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Abstract— Grassmannian frames are frames satisfying a min-  Fix d and N with N > d. Our goal is to constructN
max correlation criterion. We translate a geometrically intuitive  element unit norm frames’{év, with smallest maximum cor-
approach for two and three dimensional Euclidean spaceR> and relation, M. (Xév), i.e., unit norm frames that are maximally

R?) into a new analytic method which is used to classify many . . N
Grassmannian frames in this setting. The method and assod&d spread apart. To this end we make the following definition.

algorithm decrease the maximum frame correlation, and hene  peafinition 1.2. Let N > d. A Sequencéjév _ {uk}i\/ C R4
2. > d. = . C

give rise to the construction of specific examples of Grassmaian f unit ¢ - N d)-G ian f gt i
frames. Many of the results are known by other techniques, of unit norm vectors is aliN, d)-Grassmannian framé it is

and even more generally, so that this paper can be viewed as@ frame and if
tutorial. However, our analytic method is presented with the goal Ny - N
of developing it to address unresovled problems ir-dimensional Moo (Ud ) = inf {MOO (Xd )} ) (1.2)

Hilbert spaces which serve as a setting for sherical codesiaure \\hare the infimum is taken over all unit normj-element
channel modeling, and other aspects of communications theo frames forRd

A compactness argument shows that Grassmannian frames
. INTRODUCTION exist (see the Appendix), but constructing Grassmannian
A finite frame{z;}1_, C R?, whereR? is d-dimensional frames is challenging [4], [5], [6]. As is described in [2het
Euclidean space, is characterized by the property thapéa s concept of Grassmannian frames is related to several other
is R, see [1]. The nornfjz|| of = € R is the usual Euclidean areas of mathematics and engineering, for example, paeking
distance. Given a finite frame fdk¢ with N elements, we in Grassmannian spaces, spherical codes and designs, the
would like to measure the correlation between frame elesjentonstruction of equiangular lines, strongly regular gsy@nd
and in particular to decide when the correlation is small. Weduction of losses associated with packet based communica
consider the following metric which is similar to @ norm tions systems such as the Internet, [7], [8], [9].
[2]. In this paper we give an analytic construction of Grass-
_ N N mannian frames iR?, whend = 2, 3. The first treatment of
Deflr;mo_n 1.1 LetN > dandletX ;" = {ux};_, be asul:])\;set this construction problem in the cage= 3 is found in [10].
of R W'E\r,' e"f‘Cth_k” = 1. Themaximum correlatiorof X;, There are extensive computational and theoretical regults
Moo (Xd ) is defined as [4] which approach this construction problem from a sphere
M, (Xév) = max |(zx, 1) . packing point of view. The relevance of such constr_uctions
k#l was brought to the attention of the frame community in [2].

Note that because we consider the absolute value of thé\ter stating some technical preliminaries in Section Ig w
inner product rather than just the inner product, if the angfharacterize all(N, 2)-Grassmannian frames in Section IIl.
between a pair of vectors is closerdo°, then the pair is less N Section IV we state and prove a modest generalization
correlated, while if the angle is closer @ or 180° then the ©f @ theorem, given in [2], which provides a lower bound
pair is more correlated. Thus, we are measuring the smalfef Moo (X)) Section V is devoted fo the construction of
angle between the lines (one dimensional subspaces) sqba,.(ﬁte3)—Grassmann|§1n frames from first pr|nC|pIes rather than
by these vectors. We could instead consider’are?, or ¢»-  Using th_e theorem in Section IV. Convexity arguments argl use
type norm to measure correlation, i.e., in Section VI to construct examples 05, 3)-Grassmannian

frames. In Section VII, we construct @, 3)-Grassmannian

1/p frame using the theorem in Section IV. The techniques used
M, (X}) = Z [z, z) " , (1.1) inthe constructions of Sections V, VI, and VIl were develdpe
k£l in part to fathom the geometrical ideas of Fejes-Toth [10].

Our presentation is technical, and, we believe, necegsaril

. Some of the technicalities are routine, but they areided

since going from one step to the next without exhibiting them
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and Lemmas VI.5 and VI.6. Our notation is standard, but we A Bessel sequenceX is a frame for H if there exist
do mention that ‘== " means “implies” and “— " means constants4, B with 0 < A < B < oo such that, for any

“if and only if”. yeH,
2 2 2
Alyl? <>y za))? < Byl
Il. PRELIMINARIES nel
In this section, we collect some definitions and theorenddus, given any frame, we have four natural mapsL*, S,
used in the sequel. andG. If the indexing setZ is finite thenX is called afinite

Thetransposef a vector or matrixd is denoted byd”; and frame Also, if A = B then X is called atight frame or, if
the Hermitian transposef a vector or matrix3 with complex we wish to emphasize the bound, drtight frame
entries is denoted by*, the conjugate transpose &, i.e., Throughout this paper we shall use that fact that any finite
B* — BY. A d x d matrix U with real entries iorthogonal Set of vectors forms a frame for its span with the frame
if the columns ofl/ are orthonormal, i.el/”U = I,, where bPounds being the largest and smallest eigenvalues of theefra

UT is the transpose dff and 1, is thed x d identity matrix. OPerator. Since any finite set of vectors automatically has a
If U is orthogonal, i.e.]l/ € SO, then for anyx,y € R4, upperframe bound by Cauchy-Schwarz, the fact that any finite

|Uz|| = ||z|| and (Uz, Uy) = (x, ). set is a frame for its span is a consequence of the following
Thetorusis T, = R/(277Z). We take any fixed half-open result.

interval of length2z to be a representative @ Proposition 11.2. The following three statements are equiva-
The unit spherein R? is 5971 = {z e R : |[z]| =1}. A |ent:

;et{xl, ...,an } of unit norm vectors iequiangularif there i. {z,}N_, is a frame forR?;

is ana € [0, 1] such that(z, ;)| = o whenk # . ii. span{z,}_, = R% iii. 3A > 0 such thatvy € RY,

A d x d matrix A with real entries isymmetridf A7 = A.

The spectral theorem for symmetric matrices is the follow- Allull? < a 9
ing, see [11]. We use it in Theorem IV.2. lyll” < z_:l [ {y>2n) |
Theorem 1.1 (Spectral theorem). A d x d symmetric matrix
A overR has the following properties: [1l. TwO DIMENSIONAL GRASSMANNIAN FRAMES
i. A hasd real eigenvalues counting multiplicities. We classify all(V, 2)-Grassmannian frames. The idea for

ii. The dimension of the eigenspace for each eigenvaltie following proof is illustrated in Figure 1. In fact, inder
X equals the multiplicity of\ as a root of the characteristic to maximize the minimum angle between pairs of vectors, the
equationdet(A — A\I) = 0. vectors we must be equally spaced.

iii. The eigenspaces are mutually orthogonal, in the SeNse corem 111 ((N,2)-Grassmannian). Let X — XV —
that eigenvectors corresponding to different eigenvalaes {2}, be .a collevction of V' unit vecfors NR2. The2n we

orthogonal. have the lower bound
iv. A is orthogonally diagonalizable, i.e., there is an
orthonormal basis of eigenvectors fak. cos(m/N) < Moo (X).

We now state some basic definitions of frame theory [12furthermore, X is an (V, 2)-Grassmannian frame if and only
[3], [13], [14], [1]. Let ® be a separable Hilbert space, anif there is P € SO, and a sequencés;}_, c {+1}" such
let X = {z, :n €7} C H whereZ is a countable indexing that
set. Consider the following map associated with the’set

P(eX) = {P(epay) : 1 € X3' } (1n.1)
L:H — ¢*(T)
[ (cos(mk/N)\ P N
y = {2 boer = W\sin(rk/ny ) i F =L N g
If L is a well-defined linear map, i.e., ¥, .7 |(y, za)|° < 00 Proof: Let 6, = (1,0)” and lets, = (0,1)”. Since
for anyy € H, thenL is a Bessel mamnd X is a Bessel |(z,y)| = |(x, —y)|, we note that changing the sign of any
sequenceThe adjoint of L is the map zr € X does not effect the value oM (X). Thus, by
* . g2 changing the sign o, when necessary, we may assume
L*:0°(7)—-H 1 . i
xp € {v e S': (v,02) > 0}. Also, since rotations preserve
{cnl}, ez — Zc[n]iﬂn- inner products, applying a rotation to all the vectorsin
nel does not effectM ., (X). Thus, rotating by—¢, where¢ =
If L is a Bessel map, the correspondimgme operatoiis the ming—1,... ncos™'({zx,d1)), and reordering if necessary, we
map S : H — H defined asL*L. Thus, for anyy € H, may assumer; = 6, = (1,0)”, and
S(y) = L* (L(U)) = Z <U7xn> T 1> <.%'2,.%‘1> > <.%'3,.%‘1> >...> <$N,$1> > —1. (|||2)
nel For k = 1,...,N — 1, let 6, be the angle betweemy

As suchy =3 (y,2,) S~tx,. The Grammian operator and .1, and letfy be the angle betweemy and the
is the mapG : ¢*(Z) — (*(Z) defined asZ = LL*. Both S negativez-axis, i.e., 0 = cos™! ((xr41,2x)) and Oy =
and G are positive, and hence self-adjoint operators. cos~ ! ((=d1,2n)), see Figure 1 for an example whah= 6.



Let v = ag,,., and, forj = 1,..., N, define the

sequenced;; as

— oy

15F B m

. ag; + 5= forj=1,...,m,
Bkj = akj_% forj:m+1,

Q. forj=m-+2,...,N.

J

0.5

1 Now the new set,

% Brr = Bha = -+ = Bhpn < Bl < -+ < Bhins
or * % ] has a strictly larger minimum angle than the original sirme f
j=1,...N,
. 1%
-0.5- B :mln ap = Oékl < akl + % - ﬁkl S 6]
15 a1 05 0 05 1 15 We see that the originaks do not maximize (111.3). So by

contraposition we have that if thes maximize (111.3), then
they must all be equal. Finally, if is the common value,
then>.~  a, = Na = =, and thereforex = 7/N. Thus,

m/N > ming—1 . n 0k, and therefore

Fig. 1. An example of the reordering induced by the inegjealibn the inner
products in (lll.2) forN = 6.

.....

Then, because of the above reorderifg, > 0 for &k = cos(m/N) < COS( min eK) = My (X).
1,...,N,andYy_ 0, =« Thus, forl </ <k < N, N

.....

Next we prove that anyN, 2)-Grassmannian frame is, up

k-1 to a sign change, the firé{ adjacent vertices of a regulanN -
[(zk, z1)| = |cos Zej ) gon. If X is an (N, 2)-Grassmannian frame, then, using the
=l above argument, we see that we can choasg c {+1}"
k-1 and P € SO, so that the frame

..... = P(eX)={P(epar) oz € X}

is in the closed upper half plane with one of the vectors being

Furthermore| cos(6)| has a maximum of0, 7] atf = 0, and (1,0)": and

6 = w, and|cos(f)| is monotone decreasing df, /2] and
monotone increasing ofr /2, w|. Hence,

EEREE)

Mao (X) = Moo (P(X)) = cos <k_minN9k> ,

Moo (X)

k—1
max |cos Zgj where 6, is the angle between theth and (k + 1)st adja-
k1 Py cent vectors inP(eX) (reindexing may be necessary). Since
an (N, 2)-Grassmannian frame minimizes the-correlation
cos( min 9k> } M (X), the above argument also shows that= ... =
k=1, N-1 Oy = w/N. Therefore, the angle between adjacent vectors in
cos ( min 9k>‘ _ P(eX)is /N, and we have proved the forward direction of
k=1,....N the equivalence.
To show the reverse implication we note that if

= max {|cos (m—0n)],

Therefore, in order to minimizé .. (X) we must choose

N positive numbersyy, ..., axy which sum tor and which P(eX) = {<C9S(W’€/N)) k=1,.. .,N},
minimize [cos(ming—1,_x )|, and, hence, which maximize sin(7k/N)
the expression then
_minNak. (1.3) Moo (X) = Moo (P(eX))
. _ - ZCOS< min Hk) = cos(m/N).
Now we claim that ifa,...,ay maximize (I11.3) then k=1,...N
ap=...= a{v.-We prove this implication by contraposition,Hence, X is (N, 2)-Grassmannian since it achieves the lower
i.e., assume it is not the case that= ... = an. Then there poynd. Q.E.D.

isanm € {1,2,...,N — 1} so that if we lista; < ... < ay
by size, then only the first: are equal, and them +1)stis  Notice that forN' odd, if we change the sign on the théh
strictly larger than thenth, i.e., roots of unity below the real axis, then we obtain the frame
described in the above claim with, = 1, i.e., with all vectors
Uy = Oy = oo = Qg < Qg S S Qe in the upper half plane, and a common angler¢iV between



adjacent vectors. Hence fo¥ odd, theNth roots of unity are and so
(N, 2)-Grassmannian. Furthermore, fdreven, theNth roots do d

0 2
of unity do not form an(V, 2)-Grassmannian frame because Z 22— <ﬁ + ek)
¢ and —( are bothNth roots. If we identify( and —¢ then —1 —1 d
we obtain an(N/2, 2)-Grassmannian frame. do o do do
Ty ot
= —5 — € e
2 " dy k .
IV. A LOWER BOUND FORM o, k=1 k=1 k=1
. - . N2 & N2
It is more difficult to construct a Grassmannian framéih =— + Z el >,
for N > 3 than inRR?. Thus, we first derive a lower bound do i do

for the maximum correlation between frame elements of
N-element frame folR?, see [2], [15] for superb treatments
although we have felt compelled to spell-out all detailsctsu
lower bounds are useful in coding theory [16], and we fir
learned of them in [2].

Hth equality if and only ife, =0 for k = 1,...do, i.e., if
'and only if \p, = for k=1,...dy. Next, the eigenvalues of

are \? > /\2 . > A%, so that ifg, is the kth column
%tf G, then by matnx multlpllcation we have

We shall need the following lemma whose proof can be do ) ) N r
found in the Appendix. N < Z AL = Trace(G?) = > g{ gn (IV.4)
Lemma IV.1. Let H,, be then x n matrix with 1 on the main N N
diagonal andg elsewhere, and le€,, be then x n matrix ZZ| (1, 21)|
defined by k=1 1=1
Cules = 3, if (4,5) = (1,1) VSvienc(::%(r?nisufé/mmetnc,Kmk,xl>| = (@, )|, so that by (IV.4)
g [H.,):;, otherwise, P
N2 al
where[H,,); ; is the (i, j)th entry of the matrixH,,. Then ZZ T, 1))
det(H,) = (1 + (n— 1)8)(1 — B)"" V.1 M
e( ) ( (n )ﬁ)( ﬁ) ( ) = <;17k’;17l | —|—Z| Tk, L] | +Z| gck’;pl
and =l k<l k>l
_ =N+2 Tp, X1)
det(C,) = B(1 — g)" L. (IV.2) ;' Fo
Theorem IV.2. Let N > d, let X} be anN-element subset < N+2Mmax{|<xk,xl)|2}.
of $41, and letdy = dim (span (X7')). Then 2 kAl
(IV.5)
M (Xév) > d]z]]; dol)’ (IV.3) Therefore, solving for thenax in (IV.5), we have
0 - —
. . . _ N od g (x)2. (IV.6)
where equality holds irfl\V.3) if and only if do(N —1)

N :
a. X‘}V '.S equ_langular, and . . For future reference we note thdt> d, implies dl <
b. X' is a tight frame for its span with frame bounds ,_, ( )

A—B— N TIN=D Hence, (IV.3) remain true when we replagewith

do < d.
b. Next we prove that equality holds in (IV.3) if and only
if X2V is equiangular and is a tight frame for its span.
Proof: a. First, we prove the inequality (IV.3). Since (=): Suppose M. (X)) = 4/%{(}1), Then (1V.5)
the N x N Grammian matrixG is symmetric, the spectral hecomes
theorem applies, and €8 hasN eigenvalues\; counted with N )
multiplicity and ordered by size, i.ed; > Ao > ... > An. ZZ| Ty 71| 2 _ N=
Furthermore, sinceank(G) = dy, only the firstd, of these ' do’
eigenvalues are nonzero. Hence,

0
Furthermore, if N > @, then X2 is not equiangular,

hence equality cannot hold ifiV.3).

k=11=1
which implies from (IV.4) that

N
Z/\k_TraceG Z|Ik,xk :Z: dZ“/\Q_Nz
k=1

= _ N Lo . . .
Now sete = Ax — - Then and, as we saw above, equality in this sum implies that

do do N fork =1,...,do. The frame bounds fak ) are the Iargest
e = <)\k _ ﬁ) — N — doﬁ =0, and smallest nonzero eigenvalues, and hethee N/d, =
Pt Pt do do and soX}' is a tight frame for its span.



To see thatX} is also equiangular, we notice that (1V.5) 06 ‘ ‘ _

gives
N2 05
N+2) [{ap,a)|* = o
k<l 0 oal
and, hence, ol
N(N —d
}:waﬂﬁz—l———ﬁ. (IV.7) 02} =3
. /
k<l N
Our assumptionnaxy.; |<J:k,;1;l>|2 = % implies that,
for any k # 1, ofU
|<(E €T >|2 — M — ¢ _0'10 £0 2‘0 3‘0 4‘0 E;D éo 70
ksl do(N— 1) k.l
whereey; > 0. Thus (IV.7) is Fig. 2. The function () = cos(n/2) — ,2=2 on [2,70].
N(N — dO) o N — do
2dy ; (do(N 1) 5’“”)
N(N —1) N—d where[G]y; is the(k, [)th entry of the matridxG. Thus, Lemma
- ( 2 ) (d : ) D e IV.1 applies withG = Hy and 3 = o?. Consequently, if
of k<l a € [0,1), then
N dy)
S e 0T det G = (1+ (N —1)a?) (1 - o)V £ 0.
k<l

Therefore,G is invertible and has full rank. Finally, since
Therefore,Z,Kl ex, = 0, and, since the; ; are non-negative, rank(G) = rank(S) = N, we have that

we can assert that,; = 0 for £ < [. Also, sinceG ]
is symmetric,e, = 0 for all k # [, and henceX} N = rank(G) = dim (span{ Py, ..., Px})
equiangular with (z;, z;)|* = s < dim(V) = dd+1)
(«<=): Now assumeX}’ is equiangular and is a tight frame 2
for its span with frame bound = B = dﬂo. Then there is an We have proved that if X is equiangular, then
e [0,1], such that|<:ck,:cl>| = a for k # 1. Now since N < d(d + 1)/2; and so, by contraposition, we have
lev is tight, \y = & for k = 1,...,do, and zero otherwise. proven the result. Q.E.D.

Hence (1V.4) and (IV5) imply
N Remark: Theorem Ill.1 shows thatM. (X3')
zo:)\z _ ZZ s a)P = N+ NV - 1a cos(r/N), while Theorem IV.2 showsM, (X2V)
- = ’ ,:% Using standard calculus techniques, we can show
t

IV IV

Thus, solving fora we see that equality holds in (IV.3). at the equality in Theorem Il1.1 is an improvement over the
c. Finally, to prove N > d(d2+1) implies chlv is not bound in Theorem V.2 for allvV > 3. Let

equiangular, we prove the contrapositive using Lemma IV.1 F(z) = cos?(n/z) — z—2

and the following argument, cf., [17]. Assuni&) is equian- 2(x —1)

gular. Let P, : R* — R? be the projection ofr onto the (see Figure 2), so that
line spanned byzy, i.e., Prx = (x,xx)x,. Let V be the

vector space of symmetric linear mapping$é — R<. Then f(z) = 12 sin (Q_W) — %
dim(V) = 44 "and the mag-,-) : V x V — R given by v r 2(z-1)
(C, D) = Trace(CD) is an inner product of’. SinceX} is and
equiangular, there is am € [0, 1] such that(xy, ;) = +« for . o [ o /(o 1
k # 1. Furthermoreq = 1 implies N = 2, since the elements [ (#) = ——5 | —cos{ —= ) +sin{ — | | + @—1p
of XV are assumed to be distinct and of unit norm. Thus, fﬂr
d > 2, we haveN =2 < 3 < (d+1) Therefore, we may )
1

assumex € [0,1). Now, Fla) >0 <= sin(2r/z) > x .

1, ifk=1 S

2 ) =
(Pe, Py = (xp, )" = {QQ, it 1. For z € [3,6],
: . \f z \°
Hence, the Grammian of the sgP;,... Py} C V is sin ( ) > 7 8 > — ( 1) ,
x Xr —

(Gl = [(Pr, P, = {L if k=1 and sof(x) is increasing for: € [3,6]; and, sincef(3) =0,
) ? s 2

o, ifk#£I we have thatf(z) > 0 for = € [3,6]. Furthermore, for: €



N  Optimal bound  Bound from Theorem Ill.1 N  Optimal bound  Grassmannian bound

=Vaiv-p cos(m/N) = \svoyy = minMe (X5)

3 0.5000 0.5000 3 0 0
4 0.5774 0.7071 4 0.333 0.333
5 0.6124 0.8090 5 0.4082 0.4472
6 0.6325 0.8660 6 0.4472 0.4472
7 0.6455 0.9010
8 0.6547 0.9239
9 0.6614 0.9397 TABLE Il
10 0.6667 0.9511 BOUNDS FORN-ELEMENT FRAMES IN]R3 WITH POTENTIAL OF BEING
OPTIMAL GRASSMANNIAN.
TABLE |

IMPROVEMENT OF THE OPTIMAL BOUND DERIVED INTHEOREMIV.2 FOR
THE CASE OF(IV, 2)-GRASSMANNIAN FRAMES.

will be proven below and the optimal bound for = 3, 4, 5, 6,

(the only Ns with the possibility of being optimal). By

inspecting Table I, we notice th&s, 3)-Grassmannian frames
6, 00) ST > QL ( ) Also, sin (Tﬂ) > 36 if and only are not optimal, whilg3, 3), (4,3) and (6, 3)-Grassmannians

if are optimal.
27
g < 27.172.

(5071')
Thus, f(z) is increasing forz € [3,27], and, hence, it is _ _ _
greater that zero on that same interval. We also note that foln this section and the next two, we shall derive the bounds

V. (4,3)-GRASSMANNIAN FRAMES

> 1, for three dimensional Grassmannian frames with= 3, 4,5
1 1 z \2 and6. First note that ifN = 3, and if X is any orthonormal
o < o (x — 1) : bas?s fer3, theno < _/\/loo(X) = 0. Hen_ce, any orthon_ormal
basis is Grassmannian and, in fact, is trivially optimal
Further,sin (27) < 5= when Grassmannian.
- Next considerN = 4. We need the following two lemmas
T > (L) > 39.310. which are necessary to rigorize Fejes Toth's ideas in [10].
2T

In particular, Lemma V.1 is intuitively elementary when we
Hence f is decreasing on the intervad0,cc), and since consider the fact that th&-norm is convex( is convex, and
lim, .o f(z) = &, we have thatf(z) > 3 for z € [40,00). (C is the set of extreme points @j.
Finally, we check thatf”” < 0 on the interval[27,40] and
f(27), f(40) > 1; thus, f(z) > L on [27,40]. In summary

1 Lemma V.1. Leta € R?, and let{v;,va,...,vq4} C R Set
2
we have shown thaf( ) > 0 on (3,00) and thatf(z) > 3

on [27,c0). Therefore, —da+ E s;v; 85 € [0,1]
- 777 J
T N -2
cos(N)> 72(]\7_1) for N > 3,

= a—i—Zsﬂh g; €{0,1} 3,

and we see that Theorem Ill.1 is an improvement over Theo- =
rem IV.2 in the casel = 2, see Table I.
In light of Theorem 1V.2, we make the following definition,and choose € C such that|c|| = max {[|c|| : ¢; € C'} where

. I1=1,...,24 Then, for any € C, < |lell.
Definition IV.3. Let N,d € N with d < N < %0 et weQNC, vl < el

XY = {2}V, be a frame forR? with |lz|| = 1. We call Proof: Letv € Q\C, so thatv = a+2 sjvj. Since
XY an optlmal Grassmanniarfframe if XV satisfies (IV.3) v ¢ C, there is anm > 1, such thats;,,. .. sjm (0,1)
W|th equality, i.e., ands;,..,,...,s;, € {0,1}. Fori < m sett; = s;, and
for i > m sete; = sj, sot; € (0,1) ande; € {0,1}.
Meo (XN) = N-d Now, let wy = v, and for eachi = 1,...,m, recursively let
d(N - 1) w; = Wi—1 + (é:l — ti)vji, where
In R?, sinced = 2 and@ = 3, only frames withV = 2 ~ 1, if (vj,,wi_1) >0
and N = 3 elements can be optimal Grassmannian. Since € = 0, if (vj,,wi_1) <O0.
cos(m/2) =0 =+/(2-2)/(2(2 — 1), andcos(r/3) = 1/2 = ’ Jo e =

V(-2)/(2(3 1), both (2,2)- and (3,2)-Grassmannian By induction oni, we show that
frames are optimal. The same phenomenon does not happen in
three dimensions. Table Il lists the Grassmannian boundiwhi [loll = Jlwoll < [Jwi]l < ... < |Jwmll-



Note that by construction of;, we have thatw,, € C, and,
hence,||w,,| < ||c||. Also note that, fori = 1,...,m,

il = [lwi1|” + 2 (& — t;) (wi—1,v5,)

+ (& = t)? o2 (V.1)

We begin the induction with the base case 1. Inspecting
(V.1) with 7 = 1, we have 3 cases.
Case 1.(wp,vj,) > 0.
Then &; 1, and soé; —¢; > 1 -1t > 0 and
2(&) — t1) (wo, v;,) > 0. Hence, by (V.1))jw:|]* > |jwol|>.
Case 2.(wp,vj,) < 0.
Thené; = 0, so thaté; —t7 < —t; < 0, and therefore
2(&) — t1) (wo, v;,) > 0. Hence, by (V.1))Jw:||* > |jwol|>.
Case 3.(wp,vj,) = 0.
Thené&; = 0, wog + (—t1vj,) = y2, where fork = 2,...m,
and

d
Yo =a+ Y80
i=k

By the Pythagorean theorerfhw||® + ||—t1v;, ||° = |2l
and, hence,

2 2 2
[woll™ = llyll™ — t1 v I - (V.2)

Thus,&; = 0 and —t} < 0 imply —¢3 [jv, || <
and, by equation (V.2),

—&¢ lvi Il

2 2 ~ 2 2
[woll™ < lly2ll” + 0 = flwo + (€1 = t1)vs 7 = flwa [”

Consequently, in every casgwg|| < ||ws |-
Now for the induction step. It < i <m, and if we have

Jwoll < lJws]l < ... < flwiall,

then repeating the above argument with, w;, y» replaced
with w;_1, w;, y;+1, respectively, we hav@w; 1| < [|w;]|.
Finally, sincew,, € C, we obtain|v| < ||wa| < [c|.
Q.E.D.

Fig. 3. An example showing the point&cy, & = 1,...,4, and their
relationship to the vectorg; , y2, y3. Note,y2 lies on the plane with vertices
{c1,c2,—c3,ca}.

since by assumption we know that thg, y;)| cannot all be
equal, and hence cannot all equal zero.

Case 2.{y1,v2,y3} C S? is linearly independent.
Let Y be the3 x 3 matrix whose columns arg;. ThenY”
is invertible. Letcy, ..., cq be the columns of the following
3 x 4 matrix product

) e
|:Cl Ca C3 04}:(YT) 11 =1 1], (V4)
L 11 1 -1

see Figure 3. Notice that
1 -1 1 1

Lemma V.2. Let {b,y1,y2,ys} C S% M [b.yn)] [bow2)l, oy = (YD) 1| = (W) ]| 1] +|-1] +] 1
and |(b, ys)| are not all equal, then there is a constructible 1 1 1 1
c € R3 such that P,

max {|{(b, y)| : k =1,2,3} V3 let ¢ € {e1,...,cs} have the property thaf|c| =

>max{’<i,yk>‘ k= 1,2,3}.
llell

Furthermore,‘<”—§”,y1>’ = ‘<”—§”,y2>’ = ‘<”—§”,y3>’

Proof: Case 1{yi,y2,y3} C S? is linearly dependent.

Then there isiy, az, as € R? with at least one (actually two)

a # 0 such that
a1y1 + agys + azys = 0.

Thereforedim (ker Y') > 1, whereY is a3 x 3 matrix with
columnsy;. Hence,dim (spanY’) = rankY < 2. We can
choosec € (spanY)™", so that

Vh=1,2,3, |<b7yk>|>o=\<”—§”,yk>\,

max {||c1||,...,]||cal|}. We now show that this procedure of
matrix multiplication followed by taking the maximum gives
rise to a vectorc € R3 which satisfies the conclusion of
Lemma V.2.

Forj =1,2,3, definev; = c¢j41 — c1, and, set

3
Q=1¢ —i—ZsjUj 85 €10,1]
j=1

and

3
C=<c+ Z&'j’l}j 1€ € {0, 1}

Jj=1

Identify a point inC' with a vector(ey, 9, e3). For example,
if (e1,e2,e3) = (1,0,1), thenw c1 4+ v1 + v3. Observe



that sincec; = ¢2 + c3 + ¢4, We have the following bijection and so/\— € Q. Now v € C implies that the elements of
betweenC and {+cy, +co, +c3, 4 }: {[{v,yk)| : k =1,2,3} are all equal. By the contrapositive of
this implication, we see that the assumption that the elésnen

E?’g’gg : Zl of {|[(b,yi)|: k=1,2,3} are not all equal |mpl|eg— ¢ C.
(0: 1:0) - C; Thus, we have showﬁ’— € Q\ C. Therefore, by Lemma V.1,
(0,0,1) «— ¢4 we haveH—H < el and henceh € S? implies

(1,1,0) «— —c4

(1,0,1) «— —c3 1 _HbH<C

(LL1) e —a. We conclude that

In particular,||c|| = max {||¢|| : ¢ € C}.
Now, if

1
= {0 e ® |(,y)] < 1for k=1,2,3) > o = max{

max {[{b,yr)| : k=1,2,3} = |\p]

<fp%>wk=Lz3}

then@ = H. To see this, we check both containments, but 5nq so Lemma V.2 is proved. Q.E.D.
first note that (V.4) withj = 2 implies

-1 yTey -1 With these two lemmas we can prove the following theorem.
T _ T _
Yie=| 1| = Yz 2| = oK Theorem V.3 ((4,3)-Grassmannian).Let U =
1 Y3 €2 1 {ur,ug,uz,us} C S? C R3.If U is (4,3)-Grassmannian,
e, (y1,c2) = —1, (y2,c2) = 1, and (ys,c2) = 1, and thenU is equiangular, i.e.|(ux,w)| = 3 € [0, 1] whenever
similarly for the otherc;. k#1.

Q C H:Letve Q. Then Proof: We show the contrapositive of the above impli-

3 cation, viz., we prove that it/ is not equiangular, then there
(v, yi)| = [{c1, yr +ZSJ v, k)| = 1+Z‘9J (vj,yk)|, is a4 element seX C 52 such that

Jj=1 j=1
Moo(X) < Moo (U).
whereas
Hence,U does not have minimal maximum correlation, and

11, if k=7, therefore it is not(4, 3)-Grassmannian.
—-1-1, if k#j. SupposeU = {uy,us,us,us} is Not equiangular. Then
there is anmy € {1,2,3,4} such that, ifky, ko, k3 are the
remaining indices, we have

(Wi, ye) = (¢j+1 — €1, Yk) = {

Thus, [(vj, yk)| = |1 — 2si|, and sos; € [0, 1] implies that
1 —2s; € [—1,0], and, hencel(v;,yx)| <1

H C Q: Equivalently, we prove the inclusio®“ C H®  max {|(upm,, ur, )|, [(tmys W) s [ty s teg )|} = Moo (U)
of complements. Let ¢ Q. First, vy, vs, vs, are the images
of (-2,0,0)7,(0,-2,0)T, (0,0, —2)T, respectively, under the and
transformatior(YT)fl. Hence,{v1, v, v3} is a basis foiR?.
Thus, there are unique elements s;, s3 € R? such thaty —
€1 = 8101 + 202 + S303, 1.€., Applying Lemma V.2 withb = u,,, and {yi,y2,y3} =
{uk, , uk,, ur, }, there isc € R3 such that

|<um17uk1>| ) |<um1auk2>| ) |<um1auk3>| are not all equal'

UV = €1 + S1V1 + SV + S3U3.

Because of the uniqueness of thgs, v ¢ Q implies there max {| (wm,, uk,)| : i =1,2,3, }
is ajo € {1,2,3} such thats;, ¢ [0,1]. Now, |[(v,y;,)| = c o
11— 2s;,|, and so s;, ¢ [0, 1] implies Z A VN e /T 1,23, ¢

1—2s;, € (—o0,—1) U (1, 00). Let z,,, = ”c”, see step 2 in Figure 4. Since we have only
moved the points,,, to x,,,, the remaining correlations are

Thus,[(v, yj,)| > 1, and sov ¢ H. Therefore, we have proven o ted since they do not involve,,. Thus

HCQ.
We complete the proof of Lemma V.2 as follows. For the M, (U) = max {|(um,,ur,)| 17 =1,2,3,}
set{b,y1, 2,93} C S°, let > max {|[(Zm,, up ) 11 =1,2,3,} = a. (V.5)
(b, y1,)| = max {[{b, y1) |, [{b, y2)], [{b, y3)1} Now either Moo ({2, , Uk, , Uny, U, }) = «, OF there is an
and set\, = (b, yx,). Then, for anyk = 1,2, 3, my € {1,2,3,4} \ {m1} such that ifmy,ji,j> are the

remaining indices, then

b o |<b7yk>| |<baykb>| _
<)\_b’yk>‘ B |<baykb>| = |<baykb>| =1 MOO(U) = max{|<um27uj1>|7|<um2’u.7'2>|} (V6)
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and

|<um27xm1>| ) |<um2vuj1>| ’ |<Um2,uj2>| are not all equal!
(V.7)

where (V.7) follows from (V.5). In this case we apply Lemma
V.2 10 b = um, and {y1,y2,y3} = {u;,,uj,,Tm, }. Thus,
there is ac’ € R? such that

max{|<um27xm1>| ) |<um2’ujl>| ) |<um27uj2>|}

= max{|<umzauj1>| ) |<um2vuj2>|}

c c c
>max{‘<||c/n’xml> ‘<|||“>H<|||“>‘}

Let z,,, = ”c,”, see step 3 in Figure 4. Thus
Moo (U) = max{|<um27uj1>| ) |<um27u472>|}
> InaX{|<£Cm2,£le>| ) |<xm27uj1>| 9 |<Im2auj2>|} (V8)
=: O/.
Therefore, (V.5) and (V.8) imply
Moo (U)
|<xm17uj1>|v |<xm17uj2>|v
> max |<Im2,17m1>| ’ |<CCm2,’U,J1>| ’ (Vg)
|<xm27u.7'2>|
= max {a, '},
becausq’l,jg (S {kl, kg, kg}
So either Moo ({Zm, s Ty, gy, ujy }) = max{a, o’} or
else M (U) = |<uj15uj2>|'
In the latter case, (V.8) implies that
|<uj1 ) uj2>| ) |<u47'1 ) xm1>| ) |<uj1 ) xm2>| are not all equal!
and so we apply Lemma V.2 tob = wu;, and

{y1, 92,93} = {Uj,,Tm, m,}. Thus, there isc” € R
Y1,92,Y o ) R
such that

max{|<uj1v‘rm1>| ) |<uj17xm2>| ) |<uj1=ujz>|}

= |<uj27uj1>|
Tty Ty Y 5 [T T Y
> max ‘<Hc H 12,‘, ‘<Hc | 2>‘ (V.10)
()|
Let z,,, = ”T and letX = {zm,, Tm,; Tmg,uj, ;. Then
(V.9) and (V. 105 imply
Moo (U) (V.11)
|< m'avxm1>|v |<Imaaxm2>|7 |<Im35uj2>|v}
> max ‘ ‘
{|<xm27xm1>|a |<Im2auj2>|7 |<Im1’uj2>|
= Moo (X).
Q.E.D.

Next we show that if a four element set is equiangular then
the vectors are parallel to the diagonals of a cube or to four
of the diagonals of an icosahedron.

Fig. 4. An example of the four steps in proving Theorem V.3.umber next Theorem V.4. If uy, uz, uz,us € S? and |(ug,u;)| = « for

to an edge represents the inner product of the two boundantspof the
edge.

k,le{l,...,4} with k # [, then

a=—-0lroa=
3

Sl



| (w2, w3) (w2, wa) (w3, wyg) |
case 1 «a «a «a impossible
case 2 —a o o a = 1/\/5
case 3 —a —a o a = 1/\/5
case 4 -« -« -« a=1/3
TABLE Il

FOUR MAIN CASES IN THE PROOF OFTHEOREM V. 4.

Proof: Since sign changes and rotations do not effect

inner products, letP be an element ofSO; which rotates
uy 10 63 = (1,0,0)7. Fork = 1,2,3, 4, let

€k = Sign <P:E/€7 53)7

and let @ € SOs3; so that @ fixes ¢35 and @ rotates
erPxzo to the positivexz-plane, i.e.,(Qe, Pxo,d1) > 0 and
(QexPxa,d2) = 0. Then, fork # 1,

a = [(up, w)| = (erQPup, 1QPuy)| = [(wi, w)l

wherew;, = £,QPuy. By the choice ofzy, for k = 2,3, 4,
we have
a = [(wi, wg)| = (03, wk) ,

so that the third component afy, is a. Also, 0 = (da, ws),
andw, € S2, so that the first component af; is V1 — a?2.
Therefore, we have

w1 = (0707 1)T
wy = (V1 —0a2,0,a)"
w3 = (I3ay37a)T

wy = (24, ys,0)" . (V.12)

We now have four cases (see Table IIl) where both case 2
3 have three subcases which, by relabeling, can be reduce

the considered case.
Case 1Fork = 3,4, (ws, wy) = « implies

a—a? 11—«

= = - V.13
HE e Vita (V139
Then (V.13) and|wy|* = 1 imply
1+ a—2a2
=4y — = V.14
Yk Tta ( )
In addition, (V.13) andws, w4) = a imply
a(l —a)
Yy = V.15
Y3 " Ya 1ta ( )
Combining (V.14) and (V.15), we have
— 9202 _
_lta—-2a" a(l —a) s 920?74 120
1+« 1+«
= acC\R;
hence, case 1 is impossible.
Case 2.Now (w2, ws3) = o implies
2
o —
T3 = ——x, V.16
iV (V:16)

10

and (wq, ws) = —« implies
2
- —
= V.17
I (17)
and (V.16), and (V.17) imply
Y3 - Ys = o (V.18)
Then, (V.16) and|ws]||> = 1 imply
202 —a—1  (2a+1)(a—1)
2 = — =
¥ = a+1 a+1 ’ (V-19)
and (V.17) and|w4|®> = 1 imply
202 +a—1 20— 1)(a+1
a—1 a—1
Finally, (V.18), (V.19), and (V.20) imply
—a?=Q2a+1)2a—1) = a= :I:%.
Sincea is assumed to be positive, we have proven case 2.
Case 3.For k = 3,4, (we, w;) = —« implies
—a—a? 14+«
= —— = —ay/—. V.21
o= — (v.21)
Then (V.21) and|wy|® = 1 imply
202 +a—1 20 — 1) (a+ 1
J2 = _ QoD+l (V.22)
a—1 a—1
Hence, (V.21) andws, ws) = a imply
a — 3a?
Ys ya =7 : (V.23)
—
aé?(g)mbining (V.22) and (V.23), we have
Qa-1D)(a+1) 4 _a—3a?
T a—1 W T BT T
— = :l:—7
RV

and sincex is positive, we have proven case 3.
Case 4This is the same as case 3 except thaf, ws) = «
and (V.21) imply

ala+1
y3'y4:7(a_1). (V.24)
Combining (V.22) and (V.24), we have
20— 1) (a+ 1 ala+1
_Qa-N+) o alat])
a—1 a—1
:>O[:§,

and we have proven case 4.
Therefore, the theorem is proved. Q.E.D.

By Theorem V.4, and sinc% > 1, we see that thé4, 3)-

Grassmannian bound |1§ which is also seen to be optimal
by inspection.
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VI. (5,3)-GRASSMANNIAN FRAMES b. We prove the contrapositive. Assum@y, yx)| = 1 for
We first introduce some ideas from convex analysis, [LggWer thand vectors inY’, i.e, by relabeling, assume there is

[19], [20]. anm > 0 such that
Definition VI.1. A setA c R” is convexif for any z;, z» € |(vo, yx)| =1, for k € Nwith k < m,
A, and for anyX € [0, 1], [{(vo,yk)| <1, fork=m+1,...,N.
Axp + (1= Nazg € A We now show thaty is not an extreme point by constructing
21,22 € Q with x1 # xo such that there is a € (0,1) for

A point z € A is anextreme pointof A if wheneverz =
Az1 + (1 — X)zo, where0 < A < 1 andzy,z2 € A, then
T = x1 = x9. Given a setd C R", theconvex hullof A is

which
Vo = Ar1 + (1 — /\),TQ

Let Y = span{yi,...,ym}, WhereY is empty if m = 0.

Hull(A ) i ~
uli(4) Since by assumptiom < d, we havedim(Y) < d. Let z €
i i Y+ NS4t and define
SNz Y A =1,)>0,z,€AmeN
j=1 j=1 p = max {|{vo, yx)| : k=m+1,...,N}.
There is the following relationship between extreme pgintBy the choice ofm, we haveg < 1. Set
convex hulls, and convex sets, [21]. 1-3 1-8
o T, = v+ z and 1wz =vy— ——2z.
Theorem VI.2. A nonempty bounded convex sefRifi is the 2 2
convex hull of its set of extreme points. Notice thats < 1 implies||z1 — 2| = (1-0) ||z = 1-56 >

1
We need the following two convexity propositions to prove Q- and hencer; # . Furthermore, ifA = 5 then

Lemma V1.5, which in turn is used to prove Lemma V1.6, the , (1—A)as = 1, + 1 - 5Z+ 1. 1- 5Z .
key lemma for computing thé5, 3)-Grassmannian bound in > 4 20 4 o
Theorem VI.7. Finally, we check that:; andxzs are inQ. Fork=1,...,m

Proposition VI.3. Let N > d, letY = {y1,...,yn} C andi = 1,2, we have

S4-1 c R, and assumepan(Y) = R%. Let — [
pan(¥) [t il = (w0, ) + = ()| = (v, )] = 1
Q={veR': |(v,y)| <1, fork=1,...,N}
) and fork=m+1,...,N andl = 1,2, we have
and letC be the set of extreme points @f Then
a. () is a bounded convex set, [z, )| = [(vo, yi) + — P (2, yr)
b. If vg € C then there are at leastl distinct integers 2

ki,....kq € {1,...,N} such that|(vo, yx,)

< o, ] + 152

1,...,d,
Proof: a. First, to showQ is convex, letr1, 22 € Q. Then 148 2

for any A € [0,1], and for anyk € {1,..., N},

[(Az1 + (1 = Na2, yi)| < Az ye)l + (1= A) [(@2,96)]  Thus,v € Q \ C.
<A+ (1=X) c. If vy is an extreme point oY, i.e.,, vg € C, then
—1 vy must satisfy at leastd of the N equations which
define Q. Therefore we count the number of ways we
Next, we show) is bounded. Sincepan(Y) =R%, Y isa can pickd distinct elementsy;, from Y to satisfy thed
frame forR?. Let S be the associated frame operator, and lequations|(vy, yx)| = 1. There are(d) d-element subsets
A andB be the lower and upper frame bounds, reSpeCtl\&W of {1,...,N}, and, because of the absolute value, there are
is invertible, so we can defing = S~*(y;) for j = 1,...N. two choices for the equation each can satisfy, namely
Then we have (vo,yx) = 1 or (vo,yx) = —1. Note, if any one of the
sl = |52 @) < 15| lws ) = 1 remainingN — d inequalities is not satisfied by, thenvy is
! = / A not an extreme point. This proves that we can have fewer than

2

Now, for anyz € RY, ()24 extreme points for a given arrangemenypé. Q.E.D.
N N
— — Under the same hypotheses of Proposition VI.3 we have the
r=8"1(S2) =D (wy) ST w) =D (wys) vy following resul ¥p P
j=1 j=1 )

Thus, givenz € Q, Proposition VI.4. Let N,d,Y,Q, and C be as in Propo-
sition V1.3, and letc € C have the property that/c| =

al max {||c'|| : ¢ € C'}. Then, for anyw € Q \ C,

]l = Z ,Y5) v ZI@? yil llojll = ZHUJ”

i=1 [oll < flell -

::>_| =



Proof: Letv € Q\C. Thenthereis a € (0, 1), and there
arexy,ze € Q with z1 # x5 such thaty = Azq + (1 — N)aa.
Consider the functiorf : R — R defined by

J) = lAzy + (1 = Nz

We first verify thatf is uniformily continuous ofR. Lete > 0
be given, and choosk< m Then, for all\q for which
A — Xo| < 4, we have
[F(A) = £ (X))
= H/\Il + (1 — /\):ZTQH — H/\()il?l + (1 — )\0)$2||
S H)\ZCl + (1 — )\)ZCQ - onl - (1 — )\Q)IQH
= [[(A = Ao)(z1 — 22|
= A= Xol[|o1 — a2
<dllzy — x| <e.
Now setg(\) = f(\)2. Theng()\) is also continuous ofR
and it is the parabola,
g = A1 + (1 = N2
= N [lz1[* + 20 = A%) (@1, 22) = 2(1 = A) ||z2]|*.
We compute
g'(N) =2XJz1 — xa|* + 2 (w1 — 22, 72) ,
so thatg’(\) = 0 at
_ _<5171 - I2,I2>
|1 — s>
Furthermore, for all\ € R,

g"(\) = 2]|z1 — 22 > 0. (VI.1)

Hence g attains a minimum ak.., and for all\ # \,, we have
g(A) > g(\.). Now if we restrictg to [0, 1], theng achieves
its maximum and minimum oft), 1]. Thus, if A, € [0, 1], then
by (VI.1) and the fact thay describes a parabola, we have
i A) = g(\
Jmin 9 = g )
and
A) = 0 1)};
fél[%fi]g( ) = max {g(0), g(1)} ;
and if \, ¢ [0,1], then

fél[(iflu g(A) = min{g(0),g(1)}

and

nax, g(A) = max {g(0),g(1)}.

In either case the maximum gf occurs at one of the end

points. Furthermore, at interior pointg,is strictly less than
the maximum value.

Now since [[v]|* =
implies

loll* = g (%)

< Jnax 9(A) = max {g(0), g(1)} = max

g (o) for some )y € (0,1), (VI.1)

2 2
(AR
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Thus, we have shown that
veQ\C= 3JzeQ such thatv] < |zl
and, hence,
veQ\C = [v] <sup{llz]:z€Q}.  (VI.2)

@ is a bounded closed set so that, by continuity| df, the
supremum in (VI1.2) is achieved o, whereas (VI.2) also
shows that this supremum is not achieved@n C. Thus,

sup {|lz]| : v € Q} = sup{|lz]| : x € C} =[] .

Therefore, for anyv € @ \ C we have |
sup {[[z] : x € @} = [|el|. Q.E.D.

<

Following the basic geometric idea in [10], but using the
previous propositions, which can be implemented as explici
algorithms, we can reduce the correlation of a given frame.
We proceed as follows.

Lemma VI.5. LetU = {b,y1,92,y3, %4} C S? C R?, and let
a = M (U). Assumg(b,y1)| < o and |(b,y2)| < «. Then
there exists: € R3 such that

’<ﬁ,yk>‘ <a fork=1,2,3,4.
C

Proof: If both |(b,y3)| < o and|(b,y4)| < «, then take
¢ = b. Otherwise, without loss of generality, assuftteys)| =
«. We have 2 cases.

Case 1.dim (span{yi,...,ys}) < 3.
Then, similar to Lemma V.2,
(span {y1,...,ys})". By Theorem IV.2,

() =035
—, = — < .
C& NG

Case 2span{yi,...ys} = R3.
Let

choosec €

Q={veR": |yl <Lk=1,...4}

and letC be the set of extreme points ¢f. By Proposition
VI.3, @ is bounded and convex ard is finite. Letc be a
point in C' of maximum norm. Then, by assumption,

b b
o «
b b
<_7y3> :15 '<_7y4>‘gla
o «

which shows thatg can satisfy with equality at most two of
the four equations which defin@. Then by Proposition VI.3,
g is not an extreme point af). Hence, by Proposition V1.4,

+=

< .
- el

Therefore, since € C' C @, we have|(c,y)| < 1 and

c e 1 -
— — < «
el /1 = Tel

for k=1,2,3,4. Q.E.D.
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Lemma VI6. Let U = {uy,...,us} be a (53)- andsoU is not(5,3)-Grassmannian. This finishes Case 1.
Grassmannian frame, and let = M (U). Then for any  Case 2.U is equiangular.
j, there are distinctj1, jo, js € {1,...,5} \ {7} such that SinceU has four elements, Theorem V.4 implias= 1/3
) = fork=1,2,3. ora=1/v/5. If a = 1/3, then set

Proof: We prove the contrapositive. By relabeling if 8= max{'<c—l,uk>‘ k= 2,3,4,5}.
necessary, without loss of generality, assuma, us)| < « lex
and [(u1,us3)| < . We use Lemma VL5 to construct a newrhus, by construction of,, we haves < % and
setW for which M, (W) < «. This showsU is not (5, 3)-

Grassmannian. Mo <{ “ } U [j) — max{l,ﬁ} — 17
First, letb = uy and{yy,...,ys} = {uz,...,us} and apply lleall 3 3
Lemma VI.5. Then there is & € R such that whereas Theorem V.2 wittv = 5 andd = 3 implies
}<C—1uk> <a fork=234,5. Ry ({ < }Uzj)_l
[[ea]] ) V6~ T Ul el 3’
Second, consider the st := {uz,...,us}. We have tWo 5 ontradiction.
cases, Thus,a = —=; and [(u1, up)| < o for k = 2,3,4,5, and

C_:ase 1.There existjo, ko € {2,3,4,5} with jo # ko, for |y u)| = o or k # j andk, j € {2,3,4, 5.
which [{ujo, ug, )| < o We seek to find a contradiction. Without loss of generality,

For ease in notation, by relabeling if necessary, we assufgg setting can reduce to the following general position by

Jo = 2 and ko = 3. In this case, we can apply I‘E"mmausing rotations and sign changes as in Theorem V.4:
VL5 with b = U9 and {yl, e ,y4} = {c—l U3,U4,U5}, and

llenll”

_ T
constructes € R3 such that uz = (0,0,1)
< 1 c > uz = (V1 —a2,0,a)"
s <«
||ClH HCQH Ug, Us € {p17p27p37p4}1
and where

max{‘<c—2,uk>‘ :k—3,4,5} < a.
llea

Now we can apply Lemma VI.5 to the remaining points and <
produce a frame with a strictly smaller value.dt.. In fact, (

p1 =

T
1— _
N aj\/(l—i—Qa)(l a)’a>
1+a 1+a

T
2 . 2w
since’<c—% u3>‘ < a fori = 1,2, we letb = us and = vl—a2005(3>,\/1—a25m< ),Oé> 5

lleall”

{y1,...,ya} = { . 2 u4,u5}. Then, by Lemma VI.5,

fleall” Tle21l

. y T
there is ac3 € R such that ) a\/1+a \/(1—204)(14—04) a)
) 2=\ ) ’
<—63 L >‘<a fori=1,2, l-a
llesll” el A . T
and = \/1—oﬂcos<?>,\/1—oﬂsin< ),a) ,
max{‘<c—3,uk>‘:k—4,5}<a.
llesll T
1 —
—a\/ —l—a’_\/(l 204)(14—04)70[
11—« 11—«

Finally, apply Lemma VI.5 one last time to= uy and <
(o) = {2 g g oo (A7) T (A7) W)
! 2 3 —< 1—a2005<—?>, l—oﬂsin<— >,a) ,

and obtainc, € R? for which
1 1+ 2a)(1 ’
. —a7_¢< +2a)( —a>,a)
1+« 1+«

<a fori=1,2,3,

(permer)
lleall” lleill

) e e
Uus < Q. T
, Us 2 2
‘<|C4| = ( 1 — a2cos <—§> , V1 —a2sin (—%) ,a) :

Thus, if we letW — { o e —”us} then, by

lleall” ezl flesll? fle

and

Therefore, if

construction, for anyi,j € {1,...,4}, i # j, we have
’<ﬁ, ﬁﬂ <a and’<H§?H,U5>‘ < a. Hence, cos(2m/5)  —sin(2m/5)

0
A= |sin(27/5) cos(2m/5) 0
Mo(W) < ao= My (U), 0 0 1



1.2 q

I
0.1

I
0.2

I
0.3

1 1 1 1
[¢] 0.05 0.15 0.25 0.35 0.4 0.45

14

12- b

1k 4
0.8 b
0.6 4
0.4 T
0.2 b

0 1 I I I I I I I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Fig. 5. Top figure is the functionyz — ~1, bottom figure is the function

%(’yz — 7v1). We can see that the original function is strictly incregsin

andpy = us, then

A* (pOapl yP2,P3; p4) = (pU(O) yPo(1): Po(2)s Po(3)s pa(4))a

whereo(n) = (n+ k)( mod 5).

If we setfs = |(u1,us2)| < «, then, by changing the sign of

uy if necessary and sinceus || = 1, we may assume

Uy = (MCOMO, msintoaﬁ)T ,

for some fixedt, € [, 7). Hence,

[(ur,us3)| < « (VL.3)
— ‘\/1—a2\/1—ﬁzcost0+aﬁ‘<a
D S R 15
Vi—a?J1I- 3 VI 1I-
_ 1 /1-— _ 1 /1+
<= cos ! <§ %) < |to] < cos™! (—5 %)
71(8) 7v2(8)
(V1.4)
We observe that
St =2 if B=q,
71(8) = {l;)r b
51)—5257 |f6:O,
121 _dx  if =g,
Y2(B) = { .
Dr—2n if g=0,

and that% (v2—m1)(B) > 0 for 8 € (0,«), see Figure 5.
Thus 3T < 45(8) — 11(8) < %, wheng € [0, ).
Hence, for a fixeds € [0, «),

6m

Y2(8) < 1(8) + 5

14

[ ‘
v, (B)
08l . —
0.6 pz -
041 pS i
P
0.2 p4 4
oL | |
P, 1
-0.2[ —
P
p. 1
-0.4+ 3 -
-0.6+ 2 -
-0.8 —
‘ ‘ Po ‘ ‘
-1 -0.5 0 0.5 1
Fig. 6. Ten intervals oril2, corresponding to the pointgy = w3, and

pP1,...,P4-
and, fork = 1,2, 3,4, we have

a > |<ulapk>| - ‘<A7kulaAikpk>’
= [(A7 ur,po)| = [(A™ s, ua)

where

A Py = (\/1 — (32 cos <t0 - 2Lk) ,

5
V1 —[32sin (to - ?) ,ﬁ)T.

Therefore, by (VI.4),

a > |(u1,pr)| <= 1(B) <

0= 22| < (9), (v18)

for k = 0,1,2,3,4. These inequalities define ten intervals
on the torusTs,. If we plot these ten intervals offy,, we
note that no set of three of them overlap, see Figure 6. This
assertion can also be seen since

< 72(6)

27k
fo— 5~

1(B) <

= n(B) < to—?’ <m(B)+ &l

= to € [y +ek,y+e(k+1))

5

Py
U[—v+elk—1),—y+¢k)

Nk

wherey = v1(8), e = 25, andk = 0, 1,2,3,4. Thus,U;_, Pk
is a disjoint cover ofl'»>, \ [y —¢,7), andU;_, Ny is a disjoint
cover of Ty, \ [-v+ ¢, —7). Hencety can be in at most two
of the ten setd’., Ny.

Now by assumption,|{u1,us3)] [{(u1,po)| < «.
Also  |[(u1,u4)] < o, and |[(uj,us)] < « where
ug,us € {p1,p2,ps,pa}. Thus, (VL5) implies ¢, lies
in three of the ten intervals represented in Figure 6, a
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contradiction. Consequentl§/, cannot be equiangular. Q.E.D.each implies thatis, w4, us are three of the four points

Finally, using Lemma VI.6, we have the following result. <a\/1 -« i\/(l T20)(1—a) a>T
Theorem VI.7. If U C §% C R? is (5, 3)-Grassmannian, then L+a’ l+a 7 7
Moo(U):\/Lg- <_a\/1+a jE\/(1—204)(1+a) a)T
Proof: Let « = My (U), and consider the graph 1—a’ -« ’ ’
whose vertices are,, ..., us, and whose edges are definegpicp, are the positive endpoints on the remaining 4 diagonal

as follows: for any pair of points, u; € U with k # j, an
edge connects;, andu; if and only if |(uy, u;)| = . We call
the number of edges emanating from a verigx the degree
of uy, denoteddeg (uy). Then Lemma VI.6 implies that

of an icosahedron. Hence in each cases 1/v/5. Q.E.D.

The (5,3)-Grassmannian frame is the first example of a
non-optimal Grassmannian frame sin% > % Hence, by

5 5 Theorem V.2, th€5, 3)-Grassmannian frame is the first three
Zdeg (ug) > 23 = 15. dimensional example of a Grassmannian frame which is not
k=1 k=1 tight.

Since each edge connects two vertices, the sum of the degrees

must be an even number. Thus, at least one verierust V. (6,3)-GRASSMANNIAN FRAMES

have degree 4, i.e., there isjae {1,...,5}, such that The (6,3)-Grassmannian bound can be calculated as a
[{uj,uj,)) = « for i = 1,...,4, where {j1,j2,73,74} = consequence of Theorem IV.2.
{1,2,3,4,5}\ {j}. By relabeling if necessary we may assuUMe o VI If U — {ur,... ug} C S% is (6,3)-
ur,up)| = o for k = 2,3,4,5, Grassmannian, then
Mo (U) =1/V5.
and U)=1/v5
Proof: Seta = \1[ and consider the sét” with vertices
[{(ug2, u)| = a for k = 3, 4. °
w1 = (01 07 1)T )

Furthermore, we can reduce to the general position used in T
Theorem V.4, i.e., assume wy = 1—a2,0, a) ,
0,0,1)"

T
ur = ( ( \/l—a \/(1+2a)(1—a) a)
us = (V1 —-0a2,0,a)" lta l+a
T
uz = (23,93, )" \/1—a \/(1+2a)(1—a)
T Wy = | @ T y QU )
ug = (T4, ys, @) 1+a 1+«
= T
Us (I5a95704) \/1+OL \/(1-20[)(1+O{)
- ’ , & 5
We have two cases. 11—« 11—«

Case 1./(ug,uq)| = . T
Then the subsdll = {u1,us,us,us} is equiangular, hence We = <—a\/1 ta —\/(1 20)(1 + a>,a>

!

Theorem V.4 impliesx = £ or \/ig However, just as in Lemma 1-a’ 1-a
VI.6, a = 3 implies that Note that+¥ are the twelve vertices of an icosahedron. For
. ) k # 1, we compute(wy, w;)| = \/ig Furthermore, by Theorem
- =My (U) < —, IV.2, if U is a 6 element subset ¢f?, then
3 V6
1 6-3 1
and soa = . Mo (U) > m_%_Mm(W)

Case 2.|(us, us)| < a.
Then since each vertex must be of degree 3, we have thausW is a (6, 3)-Grassmannian frame. Q.E.D.
|{(us,us)| and |{uy,us)| each equalsx. Thus, if we remove

the absolute values, we have the following equations: Notice the(6, 3) Grassmannian arrangement is so good that
when you remove a vector from it, it remains Grassmannian,

(ug,uz) = o, (ug,us) = *a, and when we remove two vectors from it, it is still a local

(us,us) = *a, (ug,us) = a. minimum of M. In [4] Conway, Hardin, and Sloane have

found that there are other instances of this in higher dimen-
This gives2* = 16 possible cases. Of these 16 cases, 7 leabns, particularly when the symmetry group of the frame has
to contradictions, and the remaining 9 fall into 5 types; b large number of elements.



APPENDIX
i. We show that Grassmannian frames exist. First, we define
the function
8 x x84 0,1

N times

f(iCl,---ﬁCN) =My ({xk}]k\/:1) .

16

where BY can be defined recursively as

Bfll) :Cna
BY) = BU=YD forj=2,... n+1,

and whereBY Y is BY ™" with the jth and(j — 1)st rows
interchanged. Sincéet is multilinear, interchanging a row

changes the sign of the determinant. Hence

Next we check thaff is continuous onX := R% x ... x R
(IV times). Consider the norm oN defined by

N
N
[l =D
k=1

let {:z:k}ivzl € X be fixed, setR — 1 = maxy, {||zx|}, and
let e > 0 be given. ClearlyR > 1. Chooses such that
0<§< @, i.e., R?6%2 + 2R§ < e. Then, whenever
H{yk}ff:l - {Ik}szlux < 4, we have that, for every €

{1,...,N},

N
lys = 2l < D llge = anll = ||l by — {oe kil || <6 and
det(Cp41) = Bdet(H,,) — nBdet(C,,)

k=1

Therefore, for eacly, there is ana; € R? with |lo|| < §
such thaty; = x; 4+ a;. Thus,

[f (e, syn) = f@, o an)
= max { |, )| + (@, o) + ok, 20)] + [(aw, )}

— max {| (o, 1)}

< max {[(zp, 20)| + o]l el + fawl ol + lawll loall}
k#l [1]

—rgzlxﬂ(wk,ivlﬂ} (2]

< i { |G, 1)} + 2R6 + B* — ma {| (o, )]} .,

(4

=2R§ + RH? < «.

Hence,f is continuous on the compact sgt=! x ... x §971

(IV times), and sof achieves its absolute maximum and

absolute minimum on this set. Thus, we know tHat, d)-

Grassmannian frames exist for afy > d. Next we must

check that ifUY solves (1.2), ther/Y is a unit norm frame

for R?, but this a tautology since, by compactndsg) is one

of the frames over which we are taking the infimum. [7
ii. We now give a proof of Lemma IV.1 used in Section IV.

Proof: [Proof of Lemma IV.1] We proceed by induction. Let

P(n) be the statement

det(Hy,) = (1+ (n—1)B)(1 - )"~

(5]
(6]

(8]
El

[10]

and
det(C,) = p(1 — )" L. [11]
Forn =1, H = 1andC;, = S, and sodet(H;) = 1 and [12]

det(Cy) = f; this is P(1).
Next assumeP(n). Using the cofactor expansion of thel®!

determinant, we first note that the, 1)-cofactor of H,y1 [14]
and C,1 is det(H,). Also note that forj = 2,...,n+ 1, [9]
the (1, j)-cofactor of bothH,, 1 andC,, ;1 is

[16]

(—1)* det (ng>) ,

(=) det(BY)) = —det(C,,) forj=2,...n+1.

Using the induction hypothesis and the cofactor expansien,
compute

n+1

det(Ho1) = 1-det(Hy,) + Y (8- (=)' det(BY))
j=2

— det(H,) — nBdet(Cy)
=(1+@m-1D3HA-p)""" —ng*(1-p)""
=(1+n3)1-pa-p""

=61+ (n—-1)B)A - —nf*1-p)"
= (6= -p)""h

this is P(n+1), and so the result follows by induction. Q.E.D.
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