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Abstract. The entropy of coupled map lattices with respect to the group
of space-time translations is considered. We use the notion of generalized
Lyapunov spectra ([11]) to prove the analogue of Ruelle inequality and Pesin
formula.
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§1 Introduction. The behavior of finite-dimensional hyperbolic diffeomor-
phisms is one of the best developed branches of dynamical systems theory.
Therefore the natural question arises which features of this behavior persist
in the infinite-dimensional setting.
The simplest example to begin with is coupled map lattices. Here the con-
figuration space X is the product of the countable number of copies of finite-
dimensional manifolds X =

∏

i
Xi. In our paper the index i runs over integers

(’one-dimensional lattice’). The map Φ is a perturbation of the product of
’uncoupled’ diffeomorphisms (f(x))i = f(xi) due to an interaction J which
is translation invariant and rapidly-decreasing in space. The last assump-
tion can be formalized mathematically in many different ways.The simplest
possibility is to require that f is a hyperbolic map and J is so small that
the stability theory methods can be applied. Under these conditions it was
shown in [1], [5] that the basic results of the finite-dimensional theory such
as the stable-manifold theorem, the construction of Markov partitions and
the existence of SBR-measure remain valid. The purpose of this note is to
generalize entropy formulae.
Let us recall that the classical Pesin formula states that in the ergodic case
the measure theoretic entropy is equal to the sum of positive Lyapunov expo-
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nents. It is based on the Oseledeĉ theorem. So the first problem is to obtain
the counterpart to this theorem. The simplest known proof of Oseledeĉ the-
orem ([7]) proceeds as follows. Let λ

(m)
1 (x) ≥ λ

(m)
2 (x) ≥ . . . ≥ λ(m)

n (x) be the

eigenvalues of
√

(dΦm(x))∗(dΦm(x)). Consider sm
j (x) =

j
∑

k=1
ln λ

(m)
k (x). The

existence of the limit lim
m→∞

1
m

s
(m)
j follows by the subadditive ergodic theorem

since one can interpret exp s
(m)
j as the largest eigenvalue of dΦm acting on

j-forms. This approach succeeds also in infinite dimensions if dΦ is a compact
operator ([3], [9]). In our situation the last assumption is never valid because
of the translation invariance. However, the natural generalization arises if
we want to compute the entropy with respect to the group of the space-time
translations that is ’the measure-theoretic entropy of time shift per degree
of freedom’ rather then just measure-theoretic entropy of time shift. In this
case we should average by the number of degrees of freedom N and perform
the limit as N tend to infinity before applying the traditional arguments.
This program was partly carried over in [12] for another dynamical system:
the hard-core gas in the infinite vessel. The above-mentioned approach to
Oseledeĉ theorem seems to be more natural than doing time averaging be-
fore the space averaging because while our system can be considered as a
small perturbation of a finite-dimensional one for any fixed moment of time
the time average limit depends essentially on the whole infinite-dimensional
space.
The important difference from the finite-dimensional case is that the gener-
alized Lyapunov spectrum so obtained does not correspond to any invariant
splitting of the tangent bundle not to mention foliations. So its dynamical
importance is not clear. However in this note we show that the counterparts
to both Ruelle inequality and Pesin formula hold if the ordinary Lyapunov
spectrum is replaced by the generalized one.
The structure of the paper is the following. §2 contains the precise assump-
tions about the interaction J. In §3 we define the expansion rate which is
the mean value of the sum of positive Lyapunov exponents. The existence of
the limiting quantity is demonstrated in §4. Our arguments here are similar
to those of [11]. After the existence is established Ruelle inequality follows
by exactly the same arguments as in Ruelle’s original paper [7]. This is dis-
cussed in §5. In §6 we remind the construction of SBR measure for coupled
map lattices given in [5]. Pesin formula is proven in §7. The reason why

2



it holds is that in the hyperbolic case the convergence in Pesin formula for
finite-dimensional system whose limit is our coupled map lattice is uniform
in the number of degrees of freedom. The proof of Pesin formula gives an
affirmative answer to a general question posed in [11] for our very special
case.
Since it is interesting to find the weakest possible conditions under which
this theory holds we do not impose any hyperbolicity conditions in §§2-5. Of
course our note is only the first step towards understanding entropy proper-
ties of differential infinite-dimensional systems.
§2 Coupled map lattices. Here we define the system we deal with (cf.
[5]). Let X be a compact Riemann manifold. Choose a countable number

of copies Xi of X and set X =
+∞
∏

i=−∞
Xi, XN1,N2 =

N2
∏

i=N1

Xi, XN = X−N,N .

Elements of X are denoted by x = {xi}+∞
i=−∞ and elements of XN by x(N).

We write S for the space shift (S(x))i = xi+1. Denote by pN1,N2 , pN and
QN the natural projections pN1,N2 : X → XN1,N2, pN : X → XN and QN :
XN → XN−1. The distances on X and XN1,N2 by d(x, y) = sup

i
ρ(xi, yi),

where ρ is the distance on X. We write Vi(x) = Txi
(Xi). The tangent space

V (x) = TxX may be identified with
⊕

i
Vi(xi) with ‖v‖ = sup

i
‖vi‖. We set

V N1,N2(x) =
N2
⊕

i=N1

Vi(x), V N(x) = V 0,N−1 (note, however, that XN = X−N,N)

and PN1,N2 and PN are corresponding projections. We also consider the space

H(x) of vectors with a finite l2−norm ‖v‖2 =
√

∑

i
‖vi‖2.

Now we define our map. Let f be a diffeomorphism of X and f be the
diffeomorphism of X given by (f(x))i = f(xi). We study diffeomorphisms of
the form Φ = J ◦ f , where J is an interaction map defined below. Let J0

be a map J0 : X → X such that there exist constants K1 and κ1 < 1 and
mappings J

(N)
0 : XN → X such that

dC2(J
(N)
0 , J

(N−1)
0 QN) ≤ K1κ

N
1 , (1)

dC2(J0, J
(N)
0 pN) ≤ K1κ

N
1 . (2)

A (K1, κ1)−interaction is given by (J(x))i = SiJ0S
−i(x). Since J is S−invariant

ΦS = SΦ. More general interactions can be considered as long as they satisfy
conditions (3), (4) below. Let Dm

n (x) be the diagonal part of dΦm, that is
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Dm
n v = Pi−n,i+ndΦmv if v ∈ Vi(x). (1) and (2) clearly imply

dΦ : H(x) → H(Φx) and ‖dΦ‖2 ≤ K2, (3)

(where K2 = K1/(1 − κ1)) ) and given ε, m there exists n0 = n0(m) such
that for all n ≥ n0

‖Dm
n (x) − dΦm(x)‖2 ≤ ε. (4)

Conditions (3) and (4) guarantee the existence of the expansion rate proven
in §4.
§3 Expansion rate. In order to define the expansion rate we need some ex-
tra notations. If E and F are Hilbert spaces and A : E → F is a linear opera-
tor we set |A| =

√
A∗A. In case E is finite-dimensional we denote by λ1(A) ≥

λ2(A) ≥ . . . ≥ λn(A) the eigenvalues of |A| : E → E and det A is the deter-
minant of |A|. We call ν(A) the normalized counting measure of the eigenval-
ues ν(A) = 1

dim E

∑

j
δλj(A). The expansion rate of A can be defined as follows:

R(A) =
∑

λj(A)>1
ln λj(A) = dim E

∫

ln+(t)dν(A)(t), where ln+ t = max(0, ln t).

Usually we consider the restriction of A to some finite-dimensional subspace
Ē ⊂ E. To avoid long subscripts we write λj(A|Ē), det(A|Ē), . . . instead of
λj(A|Ē), det(A|Ē) . . . . For example,

R(A) = max
Ē⊂E

ln det(A|Ē). (5)

Now we collect for the future use some elementary properties of ν(A) and
R(A). The proofs are based on the observation that the inequality

ν(A)([t,∞]) ≥ N
dimE

(ν(A)([0, t]) ≥ N
dimE

)
is equivalent to the existence of the subspace Ē of the dimension N on which
(Ae, Ae) ≥ t2(e, e) ((Ae, Ae) ≤ t2(e, e) respectively).
Proposition 1. Let ‖A‖ ≤ a then
1) if ‖B‖ ≤ ε < a then

ν(A)([
√

t1 + 3εa,
√

t2 − 3εa]) ≤ ν(A+B)([t1, t2]) ≤ ν(A)([
√

t1 − 3εa,
√

t2 + 3εa]);

2) if Ē ⊂ E,codim Ē = n, then

|ν(A)([t,∞]) − ν(A|Ē)([t,∞)| ≤ 2n

dim Ē
;
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3) if E = E1 ⊕ E2, A(E) = A(E1) ⊕ A(E2), then

ν(A) =
dim E1

dimE
ν(A|E1) +

dim E2

dim E
ν(A|E2);

4) if (· , · )′E and (· , · )′F are other scalar products on E and F respectively
such that 1

α
‖· ‖( ) ≤ ‖· ‖( )′ ≤ α‖· ‖( ) then

ν(A)([αt1,
t2
α

] ≤ ν ′(A)([t1, t2]) ≤ ν(A)([
t1
α

, αt2]),

where in ν ′(A) A∗ and |A| are calculated using (· , · )′ instead of (· , · ).
Corollary 1. There exists a constant C1 such that

1) if ‖B‖ ≤ ε ≤ ‖A‖, then |R(A + B) − R(A)| ≤ C1

√

ε‖A‖dim E;

2) |R(A|E1) − R(A|E2)| ≤ C1(dim(E1 + E2) − dim(E1 ∩ E2))‖A‖;
3) if E = E1⊕E2, A(E) = A(E1)⊕A(E2), then R(A) = R(A|E1)+R(A|E2);
4) if (· , · )′E,Fare other scalar products on E and F respectively such that
1
α
‖· |( ) ≤ ‖· ‖( )′ ≤ α‖· ‖( ), then

|R(A) − R′(A)| ≤ C1 ln α dim E,

where in R′(A) A∗ and |A| are calculated using (· , · )′ instead of (· , · ).
Now we are in position to define the expansion rate of Φ. Set
R(x, m, N) = R(dΦm(x)|V N (x)), Rn(x, m, N) = R(Dm

n (x)|V N(x)),
ν(x, m, N) = ν(dΦm(x)|V N (x)) and νn(x, m, N) = ν(Dm

n (x)|V N (x)).
By the expansion rate of Φ we mean the limit R(x) = lim

m→∞
lim

N→∞
1

mN
R(x, m, N).

The existence of this limit is proven in the next section.
§4 Existence of the expansion rate.

Theorem 1. Let µ be an S-invariant measure, then the limit R(x, m) =

lim
N→∞

R(x,m,N)
N

exists almost surely and
∫

R(x, m)dµ(x) = lim
N→∞

∫ R(x,m,N)
N

dµ(x).

If µ is S−ergodic then R(x, m) is constant almost surely.
This statement is the immediate corollary of the following result.
Lemma 1. The limit ν(x, m) = lim

N→∞
ν(x, m, N) exists almost surely.

Proof: Take φ ∈ C[0, Km
2 ]. By the proposition 1.1 given ε we can find such a

large n0 that the inequality | ∫ φ(t)dν(x, m, N)(t)−∫

φ(t)dνn(x, m, N)(t)| ≤ ε
holds for n ≥ n0. So, it is enough to prove the existence of the limit of
νn(x, m.N) for all n. By proposition 1.2

|
∫

φ(t)dνn(x, m, N1+N2)−
∫

φ(t)dν(Dm
n |V N1−n(x)⊕V N1+n,N1+N2(x))(t)| ≤ 2n‖φ‖

N1 + N2 − 2n
.
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Let fN(x) = N
∫

φ(t)dνn(x, m, N)(t), then the last inequality and proposition
1.3 imply

|fN1+N2(x) − fN1(x) − fN2(S
N1x)| ≤ Const(n),

so the statement of the lemma follows from the subadditive ergodic theorem
applied to the sequences fN (x) ± Const(n).
The next step is to show that R(x, m) form a subadditive sequence.
Lemma 2. R(x, m1 + m2) ≤ R(x, m1) + R(Φm2x, m2).
Proof: Again it is enough to replace dΦmi by Dmi

n and dΦm1+m2(x) by
Dm2

n (Φm1(x))Dm1
n (x). But in view of (5)

R(Dm2
n (Φm1(x))Dm1

n (x)|V N(x)) ≤ Rn(x, m1, N) + Rn(Φm1(x), m2, N + n)

and the lemma follows by the corollary 1.2.
The application of the subadditive ergodic theorem yields:
Theorem 2. If µ is also Φ−invariant then the limit R(x) = lim

m→∞
R(x,m)

m
ex-

ists almost surely and
∫

R(x)dµ(x) = lim
m→∞

∫ R(x,m)
m

dµ(x). If µ is (S, Φ)−ergodic

then R(x) is constant almost surely.
Remark. Set r(x, c, m, N) = ln max

E⊂V N (x), dimE=cN
det(dΦm(x)|E). By the

same subadditivity arguments it is possible to prove the existence of the lim-
its r(x, c, m) = lim

N→∞
r(x,c,m,N)

N
and r(x, c) = lim

m→∞
r(x,c,m)

m
. The calculation of

r(x, c, m, N) can be done using the following observation. Let A∧k
m,N (x) be the

k−th exterior power of dΦm(x)|V N(x), then r(x, c, m, N) = ln λ1(A
∧cN
m,N(x))

and therefore ln Tr(A∧cN
m,N (x))−N dim X ln 2 ≤ r(x, c, m, N) ≤ ln Tr(A∧cN

m,N(x)),

so
ln Tr(A∧cN

m,N
(x))

mN
is a good approximation to r(x,c,m,N)

mN
if m is large enough (cf.

[11] and the discussion in the introduction). R(x) can be expressed in terms
of r(x, c) as follows: R(x) = sup

c
r(x, c).

§5 Ruelle inequality. In this section we prove an infinite-dimensional
counterpart of Ruelle inequality ([7]).
Theorem 3. If µ is (S, Φ)−invariant measure, then h(µ) ≤ ∫

R(x) dµ(x).
Proof: This statement can be proven by exactly the same arguments as
in [7]. Let T be a triangulation of X0 and Tk be k−fold barycentric subdi-

vision of T. Since
∨

k

+∞
∨

m=−∞

+∞
∨

n=−∞
SnΦmTk is the Borel σ−algebra of X, we

have hS,Φ(µ) = lim
k→∞

hS,Φ(Tk, µ). The last expression can be bounded by
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lim
N→∞

h(Tk,N |Φ−1Tk,N), where Tk,N =
N
∨

j=−N
SjTk. Denote by CTk,N

(x) the el-

ement of Tk,N containing x and let Γ(k, N,x) be the number of elements
Cj

Tk,N
of Tk,N such that Cj

Tk,N
∩ ΦCTk,N

(x) 6= ∅, then h(Tk,N |Φ−1Tk,N) ≤
∫

ln Γ(k, N,x) dµ(x). Let dk be the diameter of Tk. We can find constants
nk, αk, βk such that X−(N+nk),−N × XN,N+nk

can be covered by ( 1
αk

)nk balls

BN
l of the radius βk, such that if x′

i = x′′
i for |i| ≤ N and (p−(N+nk),−Nx′, pN,N+nk

x′)
and (p−(N+nk),−Nx′′, pN,N+nk

x′′) belong to the same ball then d(pNΦ(x′), pNΦ(x′′)) ≤
dk. For k large enough the number of elements of TK,n such that Φ(BN

l ) ∩ Cj
Tk,N

is non-empty is bounded by CN
2 (T )CN

3 exp R(x, 1, N), where C2 is a constant
depending on the choice of the initial triangulation T, C3 depends only on
dim X and x is any point in BN

l . For such a large k we have Γ(k, N,x) ≤
eR(x,1,N)CN

2 CN
3 αnk

k . Making N go to infinity gives hS,Φ(Tk, µ) ≤ ln C2+ln C3+
∫

R(x, 1) dµ(x), and therefore hS,Φ(µ) ≤ ln C2 + ln C3 +
∫

R(x, 1) dµ(x). Re-
placing Φ by Φm we obtain mhS,Φ(µ) ≤ ln C2 + lnC3 +

∫

R(x, m) dµ(x).
Dividing by m and passing to the limit m → ∞ provides the statement
claimed.
§6 SBR-measure. In [5] a measure for Φ with the properties similar to
those of SBR-measure in finite-dimensional case was constructed under the
assumption that Φ is a small perturbation of a system of non-interacting
hyperbolic mappings.
Here we recall this construction. Let Λ be a hyperbolic attractor for f such
that f |Λ is topologically transitive. Then the tangent space at every point
x ∈ Λ can be decomposed into the sum TxX = E(u)(x) + E(s)(x), where

dfn|E(u)(x) ≥ K3κ
n
3 , (6)

df−n|E(s)(x) ≥ K3κ
n
3 (7)

and the angle
6 (E(u)(x), E(s)(x)) ≥ γ3 (8)

for some constants K3, κ3 > 1 and γ3.
Consider a sequence of embeddings IN : XN → X such that ‖IN‖C2 ≤ K4,
PNIN = id and let ΦN = PN ◦Φ ◦ IN , fN = PN ◦ f ◦ IN so that (fN (x(N)))i =

f(x
(N)
i ). The following statements hold if K1 and κ1 are small enough and J

is close to identity in C2−norm (see [5]):
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1) ΦN has an attractor ΛN on which ΦN is conjugated to fN | N
∏

j=−N

Λ
and Φ

has an attractor Λ on which Φ is conjugated to f |∏
Z

Λ. In the both case the

conjugation is close to identity;
2) ΦN is hyperbolic on ΛN and Φ is hyperbolic on Λ. Moreover the constants
K3, κ3 and γ3 can be chosen so that formulae (6)-(8) hold with f replaced
by ΦN or Φ.
3) Let Πf be a Markov partition for f, Πfn

and Πf be partitions whose
elements are products of elements of Π and ΠΦN

and ΠΦ be their images under
above mentioned conjugations. Π allows us to identify f |Λ with a subshift of
the finite type (ΣA, σ) with an alphabet {1 . . . l}, where l = Card(Π). Then

ΦN and Φ are semi-conjugated to subshifts (Σ
(N)
AN

, σ) and (ΣA, σ) respectively
with alphabets {1 . . . l}2N+1 and {1 . . . l}Z respectively and the transition

matrices given by AN (~i(1),~i(2)) =
N
∏

j=−N
A

i
(1)
j

,i
(2)
j

A(~i(1),~i(2)) =
∏

j∈Z
A

i
(1)
j

,i
(2)
j

. The

mapping S acts on Σ as a space shift S(~i)j
k = ijk+1, where the superscript

signify the time coordinate and the subscript stands for space coordinate.
Let µN be SBR-measure on ΛN and µ̂N be its pullback to ΣN . It is proven
in [5] that {µN} converge to a measure µ on Λ that is if g : X → R is a
function depending only on a finite number of coordinates then

∫

g dµn →
∫

g dµ. (9)

Moreover if µ̂ is the pullback of µ on Σ then the conditional expectations
converge as well:

µ̂N(i00|i0−1 . . . i0−N , i−1
N . . . i−1

−N . . . i−j
k . . .) → µ̂(i00|i0−1 . . . i0−L . . .~i−1~i−2 . . .~i−j . . .).

The measure µ is mixing with respect to both S and Φ.
We now specify IN to be the periodic embedding (IN(x(N)))i = x

(N)
j , where

i ≡ j mod (2N + 1). The immediate corollary of the above mentioned prop-
erties of λ and S−invariance of λN is the following statement.

Corollary 2. hS,Φ(µ) = lim
N→∞

1
N

hΦN
(µN).

§7 Pesin formula. Let µ be SBR-measure for Φ. Since µ is both S and
Φ−ergodic R(m) = R(m,x) does not depend on x. We write Rµ(Φ) =

lim
m→∞

R(m)
m

.
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Theorem 4. hS,Φ(µ) = Rµ(Φ).
Proof: We combine corollary 2 with Pesin formula for ΦN to get hS,Φ(µ) =
lim

N→∞
lim

m→∞
1

mN

∫

R(dΦm
N)dµN(x(N)). Our concern now is to show that the last

two limits can be interchanged. Consider the decomposition Tx(N)XN =

E
(u)
N (x(N)) + E

(s)
N (x(N)) and let a new metrics (· , · )′ on Tx(N)XN be given

by the conditions ‖v‖′2 = ‖v‖2 for v ∈ E
(u)
N (x(N)) or v ∈ E

(s)
N (x(N)) and

E
(u)
N ⊥′E

(s)
N . Since ‖·‖2√

2
≤ ‖· ‖′2 ≤ ‖·‖2√

1−cos γ3
corollary 1.4) implies

|R(dΦm
N) − ln det(dΦm

N |E(u)
N (x(N)))| ≤ C4N,

that is

| 1

mN
R(dΦm

N ) − 1

mN
ln det(dΦm

N |E(u)
N (X(N))| ≤ C4

m
.

But since

det(dΦm1+m2
N |E(u)

N (x(N))) = det(dΦm2
N |E(u)

N (Φm1
N (x(N)))) det(dΦm1

N |E(u)
N (x(N)))

the last inequality gives | lim
m→∞

1
mN

∫

R(dΦm
N )dµN − 1

m0N

∫

R(dΦm0
N )dµN | ≤ C4

m0

and hence hS,Φ(µ) = lim
m→∞ lim

N→∞
1

mN

∫

R(dΦm
N(x(N)) dµN , as claimed.

Let us calculate the interior limit. By the same arguments as in proof of
theorem 1 given ε we can find L0 so large that for L ≥ L0

|R(dΦm
N)−

N/L
∑

j=−N/L
R(dΦm

N |V jL+1, (j+1)L(x(N)))| ≤ εN and, since µN is S−invariant,

| 1

N

∫

R(dΦm
N) dµN(x(N)) − 1

L

∫

R(dΦm
N |V L(x(N))) dµN(x(N))| ≤ ε.

In other words

hS,Φ(µ) = lim
m→∞

lim
L→∞

lim
N→∞

1

mL

∫

R(dΦm
N |V L(x(N))) dµN .

By the short range conditions (1)-(2) there is C5 = C5(m, L) such that

‖(dΦm
N(x(N))|V L(x(N))) − (d(Φm ◦ IN )(x(N))|V L(x(N)))‖ ≤ C5κ

N
1 ,

therefore hS,Φ(µ) = lim
m→∞ lim

L→∞
lim

N→∞
1

mL

∫

R(dΦm|V L(INx(N)) dµN(x(N)). By

construction of measure µ (see formula (9)) the interior limit is equal to
∫

R(dΦm|V L(x)) dµ(x) and hence

hS,Φ(µ) = lim
m→∞ lim

l→∞

1

mL

∫

R(dΦm|V L(x)) dµ(x) = lim
m→∞

R(m)

m
= Rµ(Φ).
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