Errata

Page Line
6 t11
(ix) right side should be $a \cdot b+a \cdot c$.

7
Proof of Theorem 1.2
(i) $a>b$ and $b>c$ means $a-b \in P$
(ii) $a>b$ and $c \geq d$ means $a-b \in P$
(iii) $a>b$ and $c>0$ means $a-b \in P$

10 b15 Theorem 1.6 should be Theorem 1.3
13

19

21

21
22

59

72

161 b4 f should be x_{*}.
165 b1 $f\left(x_{n}\right)+f^{\prime}\left(x_{n}\right)\left(x_{*}-x_{n}\right)+R\left(x_{*}, x_{n}\right)$
$178 \quad \mathrm{~b} 1 \quad \overline{\int_{a}^{b}} f=b-a$.
179 t15 Let $a=x_{0}<x_{1}<\cdots<x_{n}=b$
t17 subinterval $\left(x_{i-1}, x_{i}\right)$
181 b3 The explanation for inequality 7.4 is not correct. It should read: For each $i \in J$, there is an index j such that $\left[y_{i-1}, y_{i}\right] \subset\left[x_{j-1}, x_{j}\right]$.

This implies $M_{i} \leq \sup _{\left[x_{j-1}, x_{j}\right]} f, \quad m_{i} \geq \inf _{\left[x_{j-1}, x_{j}\right]} f$. Hence
t11 collection of open set U_{k}
b11 $\langle\nabla f(\mathbf{z}), \mathbf{x}-\mathbf{y}\rangle$.
b8 Theorem 4.5 should be Theorem 11.4
b5 $\quad \mathbf{f}(\mathbf{x}+\mathbf{h})=\mathbf{D} \mathbf{f}(\mathbf{x}) \mathbf{h}+\mathbf{R}(\mathbf{h})$.
$\mathrm{t} 3 \quad \leq \delta+\left\|\mathrm{x}_{1}-\mathrm{x}_{0}\right\|=\ldots$
t3 delete "which implies" and replace with the following:
If $\mathbf{f}(\mathbf{x})=\mathbf{f}(\mathbf{y})$, then we must have $\mathbf{x}=\mathbf{y}$. For $\mathbf{x} \neq \mathbf{y}$, we can divide by $\|\mathbf{x}-\mathbf{y}\|$ and deduce that
b3 $\quad \mathbf{r}(0)=\mathbf{a}$.
$\mathrm{t} 10 \quad 2 p_{y} v_{1} v_{2} \leq s_{1}\left(v_{1}^{2}(x+1)^{2}+y^{2} v_{2}^{2}\right)+s_{2}\left(v_{1}^{2}(x-1)^{2}+y^{2} v_{2}^{2}\right)$ $=\left[s_{1}(x+1)^{2}+s_{2}(x-1)^{2}\right] v_{1}^{2}+\left[s_{1}+s_{2}\right] y^{2} v_{2}^{2}$
Then (11.37) and (11.39) imply that
$\langle\mathbf{D f}(x, y) \mathbf{v}, \mathbf{v}\rangle \geq\left[p_{x}-s_{1}(x+1)^{2}-s_{2}(x-1)^{2}\right] v_{1}^{2}+\left[q_{y}-\left(s_{1}+s_{2}\right) y^{2}\right] v_{2}^{2}$
$\geq\left(r_{1}+r_{2}\right)\left(v_{1}^{2}+v_{2}^{2}\right)$.
b8 However, by (11.37), (11.38) and (11.40)
t16 b) From (11.41)
t5 $\quad-\nabla f(\mathbf{x})$ points into the interior of K.
b12 Because the indices are j may not be consecutive, we may not have $f\left(x_{j+1}\right)=f\left(x_{j}-t_{j} \nabla\left(x_{j}\right)\right)$, but we do have $f\left(x_{j+1}\right) \leq f\left(x_{j}-t_{j} \nabla\left(x_{j}\right)\right)$.
b8 $\quad \mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$.
t14 The Jacobian matrix should be $\mathbf{D} \phi(\hat{\mathbf{a}})=\left[\mathbf{I}, \mathbf{D p}(\hat{\mathbf{a}})^{T}\right]^{T}$
t1 Let $f(x, y, z)=x+y+z$,
$533 \quad \mathrm{~b} 2 \quad S=\{(u, v): a \leq u \leq b, 0 \leq v \leq 1\}$.
609 b $12 \quad Q_{2}(x)=8(1-\sqrt{2})(x / \pi)^{2}+(4 \sqrt{2}-2)(x / \pi)$.
$622 \quad \mathrm{~b} 8 \quad$ The max of $f \mid S$ occurs at $\mathbf{a}=(2 / \sqrt{5}, 1 / \sqrt{5},-2 / \sqrt{5})$ with $\lambda=\sqrt{5} / 2$ and $\mu=-1$. The min occurs at $-\mathbf{a}$ with $\lambda=-\sqrt{5} / 2$ and $\mu=-1$.

626 t8 1. There is a sequence $\mathbf{y}_{k} \in \mathbf{g}(D)$ with \mathbf{y}_{k} converging to \mathbf{y}_{0}. Let $\mathbf{x}_{k}=\mathbf{g}^{-1}\left(\mathbf{y}_{k}\right)$.

