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Abstract After a brief historical survey of parametric survival models, from actu-
arial, biomedical, demographical and engineering sources, this paper discusses the
persistent reasons why parametric models still play an important role in exploratory
statistical research. The phase-type models are advanced as a flexible family of latent-
class models with interpretable components. These models are now supported by
computational statistical methods that make numerical calculation of likelihoods and
statistical estimation of parameters feasible in theory for quite complicated settings.
However, consideration of Fisher Information and likelihood-ratio type tests to dis-
criminate between model families indicates that only the simplest phase-type model
topologies can be stably estimated in practice, even on rather large datasets. An exam-
ple of a parametric model with features of mixtures, multiple stages or ‘hits’, and a
trapping-state is given to illustrate simple computational tools in R, both on simulated
data and on a large SEER 1992–2002 breast-cancer dataset.
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1 Historical introduction

Parametric survival analysis models originated from several directions of applied sta-
tistical work: actuarial and demographic summaries of human mortality patterns, bio-
logical and epidemiologic summaries of mortality and disease incidence, and engi-
neering failure testing and reliability studies. Although latter-day durational analyses
can also be found in economics, sociology, and other fields, our intuitions about mech-
anisms and hazard rates have generally followed these older sources. Beginning with
parametric models designed to reflect specific qualitative features of observed hazard
rates, each discipline has added levels of detail to reflect distinct objectives. In recent
years, there has been a resurgence of interest in models based on threshold cross-
ings, cumulative damage, and other hitting-times expressed in terms of underlying
stochastic processes.

In this article we provide background and an assessment of the state of parametric
survival modeling, from the particular vantage point of models which can be fitted to
biomedical datasets of moderate to large size. We consider simple conceptual tools, pri-
marily Fisher information and likelihood ratio type tests (Kullback-Leibler distances),
for describing relationships between different models and for resolving which para-
meters can be stably identified from data. We focus on phase-type models, the class
of models of absorption times by continuous-time discrete state Markov chains, and
some variants.

1.1 Sources from actuarial science and demography

Human mortality description in actuarial science begins with life tables (Halley 1693).
Patterns of mortality by age were formulated initially through age-specific death-rates
denoted nowadays by qx = P(x < T < x + 1 |T ≥ x) for one-year time intervals
associated with continuous lifetime random variables T . Models of mortality were
later formulated more or less interchangeably either through death rates or through
the hazard rate function h(x) (termed force of mortality by actuaries), so as to
facilitate the numerical calculation of expected present values under constant rates of
compound interest. These models include the influential exponential law h(x) = bAx

of Gompertz (1825), where b > 0 and A is slightly greater than 1, to which Makeham
later (1860) added a constant term, as well as the Weibull power law h(x) = b k xk−1.
(For these and other historical references, see Bowers et al. 1997 and Lin and Liu
2007.) These models are naturally unified (Brillinger 1961) as being among the small
class of extreme-value distributions characterized by the fundamental Fisher-Tippett-
Gnedenko (1927–1948) Theorem (Feller 1972, vol.2) as possible distributional limits
of maxima max1≤i≤n Xi of independent identically distributed sequences {Xi }.

In practice, actuaries and demographers generally rely on nonparametric techniques
to do justice to their large volumes of mortality data, using ‘Graduation’—the actuarial
term for Whittaker-Henderson smoothing splines and related methods (Bowers et al.
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1997)—to fit sequences qx of age-specific death-rates at integer ages. Yet, especially to
characterize the changes in mortality between different population cohorts, actuaries
and demographers have continued to propose parametric models, like the Heiligman
and Pollard (1980) eight-parameter model. While that model fits important qualitative
features of modern life tables, it is known to be messy to fit to real data and its
parameters are not readily interpretable, so it is not considered really practical. Another,
more tractable parametric approach is given by Lin and Liu (2007), which will be
discussed below under the heading of phase-type models.

Demographers, like actuaries, generally prefer large-population mortality datasets
to be reflected in highly parameterized models, verging on the nonparametric, which
can be used to summarize and forecast secular variations of death-rates over time and
birth-cohort. The most famous model in this area is that of Lee and Carter (1992),
which expresses the logarithm of the age-x specific death rate qx,t at calendar time t
as the sum of an underlying age-effect αx and a bilinear form βx γt . The model thus
includes a period-effect and a period-specific rate of change in the main age-effect. It is
widely used as a benchmark for analysis, generalizing the older linear t-projections of
x-mortality, although often the time t rate of change γt in age-x slopes are found to be
roughly linear. Later developments of this model have primarily focused on specialized
methods of fitting it from data. Extensions and variants of the model itself can be found
in Bongaarts (2005); Koissi et al. (2006), and Booth and Tickle (2008). Suntornchost
et al. (2011) have recently found that the model works better on several decades of
US cause-specific mortality data when the time t rates of change are parameterized
separately for several distinct age-intervals.

1.2 Biomedical and epidemiologic sources

The very fruitful multihit model of cancer incidence was formulated by Armitage and
Doll (1954) based on their observation that cancer incidence for many different sites
and populations approximately follows a power law as a function of age. The multihit
model essentially says that before a malignant tumor becomes clinically observable,
its precursor cells must have passed successively through a series of independent
stages, conceptualized as mutations or newly initiated developmental events. The key
contribution of this model was a mechanism ‘explaining’ the observed power law:
when the k successive transition rates λ are identical, the power dependence on age
is the term xk−1 in the Gamma (k, λ) density for the sum of k Expon (λ) waiting
times.

This model already displays the key features that later characterize phase-type
models for mortality: independent, latent stages with exponentially distributed dura-
tions. For example, Knudson (1971) advanced a Markovian model (with 6 states and
7 transition-rate parameters) for retinoblastoma development which was later sub-
stantially validated. See Moolgavkar (2004) for references and background on the
50 years of further development of the original multi-hit idea, which showed satis-
fying agreement between conceptualized latent stages and the mutations discovered
through molecular genetics. Moolgavkar (2004) claims that multistage cancer models
of causation have now become explanatory, supported by genetic and other biological
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evidence, but that more accurate descriptive transition models must still be developed.
Other Markov-chain models of cancer incidence times or death times following diag-
nosis and initial treatment have been introduced by many different authors for several
different cancers, such as the Manton and Stallard (1980) model of breast-cancer
mortality. (See additional references of Moolgavkar (2004) and Manton and Stallard
(1980) for other examples.)

1.3 Sources from reliability

There is a long tradition in engineering reliability to view failure as the result of phys-
ical but nondeterministic cumulative-damage processes such as crack-spreading or
corrosion. Accordingly, many reliability models have been developed (Singpurwalla
1996) in which an underlying unobservable stochastic process (‘degradation’ or ‘dam-
age’) X (t) determines the failure time random variable T for a device as the first
time when X (t) crosses threshold a, which may itself be a random characteristic
of the device. Specific classes of stochastic processes X crossing a constant threshold
determine well known failure time distributions. The best known example, when X is
the Wiener process with drift, is the 2-parameter Inverse Gaussian distribution. Lee
and Whitmore (2006) discuss several other such models, in some of which a process
Y (t) correlated with the underlying process X (t) can be observed: their approach to
survival data analysis is to choose a tractable process X and model survival times
through regression models for the threshold a or initial point x0 = X (0) in terms of
observable covariates. More ambitiously, Aalen and Gjessing (2001) study threshold-
crossing times for a much wider class of continuous-time continuous-state Markov
processes with the objective of deriving qualitative properties of the hazard functions
for crossing times from the underlying process properties. They produce some inter-
esting results, but there are few examples where this program is analytically tractable.

The idea of failure as a process of arriving at a death-state by way of time-
homogeneous Markovian transitions between discrete states is a simpler version of the
threshold-crossing idea, and is the definition of a phase-type model. In a wide array
of applied-probability and statistical investigations, these models have proven useful,
and they are the ones we focus on for the rest of the paper.

1.4 Phase-type models

A phase-type random variable T is defined as the absorption time into a termination- or
death-state in a continuous-time homogeneous finite-state Markov chain. If the chain
with transition intensity matrix Q = {Qab : a, b = O, 1, . . . , K , D} starts in the
initial state denoted O , with the terminal death-state (only one is needed) denoted D,
and the other states {1, . . . , K }, then

P(T ≤ t) = (exp(t Q))O D = PO D(t)
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Such models are natural for cascades of discrete states reflecting accumulation of
mutation or damage, which accordingly experience different rates of immediate fail-
ure. However, we must distinguish conceptually the counting-process models with
observable states and nonparametrically estimated general transition intensities from
the latent-state Markovian models for which only the survival duration (often right-
censored) can be observed.

Models of this type were proposed separately in Queueing Theory (Neuts 1975) and
in the classic Illness-Death model (see Andersen et al. 1993 for references). In both
of these settings, the state transitions may be observable. However, the terminology
of phase-type models also refers to waiting times for failure or other events in which
intermediate states are latent or unobservable. Thus, in pharmacokinetic compartmen-
tal modeling, the overall time for a drug or chemical to remain in the human body
may be idealized as a succession of sojourns in organs or other subsystems which can
be observed indirectly if at all, and the parameters of the duration distribution are of
primary interest. (References can be found in Macheras and Iliadis (2006)).

The phase-type distributions introduced by Neuts in 1975 as a generalization of
the Erlang distribution have been widely used in stochastic models in queueing and
telecommunication (Sengupta 1989; Asmussen 1992; Ausin et al. 2004), traffic flow
(Thümmler et al. 2006), actuarial science (Lin and Liu 2007), health care (Faddy and
McClean 1999), and survival analysis (Aalen 1995; Olsson 1996).

Among the other phase-type applications cited in the previous paragraph, the actu-
arial phase-type model of Lin and Liu (2007) deserves special mention because of
its connection to actuarial and demography lifetime models discussed in Sect. 1.1.
These authors provide a model representing human mortality as an ordered sequence
of many intermediate states {1, 2, . . . , n} in which each state also has a possible direct
transition to the death-state D. To maintain parametric parsimony, Lin and Liu define
a simple common parameterization of transitions k �→ k + 1 as well as a power-
law form of death-transitions Qk D = b + akc reminiscent of the Weibull death-rate
function. They show that this parameterization, with as few as 6–9 total parameters,
is remarkably successful in reproducing subtle features of the age-specific death-rate
curves of three historical Swedish population cohorts.

The phase-type distributions are known to be dense (in the sense of pointwise con-
vergence of distribution functions) among all continuous distributions on the positive
half-line. They are appealing because they include several of the most important con-
structions used by applied probabilists to describe realistically complex waiting-time
phenomena: as shown in the following Proposition, the phase-type class is closed
under finite mixtures, as well as under minima, maxima, and sums of independent
waiting-time random variables.

Proposition 1 (Neuts 1981) Suppose that T1, T2, . . . , Tm are phase-type random
variables, with respective densities fTj (·).
(a) If (p1, . . . , pm) is a probability vector, then the mixture random variable T∗

with density
∑m

j=1 p j fTj (x) is also a phase-type variable.

(b) The sum T1 + · · · + Tm is a phase-type random variable.
(c) Both min{Tj : j = 1, . . . , m} and max{Tj : j = 1, . . . , m} are phase-type

random variables.
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Proof Let the states, initial distribution, and transition intensities of the phase-type
Markov chains M j whose absorption times are Tj be denoted respectively, for 1 ≤
j ≤ m, by s ∈ S j , by π j (s), and by Q j (s1, s2) for s1, s2 ∈ S j . Denote the terminal
(death) state in the j’th chain by D j . In the first two parts of the proof, we define a
Markov chain M with states ∪m

j=1S j , after identifying certain states and defining a
suitable initial distribution, for which the absorption time into a designated death-state
D is the desired random variable.

(a) Now the initial distribution is defined for all j = 1, . . . , m and s ∈ S by
π(s) = ∑m

j=1 p j π j (s) I[s∈S j ]. Define the state D ≡ ∪m
j=1 {D j } by lumping the

death-states of all the chains M j into a single death-state. The chain M (with intensity
matrix Q) allows only the transitions s �→ s′ allowed (for s, s′ ∈ S j for some j) by
the separate chains M j , with the intensity

Q(s, s′) =
m∑

j=1

I[s,s′∈S j ] Q j (s, s′) for s, s′ ∈ S

All other transitions are impossible, i.e., are given transition intensity 0. In this chain,
the waiting time to absorption is exactly Tj if the initial state lies in S j , which is an
event of probability p j . Therefore the unconditional absorption time is distributed
according to the mixture with probabilities p j of the distributions of the respective
times Tj , as desired.

(b) In this case, the initial distribution is defined to be π1(·) on S, and the overall
death state for the new chain is defined as Dm . Moreover, in the newly defined chain,
each transition s �→ D j for j = 1, . . . , m − 1 and s ∈ S j is disallowed (given
intensity 0), and new transitions ( j, s) �→ ( j + 1, s′) for all s′ ∈ S j+1 are included,
with intensities

Q(s, s′) =
m−1∑

j=1

I[s∈S j , s′∈S j+1] Q j (s, D j ) · π j+1(s
′)

That is, in this new chain the transitions to intermediate death-states D j at the
expiration of the successive waiting-times Tj are replaced by transitions to the starting
states for the Tj+1 chain, with probabilities according to the initial distribution for
the j + 1 chain.

(c) For each of the desired constructions in this part, the state space consists of the
cartesian-product space S′ = S1 × S2 × . . . × Sm , the initial distribution defined by

π(s1, s2, . . . , sm) =
m∏

j=1

π j (s j )

and the allowed transitions given, for sk ∈ Sk, k = 1, . . . , m, by

(s1, s2, . . . , sm) �→ (s1, . . . , s j−1, s′, s j+1, . . . , sm) for s′ ∈ S j
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with Q-matrix intensity equal to Q j (s j , s′). For this Markov Chain definition, the
absorbing terminal state-set is defined to be

D ≡ {(s1, . . . , sm) : s j = D j for some j = 1, . . . , m}

in order to achieve min(T1, . . . , Tm) as overall absorption time; and the terminal
state-set is defined as

D ≡ {(s1, . . . , sm) : s j = D j for all j = 1, . . . , m}

in order to achieve max(T1, . . . , Tm) as overall absorption time. ��
Thus, mixtures of exponentials are of phase type, which is the main avenue for

the introduction of decreasing hazard rate failure times into the class. Note also that
phase-type models with general initial distributions can always be viewed as mixtures
of waiting times for models with fixed initial state. (The part of the chain beginning
from each state k is newly defined as a separate branch or path.) Because of (b),
the time until crossing of a fixed threshold by a random walk whose times between
jumps are phase-type is also a phase-type random variable. Since Wiener processes
with drift are distributional limits of random walks with exponentially distributed
time-steps, also inverse-Gaussian and other cumulative-damage models are naturally
viewed as examples or distributional limits of phase-type models. The multi-hit models
considered by Armitage and Doll were essentially pure-birth Markov-chain models of
this type, leading to Gamma and Erlang random variables, and more general pure-birth
models have been considered in the carcinogenesis modeling literature (Moolgavkar
2004).

One of the modeling ideas often used in phase-type models is to allow transition
steps from many intermediate states directly to the absorbing death-state. Models with
such arcs are often called Coxian (following Cox 1955), and such direct transitions
are often modeled to have the same or functionally related transition-rate parameters.
Including Coxian arcs in phase-type models has been shown to prevent numerical
difficulties in calculating phase-type distributional quantities, and such models have
found extensive applications in many fields of study, in particular, in studies of dura-
tion of hospital stays, for which a good review can be found in Marshall and Zenga
(2009). Further extensions of Coxian models to incorporate regression terms involv-
ing covariates into transition rates have also been studied, for example in Faddy and
McClean (1999).

Phase-type models have also been adapted to analyze censored data. Olsson (1996)
extended the EM algorithm of Asmussen et al. (1996) to find parameter estimates from
either right censored or interval censored data. Aslett and Wilson (2011) proposed a
Bayesian method to fit phase-type distributions to right censored observations.

In a phase-type model, each waiting time to leave a state is exponentially distributed.
A natural further generalization is to define ‘flow-graph’ models which allow the time
spent in each state j to be a parametric non-exponentially distributed random variable
as in Huzurbazar (1999), which may depend on j and may also depend on the next
state to be visited (the hallmark of a semi-Markov model, Huzurbazar (2005), chap. 7).
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In this way, whole sections of a phase-type diagram with a single entry state and a
single exit state can be replaced by random variables with simple parametric forms.

1.5 Methods of fitting phase-type models

Although the Phase-type distributions are flexible, it is known that the representa-
tions of distributions they provide are not unique (O’Cinneide 1989). In other words,
Phase-type representations may be badly over-parameterized. Considerations of model
parsimony have led many authors to constrain many of the phase-type transition rates
to be the same or functionally related. Examples include Lin and Liu (2007) in con-
necting the direct (‘Coxian’) failure rates from a succession of internal states to follow
a power-law plus additive constant, as well as the restriction by Bobbio et al. (2003)
to a model subclass called acyclic phase type (APH) distributions, and by Thümmler
et al. (2006) to a small subset of mixtures of Erlang distributions.

Many fitting methods for general Phase-Type distributions or subclasses have been
proposed. Four main methods are Moment Matching (Bobbio et al. 2005), Numerical
nonlinear minimization (Johnson 1993), Expectation-Maximization (EM) algorithms
(Asmussen et al. 1996; Olsson 1996; Lee and Lin 2010), and Bayesian methods (Bladt
et al. 2003; Ausin et al. 2004; McGrory et al. 2009).

Several software packages are available for likelihood inference in phase-type mod-
els. For example, EMpht (Olsson 1998) is a C-language program that implements the
EM algorithm studied in Asmussen et al. (1996) and Olsson (1996) both for uncen-
sored and right-censored waiting-time data. TheR packagePhaseType (Aslett 2011)
embodies the Bayesian-based methods discussed in Bladt et al. (2003) and Aslett and
Wilson (2011). The KPC-Toolbox (Casale et al. 2010) is a MATLAB library that fits
Markovian arrival processes and can be adapted to fit Phase-Type distributions. The
PhFit general Phase-Type fitting tool (Horváth and Telek 2002) approximates data
distributions by continuous and discrete Phase-Type models. The R package actuar
(Dutang et al. 2008) provides many actuarial functions including basic characteristics
of general Phase-Type distributions.

2 Motivations for parametric densities

Some motivation must still be given for low-dimensional parametric models, in the
current era when biostatistical and reliability techniques (Andersen et al. 1993) allow
right-censored large-sample survival data analyses to accommodate nonparametric
baseline hazards for various semiparametric regression models. Parametric models
still have a very useful role to play, for at least four different reasons:

(I) Subjects in large epidemiologic studies or databases (like the SEER cancer data-
base) are often extensively cross-classified into many cells of moderate size (100
or less) with widely varying prognosis; in such settings, low-dimensional para-
metric models may be the best available in individual cells, and the parameter
vectors themselves can usefully describe the cellwise survival differences.
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(II) It is desirable to describe qualitative features of whole-population survival curves
which can arise from simple mechanisms (like the pure-birth successive-mutation
hypothesis of Armitage and Doll), and to distinguish them from mixtures of dis-
tinct phenomena which strongly indicate two or more different diseases within
a single named disease entity. This aspect of parametric, and also of phase-type,
modeling is introduced explicitly in a paper of Manton and Stallard (1980) and
entails a search for mixture components, which is meaningful within parametric
but not nonparametric distributional classes. In the case of breast cancer, bio-
medical research has shown clearly (Anderson et al. 2006) that subpopulations
defined by estrogen receptor (ER) status, positive versus negative, account for
two different peaks in the survival density.

(III) Models with interpretable transitions between latent states along disease path-
ways can be scientifically interesting in suggesting new observations to make,
transition steps which are influenced by particular risk-factors, or separate dis-
ease entities represented by specific states.

(IV) More specifically, models (whether fully parametric or not) including regression
parameters for the direct influence of covariates on single transition rates can
be used to investigate the relative importance of various exposure variables on
single transition steps toward disease incidence and mortality.

In the remainder of this paper, we define a phase-type survival-density class with 3
to 8 parameters for which densities and likelihoods are explicitly computed; describe
tools based on likelihood ratios and Fisher Information to clarify which parameters can
be stably identified within parametric densities; and illustrate the fitting and interpre-
tation of the model on breast-cancer data from the SEER 1992–2002 database. Within
the model class we study, we indicate how survival regression models would be nat-
urally introduced. Finally, we bring together our own computational experience with
that found in the literature on phase-type modeling to draw some conclusions about the
feasibility and advisability of fitting complicated phase-type models to right-censored
survival data.

3 Parameters and likelihood for a simple phase-type model

We study statistical inference within a moderately parameterized phase-type model
family. The particular topology we consider, displayed in Fig. 1 below and cited
as Model F, seems to us particularly appropriate in a survival setting for which
the time origin and initial state O correspond to diagnosis and first treatment for a
serious disease like a cancer. Immediately after treatment, direct transitions to death
(state D) or a cure/quiescent state C are possible, but there may also begin a slower
process of migration or mutation of existing diseased or precursor cells, along one or
more pathways determined either by new internal biological events (e.g., mutations
related to environmental or radiologic exposures) or by genetics (alleles related to
disease susceptibility). Because of our motivating breast cancer data illustration in the
following Section, we are interested in allowing the data to impose a model structure
involving two separate disease paths, paths which are known (Anderson et al. 2006)
to correspond to positive and negative Estrogen Receptor status in breast cancer. The
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Fig. 1 Markov transition diagram for Model F with immediate cures and failures, additional direct
failures from states 1, 2, and two failure pathways

Markov chain transition intensities are given in Fig. 1, and can be understood to say
that the chain begins by waiting in state O for a time T1 ∼ Expon((1+bC +bD) μ),
and then jumps to one of the states C, D, 1, or k1 + 1, with respective probabilities
defined by

(pC , pD, p1, p2) = 1

1 + bC + bD
(bC , bD, p, 1 − p) (3.1)

States C and D are absorbing; from state 1 the time to absorption in D is equal with
probability q1 = β1/(β1 + λ1) to a r.v. T1D ∼ Expon(λ1 + β1) and with probability
1−q1 to the sum of T1D and an independent variable G1 ∼ Gamma(k1 −1, λ1); and
from state 2 the time to absorption in D is equal with probability q2 = β2/(β2 + λ2)

to a r.v. T2D ∼ Expon(λ2 + β2) and with probability 1 − q2 to the sum of T2D

and an independent variable G2 ∼ Gamma(k2 − 1, λ2). Note that if β1 = 0, then
the overall waiting time from state 1 to reach D is distributed as Gamma (k1, λ1).
The decomposition into waiting times T1D and G1 accounts separately for the
time to leave state 1 and to progress from 2 to D after the transition 1 �→ 2. In this
description, the properties of Markov chains and exponential waiting times ensure
that at all branches, the branching events result from trials which are independent of
all waiting times. If either of the Gamma shape parameters k j is equal to 1, then
the corresponding intensity pair (β j , λ j ) is unidentifiable and the two transition arcs
with these intensities can be replaced by a single arc with transition intensity β j +λ j .
Thus, if k j = 1, without loss of generality β j = 0.

It is apparent from the foregoing paragraph and the Definitions (3.1) that the absorp-
tion time density into state D for the pictured Model F Markov chain is a mixture
with weights pD, p1q1, p2q2, p1(1 − q1), and p2(1 − q2) of the Expon((1 +
bC + bD)μ), Expon((1 + bC + bD)μ) ∗ Expon(β1 + λ1), Expon((1 + bC + bD)μ) ∗
Expon(β2 + λ2), Expon((1 + bC + bD)μ) ∗ Expon(β1 + λ1) ∗ Gamma(k1 − 1, λ1),
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and Expon((1+bC +bD)μ)∗Expon(β2 +λ2)∗Gamma(k2 −1, λ2) densities, where
∗ denotes convolution. The weights in this mixture add up to 1 − pC < 1 because
of the positive probability pC with which the chain is absorbed at C and never hits
D. The convolutions in these densities are in fact easy to write down in closed form,
for positive integers k1, k2, which makes the densities and survival functions fully
explicit and easy to compute in vectorial form in the likelihood for Model F based
on right-censored survival data. Computing formulas that allow these calculations to
be implemented rapidly in R code can be found in the Supplement to this paper (Slud
and Suntornchost 2013).

The Model F Markov chains include a variety of cure models along with the
Erlang-type multi-hit model considered by Armitage and Doll (1954), including spe-
cial cases of that model with up to 3 distinct rates for successive mutation ‘hits’. Models
of these types can all be accommodated within cases of Model F for which p = 0
or p = 1, and we refer to the resulting phase-type absorption times as ‘single-path
Model F’ densities. As a matter of notation, we refer to the single-path Model F
absorption density with p = 1 in Fig. 1 as the (bC , bD, μ, β1, λ1) single-path den-
sity, with shape-parameter k1 generally fixed. The Model F class was designed to
include such single-path densities as well as a large class of two-component mixtures
of them, which we will find to be particularly useful in the data illustration of Sect. 4.
The formal result justifying this idea is the following Lemma.

Lemma 1 The mixture with weights p and 1 − p of the single-path model F den-
sities which have respective parameters (bC , bD, μ, β1, λ1) with shape k1 and
(b̃C , b̃D, μ̃, β2, λ2) with shape k2, is again a model F phase-type density if and
only if (1 + b̃C + b̃D) μ̃ = μ̄ ≡ (1 + bC + bD) μ.

Proof The stated condition is necessary because the two single-path models respec-
tively have Expon((1 + bC + bD) μ) and Expon((1 + b̃C + b̃D) μ̃) distributed
waiting times until exit from the initial state. See the discussion immediately follow-
ing Fig. 1 to see that each of the phase-type single-path densities is itself a mixture of
an exponential density with other convolved-density components; the mixture of two
such mixtures cannot be of the same type unless the single exponential density term
in both mixture components is the same.

Now suppose that the condition of the Lemma holds, and that p �= 1. Then the
expression of the Model F absorption time density with parameters

(p∗, b∗
C , b∗

D, μ̄/(1 + b∗
C + b∗

D), β1, β2, λ1, λ2)

as a mixture of an exponential density and convolutions is the same as the expression
for the mixture with weights p, 1 − p of the two single-path model F densities as
long as all three of the following equalities hold

p∗

1 + b∗
C + b∗

D
= p

1 + bC + bD
,

1 − p∗

1 + b∗
C + b∗

D
= 1 − p

1 + b̃C + b̃D

b∗
C

1 + b∗
C + b∗

D
= p

1 + bC + bD
bC + 1 − p

1 + b̃C + b̃D
b̃C .
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We solve these equations explicitly for parameters p∗ ∈ [0, 1], b∗
C , b∗

D . First,
taking ratios of the first two of these equations leads to the equality

p∗

1 − p∗ = 1 + b̃C + b̃D

1 + bC + bD
· p

1 − p

which uniquely determines p∗ �= 1. Next, substituting the first two equalities in the
third shows that b∗

C = p∗bC + (1 − p∗)b̃C . Also, subtracting the sums of the three
equalities from 1 on each side shows that the third equality holds with C’s and D’s
reversed, from which it follows that b∗

D = p∗bD + (1 − p∗)b̃D . The proof of the
Lemma is complete. ��

3.1 Simulations illustrating model comparisons

We consider parameter estimation based on several simulations with phase-type mod-
els of the type of Fig. 1, with the objective of illustrating the extent to which different
phase-type models can be distinguished based on reasonable sized datasets. In our
simulations, we restrict to cases with bD = bC = 0, so that immediate transitions
O �→ D and O �→ C are rendered impossible. In the first series of simulations, we
also fix parameters β1 = β2 = 0 and (p, μ, λ1, λ2) = (0.30, 2.00, 0.20, 0.30), with
k1 = 4, k2 = 3, and generate one uncensored data-sample for each of the sample-
sizes N = 100, 1000, 10000, 20000, 100000. The purpose here is not to illustrate the
mechanics of convergence, but rather to use simulations to document the convergence
of the per-observation Fisher Information matrix, and thereby to indicate that certain
parameters—i.e., linear combinations of parameters which are close to lying in the
span of the larger-eigenvalue eigenvectors—are estimated reasonably well in moderate
samples, while others are estimated badly even in large samples. In these examples,
the survival time is a mixture of convolutions of exponential and Gamma random
variables, and the likelihood is explicit, so that ML computations by quasi-Newton-
Raphson optimization are very fast. ML estimators of the transformed parameters
ϑ = (logit(p), log(μ), log(λ1), log(λ2)) were calculated for each of the simulated
datasets, with the results shown in Table 1 along with estimated standard errors (SE’s,
in parentheses). The table shows how remarkably large the sample size must be for the
MLE’s to be close to the true values. This is a feature of latent-class models generally,
and can be studied more precisely by analyzing the Fisher Information for ϑ.

The per-observation Fisher Information matrices are estimated as the negative
Hessian matrices evaluated at the ML (transformed) parameter values, divided by sam-
ple size. This observed Fisher Information Î1(ϑ̂) stabilizes nicely for the successively
larger sample sizes, and for N = 105 has eigenvalues 1.2601, 0.770, 0.0054, 0.0012.
As a consequence, for sample size N , large-sample theory predicts standard errors
(obtained by taking reciprocal square roots) 0.891/

√
N , 1.139/

√
N , 13.550/

√
N ,

and 28.911/
√

N , respectively for the linear combinations of the parameter estimates
v1 logit( p̂)+v2 log(μ̂)+v3 log(λ̂1)+v4 log(λ̂2)) for each of the four unit eigenvectors
of the Information matrix. We use the estimated information matrix and eigenvectors
at the largest simulated sample size (105) in place of the theoretical values. Thus, at
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Table 1 Parameter (p, μ, λ1, λ2) MLE’s and SE’s (in parentheses) on transformed scale (logit for p,
log for others) by sample size N , for single simulated datasets with k1 = 4, k2 = 3

True N = 100 N = 1, 000 N = 10, 000 N = 20, 000 N = 100, 000

logit(p) −0.8473 −0.4273 0.1693 −0.8167 −0.9354 −0.7541

(SD) (0.5218) (0.6391) (0.1859) (0.1469) (0.0571)

log(μ) 0.6931 −1.1358 −0.9828 0.4574 0.7304 0.5782

(SD) (0.9058) (1.0260) (0.2325) (0.1878) (0.0815)

log(λ1) −1.6094 −1.4574 −1.3981 −1.6000 −1.6227 −1.5952

(SD) (0.0941) (0.1538) (0.0332) (0.0256) (0.0101)

log(λ2) −1.2040 −0.6957 −0.6187 −1.1835 −1.2213 −1.1769

(SD) (0.2788) (0.3469) (0.0465) (0.0313) (0.0149)

the moderately large sample size of N = 1000, the first eigenvector parameter combi-
nation 0.216 logit( p̂)−0.075 log(μ̂)−0.425 log(λ̂1)−0.877 log(λ̂2)) is fairly well
estimated at 1.246 with predicted standard error of 0.028 , while the fourth eigenvec-
tor combination 0.482 logit( p̂) − 0.859 log(μ̂) + 0.082 log(λ̂1) + 0.152 log(λ̂2) is
very badly estimated at 0.717 with predicted standard error of 0.914. Ill-conditioning
in the Information matrix results in dramatic differences between the quality of iden-
tification of parameters. In particular, the parameter logit(p) which has large eigen-
vector coefficients only for the third and fourth eigenvectors, is very badly resolved,
with standard error ( Î (ϑ̂)−1)11/

√
N = 0.571, while the parameter log(λ1/λ2) is

fairly well identified, with estimated value of −0.779 and standard error 0.083.

4 Model fitting on breast cancer data

In this Section, we fit the Model F parametric class of densities to the White Female
SEER dataset on mortality in 13-registry US databases of breast cancer cases diagnosed
between 1992 and 2001 and followed through 2002. Details concerning the data, a
spline-based fitting methodology, and discussion can be found in Anderson et al.
(2006). Of the complete dataset of 243,808 cases, we analyzed only the 198,785-case
subset of White females with age at diagnosis from 30 to 89, for breast-cancer mortality.
Although the primary focus of the Anderson et al. study was to understand the shape
of post-diagnosis hazard as a mixture of the disaggregated disease types indicated by
Estrogen Receptor (ER) status, we omitted that covariate from our analysis, since our
objective is to learn what a purely parametric statistical analysis using the model of
Sect. 3 could have told about the likely mixture components of breast-cancer mortality
in the combined population.

While Anderson et al. (2006) directly created spline-fitted hazard functions for
their combined and ER-disaggregated study populations, we performed a slightly
more complicated preliminary analysis designed to correct for year-of-diagnosis mor-
tality differences, since Kaplan-Meier curves for the data stratified by diagnosis year
(DiagYr) showed a small but clear trend in decrease of hazards with DiagYr. The
cumulative hazards were nearly linear for the datasets with DiagYr after 1996, with
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Fig. 2 Spline and fitted density functions to the SEER 1992–2002 data on US white 30–89 female breast-
cancer mortality following diagnosis

a slight concavity over times 6–11 years for earlier DiagYr’s. Since the nonparamet-
rically fitted hazards were therefore approximately proportional across DiagYr, we
fitted a Cox proportional hazards model with a dummy variable for DiagYr as the
only covariate, finding contrast effects for DiagYr versus 1992 to be 0.007, −0.024,
−0.065, −0.093, −0.138, −0.161, −0.236, −0.285, −0.292.

We present as our basic nonparametric mortality curve the summary survival curve
for that Cox model, plotted at the raw survival times of 0:131 months plus 0.5, to which
we fitted a smoothing spline using the R function smooth.spline, with smoothing
parameter spar=0.5. Figure 2 shows the corresponding survival density, along with
one done the same way but with less smoothing (spar=0.25), along with the best
fit (plotted in blue) that we were able to find to the data, a 6-parameter model within
Model F for which the Coxian rates β1, β2 are fixed equal to 0. In this fitted model,
as in all those treated below, k1 = 4 and k2 = 1. (A 5-parameter variant model which
looks visually identical to the 6-parameter density in Fig. 2, but fits slightly worse, is
obtained by letting the μ rate-parameter in Fig. 1 go to ∞, which has the effect of
making the limiting model F density a mixture of two exponential components and
two convolutions.)

The solid spline-fitted curve in Fig. 2 closely resembles the summary all-patients
survival hazard pictures in Anderson et al. (2006). The spline fit to the same Cox-
model summary survival, but with lesser smoothing (dotted curve in Fig. 2), shows
more clearly the overall features of the density which a parametric model should seek
to reproduce. These features include a high initial spike in hazard, a density peak near
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Fig. 3 Spline and 5 parametric Model F density functions ML fitted to the SEER 1992–2002 data as in
Fig. 2 on US female breast-cancer mortality following diagnosis

20 months, an approximately linear decrease of density between 20 and 120 months,
and a final turn up in density between 120 and 130 months. Presumably the initial
hazard spike is due to immediate adverse outcomes from surgery and untreatable
advanced-stage cancers, and the peak and density decrease from 20 to 120 months
are due to the recent successes in treating a large fraction of cancers detected at early
stages. But we cannot account for the final upturn in hazard, which our models do not
address at all.

We describe next the computational steps used to fit successively more complicated
models within the model F class to the Breast Cancer dataset. First of all, we added
to all of the 198,785 survival times, which are whole numbers of weeks ranging from
0 to 131, random variates supported in [0, 1) which make the death-hazards constant
on each interval [k, k + 1) for the resulting continuous variates, without changing
the empirical all-cause survival function at the discrete integer endpoints. Thus, if
Ŝ(k) denotes the proportion of discrete survival times greater than or equal to k, and
μ̂k ≡ log(Ŝ(k)/Ŝ(k + 1)) for k = 0, 1, . . . , 131, then we added to all survival times
Ti = k independent random variates τi with density μ̂k e−sμ̂k /(1−e−μ̂k ), 0 ≤ s < 1.
The reason for doing this is to avoid the artificiality of 0 survival times or, if a constant
like 0.5 were to be added to all survival times, to avoid distorting the model F
parameter estimation because of the absence of deaths on [0, 0.5).
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Most of the computational work in finding good starting parameter values for fit-
ting the models displayed in Fig. 3 was done on a single set of 20,000 patient records
randomly selected from the full dataset of 198,785 records. (Although purely a numer-
ical optimization strategy in the present context, this use of parametric log-likelihood
on a sampled dataset is well known within survey-sampling theory as a pseudolikeli-
hood estimation method, Binder (1983)). Within each model class of fixed parameter
dimension, the right-censored survival-data log-likelihood coded in R (R Develop-
ment Core Team 2011) was maximized by a quasi-Newton-Raphson algorithm using
the R function nlm, convergence of which was rapid (of the order of 1 minute for the
dataset of size 20,000, on a 2.10 gHz laptop) but also sensitive to the choice of starting
parameter values.

In order to avoid the selection of an incorrect local peak by the ML optimization,
it was necessary to fit a nested succession of models within model F, increasing the
parameter dimension by at most 1 or 2 at each step. The precise sequence used in
fitting the models displayed in Fig. 3 was as follows:

(i) The initial, 2-dimensional model, was based on a single path (p = 1, which makes
β2, λ2 irrelevant), with rates 0 along Coxian arcs (bD = β1 = 0); thus, only
the parameters bC , μ, λ1 remained to be estimated, and initially we restricted
λ1 = e30, so the model provides probabilities bC/(1+bC ) of “cure” (or infinite
time to hit D) and 1/(1+bC ) of an Expon(μ(1+bC )) waiting time. The fitted
values were: b̂C = 2.3551, μ̂ = 0.0028.

(ii) The next (4-dimensional) model allowed free parameters (bC , bD, μ, λ1),
with other parameters fixed as in (i), and was initialized at the values (2 ·
2.3551, 1, 0.0028, exp(−2)). Note that with bD = 1, the choice bC = 2 ·
2.3551 yields the same cure-probability bC/(1 + bC + bD) = 0.702 as
in the fitted model of (i). The optimized ML parameters in this model were:
(11.5502, 2.7578, 0.0009, 0.1857).

(iii) A 5-dimensional one-path model augmented the parameters of (ii) by allowing
β1 to range freely, initialized close to 0 (say, 0.0001). The optimized model had
approximately the same log-likelihood as the model in (iv), but gave a visually
different density. (See Fig. 3, 5-dim fit below).

(iv) Guided by Lemma 1, we next sought a single-path model F density with p = 0
and with parameters b̃C , b̃D, μ̃ satisfying (1 + b̃C + b̃D) μ̃ = 0.01433, which
is the corresponding parameter from the fitted model (iii). We varied parameters
(b̃C , b̃D, μ̃, λ2) based visually on density plots, subject to this restriction, until
arriving at the curve labeled “1-path eye-fit” in Fig. 3 as the lower-path model
F to mix with the single upper-path model (iii) via Lemma 1. Note that because
k2 = 1, there was no loss of generality in restricting β2 = 0 in this and the next
model.

(v) Finally, we used Lemma 1 to define a 7-dimensional mixture parameter to ini-
tialize the search for a general model F parameter (for β2 = 0), with p = 0.9.
The model found by quasi-Newton-Raphson maximization of log-likelihood is
the 7-dimensional model which turned out to be the best fit to the Breast Cancer
data within model F. This model turned out to have an extremely small (and
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Table 2 Parameters and log-likelihoods for models in Fig. 3, with k1 = 4, k2 = 1, β2 = 0

# par. p μ λ1 λ2 β1 bC bD logLik

2 1 0.00269 100 100 0 2.360 0 −172,710

4 1 0.00086 0.1862 100 0 12.064 2.911 −172,638

5 1 0.00094 0.1856 100 0.00023 11.549 2.758 −172,648

6 0.090 0.3015 0.1180 0.0056 0 1.811 0.022 −172,326

non-significant) value of β1, so re-fitting it with the restriction β1 = 0 gave
essentially the same fit as in (v), with a 6-dimensional parameter.

At stages (iii) and (v) of the model-fitting, we varied the choice of k1, and at the final
stage (both the 6- and 7-dimensional versions) also k2, re-fitting the other parameters
for each (k1, k2) choice. We found that the log-likelihood was larger by 0.1 to 0.2
as k1 moved from 4 to 2 (based on sample size 20,000), while k2 = 1 could not be
improved. Since the optimization of the model F parameters became slightly less
stable (due to the near-nonidentifiability of β1 as k2 became smaller), we judged the
change in k2 to be not worth making.

The models compared visually in this Section can further be understood through
their log-likelihood values on the SEER breast-cancer data. (We made all calculations
of these log-likelihoods using the discrete survival time in weeks plus the random
variates τi between 0 and 1 week, mentioned above.) We first clarify the relationship
between visual fidelity of fitted survival densities and purely statistical model com-
parisons via likelihood ratio tests. Table 2 displays ML estimated model-parameters
and log-likelihoods for the SEER data used in producing Fig. 3, i.e., the SEER data
on breast cancer mortality following diagnosis for white females aged 30–89. The
log-likelihood differences between the models are large, because of the large sample
size. For purposes of comparison, the log-likelihoods on the same data for the models
whose densities are plotted in Fig. 2 are −171, 453 for the spline-fitted survival density
with spar= 0.25, −171, 899 for the spline-fitted survival density with spar= 0.5,
and −172, 326 for the best-fitting (6-parameter, 2-path) model.

The Figures and log-likelihoods shown, and the results of other analyses not shown,
demonstrate clearly that the essential features of the density curves up to 120 months
can be captured only by 2-path models, in other words mixture models, within the
phase-type model F class. Figure 3 also indicates that each increase in parameter
dimension allows an additional visual feature of the empirical smoothed density—
which the spline fit displays—to be captured by the parametric model: the 2-parameter
one-path model captures the early and late density levels; the 4-parameter one-path
model additionally captures the approximate curvilinear pattern of decrease of the
density; the 5-parameter model begins to capture the initial hook (decrease and then
increase to local peak); and the 2-path 6-parameter model follows (and even exagger-
ates) the initial hook, although the less-smoothed spline picture in Fig. 2 does show a
sharp initial density decrease) while closely following the local peak near 20 months.

It is well known that latent-class and mixture models often have poorly identified
parameters, sometimes even for strikingly large sample sizes. We have seen the same

123



476 E. V. Slud, J. Suntornchost

phenomenon in the Information matrices for the simulated data discussed in Sect. 3.1
above. So we focus next on the Fisher Information matrices and parameter standard
errors for the fitted models, expressed for the transformed parameters (which are sub-
vectors of) ϑ = (logit(p), log(μ), log(λ1), log(λ2), log(β1), log(bC ), log(bD)).
For models with respectively 2, 4, and 6 parameters, the ranges of eigenvalues of the
respective observed information matrices Î (ϑ̂) were found to be (1313, 15686),
(46, 28882), and (58, 22387). Thus, in all of the models the most accurate linear
parameter-combinations with unit-vector coefficients have SE’s of order 0.007, while
the least accurate for the 4- and 6-dimensional models have SE’s of 0.13 or larger. For
example, the three models give estimated SE’s for log(μ) respectively 0.010, 0.094,
and 0.072; and SE’s for log(bC ) are respectively 0.027, 0.057, and 0.077.

While the phase-type models fitted to the large SEER dataset have strikingly ill-
conditioned Fisher information matrices—and therefore at least some parameters
which are very badly identified—one can with some assurance achieve the quali-
tatively important finding, that at least two mixture components are needed for a
high-quality parametric fit. The fact that in these data the ER-status now represents a
medically observable identifier of two distinct mixture components (which is essen-
tially the point of the Anderson et al. (2006) article) corroborates this conclusion, and
suggests the potential usefulness in new applications of a similar parametric statistical
approach in detecting the presence of two separate diseases within a single diagnostic
category.

5 Computational experience with the EM approach

In this study, our main estimation method has been direct quasi-Newton-Raphson
optimization of an accurately calculated log-likelihood. This method was applicable
because of the relative simplicity of Model F, where paths do not connect except
at the O, D, 1, and k1 + 1 states. Table 1 illustrated the need for large sample size
to estimate all parameters accurately. More numerical studies of performance of ML
estimates in Monte Carlo simulations can be found in the Supplement to this paper
(Slud and Suntornchost 2013). The Supplement also displays histograms allowing the
reader to assess the rather slow rate of convergence of distributions of ML estimators
to normality as sample sizes get large.

The most common method of estimation of parameters applicable in principle to
general phase-type models, follows an EM approach introduced by Asmussen et al.
(1996). The idea of the EM method is first to write down the log-likelihood function
for the complete observations, i.e., the absorption-time dataset augmented as though
all of the intermediate transition times had also been observed. This log-likelihood,
as a function of the free parameter ϑ , is then replaced (the E-step) by its conditional
expectation given the actually observed data, taken with respect to a hypothetical fixed
parameter vector ϑk . Then the conditional expected log-likelihood given observed data
is maximized over ϑ (the M-step), yielding the next iteration ϑk+1 in the estimated-
parameter sequence. The E and M steps are repeated until the sequence ϑk converges.
The calculation of conditional expectations in the E-step is performed in the phase-type
model by setting up a system of differential equations related to the intensity matrix,
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for the unknown transition-intensity parameters, and these equations are solved by a
Runge-Kutta method. Details of this EM implementation can be found in Asmussen
et al. (1996) and the documentation of an associated C-language program, EMpht,
in Olsson (1998). The EMpht program did not specify convergence criteria, so fol-
lowing it we re-implemented the algorithm in the R platform using the R-function rk
for the Runge-Kutta equation solver. Our convergence criteria involve smallness of
changes in log-likelihood of the order of accuracy 10−10. As mentioned in Asmussen
et al. (1996), some drawbacks of the EM algorithm are its slow convergence rate (up
to 10,000 iterations often being required for reasonable convergence), and its occa-
sional convergence to a local maximum or saddle point. Another drawback is that the
E-step calculation must be performed for each observation, which is computationally
burdensome in large samples.

The Supplement (Slud and Suntornchost 2013) studies a specific application of the
Asmussen et al. (1996) EM algorithm, to the phase-type model which is the mixture of
Exp(α1)∗ Gamma(4, λ1) and Exp(α2)∗ Gamma(2, λ2), with sample sizes of 100 and
1,000. We found that very long CPU times are required to achieve EM convergence
in the case of sample sizes as large as 1,000, even in low-dimensional parametric
examples. However, the EM algorithm gave reasonable fit in the case of small sample
size. The parameter estimation results and standard errors are given in the Supplement,
along with an implementation of the method of Oakes (1999) to obtain the Fisher
Information matrix from the EM algorithm computations.

Our overall conclusions are that the EM algorithm method of Asmussen et al. (1996)
and Olsson (1996) for fitting phase-type survival densities to right-censored survival
data is primarily of theoretical interest, because the method places no restriction on the
complexity of the underlying Markov chain. But in practice, even when the models are
very simple, simpler than model F of Fig. 1, the computation times are prohibitively
large even for moderately large datasets, and they scale roughly proportionately to
sample size.

Other EM approaches exist, for example one embodied in the PhFit tool based
on the work of Horváth and Telek (2000). This tool enables a search for the number
n of states (phases) and generally increases n when model-fitting is not satisfactory,
but the search—like ours in the Breast Cancer data analysis—is not fully automatic
and relies on some visual inspections of fit. As these authors explain in their paper,
larger values n result in greater computation time and does not necessarily increase
the quality of fit. All of these findings are consistent with ours, but in view of the ill-
posed information matrices arising even in Phase-type models of moderate dimension,
we would discourage the use of any automatic method which often generates highly
parameterized models.

6 Summary and discussion

We have surveyed the broad field of parametric models for survival densities, from the
vantage point of the special class of latent-state stochastic transition models known
as Phase-type models. Our numerical illustrations and data analysis of a real breast
cancer dataset show that even for relatively low-dimensional models of this type,
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the Fisher Information matrices can be strikingly ill conditioned, and yet that certain
parameters reflecting qualitative features of the fitted models—especially the presence
or absence of extra ‘paths’ or mixture components—can be estimated adequately and
have important interpretations. Our overall point is that visual features of survival
densities may reflect important structure about underlying mechanism of transition
among minimally parameterized latent states, structure with biomedical importance
for the suggestion of future research directions, such as the search for multiple diseases
underlying a single diagnostic category.

Parametric models built from mixtures are notoriously difficult to identify from
moderate sample-size data. The consequence of this observation for Phase-type
survival models is that only models with relatively simple path-structure and state
descriptions can have a realistic chance of being fitted stably. For this reason, it may
be misguided in biomedical applications to fit the complicated multistate phase-type
models for which the EM methods of parameter estimation were devised. As a con-
sequence, if only models at most of the order of complexity of our Model F are to
be fitted, then direct likelihood computation methods based on simple properties of
exponential variates and mixtures of their convolutions will be applicable.

The phase-type Model F can readily be extended to incorporate biomedical
covariates into a regression for log transition rates such as log(μ) or log(λ1). Such
survival regression models increase flexibility for joint models of nonhomogeneous
populations, in the spirit of the threshold regression models of Lee and Whitmore
(2006). Analogous regressions for Coxian parameters were found to increase the model
likelihood in Faddy and McClean (1999). However, the introduction of unknown coef-
ficients for covariates might also result in ML parameter estimates with large variances.
The identification of some non-intercept regression coefficients might be strong, as
we have seen for log ratios of transition-rates. The empirical and numerical study of
such parametric regression models is a subject of our further research.
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