Section
2. If R is large enough and α is small enough then the Lebesgue measure
belongs to E(R, α).

This follows from the Holder continuity of Eu and the Holder conti-
nuity of the unstable holonomy Jacobian. See Appendix A.

(b) It is not difficult to see by a standard Kukutani-Markov argument
that there is always a u-Gibbs state in E(0,0). Conversely [69] show
that any u-Gibbs state belongs to E(0,0). Below we prove that several
sets have full `-measure for any ` ∈ E. The following statement is
useful.

Proposition 3. The set Y ⊂ X has zero `-measure for any ` ∈ E if
and only if it is u-negligible.

See Appendix A for more details.

3. Formulation of results. Uunique ergodicity and
strong u-transitivity.

Our first assumption throughout this paper is that f has unique u-
Gibbs state. We will call such systems uuniquely ergodic and denote
this by f ∈ UuEe. By [69] any limit point of the measures of the form

(2) µn(A) =
1

n

n−1
∑

j=0

`(n)(A ◦ f j)

where `(n) ∈ E is a u-Gibbs state. Conversely any u-Gibbs state ν is
a limit point of measures µn as above with `n ≡ ν. Thus an equivalent
way to define uunique ergodicity is the following.
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Definition. f is uuniquely ergodic if ∀A ∈ C(M) uniformly in ` ∈ E

1

n

n−1
∑

j=0

`(A ◦ f j) → ν(A).

If f ∈ UuEe we have a bound on the rate of convergence for Holder
functions.

Given A ∈ C(M) let Sn(A)(x) =
n−1
∑

j=0

A(f jx). Sometimes we will

write simply S if A is clear.

Theorem 1. If f ∈ UuEe then ∀A ∈ Cγ(M) : ν(A) = 0 ∀ε ∃Cε, cε
such that ∀` ∈ E

`(|Sn(A)| > εn) ≤ Cεe
−ncε.

The proof is given in Section 7. Since Cγ(M) is dense in C(M) we
get

Corollary 1. (Law of Large Numbers) ∀A ∈ C(M) Sn

n
→ ν(A)

u-almost surely.

In dynamical systems language this statement can be reformulated
as follows. Let µ be a f -invariant measure. Define basin of µ B(µ) be
the set of forward µ-regular points

B(µ) = {x : ∀A ∈ C(X)
1

n
Sn(A) → ν(A)}.

µ is called an SRB measure if its basin has positive Lebesgue measure.
Thus the previous corollary can be restated as follows.

Corollary 2. If f has a unique u-Gibbs state ν then ν is also a SRB
measure and B(ν) has whole Lebesgue measure.

In order to get quantitative results about the behavior of Sn we
need to impose stronger restrictions on f. We say that f is strongly u-
transitive if for some almost Markov collection P ∀A ∈ C(M) ∀P ∈ P

(3)

∫

P

A(fnx)ρP (x)dx→ ν(A)

where ν is some probability measure on M. (The argument below shows
that this definition is independent on the choice of P.)

Starting from this point we will assume that f is strongly u-transitive.
We need some qualitative bound for the rate of convergence in (3). To
formulate this more precisely let us discuss the space of observables
we consider. Let B be a function Banach algebra such that there is a



8 DMITRY DOLGOPYAT

continuous embedding i : B → Cγ(M). We assume that there exists a
measure ν : ∀` ∈ E ∀A ∈ B

(4) |`(A ◦ fn) − ν(A)| ≤ a(n)||A||B
where a(n) → 0 as n→ ∞.
a(n) is essentially independent of the choice of a Markov family.

More precisely we have

Proposition 4. If P ′ is another almost Markov family. Then ∀` ∈ P ′

|`(A ◦ fn) − ν(A)| ≤ a′(n)||A||B where a′(n) ≤ C1a(
n
C2

) + C3θ
n.

Remark. The reader can check that the conditions of all theorems we
formulate are stable with respect to replacing a(n) by C1a(

n
C2

) +C3θ
n.

Proof. Here and below θ denotes a constant less than 1 which can
change from entry to entry.

Take any Q ∈ P ′. Let f
n
2Q = (

⋃

j Pj)
⋃

Z be its almost Markov

decomposition with respect to P. Take A ∈ B with ||A||B ≤ 1. We have

I =

∫

Q

eG(x)ρQ(x)A(fnx)dx =
∑

j

cj

∫

Pj

eG(f− n
2 y)ρPj

(y)A(f
n
2 y)dy+O(θ

n
2 ).

Choose yj ∈ f−n
2 Pj. Then

I =
∑

j

cje
G(f− n

2 yj)

∫

Pj

ρPj
(y)A(f

n
2 y)dy +O(θ

n
2 ) =

∑

j

cje
G(f−n

2 yj)
[

ν(A) +O(a(
n

2
))
]

+O(θ
n
2 ).

In particular letting A ≡ 1 we get

1 =

∫

Q

eG(x)ρQ(x)dx =
∑

j

cje
G(f− n

2 yj) +O(θ
n
2 ).

The last two identities prove the proposition. �

Plugging ` = Aν into (3) we see that (f, ν) is mixing. In fact it is
also mixing of all orders as the next statement shows.

Theorem 2. (Multiple mixing) Fix k. There are constants C1 and
C2 ∀A1, A2 . . . Ak ∈ B ∀` ∈ E

∣

∣

∣

∣

∣

`

(

k
∏

j=1

A(fnjx)

)

−
k
∏

j=1

ν(Aj)

∣

∣

∣

∣

∣

≤ C1

[

a

(

m

C2

)

+ θm

] k
∏

j=1

||Aj||B

where m = min(nj − nj−1), n0 = 0.

The proof is given in Section 8.
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4. Formulation of results. Central Limit Theorem

Here we formulate various versions of the Central Limit Theorems
for the systems under considerations. Most of the proofs use methods
of moments [44].

Throughout this section we assume that
∑

n a(n) <∞.

Theorem 3. (Invariance Principle) There is a constant s > 0
such that the following holds. Let A ∈ B be a function such that ν(A) =

0, σ(A) =
∞
∑

j=−∞
ν(A(A ◦ f j)) 6= 0. Let P be a Markov family and let

P ∈ P. Then there is a probability space (Ω, µ), a Brownian Motion
w(t) and a sequence ξn both defined on Ω such that

(a) the distribution of ξn is the same as the distribution of Sn(x) with
respect to `(P );

(b) ∃σn such that σn

n
→ σ(A) and |ξn − w(σn)| ≤ C(ω)n

1
2
−s.

Corollary 3. (Law of Iterated Logarithm)

lim sup
Sn(x)

√

σ(A)n ln lnn
= 1, lim inf

Sn(x)
√

σ(A)n ln lnn
= −1

u-almost surely.

Corollary 4. (Central Limit Theorem) ∀P, R, α ∀` ∈ E(P, R, α)

the random process Xn(t) =
P

j≤nt A(fjx)√
n

converges weakly to the Brow-

nian Motion with the zero average and the variance σ(A).

Let B
d denote the space of functions M → R

d such that each coor-
dinate belongs to B. Consider the sequence zn ∈ R

d given by

(5) zn+1 − zn = εA(zn, f
nx), z0 = a

where function A(z, x) is three times differentiable with respect to z

and the norms ||∂αA(z,·)
∂αz

||Bd, are uniformly bounded for 0 ≤ |α| ≤ 3 Let
qn be the solution of the averaged equation

qn+1 − qn = εĀ(qn), q0 = a.

where

Ā(q) =

∫

A(q, x)dν(x).

Let DA(z, x) denote the partial derivative of A with respect to z. Let

∆n = zn − qn. Denote ∆ε
t =

∆
[ t
ε ]√
ε
.
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Theorem 4. (Short time fluctuations in averaging) If a(n) ≤
Const

n2 then ∀P, R, α ∀` ∈ E(P, R, α) as ε → 0 ∆ε
t converges weakly to

the solution of

d∆(t) = DĀ(q(t))∆dt+ dB

where B is a Gaussian process with independent increments, zero mean
and covariance matrix

(6) < B,B > (t) =

∫ t

0

σ(A(q(s), ·))ds.

Theorem 5. (Long time fluctuations in averaging) Suppose
that A in (5) has zero mean

Ā(z) =

∫

A(z, x)dν(x) ≡ 0

and that a(n)n2 → 0 as n → ∞, Let Zε
t = Z[ t

ε2
], then as ε → 0 Zε

t

converges weakly to the diffusion process Z(t) with drift

a(z) =
∞
∑

n=1

∫

DA(z, fnx)A(z, x)dν(x)

and diffusion matrix σ(A(z, ·)).
Remark. As usual, after Theorem 5 is proved for smooth bounded func-
tions, the stopping time argument can be used to extend it to more
general framework where the limiting diffusion process has no explo-
sions.

The proofs of the results of this section is given in Sections 9–15.
Sections 9–10 contain some auxiliary estimates. Theorem 3 is proven
in Section 11, Theorem 4 is proven in Sections 12–13 and Theorem 5
is proven in Section 15.

Note. Some surveys on Central Limit Theorems for dynamical systems
could be found in [21, 30, 17].

5. Formulation of results. Other Limit Theorems.

Theorem 6. (Three Series Theorem) If
∑

n

a(n) ≤ ∞, An ∈ B

||An||B ≤ 1 and cn is a sequence such that
∑

n

cnν(An) <∞,
∑

n

c2n <∞
then

∑

n

cnAn(fnx) converges u-almost surely.

The proof is given in Section 16.
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To formulate our next results we suppose that ν has a smooth density.
We assume also that for any ball B of radius r for any ` ∈ E

|`(1B(fnx)) − ν(B)| ≤ Constr−α

(

1

n

)k

,

where 1B(x) stands for the indicator function ofB. Denote d = dim(X),
du = dimEu.

Theorem 7. (Borel-Cantelli Lemma) Assume that k
α+1

> d
du
.

If {Bn} is a sequence of balls then
∑

n 1Bn(fnx) converges ν–almost
surely ⇔ ∑

n r(Bn)
d < ∞ and

∑

n 1Bn(fnx) diverges ν–almost surely
⇔ ∑

n r(Bn)d = ∞.

The proof is given in Section 17.

Theorem 8. (Poisson Law) Assume that k
α+1

> 1
du
. Let x0 be a non-

periodic point and Bn = B(x0, r). Denote Xn(∆) =
∑

jν(Bn)∈∆

1Bn(f j(x)).

Then ∀` ∈ E as n → ∞ Xn(∆) converges to a Poisson process with
density 1.

The proof is given in Section 18.

6. Applications.

Here we give some examples to which our theorems apply. The main
examples of strongly transitive systems belong to the class of Anosov
actions. (See [73, 12, 31, 47] for the general discussion of the Anosov
actions.) In this case Ec is the tangent space to the orbits of some
Lie group G and f(x) = gfx, g ∈ G. We hope however that more
examples of systems satisfying our assumptions will appear with the
further development of the theory of partially hyperbolic systems (cf
[1, 7, 80, 27]).

Throughout this section we say that f is strongly u-transitive with
exponential rate if (4) is satisfied with B = Cγ(M) and a(n) = Cθn for
some θ < 1. We say that f is strongly u-transitive with superpolinomial
rate if for any r there is k = k(r) such that (4) is satisfied with B =
Ck(M) and a(n) = Crn

−r.
(a) Anosov diffeomorphisms. These are defined by the condition

that Ec = 0. This is perhaps the most studied class of partially hyper-
bolic systems (see [2, 3, 8]) and most of our results are well known for
Anosov diffeomorphisms.

Proposition 5. (see e.g [8]) Topologically transitive Anosov diffeomor-
phisms are strongly u-transitive with exponential rate.



12 DMITRY DOLGOPYAT

Corollary 5. All theorems of Sections 4 and 5 hold true for topologi-
cally transitive Anosov diffeomorphisms.

(b) Time one maps of Anosov flows. These are Anosov actions
with G = R.

Proposition 6. (a) ([24, 25]) Suppose that f is a time one map of
topologically transitive Anosov flow whose stable and unstable folia-
tions are jointly non-integrable, then f is strongly u-transitive with su-
perpolinomial rate. If in addition Eu and Es are C1 then f is strongly
u-transitive with exponential rate.

(b) ([59]) Time one maps of contact Anosov flows are strongly u-
transitive with exponential rate.

Corollary 6. Time one maps of topologically transitive Anosov flows
with jointly non-integrable stable and unstable foliations satisfy the con-
clusions of Theorems 3–6 and their corollaries. If in addition Eu and
Es are C1 or the flow preserves a contact structure then all the results
of Sections 4 and 5 apply.

Remark. It is easy to see that the strong u-transitivity with exponen-
tial rate implies also the exponential convergence in (4) for piecewise
Holder functions such as indicators of balls. On the other hand the
strong u-transitivity with superpolinomial rate gives only power decay
for indicators. For this reason it is unclear if Theorems 7 and 8 hold
for time one maps of arbitrary Anosov flows.

(c) Compact skew extensions of Anosov diffeomorphisms.
Let h : N → N be topologically transitive Anosov diffeomorphism,
K be a compact connected Lie group, M = N × G and τ : N → G
be a smooth map. Let f(x, y) = (hx, τ(x)y). Thus here G = Z × K.
Compact skew extensions are studied in [11, 12, 15, 26].

Proposition 7. ([26]) Generic skew extension is strongly u-transitive
with superpolynomial rate. In particular if K is semisimple then all
ergodic extensions are strongly u-transitive with superpolynomial rate.
Also, if N is an infranilmanifold then all stably ergodic extensions are
strongly u-transitive with superpolinomial rate.

Corollary 7. Generic compact skew extensions of Anosov diffeomor-
phisms satisfy the conclusions of Theorems 3–6 and their corollaries.

(d) Quasihyperbolic toral automorphisms. Here M = T
d and

f(x) = Qx (mod 1) where Q ∈ SLd(Z), sp(Q) 6⊂ S1.

Proposition 8. ([45]) Quasi-hyperbolic toral automorphisms are strongly
u-transitive with exponential rate.
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Corollary 8. All theorems of Sections 4 and 5 hold true quasihyperbolic
toral automorphisms.

(e) Translations on homogeneous spaces. Let M = G/Γ where
G is a connected semisimle group without compact factors and Γ is an
irreducible compact lattice in G. Let f(x) = gx, g = exp(X).

Proposition 9. ([53]). Suppose that there is a factor G′ of G which
is not locally isomorphic to SO(n, 1) or SU(n, 1) and such that the
projection g′ of g to G is not quasiunipotent (i.e. sp(ad(g ′)) 6⊂ (S1))
then f is strongly u-transitive with exponential rate.

Corollary 9. All theorems of Sections 4 and 5 hold true for transla-
tions of homogeneous spaces satisfying the conditions of the last propo-
sition.

(f) Mostly contracting diffeomorphisms. Let f : M → M be
partially hyperbolic. f is called mostly contracting if ∃ε > 0 such that
for any u-Gibbs state ν

lim
n→∞

ν(ln ||dfn|Ec||)
n

≤ −ε.

See [7, 16, 27] for examples of mostly contracting diffeomorphisms.

Proposition 10. ([27]) Suppose that f : M →M is mostly contracting
topologically mixing diffeomorphism, dim(M) = 3, dim(Ec) = 1 then
f strongly u-transitive with exponential rate.

Remark. It is likely that restrictions on dimensions given here are un-
necessary (cf. [16]).

Corollary 10. All theorems of Sections 4 and 5 hold true for mostly
contracting topologically mixing diffeomorphism on three dimensional
manifolds.

Remark. The set of mostly contracting diffeomorphisms is open. The
simplest examples of mostly contracting diffeomorphisms can be con-
structed by perturbing Anosov actions. Thus this result is the first step
in extending our results beyond Anosov actions.

Other examples of the diffeomorphisms satisfying our conditions
could be constructed using following observations. Let M = M1 ×M2

f = f1 × f2 where fj are partially hyperbolic. Then if both f1 and
f2 are strongly u-transitive with either exponential or superpolynomial
rate then the same is true for f.

Notes. As it was mentioned before not all of these results are new.
Below we list the results which were known before:
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• Anosov diffeomorphisms: Theorem 3 and Corollary 3 ([23]),
Theorem 4 ([50]), Corollary 4 ([78]), Theorem 6 ([55]), Theorem
8 ([40]). These articles also consider Anosov flows but instead
of time one map they deal with

S(t)(A) =

∫ t

0

A(gsx)ds,

where gs is the flow in question. Our results are therefore
slightly stronger. Let us remark by the way that our formu-
lations might be more appropriate from the point of view of ap-
plications because in practise it is possible to measure Sn(A, g1)
rather than S(t)(A). On the other hand the results for S(t) are
usually proven under a weaker assumption than that of Propo-
sition 6 (and Corollary 6 is false under these weaker assump-
tions). However it seems possible to extend our results to treat
the case when (4) holds not for time one map of a flow but for
a suitably chosen Poincare map.

• Quasihyperbolic toral automorphsims: Theorem 3, Corollaries
3 and 4 ([33, 34]), Theorem 4 ([65]).

• Translations on homogeneous spaces: Theorem 3, Corollaries 3
and 4 ([56, 57]), Theorem 4 ([65]). Also, [54, 87] contain results
quite similar in spirit to our Theorems 6 and 7 even though
Theorems 6 and 7 are not explicitly stated where. ([56, 57,
54, 87] do not suppose that M is compact requiring only that
Vol(M) <∞.)

However the advantage of our method is that we give a unified proof
for all these different classes of dynamical systems, which seem to be
of interest even in the known cases.

7. Large deviations.

Here we prove Theorem 1. First we verify our claim for ` = `(P ) ∈
E(P, 0, 0) where P is a Markov family. It is enough to estimate `(Sn(A) >
εn) the case `(S(A) < −εn) is dealt with similarly. Denote B(x) =
A(x) − ε

2
. By our assumption there exists n such that ∀P ∈ P

∫

P

Sn(B)(x)ρP (x)dx ≤ −nε
4
.

Also there exists some C such that ∀P ∈ P ∀n
(7) Osc

P
(Sn(B) ◦ f−n) ≤ C.

where OscP (A) = maxP (A) − minP (A).
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Hence ∃n, α < 0 such that ∀P ∈ P for any decomposition fnP =
⋃

j Pj, Pj ∈ P
∑

j

cj max
f−nPj

Sn(B) ≤ α

where cj =
∫

f−nPj
ρP (x)dx.

Corollary 11. ∃γ > 0, θ < 1 such that

∑

j

cj exp

(

γ max
f−nPj

Sn(B)

)

< θ.

Proof. Let

φ(γ) =
∑

j

cj exp

(

γ max
f−nPj

Sn(B)

)

.

Then φ(0) = 1, φ′(0) ≤ α. �

Corollary 12. ∀m > 0 there is a decomposition fnmP =
⋃

j Pj such
that

∑

j

cj exp

(

γ max
f−nmP−j

Snm(B)

)

≤ θm.

Proof. By induction. Decompose fnP =
⋃

j Qj and let fn(m−1)Qj =
⋃

k Pjk be a decomposition such that

∑

k

cjk exp

(

γ max
f−n(m−1)Pjk

Sn(m−1)(B)

)

≤ θm−1.

We have

max
f−nmPjk

Snm(B) ≤ max
f−nQj

Sn(B) + max
f−n(m−1)Pjk

Sn(m−1)(B).

Therefore
∑

jk

cjcjk exp

(

γ max
fnmPjk

Snm(B)

)

≤

∑

j

cj exp

(

γ max
f−nQj

Sn(B)

)

∑

k

cjk exp

(

γ max
f−n(m−1)Pjk

Sn(m−1)(B)

)

≤

θm−1
∑

j

cj exp

(

γ max
f−nQj

Sn(B)

)

≤ θm.

�

Combining this with (7) and using |SN(B)−SN+k(B)| ≤ Kk we get
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Corollary 13. ∃C, γ, ρ < 1 such that ∀` ∈ E

`(exp(γ(SN(A) − Nε

2
))) ≤ C1ρ

N
1 .

Proof of Theorem 1. By the above corollary ∀` ∈ E(P, 0, 0)

`(SN (A) ≥ εN

2
) ≤ C1ρ

N
1 .

Using the same argument for bounding SN (A) from below we get ∀` ∈
E(P, 0, 0)

`(|SN(A)| ≥ εN

2
) ≤ C2ρ

N
2 .

Now given P ′, R, α consider ` ∈ E1(P, R, α), say ` = `(Q,G). Decom-
pose N = N1 +N2, where N1 = δN, N2 = (1 − δ)N. Then

`(|SN (A)| ≥ εN) ≤ `

(

|SN2(A) ◦ fN1| ≥ εN

2

)

+ `

(

|SN1(A)| ≥ εN

2

)

.

The second term is void if δ is small enough. Consider an almost
Markov decomposition fN1Q = (

⋃

j Pj)
⋃

Z with respect to P. Then

`

(

|SN2(A) ◦ fN1 | ≥ εN

2

)

≤

Const

(

c+
∑

j

cj`j

(

|SN2(A)| ≥ εN

2

)

)

≤

ConstC2ρ
N
2 .

(Here `j = `(Pj).) �

Notes. (1) Many results in smooth ergodic theory have partially
hyperbolic versions. For example, Corollary 2 corresponds to
the statement that a homeomorphism h : F → F of a compact

F is uniquely ergodic if and only if 1
n

n
∑

j=0

A(hjx) → ν(A) for

all x. However, for partially hyperbolic systems convergence
does not hold for all x. [20, 53] produce many non-negative
C∞ functions for which An ≡ 0 on a set of large Hausdorff
dimension.

(2) For Anosov diffeomorphisms one can get quite precise asymp-
totic for ln `(|Sn| > εn). See [50, 51]. It is unlikely that the
similar results could be obtained under our assumptions be-
cause this asymptotic involves integrals of A with respect to
Gibbs states other than SRB measure and here we only assume
good behavior with respect to SRB measures. On the other
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hand asymptotics for moderate deviation (see [52]) involve only
integrals with respect to SRB measure itself and so it is likely
to be generalizable to the settings of u-transitive systems. We
do not pursue this topic here however.

(3) In case f 6∈ UuEe we can obtain the following generalization of
Corollary 1.

Proposition 11. ∀A ∈ C(M) u-almost surely

lim inf
Sn(A)

n
, lim sup

Sn(A)

n
∈ [inf(µ(A)), sup(µ(A))]

where the infimum and the supremum are taken over the set of
u-Gibbs measures.

The proof is verbatim repetition of the proof of Corollary 1.

8. Multiple mixing.

Proof of Theorem 2. We make induction on k. We can assume that
||Aj|| ≤ 1.

(I) k = 1. It is enough to consider the case ` = `(P,G) ∈ E1. We
have

I =

∫

P

eG(x)ρP (x)A(fnx)dx =

∫

f
n
2 P

eG(f− n
2 y)ρ

f
n
2 P

(y)A(f
n
2 y)dy.

Let f
n
2 P = (

⋃

Pj)
⋃

Z be an almost Markov decomposition. Choose
yj ∈ Pj, then

I =
∑

j

cj

∫

Pj

ρPj
(y)eG(f−n

2 y)A(f
n
2 y)dy +O(θn) =

∑

j

cje
G(f− n

2 yj)

∫

Pj

ρPj
(y)A(f

n
2 y)dy +O(θn) =

∑

j

cje
G(f− n

2 yj)ν(A) +O
(

θn + a
(n

2

))

.

Finally
∑

j

cje
G(f− n

2 yj) = `(1) +O(θn) = 1 +O(θn);
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(II) From k to k + 1. Denote N = n1+n2

2
. Again consider an almost

Markov decomposition fNP = (
⋃

Pj)
⋃

Z. Similarly to (I)

∫

P

eG(x)ρP (x)

k+1
∏

j=1

A(fnjx)dx =

∑

j

cje
G(f−N yj)A1(f

−(N−n1)yj)

∫

Pj

ρPj
(y)

k+1
∏

j=2

A(fnj−Ny)dy +O(θm).

The first term is
∑

j

cje
G(f−N yj)A1(f

−(N−n1)yj) =

∫

P

eG(x)ρP (x)A1(f
n1x)dx+O(θm) =

ν(A1) +O(θm)

and the second one equals

k+2
∏

j=2

ν(Aj) +O

(

a

(

m

C2(k)

)

+ θm

)

by induction. �

9. Moment estimates.

Starting from this section we suppose that a(m) satisfy
∑

m

a(m) < +∞.

Let Aj ∈ B be a sequence of functions such that ||Aj||B ≤ K, ν(Aj) = 0.

Let Sn =
∑n−1

j=0 Aj(f
jx).

Lemma 1.

(a)|`(Sn) ≤ Const;

(b)`(S2
n) ≤ Constn;

(c)|`(S3
n)| ≤ Constn

3
2 ;

(d) `(S4
n) ≤ Constn2,

where the constants in (a)–(d) depend only on K but not on sequence
Aj.
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(e) Let A(t, x) be a function defined on [0,T] ×M such that for all
t ∈ [0,T] A(t, ·) ∈ B, ||A(t, ·)||B ≤ K and

∫

A(t, x)dµ(x) = 0. Let

(8) Sε(t) =

[ t
ε
]

∑

j=0

A(εj, f jx)

then as ε→ 0

ε`(Sε(t)) →
∫ t

0

σ(A(s, ·))ds,
where

σ(A) =

∞
∑

j=−∞
ν(A(A ◦ f j));

Proof.

(a) |`(Sn)| = |
n−1
∑

j=0

`(Aj(f
jx))| ≤ Const

∑

j

a(j) ≤ Const.

(b) `(S2
n) =

∑

j,k

`(Aj(f
jx)Ak(f

kx)) ≤ Const
∑

j,k

a

( |j − k|
C

)

.

Now for fixed m there are less than 2n pairs (j, k) with |j−k| = m. So

`(S2
n) ≤ Constn

∑

m

a
(m

C

)

≤ Const.

(e) Fix some large M. We have

`(Sε(t)
2) =

n−1
∑

j,k=0

`(A(εj, f jx)A(εk, f kx) =

∑

|j−k|<M

`(A(εj, f jx)A(εk, f kx) =

∑

|j−k|≥M

`(A(εj, f jx)A(εk, f kx) = I + II.

By the argument of (b) |εIε| ≤ Const
∑

m>M a(m) → 0 as M → ∞.
On the other hand for fixed M the following holds. Let εj → s, then
∑

|k−j|<M

`(A(εj, f jx)A(εk, f kx)) →
∑

|q|<M

ν(A(s, x)A(s, f qx)) = σ(A(s, ·))+oM→∞(1).

Thus

ε`(S2
ε (t)) →

∫ t

0

σ(A(s, ·))ds+ o(1).

Letting M → ∞ we obtain (e).
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(c) follows from (b) and (d) so it suffices to establish (d).

(d) `(S4
n) =

∑

j1,j2,j3,j4

`((Aj1(f
j1x)Aj2(f

j2x)Aj3(f
j3x)Aj4(f

j4x)).

First, let us estimate the terms where not all indices jp are different.
The sum over terms with at most two different indices is bounded by
Const×(the number of terms), hence by Constn2. Also

J =
∑

`(Aj1(f
j1x)Aj2(f

j2x)A2
j3

(f j3x)) ≤ Const
∑

a

(

min jp − jp−1

C

)

.

For fixed m the number of terms with min(nj − nj−1) = m equals
Constn2. Thus

J ≤ Constn2
∑

m

a(m).

Now up to the terms of order n2

`(S4
n) = 12

∑

j3

j3
∑

j1,j2=1

n
∑

j4=j3

`(Aj1(f
j1x)Aj2(f

j2x)Aj3(f
j3x)Aj4(f

j4x))+O(n2)

12
∑

j3

n
∑

j4=j3

`(S2
j3
Aj3(f

j3x)Aj4(f
j4x)) +O(n2).

Proposition 12. ∀l ∀j3

`

(

n
∑

j4=j3

S2
j3
Aj3(f

j3x)Aj4(f
j4x)

)

≤ Constj3.

Proof. Again it suffices to verify this for l ∈ E1, say ` = `(P,G). Con-
sider an almost Markov decomposition f j3P = (

⋃

q Pq)
⋃

Z. Choose
yq ∈ Pq then

∫

P

eG(x)ρP (x)S2
n3

(x)Aj3(fj3x)Aj4(fn4x)dx =

O(θj3) +
∑

q

cqS
2
n3

(yq)

n
∑

j4=j3

∫

P

eG(f−j3y)ρPq(y)Aj3(y)Aj4(f
j4−j3y)dy+

∑

q

cq

n
∑

j4=j3

∫

P

eG(f−j3y)ρPq(y)[S
2
n3

(f−j3y)−S2
n3

(yq)]Aj3(y)Aj4(f
j4−j3y)dy =

I + II.
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By Theorem 2 I ≤ Const
∑

q cqS
2
j3

(yq). Now Osc
f−j3Pq

S2
j3
≤ Constj3, so

∑

q

cqS
2
j3

(yq) ≤ Constj3 + `(S2
j3

) ≤ Constj3.

II =
∑

q

cq

n
∑

j4=j3

∫

P

eG(f−j3y)ρPq(y)[Sj3(f
−j3y)−Sj3(yq)][Sj3(f

−j3y)+Sj3(yq)]×

Aj3(y)Aj4(f
j4−j3y)dy =

∑

q

cq

j3−1
∑

k=0

n
∑

j4=j3

∫

P

{

eG(f−j3 y)ρPq(y)[Sj3(f
−j3y) − Sj3(yq)][Ak(f

k−j3y) + Ak(f
kyq)]

}

×

Aj3(y)Aj4(f
j4−j3y)dy

The part in brackets is uniformly bounded and uniformly Holder con-
tinuous. Thus by Theorem 2 the sum over j4 is uniformly bounded for
any q, k. Hence

II ≤ Const
∑

q

cq
∑

k

1 = Constj3
∑

q

cq ≤ Constj3.

�

Now

`(S4
n) ≤ Const

∑

j<n

j +O(n2) = O(n2).

This concludes the proof of Lemma 1. �

10. Tightness.

In all theorems of Section 4 it suffices by the definition of weak
convergence in C[0,∞[ to show that for each T > 0 the corresponding
processes converge in C[0,T]. So let T be fixed from now on till the
end of Section 15.

Lemma 2. Let Sε(t) be defined by (8). Then the family {√εSε(t)} is
tight.

Proof. Let Y (N) = {X(t) : ∀m > N ∀k |X( k+1
2m ) − X( k

2m )| < 1

2
m
8
}.

Then Y (N) is compact in C[0,T] for allN. Let us estimate `(
√
εSε(t) 6∈

Y (N)). We have

`

(

[√
ε

∣

∣

∣

∣

Sε

(

k + 1

2m

)

− Sε

(

k

2m

)∣

∣

∣

∣

]4
)

≤ Cε2

(

1

2mε

)2

= C2−2m
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So, for given k

`

([√
ε

∣

∣

∣

∣

Sε

(

k + 1

2m

)

− Sε

(

k

2m

)∣

∣

∣

∣

]

<
1

2
m
8

)

≤ C2−2m(2
m
8 )4 = C2−

3m
2 .

Hence

`

(

∃k
[√

ε

∣

∣

∣

∣

Sε

(

k + 1

2m

)

− Sε

(

k

2m

)∣

∣

∣

∣

]

<
1

2
m
8

)

≤

ConstT2m2−
3m
2 = ConstT2−

m
2 .

Thus `(
√
εSε(t) 6∈ Y (N)) ≤ Const2−N

2 . �

The next statement is used in the Section 11. Take some α between
1 and 2. Denote nk =

∑n
j=1 j

α, ηk = Snk
(A). Choose θ such that

1
6

+ 1
6α
< θ < 1

2α
.

Lemma 3. Almost surely

max
j≤k

max
nj−1≤l≤nj

|Sl(A) − ηnj−1
| ≤ Ckα( 1

2
+θ).

Proof. Let [l1, l2] be an interval of the form

l1 = nj−1 +
pjα

2m
, l2 = nj−1 +

(p+ 1)jα

2m
.

We claim that almost surely

(9) |Sl2 − Sl1 | ≥
√

l2 − l1j
αθ

only finitely many times. Indeed the probability of such an event is
less than

E(|Sl2 − Sl1 |4)
j4αθ(l2 − l1)2

≤ C

j4αθ
.

(9) can happen only if l2 − l1 ≥
√
l2 − l1j

αθ that is l2 − l1 ≥ j2αθ. Thus
for fixed j we have O(jα(1−2θ)) events and so

Prob(∃l1, l2 satisfying (9) with given j) = O(jα(1−6θ)).

By assumption α(1 − 6θ) < −1. This completes the proof. �

11. Invariance Principle.

Proof of Theorem 3. We keep the notation of the previous section. Let
us begin with recalling the facts about martingales we will use in this
and following sections. Proofs can be found for example in [38]. Let
(Zn,Gn) be martingale pair. Then Yn = Zn −Zn−1 is called martingale
difference sequence. We consider only martingales satisfying Z0 = 0
and E(Z2

n) <∞.
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Proposition 13. (a) (Doob convergence Theorem) If E(Z2
n) is

bounded then Zn converges almost surely;
There are constants C1 and C2 such that for any martingale (Zn,Gn)

as above the following holds:
(b) Let Z∗ = maxn Zn, ∆Z =

∑

n Y
2
n . Then

1

C1
E((∆Z)2) ≤ E(Z∗4) ≤ C1E((∆Z)2);

(c) (Skorohod representation theorem) After possibly enlarging
the probability space we can find a Brownian Motion w(t) and stopping

times Tj such that if τk =
∑k

j=1 Tj, then Zk = w(τk), E(Tk|Fk) = E(Y 2
k )

and E(T 2
k ) ≤ C2E(Y 4

k );
(d)Let ηn be a Gn-measurable sequence such that

βn =
∞
∑

j=1

E(ηn+1−j|Fn−1) ≤ Const

then

(10) ηn = Yn + βn+1 − βn

where Yn is a martingale difference sequence.

Let ` = `(P ). First we define an increasing sequence of sigma–
algebras Fn on P. Let F0 = {∅, P}. Suppose that Fn is generated
by {Pj,n} such that fnPj,n ∈ P. Decompose fn+1Pj,n =

⋃

k Pjk,n and
let Fn+1 be generated by f−n−1Pjk,n. Write Gk = Fnk

, η̃k = E(ηk|Gk).
Note that |ηk − η̃k| ≤ Const.

Lemma 4. ∃C such that ∀j ∑k |E(η̃j+k|G)| ≤ C.

Proof. Let Q be an element of Gj. Then

E(η̃j+k|Gj) = E(ηj+k|Gj) =

∫

Q

ρQ(y)

nj+k
∑

l=nj+k−1+1

A(f l−njy)dy.

Thus
∑

k |E(η̃j+k|G)| ≤∑∞
l=1 a(l). �

Write η̃k = ζk + βk − βk+1 where βk =
∑∞

l=0 E(η̃k+l|Gk−1). Let Sk =
∑k

l=1 ζl. Then (Sk,Gk) is a martingale by and |Sk − Snk
| ≤ Constk.

Given N define MN by the condition that nMN
≤ N < nMN +1.

Proposition 14. ∃s1 such that almost surely

SN − SMN
= O(N

1
2
−s1).
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Proof. SN − SMN
= (SN − SMN

) + (SMN
− SMN

) = I + II.

I = O(M ( 1
2
+θ)α) = O(N ( 1

2
+θ) α

α+1 )

by Lemma 3 and ( 1
2
+ θ) α

α+1
) ≤ 1

2
since θ < 1

2α
. II = O(M) = O(N

1
1+α )

and 1
α+1

< 1
2

as α > 1. �

Let w, Tj and τk be as in Proposition 13(c).

Proposition 15. ∃σN such that σN

N
→ σ(A) and

∑MN

j=1 Tj − σN =

O(N1−s2).

Proof. We have
MN
∑

j=1

Tj =

MN
∑

j=1

[Tj − E(Tj|Gj−1)] +

MN
∑

j=1

[E(ζ2
j |Gj−1) − ζ2

j ]+

MN
∑

j=1

[ζ2
j − E(ζ2

j )] +

MN
∑

j=1

E(ζ2
j ) =

I + II + III + IV.

To estimate I write Rj = Tj −E(Tj |Gj−1), E(Tj|Gj−1) = Djα +rj where
rj is uniformly bounded. Thus

E(R2
j ) = E(T 2

j ) − 2E(Tjrj) +D2j2α ≤ Cj2α.

Since Rj is a martingale difference sequence
∑

j
Rj

jα+1
2 +ε

converges almost

surely by Proposition 13(b). Writing

Rj =

(

Rj

jα+ 1
2
+ε

)

jα+ 1
2
+ε

and summing by parts we obtain

M
∑

j=1

Rj ≤ Const(ω)Mα+ 1
2
+ε = O(n1−s3

M ).

II can be bounded the same way as I. Namely let Lj = ζ2
j −E(ζ2

j |Gj−1)
then

E(L2
j) = E([ζ2

j − E(ζ2
j |Gj−1)]

2) ≤ E([Ajα ◦ fnj ]2) +O(j2α) = O(j2α)
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so as before II =
∑M

j=1 Lj = O(n1−s3). Also, similarly to Lemma 1

E





[

M
∑

j=1

ζ̃2 − E(ζ̃2)

]2


 = E





[

M
∑

j=1

ζ2 − E(ζ2)

]2


 ≤ Constn2
M ,

so by Borel-Cantelli III = O(n
7
8
M) almost surely. Therefore,

∑MN

j=1 Tj =
∑MN

j=1 E(ζ2
j )+O(n1−s3). By Section 9

∑M
j=1 ζ

2
j ∼∑M

j=1 σ(A)jα = σ(A)nM .
�

Thus we have

Sk = w(τk) = w(σnk
) + [w(τk) − w(σnk

)] = w(σnk) +O(n
1−s4

2
k )

almost surely.
This identity together with Proposition 14 proves Theorem 3. �

Note. Our exposition mostly follows [71].

12. Convergence to the Gaussian process.

Theorem 9. Let Sε(t) be defined as in (8), then as ε→ 0 the process√
εSε(t) converges weakly to a Gaussian random process S(t) with zero

mean and covariance matrix

< S(t),S(t) >=

∫ t

0

σ(A(s, ·))ds.

Remark. Clearly this Theorem implies Corollary 4.

Proof. By Lemma 2 {Sε(t)} is a tight family so we need only to verify
convergence of finite dimensional distributions. Let us start with one
dimensional distributions. Denote n = 1

ε
. Define

Ŝk =
kn

3
5 −n

1
10

∑

j=(k−1)n
3
5

A(εj, f jx),

S̄k =

kn
3
5 −1
∑

j=kn
3
5 −n

1
10

A(εj, f jx),

S∗(t) =

»

t

n
3
5

–

−1

∑

k=0

Ŝk,
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S∗∗(t) =

»

t

n
3
5

–

−1

∑

k=0

S̄k.

Then by Lemma 1 S∗∗(t) → 0 in L2(l) and, in particular S∗∗(t) → 0 in

probability. Let ψk(ξ) = `(ei
√

εŜkξ).

Proposition 16.

ψk(ξ) = 1 − ε
2
5σ(A(kε

2
5 , ·))(1 + o(1)).

Proof. We have

ψk(ξ) = El

(

1 + i
√
εŜkξ −

εŜ2
k

2
ξ2 − iε

3
2
Ŝ3

k

6
ξ3 +O

(

ε2hS2
kξ

4
)

)

.

Using Lemma 1 we get

ψk(ξ) = 1 − ε
2
5σ(A(s, ·))(1 + o(1)) +O(ε

1
2 + ε

3
5 + ε

4
5 ),

where the main term comes from ε
Ŝ2

k

2
ξ2. This proves the proposition.

�

Let φk(ξ) = `(ei
√

εS∗
kξ).

Proposition 17.

(11) lnφk+1(ξ) = lnφk(ξ) − ε
2
5σ
(

A(kε
2
5 , ·)
) ξ2

2
+ o

(

ε
2
5

)

.

Proof. It suffices to verify this for ` ∈ E1.
(I) Case k = 0 constitutes Proposition 16.

(II) k > 0. Decompose f kn
3
5 P = (

⋃

j Pj)
⋃

Z. Let q = kn
3
5 . Choose

yj ∈ Pj. Then
`
(

exp(i
√
εS∗

k+1ξ)
)

=
∑

j

cj exp(i
√
εS∗

k(f
−qyj)ξ) exp(G(f−qyj))

∫

Pj

ei
√

εS∗
1 (y)ξρPj

(y)dy+O(θn
1
10 ).

By Proposition 16
∫

Pj

ei
√

εS∗
1 (y)ξρPj

(y)dy = (1 − ε
2
5σ(A(kε

2
5 , ·))(1 + o(1)).

Hence

φk+1(ξ) =
∑

j

cj exp(i
√
εS∗

k(f
−qyj)) exp(G(f−qyj)))(1−ε

2
5σ(A(kε

2
5 , ·))(1+o(1))) =

φk(ξ)(1 − ε
2
5σ(A(kε

2
5 , ·))(1 + o(1))) +O(θ−n

1
10 ).

Taking logarithms of both sides we obtain the statement required. �
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Now summing (11) for k = 0 . . . [tn
2
5 ] we get

ln `(ei
√

εS∗(t)ξ) ∼ −ξ
2

2

∫ t

0

σ(A(s, ·))ds.

Since
√
ε[Sε(t)−S∗

ε (t)] → 0 in probability we see that one dimensional
distributions of

√
εSε(t) converge to those of S(t). To consider the gen-

eral case let t1 . . . tr, ξ1 . . . ξr be some numbers. Denote ηj =
∑j

m=1 ξm.
We have

∑

j

ξjSε(tj) =
∑

j

ηj[Sε(tj) − Sε(tj−1)].

By the same argument as in the proof of Proposition 11 we obtain

ln `

(

exp[i
√
ε
∑

j

ξjSε(tj)]

)

∼ −1

2

∑

j

η2
j

∫ tj

tj−1

σ(A(s, ·))ds.

This implies convergence of multidimensional distributions and so proves
Theorem 9. �

Note. By the same argument one can obtain versions of Central Limit
Theorem for families of diffeomorphisms. One only has to check the
uniformity of the estimates of the previous sections. The following
statement is used in [28].

Proposition 18. Let fε be a family of partially hyperbolic systems such
that ∃C, r, v, a function space B, a sequence {a(n)} such that

∞
∑

n=1

a(n) <∞

and a linear functional ω : B → R such that for any Pε belonging to
the (C, r1, v)-universal family from example I of Section 2 and ∀ρ such
that ||ρ||Cγ(Pε) ≤ 1 the following estimate holds

∣

∣

∣

∣

∫

Pε

A(fn
ε x)ρ(x)dx− ν(A) − εω(A)

∣

∣

∣

∣

≤ ||A||(a(n) + o(ε)).

Let nε be a sequence such that nε → ∞, nεε
2 → c where c ≥ 0 then if

x is chosen according to Lebesgue measure then

∑n−1
j=0 [A(f j

εx) − ν(A)]
√
nε

→ N (cω(A), D(A)).



28 DMITRY DOLGOPYAT

13. Short time fluctuations in averaging. Moments of
slowly changing quantities.

To simplify the notation we present the proofs of Theorems 4 and 5
only for the case d = 1. The reader will have no difficulties to establish
multidimensional analogies of our results but the notation in higher
dimensional setting becomes much more complicated.

Here we prove Theorem 4. We have

∆n+1 − ∆n = ε
[

A(zn, f
nx) − Ā(qn)

]

=

ε
[

A(qn, f
nx) − Ā(qn)

]

+ ε
[

A(zn, f
nx) − Ā(qn, f

nx)
]

.

Using Hadamard Lemma we rewrite the second term as

A(zn, f
nx) − Ā(qn, f

nx) = [DA(qn, f
nx) + ζ(qn, f

nx,∆n)]∆n

where ζ is a smooth function of its arguments, ζ(q, x, 0) = 0. Denote

Qn = DĀ(qn) + ζ̄(qn,∆n),

βn = [DA(qn, f
nx) + ζ(qn, f

nx,∆n) −Qn] ∆n,

γn = A(qn, f
nx) − Ā(qn).

Then our equation can be rewritten as

∆n+1 − ∆n = ε [Qn∆n + βn + γn] .

Let Ln be the solution of

(12) Ln+1 − Ln = εQnLn.

Substitute ∆n = Lnρn, then we have

(13) Ln+1(ρn+1 − ρn) = ε(βn + γn),

so

(14) ρn+1 = ε
n
∑

j=0

L−1
j+1(βj + γj).

The next is a special case of Theorem 9.

Proposition 19. Let γε
t =

γ
[ t
ε ]√
ε
, then as ε → 0 γε

t converges to B–the

Gaussian process defined by (6).

In order to estimate the moments of
∑

n L
−1
n+1βn and

∑

n L
−1
n+1γn we

need the following statement the proof of which occupies the most of
this section.
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Proposition 20. Let A(δ, x) satisfy
∫

A(δ, x)dν(x) = 0 for all δ. Let
θp(δ) = ||Ap(δ, ·)||B. Suppose that θp are smooth functions of δ. Let

κp(δ) = dθp

dδ
, κ̃p(δ) = || d

dδ
Ap(δ, ·)||B. Suppose that |κp(δ)| < Const,

|κ̃p(δ)| < Const for p ≤ 4. Let {δn(x)} satisfy

(15) δn+1 − δn = εB(δn, f
nx, ε)

where for all m || dm

dδmB(δ, ·)||B is uniformly bounded and

B(δ, x, ε) = B(δ, x) +O(ε).

Let T =
∑m+ 1√

ε

j=m A(δj, f
j), then

(a) |`(T )| ≤ Const
[

`(θ1(δm)) +
√
ε
]

;

(b)
∣

∣`(T 2)
∣

∣ ≤ Const [`(θ2(δm)) + ε]
1√
ε
;

(c)
∣

∣`(T 4)
∣

∣ ≤ Const

[

`(θ4(δm))

ε
+ `(|κ4(δm)|) + `(|κ̃1(δm)θ3(δm)|) +

`(|θ3(δm)|) + `(|κ̃1(δm)θ2(δm)|) + ε`(|θ2(δm)|) + ε
3
2 `(|κ̃1(δm)) + ε2

]

.

Proof. Let

T ′ =
∑

j

A(δm, f
jx),

T ′′ = ε
∑

j>k

dA

dδ
(δm, f

jx)B(δm, f
kx).

Lemma 5.

T = T ′ + T ′′ +O(
√
ε).

Proof. We have

T =
∑

j

A(δj, f
jx) =

∑

j

A(δm, f
jx) +

∑

j

[A(δj, f
jx) − A(δm, f

jx)] =

The first term equals to T ′. The second term can be estimated as follows
∑

j

[A(δj, f
jx)−A(δm, f

jx)] =
∑

j

dA

dδ
(δm, f

jx)(δj−δm)+
∑

j

O
(

(δj − δm)2
)

.

Now

δm − δj ≤ Const|m− j|ε ≤ Const
√
ε.

Hence
∑

j

(δj − δm)2 ≤ Const
1√
ε
ε ≤ Const

√
ε.
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Now

δj − δm =

j
∑

k=m

εB(δk, f
kx) +

j
∑

k=m

O(ε2) =

j
∑

k=m

εB(δk, f
kx) +O(ε

3
2 )

and

B(δk, f
kx) = B(δm, f

kx) +O(|δk − δm|) = B(δm, f
kx) +O(

√
ε).

Hence
∑

j

[

A(δj, f
jx) − A(δm, f

jx)
]

= ε
∑∑

k>j

dA

dδ
(δj, f

jx)B(δm, f
kx)+O(

√
ε)

as claimed. �

To estimate T ′′ rewrite

`

(

∑

j>k

∑ dA

dδ
(δm, f

jx)B(δm, f
kx)

)

= `

(

∑

k

B(δm, f
kx)
∑

j>k

dA

dδ
(δm, f

jx)

)

Now
∫

dA
dδ

(δ, x)dµ(x) = 0, so similarly to Lemma 1 we obtain that for
any fixed k

∣

∣

∣

∣

∣

`

(

B(δm, f
kx)
∑

j>k

dA

dδ
(δm, f

jx)

)∣

∣

∣

∣

∣

≤ Const.

Hence

ε

∣

∣

∣

∣

∣

`

(

∑

j>k

∑ dA

dδ
(δm, f

jx)B(δm, f
kx)

)∣

∣

∣

∣

∣

≤ ε× Const
1√
ε

= Const
√
ε.

To estimate `(
∑

j A(δm, f
jx)) it is enough to treat the case ` = `(P,G).

In this case we consider an almost Markov decomposition fmP =
(
⋃

q Pq)
⋃

Z. Choose yq ∈ Pq. We have
∫

P

eG(x)
∑

j

A(δm, f
jx)ρP (x)dx =

∑

q

cq

∫

Pq

eG(f−m(y)
∑

j

A(δm(f−my), f j−my)ρPq(y)dy +O(θm).

For fixed q

(16)

∫

Pq

eG(f−my)
∑

j

A(δm(y), f j−my)ρPq(y)dy =

∫

Pq

eG(f−my)
∑

j

A(δm(yq), f
j−my)ρPq(y)dy+
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∫

Pq

eG(f−my)
∑

j

[A(δm(y), f j−my) − A(δm(yq), f
j−my)]ρPq(y)dy.

Lemma 6. ∃C such that for small ε

(17) |δj(x1) − δj(x2)| ≤ Cεdγ(f jx1, f
jx2).

where γ is such that B ⊂ Cγ(M).

Proof. Let Ck be a constant such that for j < k

|δj(x1) − δj(x2)| ≤ Ckεd
γ(f jx1, f

jx2).

Then

|δk+1(x1)−δk+1(x2)| ≤ |δk(x1)−δk(x2)|+ε|B(δk(x1), f
kx1)−B(δk(x2), f

kx2)| ≤
Ckεd

γ(f jx1, f
jx2)+

ε|B(δk(x1), f
kx1)−B(δk(x1), f

kx2)|+ε|B(δk(x1), f
kx2)−B(δk(x2), f

kx2)| ≤
Ckεd(f

jx1, f
jx2) + εC(B)|δk(x1) − δk(x2)| + ε||B||dγ(f kx1, f

k(x2)) ≤
[Ckε+ C(B)ε2 + ε||B||]dγ(f kx1, f

kx2).

Since f is partially hyperbolic ∃θ < 1 such that d(f kx1, f
kx2) ≤

θd(f k+1x1, f
k+1x2). Thus

|δk+1(x1) − δk+1(x2)| ≤ ε[Ck + C(B)ε+ ||B||]θγdγ(f k+1x1, f
k+1x2).

If ε is small enough then εC(B) ≤ 1, so

Ck+1 ≤ (Ck + 1 + ||B||)θγ.

Thus if

Ck+1 ≤
(1 + ||B||)θγ

1 − θγ

then (17) holds. �

Thus the second term in the RHS of (16) is less than

m+ 1√
ε

∑

j=m

Constε = Const
√
ε.

Now
∫

Pq

eG(f−my)
∑

j

A(δm(yq), f
j−my)ρPq(y)dy =

||A(δm(yq), ·)||B
∫

Pq

eG(f−qy)
∑

j

A(δm(yq), f
j−my)

||δm(yq), ·)||
ρPq(y)dy ≤

||A(δm(yq), ·)||
∑

j

a(
j −m

C
) ≤ Const||A(δm(yq), ·)||.
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So,
∣

∣

∣

∣

∣

`

(

∑

j

A(δm, f
jx)

)∣

∣

∣

∣

∣

≤
∑

q

cqθ1(δm(yq)) + Const
√
ε.

Using again Lemma 6 and the assumption that θ1 depends smoothly
on δ we get
∑

q

cqθ1(δ(yq)) =
∑

q

∫

θ1(δm(f−my))ρPq(y)dy+O(ε) = `(θ1(δm))+O(ε).

This completes the proof of (a).
(b) By Lemma 5 T = T ′ + T ′′ +O(

√
ε). Hence

`(T 2) ≤ Const[`((T ′)2) + `((T ′′)2) + ε].

Lemma 7.

`((T ′)2) ≤ Const

(

`(θ2(δm))√
ε

+
√
ε

)

.

Proof. It suffices to give a proof in case ` = `(P,G). Let fmP =
(
⋃

q Pq)
⋃

Z be an almost Markov decomposition. Choose yq ∈ P.
Then
∫

P

eG(x)(T ′)2ρP (x)dx =
∑

q

cq

∫

Pq

eG(f−my)(T ′(f−mt))2ρPq(y)dy+O(θm).

Now
∫

Pq

eG(f−my)(T ′(f−mt))2ρPq(y)dy =

∫

Pq

eG(f−my)

[

∑

j

A(f jx, δm(yq))

]2

ρPq(y)dy+

∫

Pq

eG(f−my)





[

∑

j

A(δm(y), f jx)

]2

−
[

∑

j

A(δm(yq), f
jx)

]2


 ρPq(y)dy = Iq+IIq.

Now

Iq = ||A(δm(yq), ·)||2
∫

Pq

eG(f−my)

[

∑

j A(δm(yq), f
jx)
]2

||A(δm(yq), ·)||2
ρPq(y)dy

and by the argument of Lemma 1 the last integral is O( 1√
ε
). Hence

Iq ≤ Const
θ2(yq)√

ε
.

By Lemma 6

θ2(yq) =

∫

Pq

θ2(y)ρPq(y)dy +O(ε).
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Summation over q gives

(18)
∑

q

cqIq ≤ Const

[

`(θ2(δm))√
ε

+
√
ε

]

Now

IIq =

∫

Pq

eG(f−my)

[

∑

j

(A(δm(y), f jx) − A(δm(yq), f
jx))

]

×

[

∑

j

(A(δm(y), f jx) + A(δm(yq), f
jx))

]

ρPq(y)dy.

By Lemma 6
∑

j

(

δm(y), f jx) − A(δm(yq), f
jx)
)

≤
∑

j

O(ε) = O(
√
ε).

On the other hand
∑

j

(

A(δm(y), f jx) + A(δm(yq), f
jx)
)

≤

2
∑

j

||A(δm(y), ·)||+O(ε) ≤

Const

( ||A(δm, ·)||√
ε

+
√
ε

)

.

Thus

(19)
∑

q

cqIq ≤ Const`(|θ1(δm)|)

But

(20) `(|θ1(δm)|) = `(
|θ1(δm)|

4
√
ε

4
√
ε) ≤ 1

2

(

`(θ2(δm))√
ε

+
√
ε

)

Combining (18), (19) and (20) we obtain the lemma. �

Now

`((T ′′)2) = ε2
∑

k1<j1,k2<j2,j1<j2

`

(

dA

dδ
(δm, f

j1x)
dA

dδ
(δm, f

21x)B(δk1 , f
k1x)B(δk2 , f

k2x)

)

.

By the argument of Lemma 1 we see that for fixed k1, j1, k2
∣

∣

∣

∣

∣

∑

j2

`

(

dA

dδ
(δm, f

j1x)
dA

dδ
(δm, f

21x)B(δm, f
k1x)B(δm, f

k2x)

)

∣

∣

∣

∣

∣

≤ Const,
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so the whole sum is bounded by

(21) `((T ′′)2) ≤ Constε2

(

1√
ε

)3

= Const
√
ε.

Lemma 7 and (21) prove (b).
To prove (c) we again use

`(T 4) ≤ Const(`((T ′)4) + `((T ′′)4) + ε2).

Lemma 8.

`((T ′)4) ≤ Const [ε+ `(|κ̃1θ3|) + `(|θ3|) + `(|κ̃1θ2|) + ε`(|θ2|) + `(θ4(δm)) + ε`(κ4(δm))] .

Proof. It suffices to consider the case ` = `(P,G). We argue as in the
proof of (a). Let fmP = (

⋃

q Pq)
⋃

Z be an almost Markov decompo-
sition. Choose yq ∈ Pq. Then

∫

eG(x)(T ′)4ρP (x)dx =

∑

q

cq

∫

Pq

eG(f−my)(T ′(f−my))4ρPq(y)dy +O(θm).

Now
∫

Pq

eG(f−my)(T ′(f−my))4ρPq(y)dy =

∫

Pq

eG(f−my)

[

∑

j

A(δm(yq), f
jx)

]4

ρPq(y)dy+

∫

Pq

eG(f−my)

[

(
∑

j

A(δm(y), f jx))4 − (
∑

j

A(δm(yq), f
jx))4

]

ρPq(y)dy = Iq+IIq

Reasoning as in Lemma 1(d) we obtain

|Iq| ≤ Const

(

1

ε

)2

θ4(δm(yq)) = Const
θ4(δm(yq))

ε
.

On the other hand

IIq =

∫

Pq

eG(f−my)

[

(
∑

j

A(δm(y), f jx))4 − (
∑

j

A(δm(yq), f
jx))4

]

ρPq(y)dy =

∫

Pq

eG(f−my)

[

(
∑

j

A(δm(y), f jx) − A(δm(yq), f
jx))

]

×
[

(
∑

j

A(δm(y)), f jx)3 + (
∑

j

A(δm(y), f jx))2(
∑

j

A(δm(yq), f
jx))+
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(
∑

j

A(δm(y), f jx))(
∑

j

A(δm(yq), f
jx))2 + (

∑

j

A(δm(yq), f
jx))3

]

ρPq(y)dy =

Now

(22)
∑

j

[

A(δm(y), f jx) − A(δm(yq), f
jx)
]

=

[

∑

j

DA(δq(y), f
jx)(δm(y) − δm(yq))

]

+O(
∑

j

[δm − δ −m(yq)]
2) =

[

∑

j

DA(δq(y), f
jx)(δm(y) − δm(yq))

]

+O(
√
ε3)

since by Lemma 6 each term in the second sum is O(ε2).

Lemma 9.

(23) (
∑

j

A(δm(y), f jx))3+(
∑

j

A(δm(y), f jx))2(
∑

j

A(δm(yq), f
jx))+

(
∑

j

A(δm(y), f jx))(
∑

j

A(δm(yq), f
jx))2 + (

∑

j

A(δm(yq), f
jx))3 =

4

(

∑

j

A(δm(yq), f
jx)

)3

+O

[(

θ2(δm(y))√
ε

)

+
√
ε

]

.

Proof. Consider, for example, the first term. Other terms can be han-
dled similarly.

(

∑

j

A(δm(y), f jx)

)3

=





(

∑

j

A(δm(y), f jx)

)3

−
(

∑

j

A(δm(yq), f
jx)

)3


+

(

∑

j

A(δm(yq), f
jx)

)3

.

The first term here equals
∑

j

[

A(δm(y), f jx) − A(δm(yq), f
jx)
]

×





(

∑

k

A(δm(y), f kx)

)2

+

(

∑

k

A(δm(y), f kx)

)(

∑

r

A(δm(yq), f
rx)

)

+

(

∑

k

A(δm(yq), f
kx)

)2


 .
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By Lemma 6 the first factor is 1√
ε
O(ε) = O(

√
ε). On the other hand,

using the formula for difference of squares the same way we have done
it for cubes we obtain that the first factor is O( 1

ε
θ2(δm) + 1). �

Multiplying ((22) and (23) we get

IIq =

4

∫

Pq

eG(f−my)

[

∑

j

DA(δq(y), f
jx)(δm(y) − δm(yq))

](

∑

j

A(δm(yq), f
jx)

)3

ρPq(y)dy+

O





√
ε3

∫

Pq

eG(f−my)

∣

∣

∣

∣

∣

∑

j

A(δm(yq), f
jx)

∣

∣

∣

∣

∣

3

ρPq(y)dy



+

1√
ε
O

(

∫

Pq

eG(f−my)

[

∑

j

DA(δq(y), f
jx)(δm(y) − δm(yq))

]

|θ2(δm(y))|ρPq(y)dy

)

+

O

(

ε

∫

Pq

eG(f−my)|θ2(δm(y)|ρ(y)dy
)

+

O

(

√
ε

∫

Pq

eG(f−my)
∑

j

DA(δm(yq), f
jx)(δm(y) − δm(yq))ρPq(y)dy

)

+O(ε2) =

II(1)
q + II(2)

q + II(3)
q + II(4)

q + II(5)
q + II (6)

q .

By the argument of Lemma 1(d) we obtain

II (1)
q ≤ Const sup

Pq

εκ1(δm(y))|θ3(δm(y))|
(

1√
ε

)2

=

Const sup
Pq

κ̃1(δm(y))|θ3(δm(y))| =

Const

[

∫

Pq

eG(f−my)κ̃1(δm(y))|θ3(δm(y))|ρPq(y)dy + ε

]

.

Also

II(2)
q ≤ Const

∫

Pq

eG(f−my)|θ3(δm(y))|ρPq(y)dy,

II (3)
q ≤ Const

∫

Pq

eG(f−my)|κ̃1(δm(y))||θ2(δm(y))|ρPq(y)dy.

and, since |δm(y) − δm(yq)| = O(ε)

II (5) ≤ Constε
3
2

∫

P

eG(f−my)|κ̃1(δm)|ρPq(y)dy.
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Thus
∑

q

cq|IIq| ≤ Const
[

ε+ `(|κ1θ3|) + `(|θ3|) + `(|κ1θ2|) + ε`(|θ2|) + ε
3
2 `(|κ1|) + ε2

]

.

Also
θ4(δm(yq)) =

∫

Pq

eG(f−my)θ4(δm(y))ρPq(y)dy+

O(ε

∫

Pq

eG(f−my)|κ4(δm(y))|ρPq(y)dy + ε2).

Hence
∑

q

cq|Iq| ≤ Const(`(θ4(δm)) + ε`(κ4(δm)) + ε2).

This completes the proof of Lemma 8. �

On the other hand the inequality

`((T ′′)4) ≤ Constε

can be proven similarly to Lemma 1(d). This together with Lemma 8
completes the proof of (c). The proof of Proposition 20 is complete. �

Proposition 21.
∣

∣

∣

∣

∣

∣

`





T

ε
∑

j=1

L−1
j+1γj





∣

∣

∣

∣

∣

∣

≤ Const.

Proof. We have

L−1
j+1γj = L−1

j−√
n
γj +

[

L−1
j+1 − L−1

j−√
n

]

γj.

Now
∣

∣

∣

∣

∣

l

(

∑

j

L−1
j−√

n
γj

)∣

∣

∣

∣

∣

≤ nConsta

(√
n

C

)

≤ n
Const

(
√
n)2

= Const.

Also

[

L−1
j+1 − L−1

j−√
n

]

γj = εL−1
j−√

n

∑

k

QkL
−1
j−√

n
γj+O





∥

∥

∥

∥

∥

∥





j
∑

k=j−√
n

εQk





∥

∥

∥

∥

∥

∥

2

 = Ij+IIj

IIj = O((
√
ε)2) = O(ε). Thus

∑

j

`(IIj) =
∑

j

O





∥

∥

∥

∥

∥

∥





j
∑

k=j−√
n

εQk





∥

∥

∥

∥

∥

∥

2

 = O(1).
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Also, similarly to the proof of Lemma 1,

∑

j

`(Ij) = `

(

ε
∑

j>k

L−1
j−√

n

∑

k

QkL
−1
j−√

n
γj

)

≤ Constε
∑

j,k

a

(

j − k

C

)

.

Now for fixed k
∑

j>k

a

(

j − k

C

)

≤ Const.

So

∑

j

`(Ij) ≤ Constε

1
ε
∑

j=1

O(1) = O(1).

�

14. Short time fluctuations in averaging. Recursive
bounds.

Here we complete the proof of Theorem 13. Let

am,p = sup
`

∣

∣

∣

∣

∣

∣

`









m√
ε

∑

j=0

L−1
j γj





p



∣

∣

∣

∣

∣

∣

.

Lemma 10. (a) am,2 ≤ Constm
√
n;

(b) am,4 ≤ Constm2n;

Proof. We want to relate am+1,p to am,p. Let S̄ =
∑

m√
ε

j=0 L
−1
j γj, Ŝ =

∑

m+1√
ε

m√
ε

L−1
j γj. We have

`((S̄ + Ŝ)2) = `(S̄2) + 2`(S̄Ŝ) + `(Ŝ2).

Applying Proposition 20 to the last term we get

`(Ŝ2) ≤ Const
√
n.

To estimate the second term we write

S̄Ŝ =
√
am,2

(

S̄
√
am,2

Ŝ

)

and apply Proposition 20 with

A(x, S̄, L) =
1√
am, 2

S̄L−1A(x).

Then |θ1(S̄, L)| ≤ Const, so

|`(S̄Ŝ)| ≤ Const
√
am,2
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and hence

`((S̄ + Ŝ)2) ≤ `(S̄2) + Const
[√
n +

√
am,2

]

.

Taking supremum over l we obtain

am+1,2 ≤ am,2 + Const(
√
n+

√
am,2).

Let am,2 = Kmm
√
n, then we get

Km+1(m+ 1)
√
n ≤ Kmm

√
n+ Const(

√
n+

√

Kmm
√
n) ≤

Kmm
√
n+ Const(1 +

√

Km)
√
n.

(The last inequality follows from the fact that m ≤ T
√
n.) Dividing by

m+ 1 we get

Km+1 ≤ Km − Km − (
√
Km + 1)Const

m + 1
.

If K is such that K ≥ (
√
K + 1)Const, then Km ≤ K implies that

Km+1 ≤ K and so (a) is proved by induction.
To prove (b) write

`((S̄ + Ŝ)4) ≤ `(S̄4) + Const
[

`(S̄3Ŝ) + `(S̄2Ŝ2) + `(S̄Ŝ3) + `(Ŝ4)
]

.

To estimate `(S̄3Ŝ) we write

S̄3Ŝ = (am,4)
3
4





S̄3

a
3
4
m,4

Ŝ





and apply Proposition 20 with

A(x, S̄, L) =
1

a
3
4
m,4

S̄3L−1A(x).

Then |θ1(S̄, L)| ≤ Const, so

|`(S̄3Ŝ)| ≤ Consta
3
4
m,4.

Also by Proposition 20

`(Ŝ4) ≤ Constn.

To estimate the other terms we apply the Holder inequality to get

`((S̄+ Ŝ)4) ≤ `(S̄4)+Const

[

a
3
4
m,4 + n + `(S̄4)

1
4 `(Ŝ4)

3
4 +

√

`(S̄4)`(Ŝ4)

]

Taking supremum we get

am+1,4 − am,4 ≤ Const
[

a
3
4
m,4 +

√
am,4n+ a

1
4
m,4n

3
4 + n

]

.
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Let am,2 = Kmm
2n, then we get

Km+1(m+ 1)2n−Kmm
2n

≤ Const
[

K
3
4
mm

3
2n

3
4 +

√

Kmm
√
n
√
n+K

1
4
m

√
mn

1
4n

3
4 + n

]

≤

Const
[

K
3
4
mmn+

√

Kmmn +K
1
4
m

√
mn+ n

]

.

(In the last inequality we are using the fact that m ≤ T
√
n.) So if

K is large enough then Km ≤ K implies that Km+1 ≤ K. This proves
(b). �

Let now

bm,p = sup
`

∣

∣

∣

∣

∣

∣









m√
ε

∑

j=0

βj





p



∣

∣

∣

∣

∣

∣

,

dm,p = sup
`

∣

∣

∣

(

∆p
m√

ε

)∣

∣

∣
.

Using equation (14) and Lemma 10 we get

(24) dm,p ≤ Const(am,p + bm,p)ε
p ≤ Const(bm,p + (m

√
n)

p
2 )εp.

Next step gives recursive relations for bm,p.

Proposition 22.

(a) bm+1,2 − bm,2 ≤ Const(
√

bm,2dm,2 +
√
ndm,2);

(b) Let Dm =
dm,4

ε
+ d

3
4
m,4 + dm,2 + ε

3
2 , then

bm+1,4 − bm,4 ≤ Const
[

b
3
4
m,4

√

dm,2 +
√

bm,4Dm + b
1
4
m,4D

3
4
m +Dm

]

.

Proof. (a) Let R′ =
∑

m√
ε

j=1 βj, R
′′ =

∑

m+1√
ε

m√
ε

βj. We have

`((R′ +R′′)2) = `((R′)2) + 2`(R′R′′) + `((R′′)2).

Thus

bm+1,2 − bm,2 ≤
[

sup
`
`(R′R′′) + `((R′′)2)

]

.

Applying Proposition 20 with δ = (q,∆) and

A(q,∆, x) =
[DA(q, x) + ζ(q, x,∆) −Q] ∆

dm,2
,

we get

`((R′′)2) ≤ Constdm,2

√
n.
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Applying Proposition 20 with δ = (q,∆, R′)

A(q,∆, x) =
[DA(q, x) + ζ(q, x,∆) −Q] ∆R′

√

dm,2bm,2

,

we obtain

|`(R′R′′)| ≤ `(∆m
√

nR
′) ≤ Const

√

dm,2bm,2.

(b) First we estimate `((R′′)4). To this end we apply Proposition 20
and note that

|θ4(δm)| ≤ Const∆4
m
√

n,

|κ4(δm)| ≤ Const|∆m
√

n|3,
|θ3(δm)| ≤ Const|∆m

√
n|3,

|θ2(δm)| ≤ Const|∆m
√

n|2,
|κ̃1(δm)θ3(δm)| ≤ Const|∆m

√
n|3,

|κ̃1(δm)θ2(δm)| ≤ Const|∆m
√

n|2,
|κ̃1(δm)| ≤ Const,

and, that, by Holder inequality

`
(

|∆m
√

n|3
)

≤ d
3
4
m,4.

Thus
`((R′′)4) ≤ ConstDm.

To estimate `((R′)3R′′) we apply Proposition 20 with

A =
(R′)3 [DA(q, x) + ζ(q, x, ,∆) −Qn]∆

√

dm,2b
3
4
m,4

.

This gives

`((R′)3R′′) ≤ Const
√

dm,2b
3
4
m,4.

To estimate the remaining terms we use the Holder inequality. This
completes the proof of (b) . �

Now using an a priori bound |∆m| ≤ Const we see that the con-
tribution of bm,p to (24) is not larger that the contribution of am,p.
Thus

(25) dm,p ≤ Const(m
√
n)

p
2 εp.

Plugging this bound to Proposition 22(a) we get

bm+1,2 − bm,2 ≤ Const(
√

bm,2 + 1)
√
ε

From this we obtain by induction that for m ≤ 1√
ε

(26) bm,2 ≤ Constm
√
ε.
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Also (25) implies that

dm,p ≤ Constε
p
2 .

Hence Dm ≤ Constε The inequality of Proposition 22(b) becomes

bm+1,4 − bm,4 ≤ Const
[

b
3
4
m,4

√
ε+

√

bm,4ε+ b
1
4
m,4ε

3
4 + ε

]

.

Now repeating the argument of Lemma 10(b) we get

(27) bm,4 ≤ Constm2nε2.

Proposition 23. (a) {∆ε
t} is a tight family;

(b) Let βε
t =

β[
t
ε
]√

ε
, then as ε→ 0 βε

t → 0 in probability.

Proof. In view of the inequalities (26)–(27), the proof of (a) is similar

to the proof of Lemma 2. The similar argument implies that { βε
t√
ε
} is

tight and so βε
t → 0. �

Proposition 24. Let Lε
t = L[ t

ε
], then as ε → 0 Lε

t converges to the

solution of the ODE
dL

dt
= DA(q(t))L.

Proof. This follows immediately from the equation (12), the bound

||ζ̄(qn,∆n)|| ≤ Const||∆n||
and the fact that ∆[ t

ε
] → 0 weakly. �

Proof of Theorem 4. Let ∆t be some limit of ∆ε
t then it follows from

(13) and Propositions 19, 23 and 24 that ∆t satisfies the equation

(28) ∆(t) = L(t)

∫ t

0

L−1(s)dB(s)

where dL
dt

= DĀ(q(t))L. Differentiating (28) we get

d∆ = DĀ(q(t))∆dt + dB(t).

This completes the proof of Theorem 4. �

15. Long time fluctuations in Averaging.

Here we prove Theorem 5. Recall from Section 13 that for the sake
of notational simplicity we give the proof only for the case z ∈ R

1, the
general case being completely similar.

Lemma 11.
∣

∣

∣
`
(

∑n
j=0A(zj, f

jx)
)∣

∣

∣
≤ Const(1 + εn).
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Proof. Let r = βε

√

1
ε

where βε is chosen so that βε → 0 but ar

ε
→ 0 as

ε→ 0. For j > r we write

zj = zj−r +

j−1
∑

m=j−r

εA(zm, f
mx).

From this and Lemma 5 we obtain

A(zj, f
jx) = A(zj−r, f

jx)+ε

j−1
∑

m=j−r

DA(zj−r, f
j−rx)A(zm, f

mx)+O(ε2r2).

Similarly to the proof of Theorem 2 we get
∣

∣`(A(zj−r, f
jx)
∣

∣ ≤ Constar.

Thus

(29) `

(

n
∑

j=r

A(zj, f
jx)

)

=

O(ε2nr2) +O(nar) + ε`

(

n
∑

m=0

A(zm, f
mx)

m+r
∑

k=m+1

DA(zk−r, f
kx)

)

.

By the argument of Lemma 1 the contribution to the last term of each
fixed m can be bounded by

Constε
m+r
∑

k=m+1

a

(

k −m

C

)

≤ Constε
∑

k

a

(

k

C

)

.

Thus `(
∑n

j=r A(zj, f
jx)) = O(εn). Similarly

r
∑

j=0

`(A(zj, f
jx)) =

r
∑

j=0

`(A(z0, f
jx))+ε

∑∑

j>k

`
(

A(zk, f
kx)DA(z0, f

jx)
)

+O(ε2r3).

Similarly to Lemma 1(a) and (b) we can estimate the first term here
by Const and the second one by Constεr. �

Corollary 14.

(a) `











∆
ε
∑

j=0

A(zj, f
jx)





2





≤ Const

∆

ε
;
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(b) As ∆ → 0

ε`











∆
ε
∑

j=0

A(zj, f
jx)





2





∼ ∆σ(z0); .

Proof. (a) follows from Lemma 10(a).
(b) We have

`











∆
ε
∑

j=0

A(zj, f
jx)





2





=
∑

j,k

`
(

A(zj, f
jx)A(zk, f

kx)
)

.

Brake this sum into two parts:

∑

|j−k|≤K

`(A(zj, f
jx)A(zk, f

kx)) ∼ ∆

ε
ν

(

K
∑

k=−K

A(z0, x)A(z0, f
kx)

)

.

On the other hand
∣

∣

∣

∣

∣

∣

∑

|j−k|>K

`(A(zj, f
jx)A(zk, f

kx))

∣

∣

∣

∣

∣

∣

= oK→∞(1) +O

(

∆2

ε

)

.

Letting K → ∞ we obtain the statement required. �

Lemma 12.

(a) `











∆
ε2
∑

j=0

A(zj, f
jx)





2





≤ Const

∆

ε2
;

(b) As ∆ → 0

`











∆
ε2
∑

j=0

A(zj, f
jx)





2





∼ σ(z0)

∆

ε2
.

Proof. (a) We proceed by induction. Namely we will show that for each
k there is a constant Rk such that

(30) `













2k

ε
∑

j=0

A(zj, f
jx)







2




≤ Rk

2k

ε2
.
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Corollary 14 show that this is true for k = 1. Let us see haw to pass
from k to k + 1. We have

`













2k+1

ε
∑

j=0

A(zj, f
jx)







2




= `























2k

ε
∑

j=0

A(zj, f
jx)






+







2k+1

ε
∑

2k

ε
+1

A(zj, f
jx)

















2




=

`













2k

ε
∑

j=0

A(zj, f
jx)







2

+







2k+1

ε
∑

2k

ε
+1

A(zj, f
jx)







2




+

2`







∑

0≤j≤ 2k

ε
<m≤ 2k+1

ε

A(zj, f
jx)A(zm, f

mx)






.

The sum of the first two terms is bounded by Rk
2k+1

ε
by induction

hypothesis and by the argument of Lemma 11 the last term is less than

`







∣

∣

∣

∣

∣

∣

∣

2k

ε
∑

j=0

A(zj, f
jx)

∣

∣

∣

∣

∣

∣

∣






Const2k.

By induction hypothesis the first factor here is at most
√
Rk

2
k
2√
ε
. Thus

Rk+12
k+1

ε
≤ 2

Rk2
k

ε
+O

(
√

Rk2k

ε
2k

)

.

In other words,

Rk+1 ≤ Rk +O(
√

Rk2kε).

Let R∗
k = max(Rk, 1) then

R∗
k+1 ≤ R∗

k

(

1 +O
(√

2kε
))

.

Hence

R∗
k ≤ R∗

0

k
∏

j=0

(

1 + Const
√

2jε
)

.

Now

2jε = 2kε2j−k ≤ ∆

2k−j
.

The second term is less than
∏∞

m=0(1 + Const
√

∆2−j). Hence R∗
k and

so Nk are uniformly bounded. This proves (a);
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(b): (a) implies that as ∆ → 0, zn → z0 in probability uniformly for
n < ∆

ε2 . Hence we can repeat the computation of (a) replacing (30) by

the assumption that ∀N = 2k

ε
,

`





[

N
∑

j=0

A(zj, f
jx)

]2


 = (σ(z0) + ρl,k)N

where |ρl,k| < δk. We then get

δk+1 ≤ δk



1 +O





√

2kε

δk







 .

We want to show that given δ > 0 there exists ∆̄ such that |δk| < δ for
∆ < ∆̄. Let k′(k) be the largest number less than k such that |δk′| < δ2.
Reasoning as in (a) we get

δk < δ2

k
∏

j=k′

(

1 + Const

√
2jε

δ

)

≤ δ2

∞
∏

l=1

(

1 + Const

√
2−l∆

δ

)

The second term converges to 1 as ∆ → 0. This proves (b). �

Corollary 15. As ∆ → 0

`





∆
ε2
∑

j=0

A(zj, f
jx)



 ∼ ∆

ε
a(z0).

Proof. By (29) we have

`





∆
ε2
∑

j=0

A(zj, f
jx)



 = ε

∆
ε2
∑

j=0

∑

k

`
(

A(zj, f
jx)DA(zk−r, f

kx)
)

+o

(

∆

ε

)

=

ε

∆
ε2
∑

j=0

K
∑

k=1

`
(

A(zj, f
jx)DA(zj+k−r, f

kx)
)

+ oK→∞

(

∆

ε

)

.

But for fixed j

`

(

A(zj, f
jx)

K
∑

k=1

DA(zj+k−r, f
j+kx)

)

∼ ν

(

A(zj, f
jx)

K
∑

k=1

DA(zj, f
j+kx)

)

.

Also zj → z0 in probability by Lemma 12, thus
∆
ε2
∑

j=0

`

(

A(zj, f
jx)

K
∑

k=1

DA(zj+k−r, f
j+kx)

)

∼ ∆

ε

K
∑

k=1

ν
(

A(z0, f
jx)DA(z0, f

kx)
)

.
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Letting K → ∞ we obtain the statement required. �

Lemma 13.

`











∆
ε2
∑

j=0

A(zj, f
jx)





4





≤ Const

∆2

ε4
.

Proof. We proceed as in Lemma 12. The inequality

`











∆
ε
∑

j=0

A(zj, f
jx)





4





≤ Const

∆2

ε2

follows from Lemma 10. Let Mk be the number such that

`













2k

ε
∑

j=0

A(zj, f
jx)







4




≤Mk

(

2k

ε

)2

.

Let

T̄ =

2k

ε
∑

j=0

A(zj, f
jx).

T̂ =

2k+1

ε
∑

j= 2k

ε
+1

A(zj, f
jx).

We have

`













2k+1

ε
∑

j=0

A(zj, f
jx)







4




=

`((T̄ + T̂ )4) = `(T̄ 4) + `(T̂ 4) + 4`(T̄ 3T̂ ) + 4`(T̄ T̂ 3) + 6`(T̄ 2T̂ 2).

Using the argument of Proposition 20, Corollary 14 and Lemma 12 we
obtain

(31) `
(

T̄ 4
)

≤ Mk
22k

ε2
,

(32) `
(

T̂ 4
)

≤Mk
22k

ε2
,

(33) |`(T̂ 3T̄ )| ≤ Const`(|T̂ |3)2k ≤ ConstM
3
4
k

2
5k
2

ε
3
2

≤ ConstM
3
4
k

22k

ε2
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(the last inequality is true because 2k ≤ 1
ε
) and

(34) `(T̂ 2T̄ 2) ≤ Const
22k

ε2
.

Lemma 14.
∣

∣

∣
`(T̂ T̄ 3)

∣

∣

∣
≤ ConstM

3
4
k

22k

ε2
.

Proof. It is enough to prove this for ` = `(P,G). Denote k∗ = 2k

ε
.

Consider an almost Markov decomposition f k∗
P =

⋃

Pj

⋃

Z. Denote

ξj = supf−k∗Pj
|T̂ | + 1. Then

∣

∣

∣
`(T̂ T̄ 3)

∣

∣

∣
≤

∑

j

cjξj

∣

∣

∣

∣

∣

∣

∫

Pj

eG(f−k∗y) (T̂ (f−k∗
y)

ξj

[

k∗−1
∑

j=0

A(zk∗+j, f
jy)

]3

ρPj
(y)dy

∣

∣

∣

∣

∣

∣

+O
(

θk∗)
.

Now the Holder norm of T̂ ◦ f−k∗
is O(1). Now, any bounded function

can be decomposed as a difference of two positive functions as follows

A = 2||A||L∞ − (2||A||L∞ − A).

This implies that

`∗j(A) =

∫

Pj

eG(f−k∗y) (T̂ (f−k∗
y)

ξj
A(y)ρPj

(y)dy

can be written as `∗j = a1`
′
j − a2`

′′
j , where `′j, `

′′
j ∈ E(P, R, α) and

|a1| < Const, |a2| < Const. Thus
∣

∣

∣

∣

∣

∣

`j





[

k∗−1
∑

j=0

A(zk∗+j, f
jy)

]3




∣

∣

∣

∣

∣

∣

≤ (Holder)



`j





[

k∗−1
∑

j=0

A(zk∗+j, f
jy)

]4








3
4

≤ (Inductive Hypothesis)

M
3
4
k 2

3k
2

ε
3
2

.

Thus

∣

∣

∣
`
(

T̂ T̄ 3
)∣

∣

∣
= O

(

M
3
4
k 2

3k
2

ε
3
2

∑

j

cjξj

)

+O(θk∗
) = O

(

M
3
4
k 2

3k
2

ε
3
2

∑

j

cjξj

)

.
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Using the argument of Proposition 20 we get

∑

j

cjξj ≤ Const(`(|T̂ |) + 1) ≤ Const(

√

`(T̂ 2) + 1) ≤ Const
2

k
2√
ε
,

where the last inequality follows by (30). Thus

|`(T̂ T̄ 3)| ≤ ConstM
3
4
k

22k

ε2

as claimed. �

Combining (31)–(34) and Lemma 14 we get

Mk+12
2k+2

ε2
= 2

Mk2
2k

ε2
+ Const

(

M
3
4
k

22k

ε2
+ 1

)

.

Thus

Mk+1 ≤
Mk

2
+K

(

M
3
4
k + 1

)

.

Hence if M is so large that

M

2
≥ K

(

M
3
4
k + 1

)

then Mk ≤M implies Mk+1 ≤M. This completes the proof of Lemma
13. �

Corollary 16. {Zε
t } is tight.

Proof. In view of Lemma 13 the proof is the same as the proof of
Lemma 2. �

To prove Theorem 5 we need the following characterization of diffu-
sion processes. (See e.g [86], exercise 4.6.6.)

Proposition 25. Let (ξt,Ft) be a random process with continuous
paths such that

ξt −
∫ t

0

a(ξs)ds and

(

ξt −
∫ t

0

a(ξs)ds

)2

−
∫ t

0

σ(ξs)ds

are martingales then ξt is diffusion with the drift a(x) and the diffusion
coefficient σ(x).

Proof of Theorem 5. By Corollary 16 {Zε
t } is a tight family. Let Z be

some limit of Zε
t . We need to show that if Q(z1 . . . zm) is any smooth

bounded function and t1 . . . tm are any numbers, tj ≤ t the

(35) E (Q(Zt1 . . . Zts) [Zt+∆ − Zt − ∆a(Zt)]) = o(∆)
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and

(36) E
(

Q(Zt1 . . . Zts)
[

(Zt+∆ − Zt)
2 − ∆σ(Zt)

])

= o(∆).

Let us consider (35), (36) is similar. In terms of the original family Zε
t

we have to show that ∀` ∈ E(P, R, α)

`
(

Q(, Zt1/ε2 , . . . , Ztm/ε2)
(

Z(t+∆)/ε2 − Zt/ε2 − ∆a(Zt/ε2)
))

→ 0

uniformly as ε→ 0. It suffices to verify this for ` = `(P,G). However in
this case the proof proceeds as before by considering an almost Markov

decomposition f t/ε2
P =

(

⋃

j Pj

)

⋃

Z and applying Corollary 15 to

each Pj. The details are left to the reader. �

16. Three series theorem.

Here we prove Theorem 6. Consider a series

(S) =
∑

n

cnA(fnx).

It is enough to assume that ν(A) = 0,
∑

n c
2
n <∞,

∑

a(m) <∞. Take
a Markov family P. Let P ∈ P.
Proposition 26. (S) converges in L2(`(P )).

Proof.

`([
∞
∑

n=N

cnA ◦ fn]2) =

Const

∞
∑

m,n=N

cncma

(

n−m

C

)

≤

Const

∞
∑

m,n=N

(c2n + c2m)a

(

n−m

C

)

≤

Const

∞
∑

m,n=N

c2na

(

n−m

C

)

≤

Const

( ∞
∑

m=1

a(m)

)( ∞
∑

n=N

c2n

)

.

�

Let FN be as in Section 11.



LIMIT THEOREMS FOR PARTIALLY HYPERBOLIC SYSTEMS 51

Proposition 27. ∀Q ∈ FN , ∀A ∈ B such that ν(A) = 0, ||A|| ≤ 1
∣

∣

∣

∣

∫

Q

A(fnx)ρP (x)dx

∣

∣

∣

∣

≤ Consta(n−N)Vol(Q).

Proof.
∣

∣

∣

∣

∫

Q

A(fnx)ρQ(x)dx

∣

∣

∣

∣

=

∫

fN Q

A(fn−Ny)ρfN Q(y)dy ≤ a(n−N)

but ρP = cP,QρQ where cP,Q ∼ Vol(Q). �

Proof of the theorem: Denote by B L2-sum: B =
∑

cnAn◦fn. We have
∀Q ∈ Fr

∫

Q

B(x)ρP (x)dx =

(

r
∑

n=1

+
∞
∑

n=r+1

)

cnAn(fnx)ρP (x)dx = I + II.

|II| ≤ Const

∞
∑

n=r+1

cna(n− r)Vol(Q) ≤ Const(max
n≥r

cn)Vol(Q).

Let y be any point in Q Then

I =

r
∑

n=1

cnA(fny)Vol(Q) +O(

r
∑

n=1

cnθ
r−n)Vol(Q).

The second term can be bounded as follows

r
∑

n=1

cnθ
r−n ≤ (max

n
cn)

r
2
∑

n=1

θr−n+max
n> r

2

cn(
∑

n> r
2

θr−n) ≤ Const(θ
r
2 +max

n> r
2

cn).

Hence
∫

Q
B(x)ρP (x)dx

Vol(Q)
=

r
∑

n=1

cnA(fny) + o(1)

so the theorem follows by Doob’s martingale convergence theorem. �

Note. In this section we follow quite closely [55].

17. Borel–Cantelli Lemma.

Here we prove Theorem 7. Let rn be the radius of Bn, pn = ν(Bn) ∼
rd
n, µmn = ν(1Bm(fmx)1Bn(fnx)). Set SN =

∑N
j=1 1Bj

(f jx), EN =

E(SN) =
∑N

n=1 pn,

(37) VN = E(S2
N) =

N
∑

m,n=1

µmn.

Lemma 15. VN ≤ E2
N + CEN .
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Proof. To estimate VN we brake sum (37) into five parts. Below ε is
such that for k < ε ln( 1

pm
) f kBm

⋂

Bn has at most one component, c1
is an arbitrary constant and c2 is a constant whose value will be chosen
at the end of this section.

(I) m = n. I =
∑N

n=1 µnn =
∑N

n=1 pn = EN .

(II) m < n < m+ ε ln( 1
pm

). Consider the set B̃m obtained as follows.

For any leaf W u(x) such that W u
loc(x)

⋂

Bm 6= ∅ choose a ball Wm,x of

radius rm containing W u
loc(x)

⋂

Bm. Let B̃m =
⋃

xWm,x.

Proposition 28. ν(B̃m) ≤ Constpm.

Proof. Let distu denote the distance in induced W u metric. Then lo-
cally distu(·, ·) ≤ Constdist(·, ·). Hence B̃m is contained in a ball with
the same center as Bm and of radius Constrm. �

Proposition 29. If m < n < m + ε ln( 1
pm

) then

µmn ≤ Cθn−m(pn + pm).

Proof. Choose δ such that f kWm,x contains a ball of radius (1+ δ)krm.
Consider two cases:

(a) rn ≥ rm(1 + δ
2
)n−m then µmn ≤ pm ≤ Const(1 + δ)d(n−m)pn;

(b) rn < rm(1+ δ
2
)n−m. Let `x denote `(Wm,x). Then `x(f

n−mWm,x

⋂

Bn) ≤
Const(1 + δ)(n−m)Vol(Wm,x), hence µmn ≤ Const(1 + δ

2
)n−mpm. �

(III) m + ε ln( 1
pm

) ≤ n ≤ m + c1 ln( 1
pm

). Then fn−mWm,x contains a

ball of radius r1−γ
m , γ = γ(ε). Again there are two cases.

(a) rn ≤ r
1− γ

2
m , then any component of fn−mWm,x

⋂

Bn can be sur-

rounded by an annulus of width r1−γ
m − r

1− γ
2

m disjoint from Bn. Thus
∃δ1 such that `x(f

n−mWm,x

⋂

Bn) ≤ Constpδ1
m. Thus µmn ≤ p1+δ1

m ;

(b) rn > r
1− γ

2
m , then µmn ≤ pm.

(IV) m+ c1 ln( 1
pm

) < n < m + ( 1
pm

)c2.

Proposition 30. µmn ≤ Constp
d

d−du
m .

Proof. Now any component of fn−mWm,x

⋂

Bn can be surrounded by
an annulus of constant width disjoint from Bn. Hence

`x(f
n−mWm,x

⋂

Bn) ≤ Constrdu

n

On the other hand µmn ≤ pn. So

µm,n ≤ C sup
r

(min(rd, rdupm)) = Cp
d

d−du
m .

�
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(V) n > m + ( 1
pm

)c2. The following is analogous to Theorem 2.

Proposition 31. Let B1 and B2 be two balls of radii r1 and r2 respec-
tively. Then given n0 ∃C(n0) such that

|ν(1B1(x)1B2(fmx))−ν(B1)ν(B2)| ≤ Const

[

(

1

m− C ln r1

)k (
1

r2

)α

+ rn0

]

.

So, µmn ≤ pmpn + δmn where for δmn we have two bounds: δmn ≤
C[( 1

pn
)α( 1

n−m
)k + pn0

m ] and δmn ≤ pn. Hence

δmn ≤ sup
p

(min(C

(

1

p

)α(
1

n−m

)k

+ pn0
m , p)) = C

(

1

n−m

) k
α+1

.

(Here we have used that 1
n−m

� pn0
m .)

Let us sum up these terms. Direct calculation shows that

(I) = EN ;

(II) ≤ ConstEN ;

(III)(a) ≤ Const
∑

m

p1+δ
m ln

(

1

pm

)

≤ Const
∑

m

pm ≤ ConstEN ;

(IV ) ≤
∑

m

(

1

pm

)c2

p
d

d−du
m ≤ EN

if c2 <
du

d−du
. To estimate (IIIb) let us remark that we have for pm two

lower bounds. First pm ≤ p1+δ
n and second pm ≤ e

−n−m
c1 . Thus

(IIIb) ≤
∑

n







∑

n−m<( 1
pn

)
δ
2

p1+δ
n +

∑

m−n≥( 1
pn

)
δ
2

e
−n−m

c1






≤
∑

n

Constpn ≤ ConstEN ;

At last,

(V ) ≤ E2
N +

∑

m

∑

j>( 1
pm

)c2

(

1

j

)
k

α+1

≤

E2
N + C

∑

m

p
c2(

k
α+1

−1)
m ≤ E2

N + CEN

if c2(
k

α+1
− 1) ≥ 1, i. e. c2 ≥ α+1

k−(α+1)
. So for c2 we have two inequalities

α + 1

k − (α + 1)
≤ c2 <

du

d− du
.
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They are compatible since k
α+1

> d
du
. Combining these bounds we get

VN ≤ E2
N + ConstEN as claimed. This completes the proof of Lemma

15. �

Proof of Theorem 7. By Lemma 15 E([ SN

EN
− 1]2) ≤ Const

EN
. Choose Nj

so that ENj
≥ 2j. Then by Borel-Cantelli Lemma

ENj

SNj

→ 1 ν–almost

surely. Thus SNj
→ ∞ ν–almost surely. Since SN is non-decreasing

SN → ∞. �

Notes. The first Borel-Cantelli Lemma for a dynamical system was
proved in [70]. [87] and [54] prove Borel-Cantelli for some partially
hyperbolic dynamical systems on non-compact manifolds and present
several applications to geometry and number theory. [19] deals with
Anosov diffeomorphisms and establishes Borel-Cantelli under various
assumptions on shapes of Bn.

18. Poisson Law.

Here we prove Theorem 8. LetBn = B(x0,
1
n
), Xn,θ =

∑nθ

j=1 1Bn(f jx).

Lemma 16. If θ > 1+α
k
, then `(X) = nθν(Bn)(1 + o(1)).

Proof.

`(X) = nθν(Bn) +O





nθ
∑

j=1

min

(

(
1

n
)du, nα

(

1

j

)k
)



 .

The second term is O(( 1
n
)du(1− 1

k
)−α

k ). If θ > 1+α
k
, then the main term

here is the first one. �

Let us estimate `(X ≥ 2). Denote by Wn,x = Bn

⋂

W u
loc(x), `x =

`(Wn,x). Fix K. Put B̂n(K) =
⋃

Wn,x⊃Bu(ȳ, 1
nK

)Wn,x.

Proposition 32.
ν(B̂n(K))

ν(Bn)
→ 1

as K → ∞ uniformly over n.

Proof. Similarly to Proposition 28 Bn\Bn(K) ⊂ B(x0,
1
n
(1 − Const

K
)).
�

We have

`(X ≥ 2) ≤ `(∃j ≤ nθ : f jx ∈ Bn\B̂n(K))+
∑

m

`(∃j ≤ nθ : 1Bn(f j+mx) = 1|fnx ∈ B̂n(K))`(1B̂n(K)(f
mx)).
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By Proposition 32 the first term is less than εnθν(Bn) if K is large
enough. To bound the second term brake it into four parts.

(I) j ≤ M0. This term vanishes since x0 is not periodic.
(II) M0 < j ≤ ε lnn.

Proposition 33. ∀ε ∃M0 such that II ≤ ε`(X).

Proof. The intersection f j(Wn,x)
⋂

Bn has at most one component.
Hence

`x(f
j(Wn,x)

⋂

Bn) ≤ C
rdu
n

Vol(f jWn,x)
≤ Cξj,

ξ < 1. So

II ≤
∑

m

1B̂n(K)(f
mx)

∞
∑

j=M0

Cξj ≤
∞
∑

j=M0

Cξj`(X) ≤ C
ξM0

1 − ξ
`(X),

the last expression goes to 0 as M0 tends to infinity. �

(III) ε lnn < j ≤ C1 lnn.

Proposition 34. For fixed C1 ∃ε̃ such that III ≤ Const(lnn)nε̃`(X).

Proof. Here for any component of f jWn,x

⋂

Bn there is an annulus of
width at least ( 1

n
)1−ε̃ disjoint from Bn. Hence

∑

j

`x(f
jWn,x

⋂

Bn) ≤ Const(lnn)

(

1

n

)ε̃

.

�

(IV) C1 lnn < j ≤ nθ.

Proposition 35. If C1 is large enough IV ≤ Const( 1
n
)dunθ`(X).

Proof. Here for any component of f jWn,x

⋂

Bn there is an annulus of
width of order of 1 disjoint from Bn. So `x(f

jWn,x

⋂

Bn) ≤ Const( 1
n
)du.

Hence
∑

j

`x(f
jWn,x

⋂

Bn) ≤ nθ

(

1

n

)du

.

�

Thus IV ≤ ε`(X) if θ < du. So we have for θ the inequalities 1+α
k
<

θ < du. They are compatible if k
α+1

> 1
du
. So we have

Proposition 36. Let 1+α
k
< θ < du. Then

`(eitX) = 1 − nθν(Bn)(1 − eit) + o(nθν(Bn)).
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Now introduce

Xn,k =

k
∑

j=1

(j+1)nθ−n
θ
2

∑

l=jnθ

1Bn(f lx).

Then Xn,(ν(Bn)nθ)−1 −∑ν(Bn)−1

l=1 1Bn(f lx) converges to 0 in probability.

Let φn,k(`, t) = E`(e
itXn,k).

Proposition 37.

φn,k(`, t) =
[

1 − nθν(Bn)(1 − eit)
]k

+ o(knθν(Bn)).

Proof. Induction on k. For k = 1 this is subject of Proposition 36
Assume that we have established our claim for k. Take ` ∈ E1, ` = `(P ).

Consider an almost Markov decomposition f (k+1)nθ

P = (
⋃

j Pj)
⋃

Z.

Choose yj ∈ f−(k+1)nθ

Pj. Then

φn,k+1(`, t) =
∑

j

cje
itXn,k(yj)φn,1(`(Pj), t) +O(ζn) =

∑

j

cje
itXn,k(yj)[(1 − nθν(Bn)(1 − eit)) +O(εnθν(Bn))] =

[φn,k(`, t) +O(ζn
θ
2 )][(1 − nθν(Bn)(1 − eit)) +O(εnθν(Bn))] =

[(1−nθν(Bn)(1−eit))k+O(δk+ζ
n

θ
2 )][(1−nθν(Bn)(1−eit))+O(εnθν(Bn))] =

(1 − nθν(Bn)(1 − eit))k+1 + δk+1,

where

δk ≤ δk + εnθν(Bn) + Constζ
n
2 .

�

Proof of Theorem 8. Since Xn(∆) is a point process we only need to es-
tablish the convergence of finite-dimensional distributions. Let ∆1 . . .∆m

be disjoint intervals. By Proposition 37

`(Xn(∆1) = n1) ∼
∆n1

1

n1!
e−∆1.

Repeating the argument of Proposition 37 we obtain

`(
⋂

j

{Xn(∆j) = nj}) ∼
∏

j

(

∆
nj

j

nj!

)

e−∆j .

�
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Notes. (1) There are two useful extensions of Theorem 8. The first,
if x0 is periodic of least period T then Xn(∆) is asymptotically
distributed as

∑

j∈N∆
ξj where N∆ is the Poisson process with

the unit density and ξj are mutually independent, independent
of N∆ and identically distributed. Their distribution can be
obtained as follows. Let M be a linear transformation of a d-
dimensional Euclidean space such that at least one eigenvalue
of M has absolute value greater then 1. Let η be uniformly
distributed in the unit ball B. Define ξ(M) =

∑∞
k=1 1B(Mkη).

Then ξj have the same distribution as ξ(dfT (x0)). (The proof
is the same as before but now (I) is not zero.) Secondly, one
can consider the pair (j, ndist(f jx, x0)) where j is such that
f jx ∈ Bn and prove Poisson limit for this pair. (Again proofs
are very similar but now balls need to be replaced by annuli.)
One application of this generalization of Poisson Law is the
following.

Corollary 17. Let mn = minj≤n dist(f jx, x0). If x0 is aperiodic
then

ν(n
1
dmn < t) ∼ exp(−K(x0)t

d).

Thus, for a typical point ( 1
n
)

1
d is a correct normalization for

mn(x). [39] studies the set of points with different asymptotic
behavior of mn.

(2) Other classes of dynamical systems satisfying Poisson Law are
described in [40, 41, 42, 22]. The method of proof we use is
similar to one of [79], (cf. also [72, 22]).

Appendix A. Absolute continuity.

Proof of Proposition 2. We will use the following fact (see [13]). Let
D1 and D2 be smooth d− du dimensional discs transversal to Eu. Let
xj ∈ Dj be points such that x2 ∈ W u(x1) and distu(x1, x2) ≤ 1. Then
locally near x1 we can define a continuous map p : D1 → D2 such that
px1 = x2 and px = W u

loc(x). Then p is absolutely continuous and its
Jacobian Jp(x) is Holder continuous where the Holder constant depends
only on the angle between TDj and Eu and the norms of embeddings
Dj = ijD, D being the standard disc in R

d−du. (In fact

Jp(x) = lim
n→∞

det(df−n|TD2)(x)

det(df−n|TD1)(x)
.

)

Now let U be a parallelogram obtained as follows. Take x0 ∈ X. Locally
near x0 chose a foliation V transversal to Eu. Then near x0 we have
a local product structure, that is for x, y ∈ X there is a unique point
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z = W u
loc(x)

⋂

V (y) where V (y) is the leaf of V containing y. Write
z = [x, y]. Consider the set U of the form U = [V0,W

u
loc(x0)] where

V0 is a small disc in V (x0). We first show that the restriction of the
Lebesgue measure to U belong to E(R, α) where the constants R and
α do not depend on the choice of V0. Decompose V0 =

⋃

Vj where
Vj are small discs in V0. Take xj ∈ Vj and let Wj = [xj,W

u
loc(x0)],

Uj = [Vj,W
u
loc(x0)]. Then

∫

Uj

A(x)dx =

[

∫

Wj

dy

(

∫

Vj(y)

A(v)dv

)

(

dx

dydv

)

(y)

]

(1 + o(1))

where Vj(y) = [Vj, y] is the slice of V inside Uj. By Holder continu-
ity of Eu

dx
dydv

(y) is Holder continuous. Also
∫

Vj(y)
∼ A(y)Vol(Vj(y)),

Vol(Vj(y)) ∼ Vol(Vj)Jpy(y) where py is the projection py : Vj → Vj(y).
This verifies our claim. Now the same remains true if instead of re-
quiring U to be a parallelogram we only ask that unstable slices of U
satisfy conditions (a)–(d) of the definition of almost Markov family and
that they depend continuously on the point in the sense that if π is
the projection along V leaves then πWU(y) → WU(x) in the Hausdorff
topology as y → x. (Indeed such sets can be approximated by parallel-

ograms.) Now decomposing X =
⋃

j Ûj where Ûj are the sets as above
completes the proof of the proposition. �

Proof of Proposition 3. This proposition does not use the absolute con-
tinuity of W u. In fact, it remains valid if we replace W u by any contin-
uous foliation with smooth leaves. We only have to show that any
` ∈ E assigns zero measure to u-negligible sets. Choose a small
r. Let D be a d − du dimensional disc. Denote by U the union of
unstable balls of radii r centered at D. For x ∈ D let `x denote
`(W u

r (x)). Then x → `x is continuous (see, e.g. [75]). Thus the map
A → Ā(x) = `x(A) is continuous from C(U) → C(D). Therefore
the set M(U) of measures of the form

∫

D
µ(x)`x is weakly closed in

C(X)∗. Now take ` ∈ E(P, R, α). By the definition it is a limit of some
`j ∈ E2(P, R, α). Let `j =

∑

k cjk`(Pjk, Gjk). If ∂Pjk

⋂

U 6= ∅ enlarge
Pjk slightly so that the boundary of the resulting sets P ′

jk is disjoint
from U. By property (b) of almost Markov family this can be done in
such a way that mes(P ′

jk) ≤ Constmes(Pjk). Let `′j = 1
cj

∑

cjk`(P
′
jk)

where cj is the normalization constant. Then `j|U ≤ Const`′j|U . Thus
it is enough to show that any limit point of `′j assigns zero measure to
u-negligible sets. But `′j ∈ M(U). Thus if `′j → `′ then `′ ∈ M(U). So
the statement follows by Fubini theorem. �
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