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ABSTRACT. Uncertainty principle inequalities are useful devices for
estimating signal duration and power spectra in signal analysis. The
classical uncertainty principle of quantum mechanics, formulated by
Helsenberg, Pauli, Weyl, and Wiener, is an example of such an
inequality; and it was applied to signal analysis by Gabor.

Weighted and local versions of the classical uncertainty principle
inequality are proved in order to provide fine estimation of signal
duration. Further, upper bounds in the case of the classical
inequality are analyzed for the wavelet bases or frames in which the
signals are decomposed. Finally, in the context of the Bell Labs
uncertainty principle inequality, a power spectrum estimation method is
introduced; and this leads to a multidimensional signal reconstruction
technique. The one-dimensional version of this technique is due to
Wiener and Wintner and was developed by Bass and Bertrandias.

The setting throughout is RY; and the methods include weighted
Fourier transform norm inequalities, wavelet theory, and Wiener's

generalized harmonic analysis.

INTRODUCTION

We shall present a group of weighted Fourier transform norm
inequalities. These inequalities are unified by their common heritage
from the classical uncertainty principle of quantum mechanics and by
their form which provides estimates of signal energy in terms of both
time and frequency information. Weighted Fourier transform norm
inequalities are motivated by some of the central issues of signal
analysis. For example, in linear system theory weights correspond to
various filters in energy concentration problems, and in prediction
theory weighted LP-spaces arlse for weights corresponding to power
spectra of stationary stochastic processes {B1].

Our presentation is organized as follows:

1. The classical uncertainty principle inequality;
2. Weighted uncertainty principle inequalities;



Local uncertainty principle inequalities;
The classical uncertalnty principle and wavelet theory;
Spectrum estimation and the Wiener-Wintner theorem;

Closure theorems;
Notation.

LR N XS

We shall forego a summary of results in this Introduction, but we
do make the following remarks.

a. Section 1 not only provides a statement and background of the
classical uncertainty principle inequality, but motivates the topics
and points of view of the subsequent sectlions, e.g., the goals of
modern wavelet theory were formulated in terms of the classical
uncertainty principle during the 1940s, cf., Sections 1.2.4-1.2.6 and

Section 4.

b. The inequalities proved in Sections 2 and 3 allow for further
analysis to determine maximal spaces for which they are valid.
Appendix A indicates thé procedure.

¢. The important Bell Labs uncertainty principie [LPS] is not one
of our topics, but it does play a role in the manner we view power
spectrum estimation, e.g., Section 5.

d. Our treatment of uncertainty principle inequalitles does not
depend on the beautiful work of Cowling and Price [CP], but we would be
remiss not to reference their contributions.

e. Finally, Section 2 is part of an ongoling project with Hans
Heinig.

1. The Classical Uncertainty Principle Inequality
1.1. STATEMENT AND PROOF OF THE INEQUALITY
The classical uncertainty principle inequality is
1.1.1. Theorem. Given (to,7%0) € RxR. Then
(1.1.1) vE e #(R), Tl < anl (t-to)E ()] (r-20)E (1)1,

and there is equality in (1.1.1) if

- - 2
(1.1.2) £(t) = c e St to)? 2mityo

for CeC and s > 0.

Proof: The mapping, f(t) +— f£{t+to) e_znﬁtfo’ shows that it is
sufficient to verify (1.1.1) for (to,70) = (0,0).



The following calculation gives (1.1.1) for (to,70) = (0,0):

’ 2 ’ 2 2
HfH: = [Itlf(t)zl dt] < [Iltllf(t)zl dt] < 4[ ltf(t)f'(t)ldt]

2 2, 4 2
(1.1.3) < alee ()21 (8)17 = 18 IE ()1 E (7)1
If f is defined by (1.1.2) then equality is obtain in (1.1.1) by

direct calculation.
g.e.d.

1.1.2. An Elementary Closure Question. Is (1.1.1) valid for each
f € L2(R)? Obviously, the answer is "yes" if elther of the factors on
the right side is infinite. If [|tf(t)ll, + uarf(w)ll2 < @ there is

something to check, but the answer is still "yes". The proof follows
from Theorem A.1.2 in Appendix A.1 for the case Lf1(R)' As we shall

see, the problem of extending an inequality, proved for functions in a
convenient space, to all appropriate functions is not always routine.

1.1.3. The Classical Inequality for Odd Functions. DeBrui jn [De,
Theorem 3.4] has proved that

3iE())2 < amite (o1, laf (1,

for all odd functions f € #(R).

1.1.4. Underlying Inequalities. The main ingredients in (1.1.3) are
integration by parts, Holder’s inequality, and the Plancherel theorem.
We shall extend and refine Theorem 1.1.1 in several ways in Sections 2
and 3. The main ingredients of our proofs will be the same: integra-
tion by parts or conceptually similar ideas such as generalizations of
Hardy’s inequality; Holder’s inequality; and weighted norm inequalities
for the Fourier transform, of which the Plancherel theorem is a special

case.

1.2. HISTORY AND MOTIVATION

The classical uncertainty principle inequality was developed in
the context of quantum mechanics. Our results in Sections 2 and 3 will
be interpreted in the spirit of Gabor's view of communication theory
[G]. We now address this transition.

1.2.1. Concert Pitch and the Classical Uncertainty Principle
Inequality. In I am a mathematician (pp. 105-107), Wiener comments

on his 1925 lecture at Gottingen. It was apparently at this lecture
that Theorem 1.1.1 was first proved [Ba)]; and, of course, Heisenberg'’'s
(as well as Pauli’s, Schrodinger’s, Weyl's, etc.) profound contribu-
tions on the classical uncertainty principle were being made during the
same period - a human counterexample to the Yery same principle!




In any case, Wiener explicitly conceived of the analogy between
the laws of physics and musical notation in the sense of normal
behavior becoming unpredictable when normal time intervals are
sufficiently compressed. For example, let us consider the following
idealized piano experiment. The standard for concert pitch is that the
A above middle C should have 440 vibrations per second. Thus, the
A four octaves down (and the last key on the piano) should have 27.5
vibrations per second. Suppose we could strike this last key for a
time interval of 1/30 seconds, i.e., the hammer strikes the string and
1/30 seconds later the damper returns to the string, thereby stopping
the sound. We have very precise time information but correspondingly
imprecise frequency information since the emitted sound is anything but

the desired pure periodic pitch of this low A.

This piano experiment has the flavor of the classical uncertainty
principle inequality, and we can quantify it in terms of Theorem 1.1.1.
In fact, if a sound (signal) f is emitted at time to and lasts a
very short time, then (1.1.1) asserts that the frequency range for f
is quite broad. In particular, f 1is not close to a pure tone of
frequency %¥o, for, if it were, then H(V'Vo)f(?)"z, as well as

H(t—to)f(t)nz, would be small in contrast to the "loudness" Hfﬂz-

By comparison, the relevance of Theorem 1.1.1 for quantum
mechanics can be illustrated by considering a freely moving mass point
with varying location x € R.- The term Htf(t)ﬂ: represents the

average distance of x from its expected value to = 0. In fact, the

position x is interpreted as a random variable depending on the state
function f; more precisely, the probability that x is in a given
region A € R is defined as J‘Alf(t)lzdt,. and ||tf(t)u§ is the

variance of X.

1.2.2. Wiener on Linear Operators and Quadratic Means. Quantum
mechanics has been the spawning ground for the two topics in our title:
uncertainty principle inequalities and spectrum estimation.

We commented on the former well-known relationship in Section
1.2.1. For the latter we require Wiener’s brilliant insights from the
late 1920’'s. He and Max Born were among the first (some say the first)
to associate linear operators on function spaces to physical gquantities.
They did this in terms of arithmetic mean integral operators in their
study of the Heisenberg theory [W, Volume 3]. Wiener was then able to
apply their idea for quantum mechanics to many other topics including
filtering and prediction. The mathematical theory for this point of
view 1s Wiener's generalized harmonic analysis, l.e., the Fourier
analysis of non-periodic undamped signals [W, Volume 2]. A critical
component for effecting this analysis is the space of functions having
bounded quadratic means. Windowing methods in the spectrum estimation
problem can be viewed as applications of Wiener's theory. This is the
topic of Section 5, where we also illustrate the role of the uncer-

tainty principle in spectrum estimation.



1.2.3. Gabor and the Fundamental Principle of Commnication. In 1946,
Dennis Gabor formulated and analyzed the "fundamental principle of
communication" [G]. The initlal idea is much like Wiener’'s described
in Section 1.2.1: the more a signal f is concentrated, the longer the
bandwidth.. Thus, local information about f at any given time is
inextricably contained in all of the pandwidth. More precisely, if a
good description of £ in terms of f 1is required then we must have
good information about £ on all of its domain. This point of view
can be quantified to a certain extent by effective sampling; but the
principle with which Gabor initiates his study is the intrinsic ir-
reconcilability of achieving high definition reconstruction or trans-
mission (of f) and of obtaining sufficlent bandwidth sampling (of £).

As an example, suppose the mode of transmission is by means of
Fourier series and that we wish to transmit f on [-T,T] and have
available the frequency band [-Q,0]. The Fourier series of f on
[-T,T) considered as a 2T-periodic function on R has the form

sc, e™PHT 5o that the transmission of f 1s equivalent to the
Because of the prescribed bandwidth there are

transmission of {cp}.
effectively 2TQ "spectral lines" ¥n = /T available to transmit f on

[-T,T]. Since each datum c, 1s assoclated with a specific spectral
line (in the Fourier series), we can only expect to transmit 2TQ data.
The problem (and the principle) is that high resolution of f by N
points in [-T,T], say, may require many more than these 2TQ data and

their independent combinations.

Gabor’s landmark paper completed a line of research begun by
Carson, Nyquist, Kupfmuller, and Hartley, concurrent with the quantum
mechanics formulation of the classical uncertainty principle. One of
Gabor’s basic arguments is that Theorem 1.1.1 is at the root of the
"fundamental principle of communication.”

1.2.4. Gabor on the Classical Uncertainty = Principle and Wavelets.
Because of its minimization property in the classical uncertainty
principle inequality, Gabor reasoned that the modulated probability
pulse in (1.1.2) is the "natural basis on which to build up an analysis
of signals in which both time and frequency are recognized as refer-
ences" [G, p.435]. His analysis of signals, the "Gabor representation,’
is the origin of the important Weyl-Heisenberg frame - decompositions
[DGM] which play such an important role in wavelet theory, e.g., [FG;
FJ; HW; M1; M2) for diverse ideas and technology as well as extensive
bibliographies on wavelets. Wavelet theory provides discrete signal
reconstruction, by means of time and frequency localization to the
extent allowable by the uncertainty principle, cf., Section 4. The
joint localization stands in contrast to the point of view effected by
the "fundamental principle of communication." Because of the
uncertainty principle there are no contradictions in this contrast.

1.2.5. Definition/Representation. a. Given §g € L&OC(R). The Gabor
wavelet ¢ = Yy is defined as .



Yoluit, ) = glu-t)e2m (wr-ety)

for fixed c € R. The Gabor wavelet transform of f € L}OC(R) is the

function

Fy(£)(t,7) = F(t.2) = jk(u) ¥l t,7)du

defined on RxR.
b. As indicated in Section 1.2.4, Gabor considered the case

2
glu) =e™*, s >0. The resulting wavelet can be interpreted in terms
of the parameters: s 1is the sharpness of the pulse, t, the epoch of

its peak, and ¥ and ¢ = cty are the frequency and phase constants
of modulating oscillation.

c. Given ge L?(R) and a >0. Let a= i/a and c¢ = 1. Then
¥m,n(u) = wg(u;ma,na) is an orthonormal basls of L2(R) wunder certain
conditions on g, e.g., if the Zak transform of g has modulus 1.

In this case we have the Gabor representation,

(1.2.1) Vvt € LAR), £ = ) Canl(f) Yan in L2(R).
m,n

d. The orthonormal case in part ¢ gives a false impression of

versatility since orthonormality ig never obtained for compactly
supported continuous g or for the Gaussian. On the other hand, the
von Neumann lattices {(ma,n«)}, « = 1/a, can be perturbed and/or the
orthonormality can be weakened so that the Gabor representation is
valid for many different Gabor wavelets.

In light of our discussion in Section 5, we have proved the
following continuous Gabor representation for bounded Gabor wavelets
("Gabor representations and wavelets" AMS Contemporary Math. Series,

1989).

1.2.68. Theorem. Given g € L®(R) with continuous and not jdentically

zero autocorrelation,

T

G(u) = ,]I:i: %T- J:Tg(u+v)g(vjdv.

Then, for each f € LI(R), 1lim an - fll1 = 0 where

n-+o

T
_ i 1 .
£alw) = =57 %i: = ITFw(f)(t,w)w(U.t.w)Pn(v)dtdv

and {p.} € LY(R) is an L'-approximate identity.



1.2.7. Remark. Implicit in considering non-Gaussian Gabor wavelets
and in veering towards signal analysls with its host of data windows
and filters and prediction theoretic weights, we are viewing

Theorem 1.1.1 as one of many possible uncertainty principle inequali-
ties. One expects analogous inequalities and interpretations for other

norms and weights beslides H---Hz and t2 or 2.  and this is the

subject of Sections 2 and 3.

1.3. EXAMPLES

1.3.1. Unboundedness in the Classical Uncertainty Principle
Inequality. Suppose (to,%0) = (0,0). If f(t) = xm(t) then

f(y) = [sin(2nTy))/[ny] and the right side of (1.1.1) is infinite.
Similarly, if f € L2(R) behaves like I[t|* as t] — o, where

a € [-3/2, - 1/2) then the right side of (1.1.1) is infinite.

(a < - 1/2 ensures f € L2(R) and a 2z - 3/2 ensures lltf(t)ll2 = . )

Theorem 1.1.1 does.not provide useful information for these
signals. This fact, and the importance of comparing time and frequency
energy concentrations in signal analysis, lead to the Bell Labs
uncertainty principle [LPS], cf., Proposition 5.1.5. '

1.3.2. The Classical Uncertainty Principle Inequality and Energy Con-
centration. Given T,Q > 0. For each f € L3(R),

Er(f) = [I :f(t)|2dt]/||f||: [r‘esp., Eg(f) = [ nlf('a')lzd'a']/llfllz]
L J

represents the proportion of the total energy of f 1in [-T,T] (resp.,
of § in [-2,0]). It is clear that ET(f) En(f) <1 and that

2 ~
(1.3.1) ve > 0, 3f€ e L°(R) such that E&(fe) En(fs) < eg.

Since supp f8 can be taken as a subset of [-T,T} in the verification

of (1.3.1), we consider the following ratios vis a vis Theorem 1.1.1.

For each T~-time limited £ € L2(R), let V(£) = Hzf(v)nz/ufnz. Then,
for such f, we have

—1 < inf {V(F)) S swp (VD)) = w

16T
by Theorem 1.1.1.

1.3.3. The Classical Uncertainty Principle Inequality for Hilbert
Spaces. We close Section 1, as we began it, with a statement of the
classical uncertainty principle inequality. We give the conventional
Hilbert space formulation, cf., the remarks:in Section 1.2.2.




Theorem. Let A,B Dbe self-adjoint operators on a Hilbert space H (A
and B need not be continuous). Define the commutator [A,B] = AB - BA,
the expectation Eg(A) = (Ag,f) of A at f € D(A)(D(A) is the domain

of A), _and the variance of(A), = E-(A%) - {Ec(A)}% of A at
£ e D(A%). If f e D(A®) nD(B®) nD(i[A,B]) and |ff =1 then
2 2 2
{E(1[A,B1)}® < 4 o (A) o2 (B).

The yerification is routine, and (1.1.1) is a corollary for
12(R)’ and for A(f)(t) = tf(t) and B(f)(t) = t2riyf (7)) (t),

2. Weighted Uncertainty Principle Inequalities

2.1. FIRST METHOD: HARDY AND FOURIER TRANSFORM NORM INEQUALITIES

2.1.1. Two Fundamental Inequalities. a. The Hardy operator is the
positive linear operator Pq defined as

d 1
Pd(f)(X) = r"'rf(ti,"‘,td)dtl"'dtd = J. f£(tl)dt
0 0 <0
» X>

for Borel measurable functions f on R*Y. The dual Hardy operator
P; is defined.as

0 (]
P’ (£)(x) = f J' £(ty, -+, ta)ddty - -dty = J’ £(t)dt,
‘ Xd X1 <x, c0>

where x > 0, 1i.e., each xy >0 for X = (%q,*°*,%g).

Hardv’'s inequality (1820) is

[o1] P [r¢]
(2.1.1) J‘ P (£)(t)Pt Pat < |-B- If(t)pdt,
o * pril 0

where p>1 and f 20 (f20) 1is Borel measurable.

b. The Hausdorff-Young inequality is

(2.1.2) ve € 2(RY), 1Tl ., € B.(P)IFI,
P d P

,
where By(p) = (p7P(p)? )% and 1 <p <2

The extension of Hausdorff-Young's inequality for Fourler series
to the case of Fourier transforms is due to Titchmarsh (1824). Bg(p)

. - 2
is the best constant and (2.1.2) is an equality for f(t) =e mitl



(Babenko (1961) agg Beckner (1975)). Finally, (2.1.2) allows an
extension to LP(R°) since ¥(R) 1is dense in LP(R"); in particular,

the Fourier transform is well-defined for each f € Lp(Rd), 1 <p<s2.

5.1.2. Proposition. Given 1 < p = 2.
(2.1.3) vf e P(R), Ilfllz < 4nBi(p)Iltf(t)llpll'a'f‘('a')llp.

The proof is similar to the proof of Theorem 1.1.1: the
LP-version of Holder’s inequality is used instead of the L2-version,
and the Hausdorff-Young inequality replaces the Plancherel theorem.

2.1.3. Proposition [HS, Theorem 1.1]. Given 1 <p < 2.
(2.1.4) VE € %o(R), I£15 S 2mpBy(p)ILL(E)I lof ()l .

The constant in (2.1.4) is sharper than that in (2.1.3) for
1 < p< 2. The closure properties of #,(R) are discussed in
Appendix A.3." The proof of (2.1.4) is similar to the proof of Theorem
1.1.1 but depends on Hardy's inequality in the following way:

© 00 ‘ 1/p, 0 , 1/p’
j 1#(y) 1%y < [j larf'(w)lpdv] [J' 11 1P d?f]
0 0 o?

’

o 1/p o . ) i/p
- “ l'a'f(ar)lpdw] | [j 1P ((B) ) () 1P 2P dv]
0 0

© 1/p o . , 1/p'
< pU Ia’f(a')lpd;r] [J’ L(3)7 () 1P dzr] .
0 0

cf., Sections 2.1.7-2.1.9 for a fuller treatment in a more general
setting.

2.1.4. Definition/Theorem. Definition. Given even non-negative Borel
measurable functions u and v on R and R, respectively. Suppose

there is K > 0 such that
s

1/s 1/q . 1/p’
(2.1.5) sup [ I u(x)dx] [ I vix)? pdx] = K,
s>0 0 0

where 1 < p £ q < o. In this case we write (u,v) € F(p,q).
We have the following generalization of the Hausdorff-Young
inequality.

Theorem [BH1]. Given 1 < p £ q < ® and even weights u and v for
which (u,v) € F(p,q). Assume 1/u and v  are increasing on (0,w).
Then there is C = C(K) such that



ve € #(RY) n LE(RY, IF1 sclfl < w
q,u P,VY

After completing [BH1] in 1882, we realized we could use
Theorem 2.1.4 to prove the following weighted uncertainty principle

inequality, e.g., [B2, p.408; HS].

2.1.5. Theorem. Given 1 <p sq<m and even non~-negative Borel
measurable functions v and w which are increasing on (0, w).
Assume (1/w,v) € F(p,q) with constant K (as in (2.1.5)). Then
there is C = C(K) (the same as in Theorem 2.1.4) such that

(2.1.8) Vf e #(R), an: < anC(K) £ ()1 | eacall e
q W%

Proof: By means of the first part of (1.1.3) (for f instead of f),
Holder's inequality, and Theorem 2.1.4 we have the estimate,

1912 = 1312 s 2 [ls @ @) (@) ley

=2 Ilv(f)-(w)w(w)ilqll(f‘)’(w)w(a')—uqldw

- P 1/q’ . - 1/q
< z[]'lw(f") (1% W /qda'] _ Ul(f)'ml“ () idv]

s2c1 (DI IrE@L
ql

and the result is obtained since ((£)/)7(t) = 2ritf(t). ge.d

2.1.6. Remark. a. Naturally, the right side of (2.1.6) is not neces-
sarily finite, although it is easy to specify a convenient subspace of
¢(R) where it is finite. We shall not discuss the closure question for
(2.1.8), that is, the question of characterizing the appropriate space
of functions for which (2.1:6) is valid and the right side is finite,

cf., Section 1.1.2.

b. The monotonicity and symmetry hypotheses in Theorem 2.1.4 and
2.1.5 can be weakened at the expense of complicating condition (2.1.5)
with criteria formulated in terms of rearrangements; [BH2] provides
remarks and bibliography for contributions in this direction, as well
as for higher dimensions.

If p=1 and g > 1 then Theorem 2.1.4 is true for any positive
Borel measurable weight u. In this case, the proof is routine and the
constant C 1is explicit [BH1, pp.272-273). If p > 1 the constant C
is less explicit, but it can be estimated by examining the proof of
Calderon’s rearrangement inequality (Studia Math. 26{1966), 273-299)
which we use in proving Theorem 2.1.4.

10



2.1.7. Weighted Hardy Inequalities in Rd.

Lemma [He, Theorem 3.1]. Given 1 <p <g < and non-negative Borel

measurable functions u and v on X & RY. Suppose P : Lg(x) N

LX) 1is a positive linear operator with canonical dual operator P’
’

L:_ql /q(x

) — Lgip’/p(x) defined by the duality I P(f)(x)g(x)dx =
X

J-:E‘(x)P’(g)(x)dx. Assume there exist Kj,Kz > 0 such that
X

vg € L'%P (X), for which g2z 0 and el g/py s =

there are non-negative functions,

fq € LB(X), hy € sz/qg(X). fs € Lz-p’/qg(X). hy € L:_pl/p(X).

with the properties
(2.1.7) P(f;) € Kshy and P’ (fzg) £ Kzhy

and o Jol ar
v=~fPPh, and u=h"? £

Then P e £(2(X), LYX)), P’ € £LYg /q(X), 2o’ /p(X)), and IPI,

: i’ 1/
1P’ ) < K'P kP
Setting ’ e
£, =v P /P Pa(v P /p) l/p’
hy = Pa(v? PP,

/q o’ -p/(qp’)
f2 = up q Pd(u) pP/iqp ,

. - ’
hp = Pa(v® P)77P

*

it is easy to verify (2.1.7) for any non-negative g € (9P (lR+d),

for which llgll(q/p), <1, as long as (2.1.8), (2.1.8), and (2.1.10)
are assumed. As a result, Hernandez obtained the following version of

Hardy's inequality on R™C.

Theorem [He, Section 4.2]. Given 1 <p=q< and non-negative
Borel measurable functions u and v on R'®. Assume there exist K,

Ci(p), Ca(p) > O such that
1/p'

i/q ’
(2.1.8) sup [ J' u(x)dx] [ f v(x)P P dx] = X,
s>0
<s, o> <0, s>

11



(2.1.89) vx € RS, Py(v® P(Pa(v? )Py (x)

-p'/p)-l/p'

< Cy(p) Palv

and

(2.1.10) vk € B Pa(u(Paw) P ) (x)

< Co(p)VP(Paw .

Then Pq € L(LE(R™), LIR™)), Pa e £(LIg /q(R™), L p’ /p(R™)),

! 17p’ 1/
and [[Pall, IPall € KCy(p)'"® Calp)™’P.

Remark. Condition (2.1.8) is necessary and sufficient for weighted
-Hardy inequalities on R and necessary on R, d > 1. Conditions
(2.1.9) and (2.1.10) are automatically satisfied on R. Conditions
(2.1.8), (2.1.8), and (2.1.10) are sufficient but not necessary on R9Y,
d > 1. Sawyer has glven a characterization for d = 2.

2.1.8. Régrouping Lemma. Let 0 be the subgroup of the orthogonal
group whose corresponding matrices with respect to the standard basis
are diagonal with %1 entries. Each element w € Q can be identified

with an element (wq,-°*,wq) € {-1,1}¢, and wy = (w171, " *,Wwa¥d).
Thus,
- [Faer =[nj Flwy)ay,
We
Iﬁ-vd
and since

i et 1/r e’
aw bw < [oznaw] [OZ bw] ,
WER Q

for 1 <r < e and aw'bw 2 0, we have -

7
Lemma. Given 1 <r < o and suppose F € Lr(Rd), Gell (Rd

. 1/r , 1/r’
L[] 1renives) (] townr” ar] s UFL NGl
we

). Then

~ +d a+d
R R

2.1.9. Definition/Uncertainty Principle Inequality.

Definition. feo(RY) = {f € P(RY): F(z) = 0 1f some 7y = 0} € £ (R).
Thus, f € #(RY) is an element of ¥.a(RY) if f =0 on the
coordinate axes.

Combining Hardy's inequality (Theorem 2.1.7) and the regrouping
lemma (Lemma 2.1.8) we obtain the following gncertainty principle

inequality.

12



1 < r <o and non-negative Borel measurable weights

v and w. Suppose u = wq‘/r, and assume that, for all w € 9, the

weights u(wy)  and v(wy) satisfy conditions (2.1.8), (2.1.9) and
(2.1.10) on £ for p=q=r’ and constants K(w), Ci(p,w), and

Theorem. Given

Co(p,w). If C = sup K(w)Cl(p,w)ilp C;_;(p,w)up then
well
d 2 A 2
(2.1.11) Vf € $oa(R ), llfll2 < Cllfllr,ullah---,adfnr,,v.

2.1.10. Method. At this point, generalizations of Proposition 2.1.3
and Theorem 2.1.5 can be stated by appyying d-dimensional versions of
Theorem 2.1.4 to the factor ua1,--~,adfur, v on the right side of

(2.1.11), e.g., Remark 2.1.6b. We shall avoid a baroque extravaganza
with all forms of rearrangements, and confine ourselves to the

following section.

2.1.11. Corollaries.

If v=1 and p=gq=r" then (2.1.8) has the fornm,

1/ 1/’
(2.1.12) sup (sy°--sq) r [ I u(y)dy} = K,

>
s>0 <g, o>

and (2.1.8) is satisfied for Cy(r’) = r.

Given 1 < r £2 and let the non-negative Borel measurable

Corollary.

weight w be invariant under the action of . Assume K<o (in
7 .

(2.1.12)) for u=w" /" and that

7 ¥4 7 rs
(2.1.13) P, (W ""(P;(w’ /ryiTy < Cg(r’)(P;(wr /ryT

Then

4
Ve € LR, IFIL S (2m) - KCo (r )T Balr)lits- - -taf (DN NEN

IA

(2m)%r%Ta YKo (r )" Ba(e)NIEISECOI BTN

lygs>-7al’y 1<r <2, is Q-invariant,

The weight w(7)

’
K = (r’ - 1)"%F in (2.1.12), and (2.1.13) is satisfied for Calr’) =
(r{r’ - 1))%. Consequently, we obtaln the following d-dimensional
generalization of Proposition 2.1.3.

Corollary. Given 1<r < 2. Then

Ve € Foa(BY,  ITIZ € (2n0)® Ba(m)ltas e taf ()] N7a s wel (O
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2.2, SECOND METHOD: A,-WEIGHTS, AND WEIGHTED GRADIENT AND RIESZ
TRANSFORM INEQUALITIES

2.2.1. Weighted Gradient Inequalities.

Theorem [Si, Theorem 4.1)]. Given 1 < g< o and non-negative Borel

measurable functions u and v on R%

a. There is a constant C > 0 such that
(2.2.1) vg € Co(RY), gl < Clt-va(t)l
q,u q,v

if and only if

s

1 d-1 var® d,-q'7q_-1
alxs)x® dx] U (vixs)x®) ™ % dx] K< a
1

(2.2.2) sup [f

seR? Y0

The constants C and K satisfy the inequalities,
K<CsKqg g,

b. There is a constant C > 0 such that

(2.2.3) Vg e CO(RY) for which g(0) =0, lgl_ < Clt-va(t)l_

if and only if

o 4ot 1/q,.1 de-q’ /q -1 1/q’
(2.2.4) sup [I, u(xs)x dx} [f (vixs)x)™* "% dx] =K < o.
seRI VW1 ) 0

2.2.2. Ap,-weights and Fourier Transform Norm Inequalities.
Definition. Given 1 < p < o and a non-negative Borel measurable
function w on RY. w is an Ap-weight, written w € A, if

p/p’

1 1 -p’/p
sup [——— w(x)dx][——— w(x) dx] =K < o

Theorem. Given 1 < p < qsSp’ <o and let w be a non-negative
Borel measurable radial function on Re. Assume w(|tl) is increasing
on (0,w). There is a constant C > O such that

g, -

d 1) : 1/q
©, d 2 q P 1 yasp
(2.2.5) ve e c®Y, [[iE@1° 191 ke s al,

if and only if W € Ap.

14



(The reference for the case d = 1 is J. Benedetto, H. Heinig, R.
Johnson, "Fourier inequalities with Ap-weights” ISNM 80 (1987},
217-232. The d > 1 version stated above is in [HSi, Theorem 2.101.)

We view Theorem 2.2.2 as the culmination of some interesting

Remark.
In case p = q and w = 1, (2.2.5) is

classical analysis. Take d = 1.
the Hardy, Littlewood, Paley theorem (1931),

f 1) 171717 ar < CIEl

1, (2.2.5) is the Hausdorff-Young theorem. If
a < p -1, then (2.2.6) reduces to Pitt’s theorem

(e ~
ox
ATt

1/p

_ i/q
[j'l:‘"(w)l“lrl de] sc[[lf(t)rpm“dt] .

where B = E(a+1) + 1 - g. The fact that Fourler transform:

inequalities are characterized in terms of Ap-welghts was initially
surprising since the Ap-condition was associated with maximal function

and singular integral norm inequalities.
2.2.3. Definition/Theorem on Riesz Transforms.

Definition. The d-dimensional Riesz transforms are the d singular
integral operators Rj,°**,Ra defined by the odd kernels ky(x) =

Qj(x)/led. j=1,---,d, where Qy(x) = caxy/Ixy] and cq =

r(g;_i)/n(é+§)/?. In fact,

(Ryf)(x) = lim [EEESNOLL
7890 eqt)<T

exists a.e. for each f € IP(RY), 1 <p<w andthere is C = Cip)
such that

ve e L°(RY),  IR{I_ < CIEl,
j=1,--+,d. C=C(p) does not depend on d [GR, p.223]. Also, we

compute
EJ(7)=-1 -T—%;—l—i J=1'...’d

Theorem (Hunt, Muckenhoupt, and Nh%gden. 1?73). Given 1 < p <o and
suppose W € A,. Then Ry € 2(LMRY), LR, §=1,---,4, e.g.,
[GR, pp.196, 204, 411-413].

15



2.2.4. Uncertainty Principle Inequality.

Theorem. Given 1 <r £2 and a non-negative radial weight w € A, on

R4 for which w(ltl]) 1is increasing on (0,@). Assume

1 w(xs)-r'/r 3 e’
[f X dx] X

(2.2.8) sup .
0] |xsi

seRY

Then there is a constant C = C(K) > 0 such that
w0, d 2 ~
(2.2.7) vE e Co(RY), If)Z < ClItif(e)l Hrifxdl .
2 r,W r,w
Proof: a. For 1 <r<wm Wwe have

(2.2.8) e T ECO T I L e
r,w r’,u

where e "y
u(t) = 1t1™ wt) ™ .

b. The second factor on the right side of (2.2.8) is estimated by
means of Theorem 2.2.1a where q and V in (2.2.1) are gq=r’ and

’
r /r

s,
vty = 1t wlp”
respectively. Thus,

(2.2.9) el ., < Culit-vE()l ,
r’,u r’,v

if and only if (2.2.6) holds.

c. By Minkowski’'s inequality the right side of (2.2.9) is bounded
by

4 v r’ 1 ,r'/r e’
(2.2.10) 4C1‘j-2=:1 [_[I(RJGJ) ()" ) dt] :

where G;(t) = §,;f(t). Combining (2.2.8) and (2.2.10), and applying
Theorem 2.2.2 for the case p =r and q = p’ (so that 1 <r £2),
we obtain

ne~-1na.

<
(2.2.11) 1€, , € CaCz ) IRGI, -

J=1

d. Finally, combining (2.2.8) and (2.2.11) and applying
Theorem 2.2.3 to the right side of (2.2.11) we have the estimate

16



d
(2.2.12) 12 < CaCCalIt (eI ) 1@ (I,
s jzl ’

. d ' 1/r
< ZT[dl/r C1C2C3” ltlf(t)"r W[Ilf('l)'r[ z l?jlr]W(W)d'a’]
1 J=1
< 2nd'? CyCaCall 1t 1T () W EGIN
g.e.d.

2. 2.5, Corollary. Given 1 <r S 2 and d > r’. Then there is C > 0

such that

A

(2.1.13) v € #(RY), nfllz 'cultlf(t)llrlllei‘"(w)ur.

2.2.6. Remark. =a. In the notation of (2.2.12) the constant C in
Corollary 2.2.5 is of 'the form

¢ = 2md*?c, (r, d)Ba(r)Calr).

Since it is of interest to measure the growth of C as d increases,
we note that C;(r,d) can be estimated in terms of K 1in (2.2.8) for

any w, cf., the second corollary of Section 2.1.11.

L b. Theorem 2.2.1b gives rise to an analogue of Theorem 2.2.4
which, for w = 1, yields (2.2.13) for d < r’.

3; Local Uncertainty Principle Inequalities
3.1. THE RESULTS OF FARIS AND PRICE
Faris' local uncertainty principle inequality is -

3.1.1. Theorem [F, (3.2)]. Given a Borel measurable set E € R. Then
(3.1.1) ve e #(R), [ 1817y < 2rlENIEE(OIITN,
E .

cf., Remark 3.1.5b.

Price’s generalization of Faris’ result is -

3.1.2. Theorem [P, Theorem 1.1]. Given a Borel measurable set E € .
and o« > d/2. Then
d 5.d

(3.1.2) v e 2@, [ 1E@)1%r s CIENIEI@IGI,
E

where
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-1
e (9 )efre 2 ) f2oa) e -
C =24 r[ 2a]r[1 2a][d 1] [1 20

and CJE| 1is the cmallest possible constant.

3.1.3. 4 Local Uncertainty Principle. Theorem 1.1.1 asserts that if
f is concentrated then f is spread out. Faris' and Price’s theorems
quantify the folklore that this spread is smooth, and is not the result
of f having isolated peaks far from the origin. For example, 1if

£, = VO X(1/(zn)) then the spectral energy in any fixed band E tends
to 0 as n — w since [fnl, =1 and [tfn(t)ll, = 1/(2nv3). Simi-

larly, if f had a peak about the point 7o, then H?Hz E would be
v &)

more or less constant as |[Est — 0, where 79 € Ej, thereby
contradicting (3.1.1).

Theorem 3.1.2 has been generalized to Helsenberg groups [PS].

3.1.4. Proposition (Carlson, 1834).

Ve € 2(R), IIFNZ < HteO Il
1 PLERDP
Proof: By Holder's inequality,

1 2 -1 2 2, _ 72,2 -1/2 02,
NS = _[(t s u®) e %au = tEEE + T ur (W

and the result is obtained by minimizing this functlon of t. '
) g.e.d.

3.1.5. Remark a. Carlson proved his inequality for power series and
obtained the smallest possible constant. This inequality and related
ones are used in [B2] in conjunction with the Bell Labs uncertainty
principle, e.g., Proposition 5.1.5. Beurling (1938) found a new proof
of Carlson’s inequality allowing an extension to R® [K]. For example,
in R2 the inequality has the form,

2 24 23
<
1512 < cOlazEl, + 19,£1)151,-

b. Our reason for discussing Carlson’s inequality is to suggest
alternative proofs of Theorem 3.1.1 and 3.1.2. (3.1.1) is an immediate
consequence of Proposition 3.1.4:

an2 an2 P
1212 _ < IENEIS < IENFIS < 2nlENEE (O,

Theorem 3.1.2 would require a weighted version of Carlson’s inequality
on R4

18



3.2. LOCAL UNCERTAINTY PRINCIPLE INEQUALITIES ON R

3.2.1. Hardy’s Inequality. We shall use Theorem 2.1.7 for d = 1. In
this case (2.1.9) and (2.1.10) are automatically satisfied and we can
take Cy(p) = p’ and Cz(p) = pP/d, Also, if p=1 or q = then
Theorem 2.1.7 is valid and I[Pl can be taken as K ({(defined in

(2.1.8)).

The weight u in Theorem 2.1.7 can be replaced by pu € M. (R)
[BH2].

Finally, we should mention that Hardy's inequality can be
formulated on rather general spaces, not Jjust R*¢. In particular,
there are formulations on RY. The reason we have chosen R*d is
1llustrated in the following result. In fact, it is natural to apply
Theorem 3.2.2 to the weight v = 1; and in this case the constant
defined by (3.2.1) would be infinite if we employed Hardy’s inequality
on R. Consequently, we deal with ¥.(R) and R* instead of ¥(R)

and R.

3.2.2. Theorem. Given 1 <r < w and non-negative Borel measurable
weights u, v, and w. Define u, (2) = u(#y) with similar notation for

v and w. Assume

CoL e o u (X) i’ 8 , 1/r
(3.2.1) sup Ui - dx] _ U v_'_(x)_r/r,dx] = K, < o
s>0 Vs w_'_'(x)r ~¢o T ’ =

e )
There exist constants C, > 0 for which K, S C, < K, (0 (e )"

and such that

(3.2.2) VE e $o(R), IF1Z s CH®)I, Ml

where C = max{C,,C.}.

"Proof": The result follows from the estimate,

<. 2 _ " A 1
jolf(w)l u(z)dy = jolfmw(w)fmmlu(v)dw

o 1/ 0 @ . ‘uly) 10’
< U lf(w)w(v)lrufv)dw] | U P (5 1(3)° —7’—,d7] .
0 0 wiy)’

Hardy's inequality, and the regrouping lemma.
"g.e.d. "

The following result reduces to Proposition 2.1.3 1in case
uly) =1 and w(y) = l7l.
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3.2.3. Corollary. Given 1 < r £ 2 and non-negative Borel measurable
weights u and w. Define u, (7) = ulzy) and w_(7) = w(zy). Assume

(™ u+(x) 1/r’
(3.2.3) sup s’ r[f '_:___:rdx] =K, < o
s>0 s w,(x) -

Then
(3.2.4) V£ € %o(R), ||?||: e 2mB, (LK) (e )T pes ) il

where K = max{K,,K}.

3.2.4. Example. a. If u~= x(Q) and w =1, then Corollary 3.2.3
yields the inequality,

" 2 i/r N i/r
(3.2.5). 1 (2) 1%, 3 2n81(r)n[fltf(t)lrdr] Lfﬂfwzol’dw] ,
20 Q

for 1<r <2 and f € #,(R). (3.2.5) improves on Theorem 3.1.1 for
f e $(R).

b. If u=yx and w(z) = || then Corollary 3.2.3 yields the
inequality,

. - i/r a, i/r
(3.2.8) _[ |£() 13y < 21trB1(r')Ultf(t)lrdt] U l'a'f('a')lrdw] ,
E E

for 1<r<2 and f e $,(R). (3.2.6) is a local version of Proposi-
tion 2.1.3.
c. In searching for smallest constants in (3.2.6), a direct
calculation gives the following result for E = [-9,Q] and for the
2

Gaussian g(t) = (1/vm)e™" with dilation g,(t) = Ag(at):

ve > 0, 3 2a(g,Q) >0 such that VA > Al(g,9),
2 2 Q ~ 2 2 ~ 2 2
16m J'xtg (t) 12t J l7g. (7)1%dy < J’ I8, (2) | Pay| + e.
A 1o 7o q A

3.2.5. Example. a. Given 1 <r = 2, 1<p<a asymmetric set

Ec R for which |E| <o, and f & $(R). Then

(3.2.7) .

n 2 ‘r’ r ir 1+—:7 ~ r v
[ 121787 < cp.r)IE” [jltf(t)l dt] [j Iyl PR dx] ,
E E
where
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1

1= = — ’
C(p’r) = 2 pr W[EET}pr (P)l/r(rl)llr BI(P).

(3.2.7) is a consequence of Corollary 3.2.3 by using Holder's

inequality (for p and p’) on (3.2.3) and then setting u = xr and
o _1 1
w(y) = |y~ for a =+ pre

Naturally, (3.2.7) is just another of many special cases of (3.2.4).
We mention it since it involves the measure of E as does
Example 3.2.4a and a power weight factor of f as does Example 3.2.4b.

b. Letting p — o, p — 1, and r — 1, {(3.2.7) gives rise to
the following inequalities:

21/!“":(1“)1/1-“_., )1/r Bl(I‘) IEII/r %

IA

j 1£(2) | %dy
E

.. 1/r " i/r
y [jltr(t)lrdt] [f lyllf(w)lrdw} ;
E

r
+ =

1/r 1 . i/r
2an1(r)[Iltf(t)lrdr] [[ 7l T If(w)lrdz} ;
E

1A

j |F(x) | %d
E
j 1£(3)1%dy < zﬁfltf(t)ldtf 178 () 1 dy.
E E

3.3. LOCAL UNCERTAINTY PRINCIPLE INEQUALITIES ON R®

Instead of pursuing the method of Section 3.2 where Holder, Hardy
and Fourier transform inequalities were involved in that order, we
shall state a weighted Fourier transform norm inequality
(Theorem 3.3.1) particularly suited to making local estimates of
spectral energy. The resulting method to obtain local uncertainty
principle inequalities is firgt to use this weighted norm inequality
Theorem 3.3.1 to estimate Hfﬂz o and then to implement Holder’s

inequality in the usual ways. We omit statements of the uncertainty
principle inequalities which follow from this procedure.
3.3.1. Theorem [BH2, Theorem 4.3]. Given 1 <r <2 and non-negative

radial weights u,v € L}cc(Rd). Suppose Vit e L}oc(Rd\B(O.TJ)\Ll(Rd)
for each T > 0. Assume

S as X 2clss d-1+r' 1-r’ e’
sup [f X u(E)dx] [ I X v(x) dx] =K <o
s>0 0 0]

and
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4

® 41 X V2 P 1-r’
X u(i)dx] [ I )T dx] = Ky < m,

s (|

s>0 s 1/s
There is a constant C > 0 such that
r d ~
<
(3.3.1) vf e LT(RD), Ifl, < CIEl .

and C can be chosen as
1+1

-(d- 2 y: /e’
C = 2n @2 W2 T ()R (K 4 Ka).

The integrability condition on Vi allows us to obtain the
inequality (3.3.1) for each f € LL(R®), e.g., Appendix A.2. If supp u

. ’
is compact and vt is integrable off of a neighborhood of the
origin then Kz < », and it is for this reason that Theorem 3.3.1 can

be used to obtain local inequalities.

4. The Classical Uncertainty Principle and Wavelet Theory

4.1. WAVELET BASES AND WEYL-HEISENBERG FRAMES

The first problem of wavelet theory is to construct best possible
orthonormal bases {yp} of 12(R). "Best possible” means that each
Y should be as smooth as possible and should have controllable,
preferably compact, support. It also means that each basis should be
sparse and “"localizable", a notion which indicates that local changes
or fine tuning in a signal can be made by adjustments to a small number
of basis elements. The Y, are wavelets, cf., Remark 4.1.2c.

More general notions to effect decompositions are implemented when
orthonormal bases are too complicated for applicability or too
restrictive, e.g., Section 4.1.3, cf., Section 1.2.5d.

4.1.1. Theorem (Daubechies [D2]). For each r 2 1 there is a
compactly supported function ¥ € c"’(R) (the space of r-times
continuously differentiable functions) with the property that
{Ym,nt S L2(R) is an orthonormal basis of L2(R) where

(4.1.1) | Vmn e Z, Ynalt)=272(2"-n).

4.1.2. Remark. =a. Theorem 4.1.1 is difficult to prove. The first
result of this type is due to Meyer [M1]. The Meyer "analyzing
wavelet" ¢ is an element of #(R) for which supp ¥ is compact; and
the resulting orthonormal basis {Ym,n} 1s an unconditional basis of
Sobolev spaces, Besov spaces, etc. Related results are due to Lemarie

and Battle.
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The notion of "multiresolution analysis", due to S. Mallat, is the
most important idea associated with the difficult constructions of
"analyzing wavelets" ¢ which give rise to bases {Ym,n} defined by
(4.1.1), e.g., [M2] or the forthcoming book by Meyer. The original
constructions did not benefit from this unifying and underlying
concept. Intuitively a system of dilations and translations defined by
(4.1.1) can be thought of as a deblurring mechanism. For example, if

f e L2(R) then
fy = ZM z (fy\l’m,n)'l’m,n
mnx n

is a blurred vision of f in the following sense. If supp ¥ & [—%,%J

then supp Ym,n & [n2-P-2- (1) po-mep=(m) ) = 1, and |Innl =
2™ and so if we add the M+1 term to fy we have the effect of
bringing to light the behavior of f at intervals of length g ld)
and thereby deblurring fy.

b. Theorem 4.1.1 and the other results mentioned in part a have
analogues in RrY.

c. For a given Y € L2(R), the set {Ynn} defined by (4.1.1)
is called an affine system because of the role of the underlying
ax+b group cf., Section 4.1.3d where the Heisenberg group plays
an analogous role for the Weyl-Heisenberg system. “Analyzing wavelets"
Yy for affine systems satisfy the “wave condition” Jy(t)dt = O.
Consequently, the corresponding wavelets Ym,n (defined by (4.1.1))
are more appropriately and usually called "wavelets" than are the
elements of the Weyl-Heisenberg system.

4.1.3. Definitions/Representation. a. Let H be a separable Hilbert
space with inner product (...,...). Asequence f{Yp} €H Iisa frame
for H with frame bounds A and B 'if

3 A,B>0 such that V f € H,
2 2
Al£I? = Y 1(£,4) 1% < BIFIT

b. Orthonormal bases in H are bounded unconditional bases
which, in turn, are frames.
¢c. For a given frame {y,}, the S-operator is the map S :

H—H, f+—Y(f,¥a)¥n. It is a basic fact that S : H—H is an
isomorphism (linear bijective topological isomorphism), from which we

obtain the frame representation,

(4.1.2) VieH f= Z(f.wn)s'lw,, - Z(s’lf,wn)wn.

d. Given g € L3(R) and a,a > 0; we define the Wevl-Heisenberg

system,
(4.1.3) V mn € Z, Yn,nlt) = yYglt;ma,na) = g(t—ma)eznltn“,
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cf., Section 1.2.5a,c for c = 0. If {yYp,nt 1is a frame it is

designated a Weyl-Heisenberg frame for L%(R).

4.1.4. Theorem [D1], cf., [HW]. Given g€ L2(R) and a > 0.
Assume

(4.1.4) 0 < A=ess inf ZIg(t-ma)l2 < ess sup Zlg(t—ma)l2 =B < o

teR teRr
and
. k
(4.1.5) lim ZOB(&) =0,
o0 k
where

B(s) = ess sup Zlg(t-ma)llg(t—s—ma)L
teR

Then there is &g > 0 such that for each « € (0,00), {yg(t;ma,na)}
is a Weyl-Heisenberg frame for L?(R) with frame bounds

«lA-a? ZB(E) and o !B+o”? Zﬁ(g).
k¥ ¢ k%0

4.1.5. Remark. a. Condition (4.1.4) is a necessary condition in
order that {wg(t;ma,na)} be a Weyl-Heisenberg frame. The sufficient
condition (4.1.5) has been the subject of an important analysis in
terms of Wiener-type spaces by D. Walnut, cf., Section 4.2.2d.

b. The relative merits of the translations/modulations of (4.1.3)
and of the translations/dilations of (4.1.1) have been intensely
editorialized and analyzed.

4.2. BALIAN'S THEOREM

4.2.1. Theorem (Balian). Given g € L2(R) and a,a > 0 for which
ax = 1. if {yg(t;ma,na}} 1is a Weyl-Heisenberg frame then

(4.2.1) tg(t) ¢ L2(R) or 7g(¥) ¢ L2(R),

cf., Section 4.2.5.

4.2.2. The Zak Transform: Definition/Remarks.
a. Given g € L2(R) and a,a > 0. The Zak transform of g is
the function,

Z(g) (t, a’) = allzzg(t_ka)eznika’/a,

defined on the rectangle Ra « = [-a/2, a/2)x[-a/2,0/2). Z(g) extends

to a function on RxR satisfying the quasi-double periodicity
condition,
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VmnelZ 2(g)ltma,ry+na) = Z(g)(t,y)e2“1m7/“_

Properties of the Zak transform are exposited in [D1; DGM; HW], and
A.J.E.M. Janssen has made some of the most important recent

contributions.
b. The Zak transform is a unitary (linear bijective isometry)
map, 2 : LZ(R)-+L?(Ra o

c. Given g € L% (R) and a,a > 0. If 2Zg 1is continuous on Rx[R
then Z2g has a zero in R o Examples of continuous Zak transforms

Zg on RxR are provided by g € Co(R). C. Heil has proved that a
large class of functions g with continuous Zak transform Zg on RxR

is the original Segal algebra (due to Wiener),

W(R) = {f € LI(R) n Cu(R) : Xurnm ety <

where ||...||°° — is .the usual L%-norm on the interval [n,n+1].

Clearly, the elements of W(R) vanish at *o and belong to L2(R).
W(R) is also the first of the Wiener-type Banach spaces mentioned in
Remark 4.1.5a defined locally and then globally; in the case of * W(R)
the local norms are J...| and the global norm is ... .
©, [n,n+1] 1
d. If gel?R) and ax =1 then {Yg(t;ma,na)} 1is a Weyl-
Heisenberg frame with frame bounds A and B if and only if O < A <

lZ(g)(t.w)l2 £B<w a.e. on Ra « cf., part ¢ and Section 1.2.5d.

4.2.3. Example. Given g = %o0,1) and a =oa = 1. Define Ym,n(t) =
Yg(t;m,n) as in (4.1.3). Then 2Zg is defined a.e. on RxR by the
property,

Yn, Vt € (n,n+1), and V¥, 2(g)(t,y) = e2n1n7'

Since |2(g)(t,7)] =1 a.e. on Ry,; it is easy to check that {¥m,n}
is an orthonormal basis of L2(R), and hence it is a Weyl-Heisenberg
frame. Further, tg{t) € L2(R) and g’, which exists a.e., 1is an
element of L%(R), cf., (4.2.1). In this example, 7g{y) ¢ L2(R)
which corroborates Balian's theorem. However, this function g
provides a counterexample to the proposed “proof" of Balian's theorem
for g’ that we've reproduced in Section 4.2.4.

With regard to the previous observation about g’ and reg(7),
recall that if f € L2(R) and 7f(y) € L?(R) then f’ exists a.e.,
is an element of L2(R), and f£’/(t) = (2miyf(y)) (t) a.e.

4.2.4. Analysis. The following is a plan to verify Balian's theorem
for f, tf(t), £’ e L3(R), ax =1, and {yYr(t;ma,nal}.

Step 1. Prove that 8,2f,8,2f € Lioc(R%).
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Step 2. Define Z.(f)(t,7) to be the continuous mean of Zf
over a square of side or centered at (t,7).

Step 3. Assume {ye(t;ma,nx)} 1is a Weyl-Heisenberg frame with

frame bounds A and B. Use Step 1 to prove that A'/%/2 <
1Zo(£)(t, 70| < oB1/2 on a specified square R containing Ry, 1.

Step 4. Obtain a contradiction by considering log Z.(f).

Most details for these steps are correct and can be found in the
literature. The above outline would give the result since the hypo-
theses tf(t), £’ € L2(R) allow a verification of Step 1. (Recall
that g of Example 4.2.3 satisfies tg(t), g’ € L2(R).) The problem
with this outline is part of the proof of Step 3 where the following
calculation is made for Z = Z(f):

Z(tl,'a") __1_2_ I Izttll.z,ll)dt”d‘a,ll
., 4r I°

-_}_2_ J. J‘(Z(t",é‘l’)_Z(tl ,'3’”)+2(t' '7")_z(tl ’.a,l )dt”d?’”
4r 1

”

t” g
__1_2_ I J‘[ alz(t”’, 2’”)dt’”+ J- azz(tl ,7”’)d7”’]dt”d']”,
4r° IV Wt 7’

where I = {(t”,7") : [t"-t’] s and |¥”-7¥’| < r}. Generally, this
calculation falls since the fundamental theorem of calculus is not
applicable. For example, in the case of Example 4.2.3,

tll

8,Z(g) (t¥,¥”)dt” = 0

tl

and
Z(g)(t”,?'”) -Z(g)[t’,v”) = e27[1n 3’ _eznln 'J’ ;

and this causes problems on R when In”-n’| > 0.

4.2.5. Discussion of Balian’s Theorem. Balian's original treatment
was in terms of orthonormal bases [Ball, cf., [HJJ}. An ingenious
simple proof is due to Battle [Bat], and, using Battle’'s idea, it has
been possible for several groups to verify Theorem 4.2.1, either by
formal calculation or correct proof.

Using the uncertainty principle, Theorem 1.3.3, and assuming

tg(t) e L3(R) and 7g(y) € L2(R), Battle shows that g =0 so that
the Weyl-Heisenberg system can not give rise to an orthonormal basis.
The uncertainty principle is invoked in the sense that he calculates

- $ = 2
Eg(i[A,B]) = 0, noting that EG(i[A,B]) = Hg"z.
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C. Heil has observed, in light of his result quoted in
Section 4.2.2, that Balian's theorem is immediate with the further

hypothesis, g € W(R).

Finally, we note that Balian’s theorem leads one to quantify
further the notlon of functions g being far away from the Gaussian
such as reflected by condition (4.2.1). In this regard, we mention
DeBruijn’s theorem to the effect that if (1.1.1) is almost an equality
for a function g then g is almost equal to a function of the form

(1.1.2) [De, Theorem 3.3].

4.2.68. Strong Uncertainty for Weyl-Heisenberg Systems. Given

g € L2(R)\{0} and a,a > 0. Define the Weyl-Heisenberg system
Umn(t) = Yg(t;ma,na), mn € Z. For any fixed (to,%) € RxR, we have
the strong uncertainty property

(4.2.2) supll (t-t0)¥n,n(t) I (7-70)ba,n ()1, = =,

m,n

cf., (4.3.2).

To verify (4.2.2) we first observe by basic function theory
associated with Jensen's or Carleman’s theorem and the Paley-Wiener
theorem that if g (resp., é) vanishes on a half-line then g (resp.,
g) cannot vanish on intervals without being identically zero. Next,

consider the estimate,

I (t-t0) ¥, n( 8121 (3=20) P, ()1
o ~
(4.2.3) 2 I((t—to)+ma)2|g(t)|2dt j ((r-70)+ne)?1g(7) | %dy
Yo

> (na)zj((t-to)+ma)2|g(t)|2dt I 18(7) |3y,
7o

where the second inequality is valid for n 2 0. Thus, if supp g is
contained in a half-line then (4.2.2) follows from (4.2.3). If supp g
is not contained in a half-line then the obvious adjustment of (4.2.3)

yields (4.2.2).
4.3. BOURGAIN’S THEOREM

4.3.1. Notation for Expected Values. Given Y € L2(R) and consider
the affine system {{g,,} defined in (4.1.1). For each m,n the
expected values (tg n,7m,n) € RxR are

ton = [t1¥n,n(t)1%t and 7= [#18a,n(2) 1705,

cf., the end of Section 1.2.1 for the origin of this terminology from
quantum mechanics. .
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4.3.2. Weak Uncertainty for Affine Systems. Given ¢ € L%(R) and
consider the notation from Section 4.3.1. We have the weak uncertainty

property,

(4.3.2) Sup"(t-tm,n)wm,n(t)llzll(7-7m,n);z’m,n(7)"2 < o,

ef., (4.2.2). The inequality (4.3.2) is a consequence of the
equalities
I (t—tm,n)wm,n(t ) "2 = 2™ (t"to,o)!ll(t)lla

(4.3.3) . -
I (V’Tm,n)‘/’m,n(7) "2 = 27| (7—70,0)'/’(7) "2:

which, in turn, follow from easy calculations.

4.3.3. Problem. "Weak uncertainty" for wavelet bases such as the
affine system described in Theorem 4.1.1 provides simultaneous control
of time and frequency information among all the basis elements. It is
natural to ask how precise this simultaneity can be. To quantify this
question we ask specifically if there is an orthonormal basis {y,} of
L2(R) having expected values (tn,7n) € RxR so that

supl (t-ta)¥n(t)l, < @ and  supl(r=7a)ia(l, < =

Because of (4.3.3) any such refinement of (4.3.2) would have to go
outside the realm of affine systems. In any case the following result

gives a strong solution to this problem.

4.3.4. Theorem (Bourgain [Bol). - For every ¢ > 0 there is an
orthonormal basis {yY,} of L2(R) having expected values (tn,on) €

RxR and satisfying the inequalities,

supll (t-ta)¥n(t)], < 1 ie and supll(z-7a)dn(2)l, < 1.
B 2vn » 2V

Thus,

2
Von 1= ll%"i < tlrrll(t-tn)t,bn(t)llzll(w-wn)@n(af)ll2 < 4“[‘3/—_‘*8] .
2VT

5. Spectrum Estimation and the Wiener-Wintner Theorem

5.1. SPECTRUM ESTIMATORS AND THE UNCERTAINTY PRINCIPLE

5.1.1. Problem. The spectrum estimation problem is to clarify and
quentify the statement: find periodicities in a signal f(t) -recorded
over a fixed time interval [-T,T]. In more picturesque language, we

want to filter the noise from the incoming signal f in order to
determine the intelligent message (periodicities) therein.
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5.1.2. Definition. In order to quantify this problem we introduce the
following mathematical setting.

Let f(t,a) be a stationary stochastic process (SSP), where the
sample functions f(+,a) on R are indexed by « 1in the underlying
probability space X. (For our purposes, an SSP f 1is characterized
the conditions that the expected value E{f(t)} 1is constant,
py E{f(t+h)F(u+h)} = E{f(t)F(w)} for all h, t, ue R, and
lim E{|f(h) - £(O) |7} = 0.)

h-0

The autocorrelation of the SSP f is the continuous positive

definite function

Rf(t) = E{f(t+u)T(u)};

gnd the power spectrum of f 1is the positive measure Sy for which
Rc = S; (a distributional Fourler transform).

5.1.3. Definition/Remirk. Given f € Loo(R') and define
- 1 ~
vI > 0, Pr,r T TBIM (fxatr))*(fxstr))

so that Pr 1 € Lﬁoc(Rd) < M(RY). Suppose that there is a continuous
positive definite function Py for which %3& Pe,r = P¢ in the vague

topology v(y(Ré). Cc(IRd))‘.\d Then Pg € L®°(R%) 1is the autocorrelation
of £ and Pr = pr € Mp(R') 1is the power spectrum of f.

In order to reconcile the two apparently different definitions on
R of both autocorrelation and power spectrum we shall assume that

T

(5.1.1) vt e R, lim %T I f(t+u, a)f(u,a)du = Re(t)
T-w =T

converges in measure. Processes satisfying condition {5.1.1) are

correlation ergodic processes; and verification of correlation
ergodicity of f(t,a) requires knowledge of its fourth order moments.

S.1.4. Definition/Fact. Given v e LY(R) and suppose f  is an SSP
for which each sample function f(+,a) 1is an element of L (R). Then

Sely, &) = ij(t,a)v(t) e Mgy 2

is the periodogram associated with the process f and data window V.

If £ is areal SSPand v = v~ then it is not difficult to
verify that

(5.1.2) E{S,(7)} = SeV?,

where v = V. Further if {V?: T > 0} 1is an Ll-approximate identity
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and QT = Vr then

(5.1.3) lim E{SVT(T)} =85

T

in the canonical weak topology.

Because of (5.1.3) we can assert that E{SVT} is an asymptotically

unbiased estimator of S, thereby providing a relatively nalve solution
to our vaguely posed spectrum estimator problem.

A special case of the Bell Labs uncertainty principle is -

5.1.5. Proposition [LSP). Given T, Q > 0. There is c = c(TQ) e (0,1)
such that for each Q-band limited function f, i.e., supp f & [-Q,Q],

< o
(5.1.4) Ilfxmll2 < c(m)llfllz.

c(TR)? is the largest eiéenvalue of the operator BA, where Af = fx(T)

and Bg = (éx(n))v. (x(T) is the characteristic function of [-T,T}.)
Once the values c(TQ) are known, Proposition 5.1.52 answers the
question: what is an upper bound of the energies llfx(,r)ll2 as T

ranges through the Q-band limited signals having a fixed finite
eneggy? Theﬁc%assical uncertainty principle says that the variances of
I£1° and |f|° cannot both be small; Proposition 5.1.5 says that the

energies of Q-band limited signals and of their restrictions to [-T,T]
cannot be arbitrarily close, in spite of the Plancherel theorem.

5.1.8. Calculation. The uncertainty principle embodied in Proposi-
tion 5.1.5 allows us to quantify energy loss in spectrum estimators as
the following calculation shows for the estimator E{S,}. Besides the
above hypotheses we add the realistic conditions that supp v € [-T,T],
[vlz =1, v> 0 on (-T,T), and supp S & [-Q,2] for fixed T, 2 > 0.

We compute
- * 2 = v *
”E(Sv}nz = ||S=V ”2 s (v V)HZ

- 1 v
L -
< IS (vxv) vwlll_z[_zmn s xm)ll2
< c(TQ) IISIIZ.

One can make similar calculations involving weighted Lz—spaces
(and therefore reminiscent of the classical uncertainty principle),
where the uncertainty components are high resolution and precision of

estimator, respectively [Grl.
5.2. DISCUSSION OF SPECTRUM ESTIMATION

5.2.1 Deterministic Assumptions. The path we have chosen in Section
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5.1 to quantify the loosely posed Problem 5.1.1 is based on the
following deterministic assumptions.

ig defined on the product space [-T,TIxX,

{. The signal f
is the restriction to [-T, T}xX

where X is a probability space and T
of some SSP g.

ii. The expectation of the periodogram Sy{7,a) is known, where
suppv € [-T,T] and HVH2 =1

iii. The power spectrum S of f |is uniquely determined.

Assumption iii is a theorem in many cases involving the experi-
mentally reasonable hypothesis that supp Sg 1is compact, where 5; Iis
the power spectrum of the SSP g which, in turn, is an extension of
defined on [-T,T)xX. Mathematically, this assumption allows us to
specify S 1in (5.1.2) and, ultimately, leads to the Beurling -

Malliavin theory [B1].

On the other hand, Assumption iii is not universally accepted. In
fact, the maximum entropy method (MEM) of spectrum estimation is based
on a point of view opposite that of a uniquely determined power spec-
trum. MEM does not assert the existence of a unique power spectrum
and then estimate it; instead, given f on [-T,TIxX or the
autocorrelation R on [-T,T)}, MEM models autocorrelation data outside

[-T,T] by maximizing a certain entropy integral.

5.2.2. Statistical Assumptions. Besides the questions surrounding
Assumption iii(of Section 5.2.1), we must also note that Assumption i
preempts all genuine statistical problems.

A different point of view from that of Section 5.2.1 is the
following. We are given some sample paths of finite duration [-T,T]
corresponding to a specific experiment. The only stochastic process
available may be an idealized process representing the potential output
of some underlying mechanism. For example, in speech analysis the
generation of a specific sound varies with time and person but is
subject to statistical regularities, and this mechanism is the ultimate
source of realistic spectrum estimation of frequencies corresponding

to the sound.

5.2.3. Remark. Spectrum estimation is a multi-faceted, basic, and
deep problem with points of view bordering on the philosophical and
viable techniques ranging from sophisticated periodogram analysis to
various "high resolution" methods such as MEM. We refer to [PI] and
[L] for a scholarly presentation of diverse methods and a brilliant

new insight, respectively.

’

The purpose of our discussion has been to present the remaining
parts of Section 5 which provide theorems susceptible to transition and
interpretation as spectrum estimation algorithms.
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5.3. SIGNAL DETERMINISTIC ESTIMATORS ON R

Suppose the data characterizing a given signal f is known. 1In
the following result, V can be thought of as a properly shaped window
function so that the left side of (5.3.1) represents the power of f
in the region supp V. Formula (5.3.1) provides a method for computing
this power in terms of the known functions f and v. In practice,
then, numerical estimates of the right side of (5.3.1) lead to a

spectrum estimation algorithm.

5.3.1. Theorem [B3]. Given f € L?oc(Rd) with autocorrelation Pg

and power spectrum pe. Assume there is an increasing function i(R)

on (0,w) for which sup [f(t)| < i(T) and lim i(T)%/T = 0. Then
ft]<T T2

(5.3.1) Vv e Cc(Rd). IV(y)Izdu;(7)= lim TET%TT J If*v(t)l2 dt,
T B(T)

where v = V.

5.3.2. gorollary. Giwendthe hypotheses of Theorem 5.3.1. If
velPRY) and f e L (R®), 1 <p<w then the tgmpered

distribution v =V is a well-defined element of L#r(md) and

< ] )
IIVIIZ’“f < £l vl

5.4. AUTOCORRELATION DETERMINISTIC ESTIMATORS ON R

Suppose the autocorrelation data for a signal is known and the
signal itself is not explicitly known. This is a typical situation and
one of the reasons autocorrelations are so important, e.g., [Bil. In
the following result, V can be thought of as a properly shaped window
function so that the left side of (5.4.1) represents the power of £
in the region supp V. Since the norm constant in Proposition 5.4.1 is
explicit and computable, we see that (5.4.1) provides a means of
estimating an upper bound for the power of f in the region supp V.

5.4.1. Proposition [B3]. Given pu € Mp.(RY) for which
=P elP(RY), pell,o]. Then

vv € LY(RY) n LP(RY),

(5.4.1)
172

i/2 172 1
VI, , < IPEZAI IV DY < GIPLTEVE, + I,

where v =V and (LY(R%) n LP(RY), ||°"||1 + J---| ) is a Banach
space. P

5.4.2. Corollary [B3]. Given d 22 and 1 =p< 2d/(d+1). Then
laaal s < and, for each v € LY(R?) n LP(RY),
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1r2
V()12 doaa@)] % (it POV * IV,

(5.4.2) U

Z3-1
where v =V

5.4.3. Remark. The corollary is immediate from elementary properties
of Bessel functions and Proposition 5.4.1, which itself follows from an
elementary calculation. We stress the simplicity of (5.4.2) to compare
it with the much deeper Tomas-Stein restriction theorem:

(5.4.3) vv e LY(RY) n LP(RY),

s

o 1/2
Iv(e)l dc'd-1(6)] < c(p) IVl
}: P
d-1

where v =V and 1 < p < 2(d+#1)/(d+3). In (5.4.3) the constant c(p)
is not explicit, p = 2(d+1)/(d+3) 1is largest possible, and the right
hand norm is Hv"p. In (5.4.2) the constant 1s explicit and the

values of p extend beyond 2(d+1)/(d+3), but the right hand norm is
I, + vl

5.5. THE WIENER-WINTNER THEOREM IN R¢

Underlying the results in Section 5.3 and 5.4 is the question:

given M € NL(ﬁd), does there exist f € Lfoc(Rd) such that Pg = p?
The Wiener-Wintner theorem provides an answer to this question and a
means of reconstructing signals f on RY corresponding to a given

power spectrum.
5.5.1. Preliminaries. Given u € Mb,(ﬁd) and let Gw be the Dirac

measure supported by {w}. It is well-known that there is a sequence
{un} € Mp+(supp p) of positive discrete measures,

S\Y:n

Hn = 23,n 8 ’ ajy,n > 0,

j:‘l wjrn

such that {wjn: J = 1,-++,Ng} € supp 4 for each n,
(5.5.1) !1‘}'2 <gn, 1> = <p, 1>,

and 1lim pp = p 1in the (vague) topology o(My(R?), C.(RY)). Actually,

{(5.5.1) and the c(Mp(RY), C.(R¥)) convergence allow us to conclude
that %12 o = g in the "Levy" topology o(My(RY), Cp(RY)).

For a given u € M. (R®) and sequence {pn} € Mpe(supp p) as
above, we define
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Nn Mt Wy n

2 »

fn(t) = Z a}{n e
J=1
so that

Nn 1/2 1/2
Ifal < ) @)/a € No sup 3y

J=1 1<jSN,

5.5.2. Lemma/Notation. The proof of the following result depends on
elementary properties of Bessel functions.

Lemma. For each n,

1 v
1im £,(t+x)F(x)dx = pp(t)
Toeo 1BCD] IB(T)

uniformly on RY.

Notation. We use the Lemma to define a specific sequence (Tn} and a
specific function f in the following way. From the uniform
convergence we know that

Vn > 1, 3A, > Apq such that Vvt € R® and VI 2 Ay,
1

n+l’

TET%TT I : )fn(t+x)fnix5dx - un(t)| <
B(T

We set Tp = (Aj+1)(Ag+2)---(As+n) so that T, 2 n! and the sequences
{Tn}, {Tne1/Tn} = {Aps1+n+l}, and {Tpe1=Tn} = {(A;+1)---(Ap+n) (Aps+n)}
increase to infinity. For this sequence {T,} and for {f,} defined
above we define f on R% by setting f(t) = f(t) for Ta<1t1<The1,

n>1, and letting f(t) =0 for |[t] < Ti. Clearly, f € LTOC(Rd)
and the values of f£(t) for |t| = T, are not important.

The proof of the following result is long and intricate.

5.5.3. Theorem OLBZB].d Given pu € Mp.(RY) with corresponding functions
{f,} and f € Lio.(R). Assume there is C > 0 such that for all n

(5.5.2) I£alZ < CTn.
Then, for each t € le.

1 ——
HE TerOT I;(T)f(t+x)f(x)dx = W)

5.5.4. Remark. The original proof of Theorem 5.5.3 by Wiener and
Wintner on R is cryptic and there have been important contributions

on R by J. Bass and Bertrandias.
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There is left gnanswered the problem of characterizing those pu
for which f € L®(R®). This problem is not yet solved in case d = 1.

A. Closure Theorems

A.1. BI-SOBOLEV SPACES

A.1.1. Definition. G%yen integers m,n 2 0 and 1 < p £ w. The p
Sobolev space Lﬁ = LE(R ) is the Banach space of functions f € LP(R®)

for which

o
el = Z 18%¢1 < o.
m,p P

el <m

The weighted space Lg,n = Lg,n(Rd) is the Banach space of functions
£ € LP(RY) for which

= B
I = L IR < e
|Bl<n

The Bi-Sobolev space Lgﬂ,é L&n(Rd) is the Banach space of functions

f elh Ly, for which

(A.1.1) "f"m,p,n = "f"m,p + "f"p,n < o,

A.1.2. Theorem. _Given integers m,n 2 0. C:(Rd) is dense in the
Hilbert space (Lgn, fl*°°la,2,n) with inner product

[f,g] = z (8%, a%) + Z (tPr, tPg),

[el<m |B12n
where {+++,--+) 1is the usual inner product on LZ(Rd).

Proof: a. It is well-known that Cf(R") is demse in Lj, 1Sp<a
To see this, choose f € Lb, let {hj} € Cc(R") be anayigapproximate
identity with each supp hy € B(0,1), and take ujy € C.(R’) defined
by wuj(t) = u(t/j) where 0<u<1 and u=1 on B(O,1).

Fix |ea| £ m. Not only does 8a(f*hj) = f-a“h, but, by inte-
gration by parts, 6a(f*hj) = (a“f)*h,. Consequently, we can apply
Young’s theorem to obtain [8%(fxhy)| < 18%¢1 Ihyll, < KI8%F) . Thus,
each fxh; 1is an element of L}, as is each uj(f=hy).

The desired density will follow from the triangle inequality once
we prove .
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(A.1.2) 1im J8%((£xhy) (uy- DI = 0

Jow

for each |al € m. To this end we first use Leibniz’s formula for the

estimate,
18%0 (£xhy) (ug = 1)1 € Iuy= 18" (£hy)l+
(A.1.3)
—Bly =B B
) ICugld™ 18 (£xny) (88|
B«
18121

The dominated convergence theorem and Young's theorem allow us to prove
that the first term on the right side of (A.1.3) tends to 0 as jow.

Young's theorem and the fact that lim J"Bluaﬁuum =0 for IBl 21

Jw
show that the remaining terms on the right side of (A.1.3) tend to
as J+w. (A.1.2) is proved.

0

This density in Lﬁ can also be verified by an equicontinuity
N . 2
argument much like the one we give for Lo,n-

b. It is sufficient to prove that

(A.1.4) Vf € L2, 1lim IFg,(£)1, =0

Joo
for each |Bl < n, where FBJ(f) = Fy(f) = tB(uJ(f*hJ) - ). To this
end we first show that

(A.1.5) s?p IIFJ(f)II2 = C(f) < w.

This is accomplished by the estimate,

_ 4B B ot
IIF‘J.(f‘)II2 It f(t)l!2 < C(B) |8 (fhj)ll2

B-7a 571 B-7x 75
< .
< ] ICg, 118" PR 8%h 1, < ] 1Cg 11 *Ely sup 187hSl,

<
¥<B ¥<B v=p
and the fact, in the case hj is the dilation jdh(jt), that
1876 (01 = 160 [atwn gl 2t W Agy < k(g 717

since supph is compact. The estimate used the Plancherel theorem
and so we note the fact that the distribution aB(fﬁ,) is an element

of L3(RY).
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It is easy to chec% that the elements of Lf,n having compact
support are dense in L,,n, and that {FBJ} is contained in

Z(Lgﬂ“ L?(Rd)) for each |B| < n. Because of (A.1.5) we can invoke

the uniform boundedness principle and obtain sup IFjl = C < @. Thus,
{F;} is equicontinuous. On the other hand it is routine to check that

}ig IIFJ(f)Il2 = 0 for compactly supported functions f € Lg’n. This

convergence on a dense subset of Lfﬂ, combined with the equiconti-
nuity_yield convergence on Lg; ., and the resulting limit F(f) for
f e LEJ, determines an element F € £(Lg,n L°(R)). Therefore,

{(A.1.4) is obtained.
g.e.d.

A.1.3. Remark. Instead of defining Lﬁﬂ, to deal with closure
questions for the uncertainty principle, we could define the welghted

Sobolev space Lﬂ,"(Rd) consisting of functions f € Lj,.(R) for
which

= L1, e <

leel €m

by

myp,w

Incase d=1, p=2, m=1 (andso «=0, 1), and w=
(w(0),w(1)) with w(0)(t) = (1+t2) and w(1)(t) =1, we see that

Lf,H(R) is the Bi-Sobolev space L§,1(R).
A.2. Ls AND DENSE MOMENT SPACES

A.2.1. Theorem [BH2]. Given vV € L}oc(Rd) where v > 0 a.e. and
choose p € (1,m].

a. If helP(RY) annihilates #,(RY) n L2(RY) then h is a
constant function.
b, (R n LB(RY) = LB(RY) or LEY(RY) < L'(RY).

c. 1f v'P e LYRY then ¥.(R%) n LE(RY) = LE(RY).

A.2.2. Remark. a. Theorem A.2.1 requires some effort to prove, but

is considerably easier if Lp1 ,(Rd) c ¢ (RY).
vi-p
b. The condition, p > 1, 1is necessary in Theorem A.2.1. 1In
fact, if p=1 and v =1 then by a standard spectral synthesis
result, the Ll-closure of ¥,(R%) is the (closed) maximal ideal

{f e LI(RY): £(0) = O}.

A.3. LZ; AND PROPER MOMENT SPACES

Consider ¥,(R) as a subspace of LfJ(R).
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A.3.1. Proposition. S”O(IR)l (as a subspace of LfJ(R)’) is the set
of constant functions on R.

Using this fact and the inclusion, LfJ(R) < Li(R), we have
A.3.2. Proposition. The closure of ¥,(R) in Li;(R) is {f €

12 ,(R) : £(0) = 0}

A.3.3. Remark. szJ is a Hilbert space so that its dual is
isomorphic to Li, 1. As in the case of Lp this isomorphism is
complicated and the continuous linear functions on Lj,; have an
alternate explicit representation. For example, the proof of
Proposition A.3.1 shows that the constants are elements of (L?_l)’,

and so, noting that the elements of LfJ(R) are locally absolutely

continuous, we see that there is g € Lfﬂ(R)’ so that [f,g]l = £(0)
for each f € Lj,1(R).

B. Notation

"Besides the usual notation in analysis as found in the books by
L. Hormander, L. Schwartz, and E. Stein and G. Weiss, we use the
following conventions and notation.

The integral over R is designated by "J". The Fourier

transform of f is Fly) = If(t)e-znlt'7dt, ¥ € ﬁd(==Rd), and

£= ()",
2@ = {f e #(&Y : £(0) =0} and PoalRY) = {f € P(RY)
F(yy,++,7a) =0 if some 75 = O}.

Cc(Rd) (resp., Cf(Rd)) is the space of continuous (r'esp.,d
infinitely differentiable) compactly supported functions on R.
Co(R®) consists of the bounded continuous functions on R .

M(ﬁd) (resp., Mb(ﬁd), M,(ﬁd), Mb+(ﬁd)) is the space of Radon
measures (resp;a bounded, positive, bounded and positive Radon
measures) on R .

LP(RY) = {f : £, = (FIE(E) Pv(£)dt) P < o} and LE is 1§
for v = xg, the characteristic function of E & R® with Lebesgue

measure |E|. £(X,Y) is the space of continuous linear maps between
the topological vector spaces X and Y.

04-1 designates surface measure on R®%. 1Its restriction to the
unit sphere Z4-3 is pa-1, and Ra-1(Zg-1) = @Wg-1 = 27 /F(d{g).
Finally, the ball of radius T centered at the origin 0 € R is
B(0,T) = B(T) and if d =1 we write B(T) = P

38



REFERENCES

[Ball

{Bal

[Bat]

[B1]

[B2]
[B3]
[BH1]
[BH2]
[Bo]

[CP]

[D1]

[D2]
[ DGM]
[De]
[DJ]
[F]

[FG]

[FJ]
[G]
[Gr]

[GRI]

Balian, R. (1881) "Un principe d’ incertitude fort en théorie du
signal on en mecanique quantique,” C. R. Acad. Sci., Paris 282,

1357-1362.
Barnes, J. (1970) "Laplace-Fourier transformation, the foundation
for quantum information theory and linear physics, " Problems in
analysis (R. Gunning, ed.), Princeton University Press.

Battle, G. (1988) "Heisenberg proof of the Balian-Low theorem, "
Lett. Math. Phys. 15, 175-177.

Benedetto, J. (1984) “Some mathematical methods for spectrum
estimation," and "Fourier uniqueness criteria and spectrum
estimation theorems," Fourier techniques and applications (J.
Price, ed.), Plenum Press, N.Y.

Benedetto, J. (1985) “"An inequality associated with the
uncertainty principle,” Rend. Cir. Mat., Palermo 34, 407-421.
Benedetto, J., "A multidimensional Wiener-Wintner theorem and
spectrum estimation,” (submitted).

Benedetto, J. and ‘Heinig, H. (1983) "Weighted Hardy spaces and
the Laplace transform,“ Springer Lecture Notes 992, 240-277.
Benedetto, J. and Helnig, H., "Fourier transform inequalities
with measures weights, " Advances in Math. (to appear). ,
Bourgain, J. (1988) "A remark on the uncertainty principle for
Hilbertian basis," J. of Functional Anal. 78, 136-143.

Cowling, M. and Price, J. (1984) -"Bandwidth versus time
concentration: the Heisenberg-Pauli-Weyl inequality," SIAM J.

Math. Anal. 15, 151-165.

Daubechies, I., "The Wavelet transform, t ime-frequency
localization and signal analysis," IEEE Trans. Inf. Theory
{to appear).

Daubechies, I. (1988) "Orthonormal bases of compactly supported
wavelets," Comm. Pure and Appl. Math. 41, 9038-996.

Daubechies, I., Grossmann, A. and Meyer, Y. (1988) "Painless
non-orthogonal expansions," J. Math. Phvs. 27, 1271-1283.
DeBruijn, N. (1867) “Uncertainty principles in Fourier analysis,"
Inegualities (0. Shisha, ed.), Academic Press, N.Y. 57-71.
Daubechies, I. and Janssen, A., "Two theorems on lattice
expansions, " IEEE Trans. Inf. Theory {submitted).

Faris, W. (1978) "Inequalities and uncertainty principles,”

J. Math. Phvs. 19, 481-466.

Feichtinger, H. and Grochenig, K., "Banach spaces related to
integrable group representations and their atomic decompositions
I," J. Functional Anal. (to appear).

Frazier, M. and Jawerth, B., "A discrete transform and
decomposition of distribution spaces, " (preprint).

Gabor, D. (1948) “Theory of communication," J. IEE (London) 83,
429-457.

Grenander, U. (1951) "On empirical spectral analysis of
stochastic processes," Arkiv for Mat. 1, 503-531.
Garcia-Cuerva, J. and Rubio de Francia (1985) Weighted norm
jnequalities and related topics, North-Holland, Amsterdam.

39



[HW]

(HSi]

[HS]

[He]

[HIJ]

[K]
[L]

[LPS]

[M1]
[M2]
[P]

[PI]
[Ps]
[si]

(W]

C. Heil and Walnut, D., “Continuous and discrete wavelet
transforms," SIAM Review (to appear).

Heinig, H. and Sinnamon, G., "Fourier inequalities and integral
representations of functions in weighted Bergman spaces over tube
domains, " Indiana Math. J. (to appear).

Heinig, H. and Smith, M. (1986) "Extensions of the Heisenberg-
Weyl inequality,” International J. Math. and Math. Sci. 8,

185-}92.
Hernandez, E., "Factorization and extrapolation of pairs of

weights, " (preprint).
Heholdt, T., Jensen, H. and Justesen, J. (1888) "Double series
representation of bounded signals," IEEE Trans. Inf. Theory 34,

613~-624.
Kjellberg, B. (1843) "Ein momentumproblem, * Ark. Mat. Fvs. Astr.

29, AZ2.
Landau, H. (1887) "Maximum entropy and the moment problem," Bull.

AMS 16, 47-77.

Landau, H., Pollak, H., and Slepian, D. {(1961) "Prolate spheroidal
wave functions, Fourier analysis and, uncertainty," I-V, Bell
System Tech. J. 40, 43-64, 40(1961), 65-84, 41(1862), 1295-1336,
43(1964), 3009-3058, 57(1978), 1371-1430.

Meyer, Y. (Feb. 1988} "Principe d’ incertitude, bases
Hilbertiennes, et algebres d’'operateurs,” Sem. Bourbaki B662.
Meyer, Y. (1986) "Ondelettes fonctions splines, et analyses
graduees, " U. of Torino.

Price, J. F. (1887) "Sharp local uncertainty inequalities,”
Studia Math. 85, 37-45.

Proc. IEEE (1982) "Special issue on spectrum estimation," 70.
Price, J. F. and Sitaram, A. (1888) "Local uncertainty
inequalities for locally compact groups, " Trans. AMS 308,
105-114.

Sinnamon, G., "A weighted gradient inequality, " Proc. Roy. Soc.

Edinburgh (to appear).
Wiener, N., Collected works (P. Masani, ed.) MIT Press.

40






