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Abstract

We continue the study of mixing properties of generic hyperbolic
flows started in [4]. Our main result is that generic suspension flow
over subshift of finite type is exponentially mixing. This is a quanti-
tative version of one of the results of [8].

1 Introduction.

Let St be a smooth flow on a manifold M preserving a measure µ. If A and
B are L2(µ) functions on M let

ρA,B(t) =
∫

M
A(Stx)B(x)dµ(x),

ρ̄A,B(t) = ρA,B − µ(A)µ(B).

Call St rapidly mixing if for A,B ∈ C∞(M) ρ̄A,B is in Schwartz class S(R) (i.e
∀n1, n2 |tn1(∂n2

t ρ̄A,B(t))| → 0 as t→ ∞) and the map ρ̄ : C∞(M)×C∞(M) →
S(R) is continuous. In a previous article ([4]) we discussed metric prevalence
of rapid mixing. Namely, we considered an n−parameter family of flows
having a hyperbolic invariant set. We proved that if a certain non-degeneracy
condition holds then the set of parameters for which corresponding flows are
rapidly mixing with respect to any Gibbs measure on the hyperbolic set is
conull (and moreover the Hausdorff dimension of its complement is zero). The
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set of parameters for which our proof worked was a union of Cantor sets of
positive measure. So the dependence on parameters of the constants defining
rapid mixing is very irregular. Therefore there is a question if there are flows
in a neighborhood of which these bounds hold uniformly (some partial results
were obtained in [3], [4]). It seems reasonable that the following stronger
statement holds

Conjecture 1. For any r > 1 the set of exponentially mixing Axiom A flows
contains an Cr–open and dense subset of the set of all Axiom A flows.

In this note we give one evidence in favor of this conjecture by proving
this bound in an easier setup of suspension flows over subshifts of finite type.
(We refer the reader to [7] for background on subshifts of finite type and
their suspensions.)

To state our result we need some notation. Let (Σ, σ) be a topologi-
cally mixing subshift of a finite type. We equip Σ with metric dθ such that
dθ(ω

1, ω2) = θN where N = max{k : ω1
j = ω2

j for |j| < k}. Let Cθ(Σ) be

the space of dθ-Lipschitz functions. For τ ∈ Cθ(Σ) let τn(ω) =
∑n−1

j=0 τ(σ
jx).

Call τ eventually positive if there exists n such that τn > 0. Clearly the set of
eventually positive elements is open in Cθ(Σ) and hence it is a Baire space.
If τ ∈ Cθ(Σ) is an eventually positive function let Στ = Σ × R/{(ω, s) ∼
(σω, s + τ(ω))}. (The assumption that τ is eventually positive (or eventu-
ally negative) is needed to guarantee that Στ is a compact Hausdorff space.)
Suspension flow St on Στ is defined locally by St(ω, s) = (ω, s + t). Let
d̃θ((ω

1, s1), (ω
2, s2)) = dθ(ω

1, ω2) + |s1 − s2| and denote by Cθ(Σ
τ ) the space

of d̃θ−Lipschitz functions. If F ∈ Cθ(Σ
τ ) denote by µF the Gibbs measure

with potential F. Call St(τ) exponentially mixing if ∀F ∀θ′ ∃C, α such that
∀A,B ∈ Cθ′(Σ

τ )

|µF ((A ◦ St)B) − µF (A)µF (B)| ≤ Ce−αt‖A‖θ′‖B‖θ′ (1)

Actually it is enough to verify (1) for some θ′ because if θ′′ < θ′ then any ele-
ment A ∈ Cθ′′(Σ

τ ) can be ε–approximated in L2(µF )–norm by Aε ∈ Cθ′′(Σ
τ )

with ||Aε||θ′ ≤ Const(θ′, θ′′)ε−N(θ′,θ′′)||A||θ′′. Our main result is the following

Theorem 1.1. For all 0 < θ < 1 the set of τ such that S t(τ) is exponentially
mixing contains an open and dense subset of (eventually positive elements of)
Cθ(Σ).

It is easy to see from the proof of Theorem 1.1 that the constants C, α
can be chosen uniformly in a neighborhood of (τ, F ).
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Remark. To prove this statement we demonstrate that certain twisted trans-
fer operators do not have poles near imaginary axes (see Lemma 4.1). It is
known that the same bound guarantees exponential error bound in the Prime
Orbit Theorem (see [9] for details.) More precisely, let π(τ, T ) be the number
of closed orbits of St(τ) of period less than T. Denote by h(τ) the topological

entropy of St(τ). Finally let li(t) =
t
∫

2

ds
ln s
. The estimates of Section 4 together

with the results of [9] imply that
For all 0 < θ < 1 the set of τ such that there exists β(τ) > 0 such that

π(τ, T ) = li(eh(τ)T )(1 +O(e−β(τ)T )), T → ∞

contains an open and dense subset of (eventually positive elements of) Cθ(Σ).

Remark. Let τ be some element of Cθ(Σ) such that the conclusion of The-
orem 1.1 holds and let θ̄ > θ. Then Cθ ⊂ Cθ̄ so it make sense to ask if
small Cθ̄ perturbations of τ preserve exponential mixing. Unfortunately it
is not the case. Indeed (see [7]) τ can be arbitrary well Cθ̄–approximated
by locally constant functions τ (j). By another small approximation we can
achieve that there is Mj such that for any tj in the range of τ (j) Mjtj ∈ Z.
Then A(x, s) = exp(2πiMjs) is an eigenfunction for St(τ (j)). (In particular,
exponential mixing is not open since Cθ ⊃ Cθ′ for θ > θ′.) This is the main
reason why Theorem 1.1 can not be applied to obtain Conjecture 1. In fact,
to any Axiom A flow we can associate a suspension over subshift of a finite
type via symbolic dynamics. Now, loosely speaking, fixing θ corresponds to
fixing the regularity of hyperbolic splitting but there is no reason to expect
that the splitting would not become less regular after the perturbation (see
[5]). Let us remark however that there is an open subset of contact Anosov
flows satisfying bunching conditions of [6] there the splitting is actually C1

and Conjecture 1 could be verified ([3]).
Thus openness is major problem in proving Conjecture 1. However den-

sity is also unknown. The problem is that the correspondence between the
smooth flow and the symbolic system is not continuous so if we change τ
inside Cθ(Σ) the corresponding Axiom A perturbation would be probably
be discontinuous let alone smooth. One can hope that the situation may be
better if non-wandering set is small (i.e. its Hausdorff dimension is close to
one) but even in this case the problem seems to be open. (By contrast, if
non-wandering set is large (e.g. locally connected), then different methods
probably should be used. See [1], [2], [8].)
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Let us describe the organization of the paper. First we present the set
of good roof functions (strong non-integrability condition of Section 2). In
Section 3 we show that this set is open and dense. In Section 4 we prove that
that strong non-integrability implies exponential mixing. The proof is mod-
eled on that from [3]. However in [3] we used heavily geometry of our phase
space, whereas here we show that in fact our arguments are purely symbolic.
Moreover our proof here is little bit simpler because in symbolic setting mea-
sure and metric structure of the phase space are nicely related. The lack
of such a relationship in smooth case explains difficulties in extending the
results of [3] about three–dimensional contact flows to higher dimensions.

So the new ingredient in the proof of Theorem 1.1 is denseness of strong
non-integrability. This part is motivated by a paper of Parry and Polli-
cott ([8]). Among other things they showed that the set of mixing flows is
open and dense. In Section 3 we refine their arguments to get strong non-
integrability which implies exponential mixing via arguments of [3]. Let us
also note that our set is much smaller then that from [8]. In fact it is not
hard to prove that the latter set contains functions with arbitrary slow decay
rates.

Acknowledgment. Part of this research was done during my stay at Manch-
ester University and I thank M. Pollicott for his hospitability. I am also
grateful to the referee who has pointed out 96 errors and misprints in the
first version of this paper. This work is supported by Miller Institute of Basic
Research in Science.

2 Scheme of the proof.

Here we give the scheme of the proof of the main theorem. Proposition 2.1
and Lemma 2.2 are proven in Section 3 while the proof of Lemma 2.3 is
given in Section 4. The proof of the main theorem consists of three steps.
Let C+

θ (Σ) be the set of functions depending only on the ’future’ coordinates
τ(ω) = τ(ω0, ω1, . . . ωn . . .).

(I) It is enough to prove our result with Cθ(Σ) replaced by C+
θ (Σ). Indeed

let Bθ(Σ) be the space of coboundaries Bθ(Σ) = {τ ∈ Cθ(Σ) such that
∃f ∈ Cθ(Σ) : τ(ω) = f(ω) − f(σω), f ∈ Cθ(Σ)}, B+

θ = Bθ

⋂

C+
θ (Σ). Bθ(Σ)

is closed in Cθ(Σ) by Livsic theorem (see [7]). If τ ′ − τ ′′ ∈ Bθ then τ ′ is
eventually positive iff τ ′′ is eventually positive. In this case St(τ ′) and St(τ ′′)
are Lipschitz conjugated (by a change of variables (ω̄, t̄) = (ω, t + f(ω)))
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and Holder spaces are preserved by this conjugation. Thus we can speak
of an element of Cθ/Bθ being exponentially mixing. Now, according to ([8],
Proposition 4) there is an isomorphism ψ : Cθ/Bθ → C+√

θ
/B+√

θ
such that if

[τ ∗] = ψ[τ ] then τ ∗ − τ ∈ B√
θ. From this it is easy to see that following

statements are equivalent:
exponential mixing is generic in Cθ;
exponential mixing is generic in Cθ/Bθ;
exponential mixing is generic in C+√

θ
/B+√

θ
;

exponential mixing is generic in C+√
θ
.

Remark. It is also clear from (II) that the condition we use to prove expo-
nential mixing is formulated in terms of C+

θ /B
+
θ rather then Cθ.

(II) Now we introduce the condition of strong non-integrability we use to
obtain exponential mixing. To this end we recall the definition of temporal
distance function. Write W s(ω) = {$ : ∃n with $i = ωi for i ≥ n}, W u(ω) =
{$ : ∃n with $i = ωi for i ≤ n}. Consider a quadruple ω1, ω2, ω3, ω4 such
that ω2 ∈ W u(ω1), ω4 ∈ W u(ω3), ω3 ∈ W s(ω1), ω4 ∈ W s(ω2). Denote

ϕ(ω1, ω2, ω3, ω4) =
+∞
∑

n=−∞
[τ(σnω1) − τ(σnω2) − τ(σnω3) + τ(σnω4)]. (2)

This series converges exponentially fast (cf. the proof of Proposition 2.1).
To explain geometric meaning of ϕ recall the notion of the local product

structure. For ω ∈ Σ let ω+, ω− be the sequences {ωi}∞i=0, {ωi}0
i=−∞. If ω1

0 =
ω2

0 let [ω1, ω2] denote the local product of ω1 and ω2 that is [ω1, ω2]− = ω1,
[ω1, ω2]+ = ω2. For (ω, s) ∈ Στ define its strong stable and strong unstable
sets as follows.

W ss(ω, s) = {($, s̄) : d̃θ(S
t(τ)(ω, s), ($, s̄)) → 0, as t→ +∞.}.

W uu(ω, s) = {($, s̄) : d̃θ(S
t(τ)(ω, s), ($, s̄)) → 0, as t→ −∞.}.

It is easy to see that

W ss(ω, s) = {($, s̄) : $ ∈ W s(ω) and s̄− s = ∆s(ω,$)}

W uu(ω, s) = {($, s̄) : $ ∈ W u(ω) and s̄− s = ∆u(ω,$)},
where

∆s(ω,$) =
∞
∑

n=0

[τ(σjω) − τ(σj$)],
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∆u(ω,$) = −
0
∑

n=−∞
[τ(σjω) − τ(σj$)].

We can also consider local versions of these sets, that is W s
loc(ω) = {$ :

$+ = ω+}, W u
loc(ω) = {$ : $− = ω−}, W ss

loc(ω, s) = {($, s̄) ∈ W ss(ω, s) :
$ ∈ W s

loc}, W uu
loc (ω, s) = {($, s̄) ∈ W uu(ω, s) : $ ∈ W u

loc}. Now if ω′ ∈
W s(ω′′) (ω′ ∈ W u(ω′′)) let Hω′,ω′′ be the holonomy map from {ω′} × R to
{ω′′} × R along the strong stable (strong unstable) sets of the flow. Thus
Hω′,ω′′(ω′, s) = ω′′ × R

⋂

W ss
loc i.e.

Hω′,ω′′(ω′, s) = (ω′′, s+ ∆s(ω
′, ω′′))

(respectively Hω′,ω′′(ω′, s) = ω′′ × R
⋂

W uu
loc i.e.

Hω′,ω′′(ω′, s) = (ω′′, s+ ∆u(ω
′, ω′′))).

Then

Hω3,ω1 ◦Hω2,ω3 ◦Hω4,ω2 ◦Hω1,ω4 : t→ t+ ϕ(ω1, ω2, ω3, ω4).

It is clear from (2) that ϕ remains the same if we change τ by a coboundary,
so, actually ϕ is defined on C+

θ /B
+
θ . We use τ as a subscript if it is not clear

which roof function is considered. The following bound is immediate. (See
Section 3.)

Proposition 2.1. If ω1
+ = ω3

+, ω
2
+ = ω4

+ and dθ(ω
1, ω2) ≤ θN , dθ(ω

3, ω4) ≤
θN then |ϕ(ω1, ω2, ω3, ω4)| ≤ 2

1−θ
‖τ‖θN .

Definition. Call τ ∈ C+
θ (Σ) strongly non-integrable if ∃C, δ,$1, $2 : $1

+ =
$2

+ and a neighborhood U($1) such that ∀ω1 ∈ U such that

ω1
− = $1

− ∃ω2, ω3, ω4 : ω2
− = $1

−, ω3
− = ω4

− = $2
−, ω3

+ = ω1
+, ω4

+ = ω2
+

(3)
dθ(ω

1, ω2) ≤ θN , dθ(ω
3, ω4) ≤ θN and

|ϕ(ω1, ω2, ω3, ω4)| ≥ δθN . (4)

Let us explain the meaning of (4). Although ϕ appears to be a function of
four variables, it is actually determined by ω1 and ω4 since ω2 = [ω1, ω4] and
ω2 = [ω4, ω1]. Now (4) says that on a large subset of Σ × Σ ϕ is as irregular
as possible. (In the above definition we ask that ω1 and ω4 lie on fixed local
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unstable sets, but it is done in order to simplify the proof of the denseness.
We then show in Lemma 4.8 that this requirement can be disposed of.)

It is easy to see ([4]) that if ϕ ≡ 0 then St has a continuous eigenfunction
(i.e. St is integrable). So strongly non-integrable systems are as far from
integrable ones as possible (according to Proposition 2.1). This proposition
also shows that strong non-integrability is an open property.

Lemma 2.2. Strong non-integrability is dense in C+
θ (Σ).

The proof is given in the next section.

Remark. It is also possible to define strong non-integrability for elements
of Cθ(Σ). In this case the upper bound is |ϕ(ω1, ω2, ω3, ω4)| ≤ Const‖τ‖θN

2

and thus one should require |ϕ(ω1, ω2, ω3, ω4)| ≥ δθ
N
2 in place of (4). (The

appearance of N
2

here explains the
√
θ in (I).)

(III) The last ingredient in the proof is the following.

Lemma 2.3. Strong non-integrability implies exponential mixing.

The proof appears in Section 4. Clearly, (I)-(III) prove Theorem 1.1.

3 Prevalence of strong non-integrability.

Proof of Proposition 2.1: Writing

+∞
∑

n=0

[τ(ω1) − τ(ω2) − τ(ω3) + τ(ω4)] =

+∞
∑

n=0

[τ(ω1) − τ(ω3) −
+∞
∑

n=0

[τ(ω2) − τ(ω4)]

we see that if ω1
+ = ω3

+, ω
2
+ = ω4

+ then all positive terms in (2) vanish so we
can write

ϕ(ω1, ω2, ω3, ω4) =
∞
∑

n=1

[τ(σ−nω1) − τ(σ−nω2)] −
∞
∑

n=1

[τ(σ−nω3) − τ(σ−nω4)].

The result follows since the n−th term in the both sums is bounded by
‖τ‖θN+n.
Proof of Lemma 2.2: First we describe the choice of $1, $2 and U.

7



Since the number of periodic points of period n grows exponentially, for
some m0 there are two periodic points α1 and α2 of prime period m0 with
α1

0 = α2
0 and such that the orbits of α1 and α2 are different. Let α1 = (w1)∞,

α2 = (w2)∞ be infinite concatenations of words w1, w2 of length m0, that is
wj = αj

0α
j
1 . . . α

j
m0−1. Choose $1 and $2 so that $1

− = α1
−, $

2
− = α2

−, and
so that the words corresponding to the first m0 symbols of $1

+ (= $2
+) are

different from the words corresponding to the first m0 symbols of of σjα1

and σjα2 for 0 ≤ j < m0 (for large m0 this is possible since the number of
words of length m0 starting with a given symbol a grows exponentially). Let
U = {ω : dθ(ω,$

1) ≤ θm0}.
Before proceeding further let us make a comment. It appears that for

fixed N condition (4) involves an infinite number of inequalities. However,
it is enough to verify a finite number of them as we now explain. Given a
word W = w0w1 . . . wl−1 denote by CW the cylinder CW = {ω : ωj = wj

for 0 ≤ j ≤ l − 1}. Let Σn be the set of words of length n. It is sufficient
to prove that ∃m such that ∀N ∀W ∈ ΣmN such that CW ⊂ Ũ = p(U)
∃ω1, ω2, ω3, ω4 ∈ CW satisfying (3) and such that

|ϕ(ω1, ω2, ω3, ω4)| ≥ δθmN . (5)

Since ΣmN is finite (5) contains finite number of inequalities for any fixed
N. To show that (5) implies (4) consider ω̃ ∈ U such that ω̃− = $1

− and let

ω̂ = [$2, ω̃]. Given N let Ñ = [N
m

]. Consider ω1, ω2, ω3, ω4 with ωj
i = ω̃i for

0 ≤ j ≤ m(Ñ + 1) and |ϕ(ω1, ω2, ω3, ω4)| ≥ δθm(Ñ+1). We have

ϕ(ω1, ω2, ω3, ω4) = ϕ(ω̃, ω2, ω̂, ω4) − ϕ(ω̃, ω1, ω̂, ω3),

so at least one of the terms on the RHS is greater than δ
2
θm(t(N+1) ≥ δ̃θN

whereas dθ(ω̃, ω
1) ≤ θN , dθ(ω̃, ω

2) ≤ θN .
Now for each symbol b choose a sequence W b ∈ Σm such that bWb is

admissible (here bWb denotes concatenation of b and W b). For any W ∈ ΣmN

let V (W ) = WWWmN−1 . We will consider perturbations of the form

τ̃ = τ +
∑

N

∑

W∈ΣmN

εWθ
m(N+1)Iw1V (W ) (6)

where Iω̄0...ω̄n
is the indicator function of the set {ω : ωj = ω̄j for 0 ≤ j ≤ n}.

We show that given ε we can choose δ,m and εW = ±ε so as to satisfy (5).
Indeed fix N0 and W ∈ ΣmN0 . Consider ω1, ω2, ω3, ω4 such that (3) holds,
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ωi ∈ CW , ω
1 ∈ CV (W ), ω

2 6∈ CV (W ). Write ϕτ̃ = ϕτ + ϕτ−
N0

+ ϕτN0
+ ϕτ+

N0

,

where τ−N0
, τN0 and τ+

N0
correspond to the summations over the terms with

N < N0, N = N0 and N > N0 in (6). Assume that εW are already chosen
for N < N0. We have ϕτN0

(ω1, ω2, ω3, ω4) = εWθ
m(N0+1). Indeed, due to our

choice of $1, $2 and U only one negative term (j = −m0) in (2) is different
from 0 and all positive terms vanish as in Proposition 2.1. By the same
argument

|ϕτ+
N0

(ω1, ω2, ω3, ω4)| ≤ ε
∞
∑

j=N0+2

θmj = ε
θm(N0+2)

1 − θm
. (7)

Take δ = εθm

2
. If m is large, δ > ε θ2m

1−θm . Choose εW of the same sign as
(ϕτ + ϕτ−

N0

)(ω1, ω2, ω3, ω4) then

|(ϕτ + ϕτ−
N0

)(ω1, ω2, ω3, ω4) + εWθ
m(N0+1)| ≥ εθm(N0+1) = 2δθmN0 . (8)

Finally, (7) and (8) imply that |ϕ(ω1, ω2, ω3, ω4)| ≥ δθmN0 as needed.

4 Proof of Lemma 2.3.

Here we prove Lemma 2.3. So let F ∈ Cθ(Σ
τ ) and f̄ =

τ(ω)
∫

0
F (ω, s)ds. Intro-

duce the operator Lg : C+
θ (Σ) → C+

θ (Σ) given by (Lgh)(ω) =
∑

σ$=ω
eg($)h($).

Let s0 be the root of Pr(f̄ − s0τ) = 0, where Pr stands for topological pres-
sure. It is proved in [3] that exponential mixing is the consequence of the
following estimate.

Lemma 4.1. ∃C, p, ε, R > 0 and λ < 1 such that for |<s− s0| < ε |=s| > R

‖Ln
f̄−sτh‖ ≤ Cλn|b|p‖h‖.

As in [3] we use Lemma 4.1 to prove exponential mixing for observables
from the space Cθ,2(Σ

τ ) of functions two times differentiable in the direction
of the flow and then approximate elements of Cθ(Σ

τ ) by those from Cθ,2(Σ
τ ).

In this section we show how to verify Lemma 4.1 in our setting.
Let s = s0 + a− b,

f (a) = f̄ − (s0 + a)τ − lnPr(f̄ − (s0 + a)τ) + ln ha − ln h ◦ σ,
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where ha is the leading eigenvalue of Lf̄−(s0+a)τ . Introduce a norm

‖h‖(b) = max

(

‖h‖0,
L(h)

|b|

)

,

where L(h) is the Lipschitz constant of h

L(h) = sup
ω1

0=ω2
0

|h(ω1) − h(ω2)|
dθ(ω1, ω2)

.

(Note that this definition is slightly different from the usual definition of the
Lipschitz constant. This is done in order to simplify the formulae below.)
Because of analyticity of Pr(f̄ − (s0 + a)τ) and ln ha in a and since Lg and
Lg+g′−g′◦σ are conjugated by multiplication by eg′ it is enough to prove

Lemma 4.2. ∃C̃, p̃, ε, R > 0 and λ̃ < 1 such that for |a− s0| < ε |b| > R

‖Ln
f(a)−ibτh‖(b) ≤ C̃λ̃n|b|p̃‖h‖(b).

Write Lab = Lf(a)+ibτ .

Proposition 4.3. If γ is a local branch of σ−n (that is σn ◦ γ = id and
dθ(γω

1, γω2) = θndθ(ω
1, ω2)) then

|τn(ω1) − τn(ω2)| ≤ ‖τ‖dθ(ω
1, ω2)

1 − θ
.

Proof:

|τn(ω1) − τn(ω2)| ≤
n−1
∑

j=0

|τ(σjω1) − τ(σjω2)| ≤
n−1
∑

j=0

‖τ‖dθ(ω
1, ω2)θn−j.

This bound implies (cf. [7], Ch 4)

Proposition 4.4. There exists a constant K = K(f, τ) such that

||Ln
abh||(b) ≤ K(||h||L2(µa) + θn|b|||h||(b)).

Denote

q =
4||τ ||
1 − θ

. (9)

Define KA = {H ≥ 0 : L(lnH) ≤ A}. Let h ∈ C+
θ (Σ). We say that H

dominates h (writing h�H) ifH ∈ Kq|b|, |h(ω)| ≤ H(ω) and for dθ(ω
1, ω2) ≤ 1

b

the difference |h(ω1)− h(ω2)| ≤ q|b|H(ω1)dθ(ω
1, ω2). We prove the following

estimate
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Proposition 4.5. There are ε, n̄ so that given s there is a finite number
N1(s),N2(s) . . .Nl(s)(s) of linear operators on C+

θ (Σ) such that
(a) Nj(s) preserves Kq|b|;
(b) for H ∈ Kq|b|

∫

(NjH)2dµa ≤ (1 − ε)
∫

H2dµa

where µa is the equilibrium state for f (a);
(c) If h�H then ∃j = j(h,H) so that (Ln̄

abh)�(NjH).

Let us check that Proposition 4.5 implies Lemma 4.2.
Proof of Lemma 4.2: Let n = R ln |b| where R is large enough, then

||Ln
abh||L2(µa) ≤

1

b
||h||(b). (10)

Indeed, q||h||(b)1 dominates h and so ||h||L2(µa) ≤

||Lñ
abNimNim−1 . . .Ni1(q||h||(b)1)||L2(µa) ≤

q||h||(b)||NimNim−1 . . .Ni11||L2(µa) ≤
q||h||(b)(1 − ε)m,

where n = ñ+nn̄. Combining (10) with Proposition 4.4 we get the following
matrix inequality

(

||Ln
abh||L2(µa)

||Ln
abh||(b)

)

≤
(

0 1
|b|

K K
|b|

)(

||h||L2(µa)

||h||(b)

)

Iterating we get

||L2n
abh||(b) ≤

K

|b|(K||h||L2(µa) + (1 +
K

|b|)||h||(b)).

This proves Lemma 4.2 with λ̃ being any number greater than exp(− 1
2R

) and
p̃ = R lnλ.)
The proof of Proposition 4.5 occupies the rest of the paper.

We begin with describing Nj. Denote

ε0 =
θ(1 − θ)δ

10||τ || , (11)

11



where δ comes from (4). Let ε1 be a small number (more precisely, we require
that

ε1 <
1

4
(12)

and ∀4ABC such that 6 A ≥ ε0

100
and |AB| ≥ |AC|

16

|BC| ≤ |AB| + (1 − ε1)|AC|.) (13)

Let m be a natural number such that

θm <
ε0

10
(14)

Let Ũ = pU where U is a the set where (4) holds. Let

n̄ = n0 + n1 (15)

where n0 is the smallest number such that

σn0Ũ = Σ+ (16)

and n1 be the smallest number such that

θn1 ≤ min(
1

8
,
ε0

400
) (17)

Denote Ma = Ln̄
a0. Given b denote by N = N(b) the smallest natural number

such that θN ≤ 1−θ
4|b|||τ || . Thus

(1 − θ)θ

4|b|||τ || < θN ≤ 1 − θ

4|b|||τ || . (18)

If J is a subset of ΣN+m+n̄ write ψJ =
∑

W∈J
ICW

. For J ∈ ΣN+m+n̄ and

positive number ε define N (J,ε)(H) = Ma((1 − εψJ)H). Call J dense if
∀W ∈ ΣN∃V ∈ J such that V = W1WW2 where W1 and W2 are words of
length n̄ and m respectively.

Proposition 4.6. (a) N (J,ε1) : Kq|b| → Kq|b|;
(b) If h�H then for dθ(ω

1, ω2) < 1
|b|

|(Ln̄
abh)(ω

1) − (Ln̄
abh)(ω

2)| ≤ q|b|(N (J,ε1)H)(ω1)dθ(ω
1, ω2);

(c) If J is dense then there exists ε2 = ε2(f,m, n̄) such that for all H ∈ Kq|b|
∫

(N (J,ε1)H)2 dµa ≤ (1 − ε2)
∫

H2 dµa.

12



Proof:To prove (a) note that (1− ε1ψJ) ∈ Kδ̃|b| where δ̃ → 0 as ε1 → 0.

Denote H̃ = (1 − ε1ψJ)H, then H̃ ∈ K(q+δ̃)|b| Now if ω1
0 = ω2

0 then

(MaH̃)(ω1) =
∑

σn̄$1=ω1

ef
(a)
n̄ ($1)H̃($1) ≤

∑

σn̄$2=ω2

ef
(a)
n̄ ($2)+

||f(a)||
1−θ

dθ(ω1,ω2)H̃($2)eθdθ(ω1,ω2)(δ̃+q)|b| =

(MaH̃)(ω2) exp

(

||f (a)||
1 − θ

+ θ(δ̃ + q)|b|
)

.

where the inequality follows from Proposition 4.3. If b is large and δ̃ is small

||f (a)||
1 − θ

+ θ(δ̃ + q)|b| ≤ q|b|;

(b) (Ln̄
abh)(ω

1)−(Ln̄
abh)(ω

2) =
∑

σn̄$=ω

[e(f
(a)
n̄ +ibτn̄)($1)h($1)−e(f

(a)
n̄ +ibτn̄)($2)h($2)] =

∑

σn̄$=ω

[e(f
(a)
n̄ +ibτn̄)($1)(h($1)−h($2))]+

∑

σn̄$=ω

[(e(f
(a)
n̄ +ibτn̄)($1)−e(f(a)

n̄ +ibτn̄)($2))h($1)]

= (I) + (II).

Now

|(I)| ≤ q|b|(MaH)(ω1)dθ(ω
1, ω2)θn̄ ≤ q|b|(N (J,ε1)H)(ω1)

θn̄dθ(ω
1, ω2)

1 − ε1
,

|(II)| ≤
∑

σn̄$=ω

|(e(f(a)
n̄ ($1)+ibτn̄)($2) − e(f

(a)
n̄ (varpi2)+ibτn̄)($2)||h($1)|+

∑

σn̄$=ω

(e(f
(a)
n̄ ($1)|eibτn̄)($1) − eibτn̄)($2))||h($1)| = (IIa) + (IIb)

where

(IIa) ≤
∑

σn̄$=ω

|(ef
(a)
n̄ ($1)2

||f (a)||d(ω1, ω2)

1 − θ
H($1) ≤

2
d(ω1, ω2)||τ ||

1 − θ
(MaH)(ω1) ≤

2
d(ω1, ω2)||τ ||

1 − θ

(N (J,ε1)H)(ω1)

1 − ε1

13



(the first inequality uses the fact that d(ω1, ω2) is very small) and

(IIb) ≤
|b|||τ ||
1 − θ

(MaH)(ω1) ≤ |b|||τ ||
1 − θ

(N (J,ε1)H)(ω1)

(1 − ε1)

Hence

(II) ≤ 2(||f ||+ |b|||τ ||)
(1 − θ)(1 − ε1)

(N (J,ε1)H)(ω1)d(ω1, ω2)

and so

|(Ln̄
abh)(ω

1)−(Ln̄
abh)(ω

2)| ≤ |b|
qθn̄ + 2

1−θ
(||τ || + ||f ||

|b| )

1 − ε1
(N (J,ε1)H)(ω1)dθ(ω

1, ω2).

If n̄ and b are large then (recall (12))

qθn̄ + 2
1−θ

(||τ || + ||f ||
|b| )

1 − ε1

< q; (19)

(One can check that

θn̄ ≤ 1

8
(20)

and |b| > 100 ||f ||
||τ || suffices for (19) .)

(c) Let W ∈ ΣN , V = W1WW2 ∈ ΣN+m+n̄, V ∈ J. Denote W̄ = WW2.
By Cauchy-Schwartz ∀ω ∈ CW̄ (N J,ε1H)(ω) ≤ (1 − δ)(MaH)(ω). Now (c)
follows from (a) and the fact that there is a constant c = c(q) such that for
all H ∈ Kq|b|,

∫

CW

H2dµa ≤ c
∫

C(W̄ )
H2dµa

(see [3], Lemma 12 for details).
Thus it remains to prove that if h�H then there exists a dense J = J(h,H)
so that |(Ln̄

abh)(ω)| ≤ (N (J,ε1)H)(ω). Given two inverse branches γ1 and γ2

of σ−n̄ so that ∀W ∈ ΣN denote

ρε
1(ω) =

|e(f(a)
n̄ +ibτn̄)(γ1ω)h(γ1ω) + e(f

(a)
n̄ +ibτn̄)(γ2ω)h(γ2ω)|

(1 − ε)ef
(a)
n̄ (γ1ω)H(γ1ω) + ef

(a)
n̄ (γ2ω)H(γ2ω)

,

ρε
2(ω) =

|e(f(a)
n̄ +ibτn̄)(γ1ω)h(γ1ω) + e(f

(a)
n̄ +ibτn̄)(γ2ω)h(γ2ω)|

ef
(a)
n̄ (γ1ω)H(γ1ω) + (1 − ε)ef

(a)
n̄ (γ2ω)H(γ2ω)

.

14



Lemma 4.7. γ1 and γ2 can be chosen in such a way that ∀W ∈ ΣN ∃j ∈
{1, 2}, V ∈ ΣN+m such that W ⊂ V and ∀ω ∈ CV ρε1

j (ω) ≤ 1.

(Here we write W ⊂ V to mean that W is the beginning of V ). The proof
of the lemma is given later.

Proof of Proposition 4.5: Let {Nj} = {N (J,ε1)}, where ε1 is a fixed
small number and J runs over all dense sets of ΣN+m+n̄. Then by Proposition
4.6 conditions (a) and (b) are satisfied so only (c) remains to be proved. Let
h,H be given with h�H. For each W ∈ ΣN choose one pair {j, V } so that
V ∈ ΣN+m, W ⊂ V and ρε1

j (ω) < 1 for ω ∈ CV . (Given W the set of
such pairs is non-empty by Lemma 4.7.) Let J = {γj(W )V (W )}. Then
J is dense. Now in view of Proposition 4.6(b) we only need to show that
|(Ln̄

abh)(ω)| ≤ (N (J,ε1)H)(ω). Let ω ∈ Σ+ and let W ∈ ΣN be a word with
ω ∈ CW . If ω 6∈ CV (W ) then (N (J,ε1)H)(ω) = (MaH)(ω) so there is nothing
to prove. If ω ∈ CV and, say, j = 1 then

|(Ln̄
abh)(ω)| ≤

|e(f(a)
n̄ +ibτn̄)(γ1ω)h(γ1ω)+e(f

(a)
n̄ +ibτn̄)(γ2ω)h(γ2ω)|+

∑

$ 6∈{γ1ω,γ2ω}
|e(f(a)

n̄ +ibτn̄)($)h($)| ≤

|ef
(a)
n̄ (γ1ωH(γ1ω)(1 − ε1) + ef

(a)
n̄ (γ2ω)H(γ2ω) +

∑

$ 6∈{γ1ω,γ2ω}
|ef

(a)
n̄ )($)H($)| ≤

(N (J,ε1)H)(ω).

To establish Lemma 4.7 we need two auxiliary estimates. The first one
essentially proves Lemma 4.7 when Arg(h) is constant while the second one
allows us to control oscillations of Arg(h).

Lemma 4.8. There exist two inverse branches γ1 and γ2 of σ−n̄ so that
∀W ∈ ΣN ∀V ∈ ΣN+m : W ⊂ V ∃Ṽ ∈ ΣN+m : W ⊂ Ṽ such that if

Φ(n)(ω, ω̃) = τn(γ1ω) − τn(γ2ω) − τn(γ1ω̃) + τn(γ2ω̃)

then ∀ω ∈ CV , ω̃ ∈ CṼ
ε0

|b| ≤ |Φ(n̄)(ω, ω̃)| ≤ 1

|b| . (21)

Remark. The upper bound is easy and holds true whether τ satisfies strong
non-integrability or not. The key estimate is the lower one. The point of the
upper bound is only to ensure that dist(|b|Φ(n̄)(ω1, ω2), 2πZ) ≥ ε0.
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Proof:We prove the statement of the lemma for the case W ⊂ Ũ with
n̄ replaced by n1 since if γ̃i work for Ũ then γi = γ̃i ◦ γ work for Σ+ where
γ : Σ → Ũ is an inverse branch of σn̄0 . Let V ⊂ W ⊂ Ũ be given. Take
some ω ∈ V. By strong non-integrability ∃ω1, ω2, ω3, ω4 : ω1

+ = ω3
+ = ω,

dθ(ω
1, ω2) ≤ θN , dθ(ω

3, ω4) ≤ θN and |ϕ(ω1, ω2, ω3, ω4)| ≥ δθN . Thus 5ε0

2|b| ≤
|ϕ(ω1, ω2, ω3, ω4)| ≤ 1

2|b| (the second inequality is by Proposition 2.1.) To

define γ̃j we have to specify (γ̃jω)i for i < n1. Set (γ̃1ω)i = ω1
i−n1

, (γ̃2ω)i =
ω3

i−n1
for i < n1. Then

ϕ(n1)(ω1, ω2, ω3, ω4) = ϕ(ω1, ω2, ω3, ω4) − Φ(n1)(ω1
+, ω

2
+)

satisfies |ϕ(n1)(ω1, ω2, ω3, ω4)| ≤ 2||τ ||θN+n1

1−θ
(the proof is the same as in Propo-

sition 2.1 but now the first non-zero term is j = −n1). Thus if n1 is so large
that

θn1 ≤ min(
ε0

2
,
1

4
) (22)

then
2ε0

|b| ≤ |Φ(n1)(ω1
+, ω

2
+)| ≤ 3

4|b| . (23)

(since in this case
2||τ ||θN+n1

1 − θ
≤ min(

ε0

2|b| ,
1

4|b|)

by (18).) Now if ω′, ω̃′ satisfy ω′
i = ω1

i , ω̃
′
i = ω2

i for 0 ≤ i ≤ N +m then

|Φ(n1)(ω′, ω̃′)−Φ(n1)(ω1
+, ω

2
+)| ≤ |τn1(γ̃1ω

1
+)−τn1(γ̃1ω

′)|+|τn1(γ̃2ω
1
+)−τn1(γ̃2ω

′)|+

|τn1(γ̃1ω
2
+) − τn1(γ̃1ω̃

′)| + |τn1(γ̃2ω
2
+) − τn1(γ̃2ω̃

′)| ≤ 2||τ ||θN+m

1 − θ

because each term is less than 2||τ ||θN+m

1−θ
by Proposition 4.3. Now

2||τ ||θN+m

1 − θ
≤ θm

2|b| ≤
ε

20|b|

and so Ṽ = {ω̃ : ω̃i = ω2
i for 0 ≤ i ≤ N +m} is the required set.
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Proposition 4.9. Let h�H then
(a) ∀W ∈ ΣN∀ω1ω2 ∈ CW

1

2
≤ H(γi(ω

1))

H(γi(ω2))
≤ 2 (24)

(b) ∀i ∈ {1, 2} either

∀ω1, ω2 ∈ CW |h(γiω
1)| ≤ 3

4
H(γiω

2) (25)

or

∀ω1, ω2 ∈ CW |h(γiω
1)| ≥ 1

4
H(γiω

2); (26)

(c) If for some i ∈ {1, 2} (26) holds then |Arg(h(γiω)
h(γiω̃)

)| ≤ ε0

100
.

Proof:(a) H(γiω
1) ≤ eq|b|dθ(γiω

1,γiω
2)H(γiω

2) ≤ eq|b|θN+n̄

H(γiω
2) and

eq|b|θN+n̄

< e
1
8 < 2 by (9), (17) and (18);

(b) If ∃ω1, ω2 :

|h(γiω
1)| ≤ 1

4
H(γiω

2) (27)

then ∀ω̃1, ω̃2

|h(γiω̃
1)| ≤ (domination)

|h(γiω
1)| + q|b|θN+n̄H(γiω

1) ≤ (domination)

|H(γiω
1)| + q|b|θN+n̄H(γiω

1) ≤ (27)

1

4
H(γiω

2) + q|b|θN+n̄H(γiω
1) ≤ (a)

2(
1

4
+ q|b|θN+n̄)H(γiω̃

2) ≤ ((9) and (18))

(
1

2
+ 2θn̄)H(γiω̃

2).

Thus if

θn̄ <
1

8
(28)

then

|h(γiω̃
1)| ≤ 3

4
H(γiω̃2)

as claimed;
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(c) h(γiω̃) = h(γiω) + δ(ω, ω̃), where

|δ(ω, ω̃)| ≤ q|b|θN+n̄H(γiω) ≤ 4q|b|θN+n̄|h(γiω)|

Thus
∣

∣

∣

∣

∣

h(γiω)

h(γiω̃)
− 1

∣

∣

∣

∣

∣

≤ 4q|b|θN+n̄ ≤ 4θn̄.

Thus (c) follows if

θn̄ ≤ ε0

400
. (29)

Proof of Lemma 4.7: If for some j ∈ {1, 2} (25) holds there is nothing to
prove. (Recall (12).) Thus we can assume that (26) is satisfied for j ∈ {1, 2}.
Consider some V ′ ∈ ΣN+m, W ⊂ V ′. Assume that

∃ω1, ω2 ∈ CV ′ ρε1
1 (ω1) > 1 and ρε1

2 (ω2) > 1. (30)

We claim that in this case

|Arg(eibτn̄(γ1ω)h(γ1ω)) − Arg(eibτn̄(γ2ω)h(γ2ω))| ≤ ε0

10
. (31)

To prove (31) suppose that for some ω0 ∈ V ′ |h(γ1ω
0)| > |h(γ2ω

0)|. It follows
from (26) that for all ω ∈ V ′

1

4
≤ h(γjω)

h(γjω0)
≤ 4.

Thus |h(γ1ω)| > 1
16
|h(γ2ω)|. Now ρε1

2 (ω2) > 1 implies (recall (12))

∣

∣

∣Arg(eibτn̄(γ1ω2)h(γ1ω
2)) − Arg(eibτn̄(γ2ω2)h(γ2ω

2))
∣

∣

∣ ≤ ε0

100

Combining this with Proposition 4.9 (c) and Proposition 4.3 we get

|Arg(eibτn̄(γ1ω)h(γ1ω)) − Arg(eibτn̄(γ2ω)h(γ2ω))| ≤
ε0

100
+ |b|

∣

∣

∣τn̄(γ1ω) − τn̄(γ1ω
2)
∣

∣

∣+ |b|
∣

∣

∣τn̄(γ2ω) − τn̄(γ2ω
2)
∣

∣

∣+

∣

∣

∣

∣

∣

Arg

(

h(γ1ω)

h(γ1ω2)

)∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

Arg

(

h(γ2ω)

h(γ2ω2)

)∣

∣

∣

∣

∣

≤

ε0

100
+

2|b|||τ ||θN+m

1 − θ
+

2ε0

100
≤

18



2ε0

25

which proves (31). Let now V, Ṽ be a pair satisfying the conditions of Lemma
4.8. Suppose that (31) holds true both on CV and on CṼ . Then ∀ω ∈ CV , ω̃ ∈
CṼ

∣

∣

∣

∣

∣

bΦ(n̄)(ω, ω̃) + Arg

(

h(γ1ω)

h(γ1ω̃)

)

− Arg

(

h(γ2ω)

h(γ2ω̃)

)∣

∣

∣

∣

∣

≤ ε0

5

Combining this with Proposition 4.9(c) we obtain |b||Φ(n̄)(ω, ω̃)| ≤ 11
50
ε0 which

contradicts (21). Hence (30) is false either on V or on Ṽ as claimed.
This concludes the proof of Lemma 4.1. Finally note that the requirements
on n̄ are given in inequalities (20), (22), (28) and (29) so that (15) suffices
to satisfy them.
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