The theory of frames is due to Duffin and Schaeffer [22], and it was
developed to address problems in non-harmonic Fourier series. Prior
to [22], these problems were concerned with finding criteria on real se-
quences {t,} so that the closed linear span, 3pan{e;, }, of exponentials
e, (f) = €™ would be equal to the space L?[—0, Q)] of finite energy
signals defined on [-Q,]. The origins of these problems go back at
least to G.D. Birkhoff (1917) and J.L. Walsh (1921), and the basic and
highly non-trivial theory associated with such problems was established
by Paley and Wiener in [35]. The theory was further developed in re-
markable ways by Levinson [30], Pollard [36]), Beurling and Malliavin
[14], [15], and others, see [38], [48]. The impact of the ideas in [22] to
address issues in signal reconstruction was not fully appreciated until the
work of Daubechies, Grossmann, and Meyer [21], as well as subsequent
work by Daubechies in her book [20]. The 1990s have seen a plethora of
contributions to the theory of frames, e.g., see the Duffin memorial issue
of the Journal of Fourier Analysis and Applications (Volume 3, 1997).

The formulation of irregular sampling algorithms in terms of so-called
Fourier frames (Definition 10) is a natural topic in the theory of frames,
see (7] from 1990; and there are several expositions on the subject in-
cluding [2] and [23], cf., Marvasti’s book [33] for many classical irregular
sampling results and a comprehensive bibliography. The relationship
between sampling theory and other types of signal decompositions, in-
cluding wavelet and Gabor frames, has also become a highly developed
area, see [5].

The mammalian auditory system possesses excellent abilities to de-
tect, separate, and recognize speech and environmental sounds. In re-
cent decades, these capabilities have been the subject of theoretical and
experimental research, particularly with a view towards applying au-
ditory functional principles in the design of man-machine communica-
tion links, e.g., [16], [18], [24], [41], [45]. As indicated above, we shall
use frames and irregular sampling methods to construct a wavelet and
Fourier frame based mathematical model for the mammalian auditory
system. It is called the Wavelet Auditory Model (WAM) [9]. Our pur-
pose is to present the mathematical underpinnings of WAM more fully
than in [8] with a goal of gaining a deeper understanding of the role of
irregular sampling in the reconstruction of speech signals.

After introducing the wavelet transform and some notation in Sec-
tion 2, we shall describe WAM in Section 3. In fact, we shall trace
the processing of a speech signal in a mammalian auditory system, and
construct a corresponding mathematical model, viz., WAM. This model
will exhibit some of the mathematical structure associated with wavelet
frames, and in the process of exploiting this structure we shall see the



role of irregular sampling in reconstructing a signal y.

Because of the point of view developed in Section 3, we shall present
the elements of the theory of frames in Section 4 and related results
about irregular sampling and Fourier frames in Section 5.

We begin Section 4 with the definition of frames (Definition 1). The
Frame Decomposition Theorem (Theorem 2) which follows is reformu-
lated in Proposition 4 as a reconstruction formula for a signal y in terms
of its “sampled values” Ly. This reformulation gives rise to a reconstruc-
tion algorithm (Algorithm 8), which implements a Gram operator whose
entries can theoretically be stored off-line. Algorithm 8 is a perfect re-
construction theorem, and its implementation on WAM data guarantees
excellent speech signal reconstruction under ideal conditions. Because
of the inherent wavelet frame structure in WAM which emerged in Sec-
tion 3, we close Section 4 with a wavelet frame calculation (Example 11)
that will play a role in Section 7. The calculation also shows how Fourier
frames can arise in this context, thereby giving explicit motivation for
the material in Section 5.

In Theorem 12 of Section 5, we give basic criteria for irregularly spaced
modulates and translates of a signal to be a frame for L?(R), the space
of finite energy signals on R. Then we use a corollary of this result to
prove the Yao-Thomas irregular sampling formula in Theorem 14. The
Yao-Thomas Theorem is really a result about so-called exact frames
(Definition 1).

A critical feature in the success of mammalian auditory systems is the
fact that the cochlea has the equivalent of a sophisticated and effective
filter bank on its basilar membrane. This filter bank is discussed in Sec-
tion 3, and we shall use the Paley-Wiener Logarithmic Integral Theorem
in Section 6 to design the corresponding filters in WAM. We shall then
see that the wavelet and Fourier frame approach to mammalian audi-
tory systems corroborates the fact that white noise is often naturally
reduced in such systems using such filters during speech processing. We
shall also include related calculations for some other noises.

In our final section, Section 7, we shall integrate the modelling of Sec-
tion 3, the theoretical results of Sections 4 and 5, and the construction
of Section 6 to apply WAM to a typical problem in speech coding. The
mathematical success of this application is illustrated, and its potential
practical value is the subject of [9].
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2. MATHEMATICAL BACKGROUND

Let L2(R) be the space of complex-valued finite energy signals defined
on the real line R The Fourier transform Y or § of y € L2(R) is

Y(f) = 9(f) = / y(t)e=2t

for f € R(z R), where integration is over R. The Fourier pairing between

y and Y is designated by y + Y. If Y is defined on R, then formally
one has

y(t) =YV (t) = / Y (f)e2it df,

where integration is over R, see [3] for conditions for the validity of this
formula. YV is the inverse Fourier transform of Y.

For s > 0, the L?-dilation operator D, is defined by D,y(t) = s'/2y(st)
for y € L?(R), and the Fourier transform of D,y is

(Dsy)(f) = s7?3(s™1 f) = Dy /58(f).

For u € R, the translation operator 7, is defined by 7,y(t) = y(t —u) for
y € L*(R). As such, (1,y)"(f) = e 2 §§(f) = e_u(f)5(f), where

e—t(f) = e ¥4,

The convolution of z,y € L?(R) is

zxy(t) = /a:(t —w)y(u)du = /x(u)y(t — u)du.

z*y is an absolutely convergent Fourier transform; and the inner product
of z and y is (z,y) = [ z(t)y(t)dt.
For a fixed g € L*(R), the wavelet transform of y € L?(R) is the

function

Woy(t, s) = (y * Dsg)(t) (2.1)

defined on the time-scale plane t € R ,s > 0. By a straightforward
calculation, we obtain

Wyy(t7 5) = <y7 TtDsg)a

where § is the involution of g defined as §(u) = §(—u). If the derivative
0;g is an element of L2(R), we define Wa,qy analogously to the definition
of Wyy in (2.1). In this case, if Wa,gy converges uniformly on time
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intervals for each fixed scale s > 0, and if a mild smoothness condition
is satisfied, then

AWay(t,s) = sWagy(t, s). (2.2)

These hypotheses for the validity of (2.2) can be weakened; and (2.2) is
true generally for the causal filters g and signals y under consideration
in this chapter.

Notationally, we follow standard notation in mathematical analysis,
e.g., [42]. In particular, L?[—(, €] is the space of finite energy signals
defined on the interval [, )], and PWg is the Paley- Wiener space,
defined as

PWa ={y € L*(R) : suppj C [-2,9]},
where supp § is the support of §. Let

sin2w Qi

d21rQ (t) = it y

teR,
where “d” is for Dirichlet. In the case Q = 1/2, d, is the sinc function.
1(q) denotes the characteristic function of the interval [-Q,Q] C R.
Thus, we have the Fourier pairing darq + 1q.

Finally, 1?(Z) is the space of finite energy sequences, where Z is the
ring of integers.

3. WAVELET AUDITORY MODEL
3.1 SETTING

In this section we shall describe Figure 1.1.

In a mammalian auditory system an acoustic signal or sound wave
y induces vibrations in the ear drum, which travel through the middle
ear to the cochlear fluid of the inner ear. These vibrations then cause
traveling waves on the basilar membrane of the cochlea. As the waves
propogate into the spiral shaped cochlea, they produce a pattern of dis-
placements W of the basilar membrane at different locations for different
frequencies. Displacements for high frequencies occur at the basal end;
for low frequencies they occur at the wider apical end inside the spiral,
e.g., [24]. The basilar membrane records frequency responses between
200 and 20,000 Hz. For comparison, telephone speech bandwidth deals
with the range 300-4,000 Hz. The cochlea analyzes sound in terms of
these traveling waves much like a parallel bank of filters - in this case
a band with 30,000 channels. The impulse responses of these filters
along most of the interior length of the cochlea are related by dilation.
Consequently, their transfer functions are invariant except for frequency
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translation along the approximately logarithmic axis of the cochlea, e.g.,
[39], [40].

Mathematically, this dilational relationship between impulse responses
can be expressed by the assertion that there is a function g : R — C
such that the set of impulse responses is of the form {D,g : s € [s1,82] C
(0,00)}. Thus, we identify the displacements W, due to the stimulus Y,
with the output of the cochlear filter bank having the impulse responses
{Dsg}, i.e., we set W = Wyy(t,s), where g is a fixed causal impulse re-
sponse. Specifically, because of the structure of the cochlear filter bank,
we fix a > 1 and set s, = a™,m € Z. As such, in WAM the signal y is
first transformed into a pattern of displacements,

Way(t,sm), meZ,

for a discrete set of points (Z,s,,) in the time-scale plane, where t is
written more explicitly in (3.1), see the box labelled Wavelet Transform
in Figure 1.1.

The shape of |§| is critical for the effectiveness of the auditory model.
Generally, § should be a causal filter that has a “shark-fin” shaped am-
plitude. The design problems for such filters are dealt with in Section
6. In the case of properly designed filters, the high frequency edges of
the cochlear filters D, /s9 act as abrupt “scale” delimiters. Thus, a sinu-
soidal stimulus will propogate up to the appropriate scale and die out
beyond it.

The auditory system does not receive the wavelet transform directly,
but rather a substantially modified version of it. In fact, the output
of each cochlear filter is effectively highpassed by the velocity coupling
between the cochlear membrane and the cilia of the hair cell transducers
that initiate the electrical nervous activity by a shearing action on the
tectorial membrane. Hence, the mechanical motion of the basilar mem-
brane is converted to a receptor potential in the inner hair cells. It is
reasonable to approximate this stage by a time derivative, obtaining the
ouput ;Wyy(t, s;m), see the box labelled 8 in Figure 1.1. The extrema
of the wavelet transform Wyy(t,s;) become the zero-crossings of the
new function 8;W,; and so one output of the auditory process is

Vm e Z, Zp={tn;spy): AW,y (t(n; sm), sm) = 0}, (3.1)
i.e., the box labelled Zeros in Figure 1.1.

3.2 SIGMOIDAL OPERATION

At the next step in the auditory process, an instantaneous sigmoidal
non-linearity R is applied, followed by a low pass filter with impulse re-
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sponse h. These operations model the threshold and saturation that oc-
cur in the hair cell channels and the leakage of electrical current through-
out the membranes of these cells [34], [39]. The resulting cochlear out-
put,
Chrlt,s) = (Ro BW,y(-,s)) * h(t),
(193]

where “o” is composition and convolution is with respect to time, is a
planar auditory nerve pattern sent to the brain along the scale-ordered
array of auditory channels (¢,-). Typically, the composition by R can be
represented by functions

eTz

Rr(z) = T3z

parameterized by T. Obviously, limr_,, Ry = H, the Heaviside func-
tion. Approximations to the Heaviside function are reasonable since
the nerve fibers from the inner hair cells to the auditory nervous sys-
tem fire at positive rates, and since this action cannot process above
a certain limit, i.e., the aforementioned saturation. For computational
convenience in WAM, we take R to be H and set h = §, the Dirac 4-
measure, even though § does not give rise to a low pass filter. Thus,
Ch,r(t, s) above is replaced by the cochlear output,

C(t,s) = H o 0, Wyy(t, s),
ie., the output of the box labelled Sigmoidal Operation C in Figure 1.1.

3.3 LATERAL INHIBITORY NETWORK

The mammalian auditory nerve patterns determined by W, W, and
Zm are now processed by the brain in ways that are not completely
understood. One processing model, the lateral inhibitory network (LIN),
has been closely studied with a view to extracting the spectral pattern
of the acoustic stimulus [34], [40], [46]; and we shall implement it in
our alogorithm. Scientifically, it reasonably reflects proximate frequency
channel behavior, and mathematically it is relatively simple.

For a given acoustic signal y, constant a > 1, and properly designed
causal filter §, we generate Z,, and the set

Am = {8:0:Wyy(t(n; sm), Sm) : £(n; 8m) € Zp} (3.2)

for each m € Z, i.e., the box labelled Time-Scale Data, Anm(y) in Figure
1.1. The scaling partial J; reflects the action of LIN, reflected by the

box in Figure 1.1 called LIN 8, see [8] for a derivation of the formula
resulting in the coefficients (3.2).
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3.4 THE WAM PROBLEM AND SOLUTION

Let g be a properly designed finite energy causal filter and let a > 1.
Suppose an unknown acoustic signal y has generated the set

A = {0:0:Woy(t(n; 3m), Sm) : t(n; 81m) € Zm}

and that the receiver has knowledge of this set or of some subset. This
irregularly spaced array in the ¢t — s plane is called WAM data. It is
natural for the receiver to attempt to reconstruct the signal y in terms
of this data. The WAM problem is to effect this reconstruction by means
of irregular sampling formulas. We shall outine the solution given in 8],
but stress the mathematical development more than appeared there. In
particular, we shall present irregular sampling formulas developed by
Benedetto and Heller, e.g., [2], [7], and give perspective in terms of the
theory of frames and other irregular sampling criteria. The fact that the
WAM problem can be solved theoretically by means of such formulas
leaves open the problem of effective implementation, see Section 7.

3.5 WAM WAVELET FRAME
Observe that for t(n;sy,) € Z,,

0;0:Wy(t(n; sm), sm)

. athy(t(n; Sm),3m+1) - athy(t(n; sm)wsm)

Sm+1 — Sm
The second term in the numerator of the right side vanishes, since
t(n; Sm) € Z,. Hence,

athy(t(n; Sm), Sm41) — 8thy(t(n; Sm), 5m) - athy(t(n; Sm), 3m+1)
Sm+1 — Sm Sm+1 — Sm

_ Sm+1Wa,gy(t(n; 5m), Sm1)
- ?

Sm+1 — Sm

where the last equality follows from (2.2). Writing this approximation
as an equality, we have

8
asathy(t(n; Sm): Sm) = Sm*HWatgy(t(n; sm): Sm+1)

m+1 — Sm

1
a—1

<y7 Tt(n;sm)Dsm+1 (atg) (u»
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Because of this equation and the frame-theoretic point of view of the
next section (Section 4), we define

1
a—1

¢m,n = - Tt(n;sm)Dsm+1 (atg) (3-3)

and the mapping
L:H—I%ZxZ)

y = {{¥, Ymn)},

where H is a Hilbert subspace of L2(R) containing the class of acoustic
signals to be analyzed. Each function Ym,n corresponds to an element
t(n; sm) € Zy. Note that (3.3) can be rewritten as

1 -
'dlm,n = —E__1D3m+17'sm+1t(n;sm)(8tg)'

In particular, {4, »} depends on a given acoustic signal y and the known
filter §.

The discussion in the previous paragraph leads naturally into the the-
ory of wavelet frames, that we shall develop in Section 4. The depen-
dence of {;mn} on y is not amenable to a global theory of frames but
such a theory is not essential for our purpose. The degree to which the

sequence {¥m,n} can be considered as a wavelet frame will be analyzed
in Example 11.

4. THEORY OF FRAMES

In this section we review the theory of frames that was introduced by
Duffin and Schaeffer [22], see also [20], [48], and Chapters 3 and 7 of [6].
Let H be a separable Hilbert space with inner product (z, y) and norm

1
lzll = (z,z)z.
Definition 1 Frames

a. A sequence {z, : n € Z%} C H is a frame for H if there exist
A, B > 0 such that

VyeH, Alyl® <> |yl < Bllyl®.

A and B are frame bounds, and a frame is tight if A = B. A frame

is ezact if it is no longer a frame whenever any one of its elements
is removed.

b. The frame operator of the frame {z,} is the function S : H — H
defined as Sy = 3 (y,zp )z, forally € H
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c. It is easy to see that from part b that if {z,} C H is a frame, then
S = L*L, where
L:H - 2(z9)
z — {(z, Zn)}

is called the Bessel map associated with {z,} and where the adjoint
map
L*:12(Z) » H

of L is the reconstruction map.

Theorem 2 Frame Decomposition Theorem

Let {z,:n € Zd} C H be a frame for H with frame bounds 4 and B.

a. The frame operator S is a topological isomorphism with inverse
S1:H-H. {S'z,} CHis a frame with frame bounds B!
and A1, and

YyeH, y= Z(y, S7lz,)z, = Z(y,:z:n)S_la:n in H .

{8~1z,} is called the dual frame of {x,}, and it is easy to see that
S~1 is the frame operator of {S~1z,}.

b. If {z,} is a tight frame for H , if ||z,| = 1 for all n, and if A =
B =1, then {z,} is an orthonormal basis for H, see [2] for the
original formulation of this result by Vitali.

c. If {zn} is an exact frame for H, then {z,} and {S~'z,} are
biorthonormal, i.e.,

_ 1 ifm= n,
Vm,n, (zm,S lxn) ={ 0 otherwise,

and {S~'z,} is the unique sequence in H which is biorthonormal
to {zn}.

d. If {z,} is an exact frame for H , then the sequence resulting from
the removal of any one element is not complete in H , i.e., the
linear span of the resulting sequence is not dense in H .
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Theorem 3 Characterization of Frames

a. A sequence {z,:n € Zd} C H is a frame for H with frame bounds
A and B if and only if the map

L:H— ?(z%

vy~ {{y, Tn)}

is a topological isomorphism of H onto a closed subspace of 12(Z%).
In this case,

ILIl < B} and |L7Y]| < A3,

where L~! is defined on the range L(H). Thus, in the case of a
frame, L is the associated Bessel map.

b. A sequence {z, : n € Z%} C H is a frame for H if and only if there
is C > 0 such that for all y € H

Z (Y, xn)lz < 00,

Jey = {cn} € 1*(Z%), such that y= chxn €H,
and

leylliagzay < Cllyl -

Part a is proved in Theorem 7.15 of [6]; and part b is proved in Remark
3.9 of [6], cf., the treatment of part b in [10].

If {z,} is a frame with Bessel map L and given data c € 12(Z% is of
the form Ly = {(y,2n)} = ¢, where y is not explicitly known, then c
can be thought of as “sampled data” of some signal y, which must then
be reconstructed in terms of c. The following result is the first step in
developing this point of view.

Proposition 4 Frame Reconstruction Formula

Let {z, : n € Z%} C H be a frame for H with frame operator S, frame
bounds 4 and B, and Bessel map L : H — [2(Z4). Then

VyeH, y=(S"'L*)Ly, (4.1)
cf., (4.6).

Equation 4.1 can be viewed as a reconstruction formula for signals ¥y
in which discrete “sampled data” Ly is given, as indicated in the remark
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introducing Proposition 4. In fact, using the hypotheses of Proposition
4, Equation (4.1) and the Neumann expansion

1 2 X 2 k
§ _A+B§)(I"A+BS)

can be combined to provide an iterative reconstruction algorithm for
signal reconstruction, see Algorithm 8.

Definition 5 Gram Operator

Let {z, : n € Z%} C H be a frame for H with frame operator S, frame
bounds A and B, and Bessel map L : H — 12(Z9).

a. The Gram operator associated with {z,} is the map R = LL* :
2(z%) — 12(z9).

b. Let L' and R’ denote the Bessel map and Gram operator, respec-
tively, associated with the dual frame {S~'z,}.

c. It is easy to check that R restricted to L(H) is a bijection onto
L(H). If R~! denotes the inverse defined on L(H), then we can
extend R™! to 2(Z9) by defining the pseudo-inverse R of R as

R' = R'Pyg - 12(Z% - L(H) C12(z9),

where Pp g is the orthogonal projection operator onto the image
of L.

Lemma 6

Let {z, : n € Z%)} C H be a frame for H, with Gram operator R, frame
bounds A and B, and Bessel map L : H — 1%(Z%). If 0 < ) < 2/B, then
I = AR|| @ < 1. We may take A = 2/(A + B).

Proof .
Since (L')" is surjective, for any y € H thereis a c € L' (H) so that
y = (L) c. This together with the fact that {S71z,} is a frame for H
yields

B™He, Re) < (¢, (R) ) < A7 He, Rle).
Letting ¢ = (R’)Td for some d € I?(Z%), we have B-1(Rd,d) < (d,d) <
A~YRd,d). For all nonzerod € L' (H) this means
(Rd, d)
(d,d)

A< <B.
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Thus, we have for A > 0 that

((I — AR)d,d)
- < X T g
1-AB< @.d) <1-—-XA4,
and, since I — AR is self-adjoint,
{(Z = AR)c, c)|
I—- AR = sup < max{|1 - AA]|,|1 — AB|}.
“ ”L(]HI) ceL(H) (C, C) {l l I |}

(4.2)

We would like to find X such that ||I — AR||(pm < 1. This condition
is satisfied for all A € (0,2/B). In particular, if A\ = 2/(A + B) then
|1 —XA| = [1-AB| = (B— A)/(A+ B) < 1. For this choice of A we
have proved that ||I — AR| @ < 1. O

Proposition 7 Frame Reconstruction Formula

Let {z, : n € Z%} C H be a frame for H, with frame operator S, Gram
operator R, frame bounds A and B, and Bessel map L : H — 12(z%. 1f
A€ (0,2/B), e.g., if \=2/(A + B), then

[}
VyeH, y=X\> L*(I-AR)Ly, (4.3)
=0
where L*c =} cazp, for ¢ = {c,} € 12(Z9).

Proof

Since (Lz,c) = (z,L*c) and (Lz,c) = 3. Cx{x,z,), we obtain the for-
mula for L*c.

Because of the Neumann expansion

i 2 & 2 k
5 :A+BkZ=O(I_A+BS)

and the fact that S = L*L, it is sufficient to prove

A i L*(I — AR)'Ly = i (I — AL*L)"(AL*L)y, (4.4)
i=0 =0

where the sums are well-defined by Lemma 6. The i = 0 terms are
clearly the same in (4.4). Assume

AL*(I — AR)'Ly = (I — AL*L)*(A\L*L)y. (4.5)
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Then, using (4.5), compute
AL*(I = AR)"™ 'Ly = AL*(I — AR)'Ly — AL*(I — AR)'AR(Ly)
= AMI = AL*L)'L*Ly — A(I — AL*L)* L*L(\L* Ly)
= MI = AL*L)*(I — AL*L)L*Ly = A(I — AL*L)™L*Ly ,
and the result follows by induction. O
Proposition 7 leads directly to the following theorem (Algorithm 8),
which provides an iterative reconstruction procedure for the recovery

of a signal y from its “sampled values” Ly. This iterative procedure
converges at an exponential rate.

Algorithm 8 Frame Reconstruction Algorithm

Let {z, : n € Z%)} C H be a frame for H, with Gram operator R,
frame bounds A and B, and Bessel map L. Let y € H and set Coy =

Ly e (2%, yo=0,\=2/(A+ B),and o = ||I — AR| @ < 1. Define
Ym,um € H, and ¢y € L(H), m = 0,1, ..., recursively, as
Umy = )\L*C(m), C(m+1) = C(m) — Ly,
and
Ym+1 = Ym + Um.
Then B
VmeN, |y —ymll <™=yl
and, in particular, limy, ;o ¥y = y in H .

Proof

i. An elementary induction argument shows that
m .
Vm=0,1,.., Ymy1=AL* (Z (I - ,\R)’) c(0)-
=0
Consequently, by Proposition 7, we have limp, o0 ym = y in H.
ii. For any fixed m > 0 and for any k € N,
ly —ymll = lly + Wmt1 = vm) + - + Ymtkt1 — Ymak) — Ymtk+1]|
k

<My = Ymrrrtl + D 19mties = Ymasill -
i=0
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Using part ¢ and taking the lim sup as k — oo, e.g., page 278 of
(3], we obtain

Iy = ymll <D Nyesr — vl
k>m

from which we compute, using part i for the first step and (4.2)
for the last, that

by —wmll < 3 A2 = AR) L
k>m

<O OAMLME = AR L
S -,

<AB(Y o) )l = (X

B
B llyll < o™= llyll-
k>m

l-o
O

Algorithm 8 underscores the importance of the discrete nature of the

Gram operator R in the reconstruction process. Also, formally, we may
rewrite (4.3) as

y=(L*R™")Ly, (4.6)

cf., (4.1). It should be pointed out that the implementation of Algorithm
8, in terms of finite matrices approximating R, is sometimes difficult, see
[17], [26], [43].

A crucial element in the proof of Algorithm 8 is the fact that the
sampled data cg) has the form co)y = Ly. If ¢y is not entirely in
L(H), then the algorithm will not converge. An analysis of this latter
situation is found in Section 6 of [44], and it is related to noise reduction.

Definition 9 Wavelet Systems and Frames

Let ¢ € L2(R). The affine system or wavelet system for 1 is the sequence
{¥mn : (m,n) € Z x Z}, where, for a > 1,

Yma(t) = am/z't/)(amt —-n).
The Fourier transform of 4y, , is computed to be

P (f) = ™™ 2e72MmIINR (£ 1am) = 4= ™2(e_n)(F /a™).
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If the wavelet system {4y, »} for 9 is a frame, then it is a wavelet frame.
Definition 10 Fourier Frames

a. Let {bn} C R If {ey,} is a frame for L?[—T,T], it is called a
Fourier frame for L*[~T,T]. In this situation we also say that
{bm} is a Fourier frame for PWr C L?(R).

b. Given g € L?*(R) and sequences {a,},{b} C R. If {es,, T, g} is
a frame for L?(R) it is called a weighted Fourier frame for L2(R)
with weight g or a Gabor frame for L?(R) depending on the window
function g.

Example 11 WAM Wavelet Frame Analysis

The following calculation illustrates to what extent {1, ,}, defined in
(3.3), can be considered a wavelet frame for some sufficiently robust
Hilbert space H C L%(R); cf., the critical observation in Section 3 that
{#¥mn} depends on y. We ﬁrst compute

Zl (Y, {"/’m n}

2
1 (ag 3 e—-—t(n;sm)) ’

Then, we assume that for each m € Z, {—e_ —t{(n;sm) + T € L} is a Fourier
frame with frame bounds A,,, B,,. Thus,

z Am“gDs;}H (3§)AI| <f(a- 1)2 Z Z [{y, ¢m,n>|2

2
. A
<X BujiD,y, 00"
m
Consequently, if we suppose that
1 1

@S o

0<AL B,, < B < x,

for some A, B, then by a simple calculation and Plancherel’s theorem,
we have

(mfZ]D (£) ) > < 37 Ky tomm)

2
ENCOREIN S (47)

o0
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The inequalities in (4.7) lead to frame properties of {4y, ,} if

GEDY

is bounded above and bounded below away from 0. In any case, the
function in (4.8) must be quantified to obtain effective frame decompo-
sitions by means of Theorem 2; and it should be noted that the scaling
constant a plays a role in (4.8). The mammalian cochlear filter § satisfies
(4.8), see the examples in [8].

Doy (09)\()| (48)

5. IRREGULAR SAMPLING AND FOURIER
FRAMES

In this section we shall state and prove an irregular sampling expan-
sion by frame methods. We begin with the following result, e.g., [2],

[7].
Theorem 12 Fourier and Gabor Frames

Let g € PWq for a given @ > 0. Assume that {a,} C R, {bm} C R are
real sequences for which

{eq,} is a Fourier frame for L2, ),
and that there exist A, B > 0 such that

0<A<G(f)<B<o aeonR,

where

G(f) =D 1§(f = bm)I*.

Then {e,, 7,,§} is a frame for L?(R) with frame operator S; and {€anTs,, 3}

is a tight frame for L?(R) if and only if {e,,} is a tight frame for
L?[-Q, Q] and G is constant a.e. on R.

Corollary 13

Let us assume the hypotheses and notation of Theorem 12, and set
Iy = [-,9] + by. Then, for each fixed m, {7, e,,} is a frame for
L?(I,,) with frame operator S,,, and

Yy e LAR), S§=>) (1,8)Sm(im,9) inL%(R).
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Proof
We compute

5§ = Z Z(Qs ean'rbmg)ean'rbmg
= (.9 Z 9 €anTom)€an) 11,

m n

Z Z yTme, ean>Imean 1r,)

m
= Z(Tbmg m (§75,,9)-
O

We can now prove the Yao-Thomas irregular sampling theorem in
terms of exact frames, see [47].

Theorem 14 Yao-Thomas Formula
Let {eq, } be an exact frame for L2[—, Q] for a given Q > 0 and sequence

{an} € R Define the sampling functlon Sp in terms of its involution
3n(t) = 5n(—t), where

n .
ViER dn(t) = / B (f)e2mit! g,
Q

and where {h,} C L2[—(Q, ] is the unique sequence for which {€a, } and
{hn} are biorthonormal. (In particular, 3, € PWy,. ) Ift, = —ay, , then

Vye PWa, y=> y(ta)sn inL(R).

Proof .
Let g = (22) " 2d2rq, and set by, = 2mQ. Since {e,, } is a frame we

can apply Theorem 12 and, hence, {e,, 7,8} is a frame for L2(R) with
frame operator S. In particular,

Vhe LX(R), h=> (hes,7,0)S (eanmnd) inLXR). (5.1)
We obtain

(29) 7 y(—an) ifm =0
<¥7aeanTbmg) = { (5'2)
0 ifm#0

for y € PWq. By means of Corollary 13 we can then verify that
§71=208"" on L?-9,Q],
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where Sy is defined in Corollary 13. Thus, since g € PW,, we compute
57 (ean09) = (20)2507 (€an 1 (@),

so that, by the exactness hypothesis and part a of Theorem 2, the right
side is
(292) V2 Z <eamhm)[—9,ﬂlhm = (29) YRy,
m

Combining these two equalities with (5.1) and (5.2) gives the reconstruc-
tion,

Yy € PWo, §=3 (207 *y(~a,)(20)*h, inL*(R),

and the result follows. O

Remark 15 Perspective on Fourier Frames
and Irregular Sampling

a. The Yao-Thomas result, formulated in terms of exact frames, is an
irregular sampling theorem in that the coefficients of the decompo-
sition are really sampled values. The assertion about biorthonor-
mality in Theorem 14 shows the relation betwen Fourier frames
and the Yao-Thomas decomposition. The in-depth study of the
Fourier frame case is due to Beurling, e.g., [13], and Landau [29],

and is treated in terms of multidimensional irregular sampling in
[11], [12].

b. The three assertions in this remark deal with a density criterion
measuring the uniform distance between n/(2Q), n € Z, and ele-
ments ay of the sampling set. This particular idea is due to Duf-
fin and Schaeffer [22] for frames, but goes back to Wiener (1927)
for determining the closure of linear spans. Although seemingly
weaker than obtaining frame decompositions, some of the most
formidable analysis of the 20th century is associated with such
closure issues, e.g., [35], [30], [14], [15]. A beautiful exposition of
the following assertions is due to Young [48].

i. Let {an} C R. Levinson [30] proved that if
n . 1,1

sup - 20l = Z(ﬁ)’

Qp,
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then span{e,, } = L*[-Q,Q] .
ii. Further, Kadec’s ;-Theorem (1964) asserts that if
1.1
1za)
then {e,, } is an exact frame for L2[-Q, Q)] .

iii. Kadec’s %-Theorem is sharp in the sense that there exists a
sequence {an} C R such that

sup

an—%‘§L<

@ _El_l(i)
o0l T 4207

and therefore {e,, } is complete in L2[—§, ], but {e,, } is not
an exact frame for L2[—0, Q.

sup

c. If {t,} C R be a strictly increasing sequence for which
limy,_y 400t = £00, and for which

3d >0 such that Vm #n, [|t, —t,|>d,

then {t,} C R is said to be uniformly discrete. A uniformly dis-
crete sequence {t,} is uniformly dense with uniform density A > 0
if

dL >0 such that Vn e Z,

n

d. Using a theorem due to Duffin-Schaeffer [22] for one direction,
Jaffard [28] has provided the following characterization of frames
{e—t} for L[, Q). Let {t,} C R be a strictly increasing se-
quence for which imy_,40t, = o0, and let I C R denote an
interval.

1. The following two assertions are equivalent:
(a) There is I C R for which {e_y,} is a frame for L2(I).
(b) The sequence {t,} is a disjoint union of a uniformly
dense sequence with uniform density A and a finite num-
ber of uniformly discrete sequences.

2. In the case assertion b of part 1 holds, then {e_;,} is a frame
for L*(I) for each I C R for which |I| < A.

The Classical Sampling Theorem, often associated with the names
Whittaker, Kotel’nikov, Shannon, et al., goes back to Cauchy (1841),
e.g., [4], and it provides a sampling formula of the form

y=_ Ty(nT)rrd
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when y € PWq,2TQ < 1, and the sampling function 6 satisfies some
natural conditions, see Theorem 3.10.10 of [3]. Theorem 17 was proved
with Heller in [7], and gives an analogue of the Classical Sampling The-
orem for irregularly spaced sampling sets {t,}.

Lemma 16

Given y,y, € L*(R), and assume y = 3 y, in L2(R). If z € L*(R)
then zy = 3" zy, in L%(R).

Theorem 17 An Irregular Sampling Theorem

Suppose 2 > 0 and ; > Q, and let {t,} C R have the property that

{e-t, } is a Fourier frame for L?[—Q;, ;] with frame operator S. Fur-
ther, let @ € L?(R) have the properties that § € L*>®(R),

sSupp é C [—Ql, Ql] ;
and § = 1 on [-, ). Then

Vy€ PWa, y=) ca(y)r,0 in L*(R), (5.3)

where

en(y) = (ST (F11—ay,0.]) €—tn )- (5.4)

Proof

Since {e-¢,} is a Fourier frame for L2[—Qy,Q4] and supp§ C [-9Q,9),
we have

§=191@) =Y (S HiLqy)) e—ta)_q, ayf—t- 1) in L*(R). (5.5)

In this expression, we note that S~!, being positive, is self-adjoint so
that the frame expansion in Theorem 2 gives rise to (5.5). Also, the
convergence in L?[—Q;, Q] from our frame hypothesis can be taken in
L2(R) by extending all functions to be zero outside [—Q;,4].

We have § = 96 on IR since § = 1 on [~,9] and § = 0 off of [0, Q).
Further,

6 (S (@1 qy)), €—ta )0, 0,16t 1(21)
= Z (S_l(’gl(gl), e~tn>[_91,gl]e—tn1(91)é in Lz(R)
by Lemma 16. Thus, since supp C [, 1], we obtain

g =190
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—Z yl(gl)) e tn)[ 21,016 .0 in L3(R).

Taking the inverse Fourier transform gives (5.3). 0

Remark 18

Let {e_t,} be a Fourier frame for L?[—Q;, ;] with frame bounds A
and B and frame operator S. In general we cannot write c,(y) = y(¢,)
n (5.3). However, Theorem 17 is an irregular sampling theorem in the
sense that the coefficients ¢, (y) can be described in terms of values of y
on the irregularly spaced sampling set {t,}. From the Neumann expan-

sion,
2 2 k
§l=_= I-—=_g),
(A+B)kz=;)( (A+ B) )

we have

2 2 \*
)= i LN ragy) Pemanen) 69

If we truncate this expression after the k = 0 term we obtain the sampled
value

2

my(tn) (5.7)

as an approximation of (5.6).

Remark 19

In the case of regular sampling we can use a frame analysis similar to
the proof of Theorem 17 to prove the formula

Vy € L2(R)’ Y= TZ(Q7 enTTmbé)T—nT(embs) in Lz(R)7 (5-8)
m,n
where T, > 0 are constants for which 0 < 2TQ < 1, § € PW; /(2T)

has the properties that § € L*(R) and 6 = 1 on (-, 9], and, in case
2TQ < 1, 6 is continuous and

1
3 ﬁ)

In dealing with high frequency information, with close fluctuations, it
is necessary to sample closely in order to capture all of the ﬂuctuatlons

]é' >0 on (—i,—n] Ul
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By definition, then, in the case with very high frequencies, thought of
as “infinite frequencies”, and hence nonbandlimited, we can not recon-
struct the function with a discrete set of samples. However, the frame
reconstruction formula (5.8) gives the Classical Sampling Theorem for
bandlimited functions, as well as giving signal representation for non-
bandlimited functions. In this latter case, there is added complexity in
the coefficients necessary to deal with “infinite frequencies”. Equation
(5.8) also allows us to interpret aliasing in a quantitative way, see [2], [7].

6. FILTER DESIGN
6.1 COCHLEAR FILTERS

As mentioned in Section 3, the shape of |j|, where g is the impulse
response of the cochlear system, is critical for the effectiveness of the au-
ditory process, and generally § has an asymmetrical “shark-fin” shaped
amplitude with faster rate of decay on the high frequency side than on
the low frequency side. All realizable systems, such as our filter bank
with “shark-fin” shaped amplitudes, are necessarily causal. In partic-
ular, the cochlear filter bank cannot characterize (reconstruct) future
utterances in terms of known (present) speech signals. As such, we de-
sign causal filters § € L*(R), i.e., suppg C [0, 00), for which § has the
required “shark-fin” shaped amplitude consistent with mammalian au-
ditory models. Our point of view is that such filters provide a realistic
mathematical model for the cochlear filters described in Section 3, and
are therefore the proper filters for optimizing the reconstruction process
inherent in WAM.

The starting point for the design of such causal filters is the Paley-
Wiener Logarithmic Integral Theorem, i.e., Theorem X11 of [35]).

Theorem 20 Paley-Wiener Logarithmic Integral Theorem

Let A € L2(R)\{0} be non-negative on R. A(f) = |§(f)| a.e. for some
causal filter § € L2(R) if and only if

llog A(£)|

11 f2 df < oo. (6.1)



25

Let A € L%(R) satisfy (6.1), and define

1 xlogA(MX
¢(=z, f) = ;/m—Q:(gf—Ei?dA

Clearly, ¢ is harmonic in the half-plane z > 0. If § is a conjugate
harmonic function of ¢, then it is unique up to an additive constant; and
we shall construct a particular € in (6.4). The functions ¢ and  satisfy
the Cauchy-Riemann equations, and K(2) = é(z, f) + j0(z, f), z =
z +jf, is an analytic fucntion in the half-plane z > 0. We let

1 1

p(f) = )
and consider the L!-dilation (by 1/z),
1 =z
pi(f) = p(z, f) = e s I > 0.

Thus, lim;—,0py/; = & distributionally, in fact, in the (M, Cy) topol-
ogy, where Cj is the space of continuous functions vanishing at oo and
M, is the space of bounded Radon measures on R, e.g., [1]. By the
definition of ¢ we have

¢(@ +jf) = p1 x (logA)(f), >0, (6.2)

and, because of the approximate identity p1, a classical calculation yields
lim ¢(z + j7f) =logA(f) a.e; (6.3)
z—0+

see e.g., [27], [37], [42].
The harmonic function

-1 f

T 22+ f2

Kz, f) = x>0

is a conjugate harmonic function of p and so the Cauchy-Riemann equa-
tions, 0;p = 0sK and dfp = —8,K, are valid in the half-plane £ > 0.
Using (6.2), the equations,

0x¢ = (8zp)*xlogA

and
5'f¢ = (3fp)*)\logA, z >0,
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follow from (6.3), where “x)” designates convolution in the second vari-
able of p. Thus, we define

0 = KxylogA, z>0. (6.4)
The function
G(2) =eX®), 2=z 447,

is analytic in the half-plane z > 0, and provides the solution asserted in
Theorem 20 in the following sense. By (6.3), we formally compute

G(if) = A(N)E*D  ae, (6.5)
and note, by (6.4), that

=1 [logA(})

0(0, f) = - —fjd)\ (6.6)
is formally the Hilbert transform #(—logA) of —logA. It turns out
that condition (6.1) allows us to assert the existence of a causal filter
g € LX(R) for which §(f) = G(jf)a.e.. The actual filter design is a
consequence of (6.5) and (6.6), and is formulated in the following result.

Theorem 21 Construction of Causal Filter

Let A € L%(R)\{0} be non-negative on R, and assume condition (6.1).
Then the function

§ = Ae~7HllogA) (6.7)

is a causal filter in L2(R), ie., g € L*(R) and suppg C [0,00).
Example 22 WAM Filter

Take F(f) = mf1or)(f). Let p > 0 be compactly supported with the
property that [ p(f)df = 1. Then consider the nonnegative function
A, = Fxp. The cochlear filters for WAM use Theorem 21 and Ap in the
following way. Note that suppF = [0,T], and choose N >> T. Let e(f)
be an even function on (—oo, —N] U [N, co0) defined by

VF >N, e(f)=el/lesh),

Then, for the function A in Theorem 21, we set A = A, on [0,T'), and
let A(f) = Ap(0) on [~N,0] U [T + ¢, N], where € > 0 is small. Finally,

let A(f) = e=/"°"l/l if |f| > N. Clearly, A € L2(R) and (6.1) is valid.
Thus, the causal cochlear filter § can be defined by (6.7) in Theorem 21.
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6.2 OTHER FILTERS

The cochlear filter suppresses white noise in a way we shall comment
on in Section 7, but other filter designs can be implemented to reduce
other types of noises. Given a signal y and a set {4, 5} of functions, we
say that y is coherent or “non-noisy” with respect to {%mn} if y may
be effectively approximated by a linear combination of a relatively small
number of elements of {,n}, cf., [32]. With this point of view, noise
in a signal is that part which lacks coherence with respect to {Ymn}. If
{¢mn} is a frame for a large enough space of finite energy signals, then
this view of coherent signal versus noise admits a nonlinear thresholding
algorithm, inspired by mammalian auditory systems, which allows for
the recovery of a coherent signal embedded in noise.

For simplicity, we shall assume additive noise, i.e., if o is coherent
with respect to {t)mn} and N is noise, then we express the signal y as
Yn = yo + N. We interpret the norm equivalence property of frames
as an approximate energy preservation between the signal yx and its
digitized version or sampled values Lyy = Ly + LN, where L is the
Bessel map associated with {¢;m 5}, i.e., Ly = {(y,%¥mn)} and

1
<y’ ")bm,n) = _a_"WBtgy(t(n; 5m), Smi1)-

-1
With this interpretation and the fact that {{m »} depends on g, we have
the following problem. For a given noise N construct a filter § so that
the coefficients {LN(m,n)} are small.
For a given time ¢, scale s, and parameter a > 1, we have

o Wasn(ts) = 12 [u@@aat - (68)

= Cs (y) (t) :

Thus, for a noise N, we can use the Plancherel-Parseval Theorem to
compute

Cumy(t) = 221 / FN (D) (M df. (6.9)

l—as

We shall consider noises N, which are %—pmcesses, e.g. [19]. These are
noises whose generalized power spectra S, (f) satisfy

b c
T2l Sa T
a< (f)Sma

7 (6.10)
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where o € [0, 2] is fixed. In a very simple model, if b = ¢ = 1, then N,
is white noise and Ny is Brownian motion.

6.2.1 %-noises.

Let yn, = yo + Ny, where N, is a %-process defined by Equation
(6.10). We assume that N, is uncorrelated with respect to the signal g,
and, hence, yo * N, is small, where N, is the involution of N,. Thus,

recalling that {4y, ,} is dependent on g, our goal is to construct § so
that the coefficients

Csmyi (Na)(t(n; 5m)), m,n € Z, (6.11)

defined by Equation (6.9), are small. Such a construction presents the-
oretical difficulties, and so, because of the above assumption on the
noncorrelation of yg and N, we shall solve the design of § problem in
the case that the coefficients

Csrs (Na * No)(t(n; 8,)) (6.12)

are small. A minimization of (6.11) yields noise suppression for N,-
noise contaminating signals yo. Our minimization of (6.12) provides an
approximation to the desired minimization of (6.11). Note that

2r5 1
l—as

Co(Na * No)(t) = / f#(l?s—lﬁ)(f)e2”ﬁfdf

= T Z oI ) o)) 6.13)

For the case of white noise & = 0, the term (sgnf)|f|'~®, on the right
side of Equation (6.13), becomes f and we have the Fourier pairing,

1

where § is the dipole at the origin. Thus,

1

Cipr (No * No)(t) = 1= a) et

(&' (u) * g(usm41))(2)

1

= 1= Do (8. (6.14)



29
We want to construct g so that
Copir (No * No)(t(n; 5m)) (6.15)
is small whenever
Wa,¢(No * No)(t(n; 81m), Sm) = 0. (6.16)

The points ¢(n; s,,) are defined by Equation (6.16). By Equation (6.8),
this means we want the quantity defined in (6.15) to be small whenever

Cs,,.(No * No)(t(n; 8)) = 0. (6.17)
The left side of Equation (6.17) is

1
1—

by Equation (6.14). Thus, if D, ¢ (t) = a™/24 (a™t) = 0, we want to
conclude that

aDsmg' (t(n;5m))

!m;—l)
g (@)
—Q

is small, and this is the criterion used to define g.

1 [ a
1___—aDsm+1g (t) =

6.2.2 Noise Reduction for %-noise.

For the case of L-noise o = 1, the term (sgnf)|f]*=®, on the right
side of Equation (6.13), becomes sgnf and we have the Fourier pairing,

11
~P(3) © sonf,

where pv(%) is the first order distributional principal value. Thus,

s (N1 % N1)(2)
is the Hilbert transform # of D;, +1g(u):

TPY / (Dsms19) () U. (6.18)

Csm+1(N1*N1 t—u

As before, we want to construct g so that the right side of Equation
(6.18) is small whenever

pv/LDtsf—)iu)du =0.
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To attack this problem, we can use the bounds of the form
4
[#HE ()] < —(log2)V Mm,

where m = “F'“ and | f; F(t)dt| < M for all b, ¢ [31].

L>=(R)

7. WAM IMPLEMENTATION AND AN
APPLICATION TO SPEECH CODING

7.1 WAM IMPLEMENTATION

Now that we have established some results from the theory of frames,
as well as proving a Fourier frame based irregular sampling formula, we
can address the WAM problem posed in Section 3.4. Given a cochlear
system with impulse response g, let y be a speech signal to be processed.
From (3.1) and (3.2) the corresponding WAM data is

Am = {0:0Woy(t(n; sm), Sm) : t(n; 8m) € Zm},
where
Zm = {t(n;sm) : Wy (t(n; sm), sm) = 0}.
Also, from Section 3.5 we have
-1

838thy(t(n; Sm)asm) = a___1<y,7't(n;sm)Dsm+1 (atg))
= (y,d)m,n),
where .
"/Jm,n = “a _ th(n;Sm)D3m+1 (atg)

Thus, if we assume {9y, »} to be a frame for H with Bessel map L, then
Ly = (Y, Ymn) = 0:0:Wyy(t(n, sm), sm)-
By Proposition 4,
y = (S7'L*)Ly,

i.e., the signal y can be reconstructed from the discrete WAM data Ly.
As mentloned in the remark following Proposition 4,

k
A—!—BZ A+B

and, hence,

y=(STILLy =) (I-A8)'(AS)y,
=0
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where A = 2/(A + B) and 4, B are frame bounds. Moreover, Proposi-
tion 7 asserts that

y =AY _ L*(I-AR)'(Ly), (7.1)
=0

where R is the Gram operator, i.e., R = LL*.
We now apply Algorithm 8 to compute the signal y when we are given
the WAM data Ly. Thus, we let c(o) = Ly and 1o = 0; and then define

Uy = )xL*c(m) y

Cim+1) = C(m) — Ltm,
and
Ym+1 = Ym + Um-
The algorithm gives

"}1_9100 Ym =Y,

and so we can reconstruct y from Ly.

Since our data is irregularly spaced, Equation (7.1) is really an ir-
regular sampling formula which we can think of in the following “one-
dimensional” way. First, we can consider § = D, +1(0:§) as a sampling
function and suppose that {€—t(n;s,m)} 18 a Fourier frame with frame op-
erator S. Then we can apply Theorem 17 to obtain, as in (5.3),

Vye PWq, y= Z Cm,nTt(n;sm)(Dsm+1 3:9),

where ¢ 5 = (S_l(gj),e_t(n;sm))m[_nhm] and 0 < Q < Q. The coeffi-
cients can be computed by means of (5.4) and several algorithms have
been developed for this purpose, e.g., [26],[43]. The coefficients Cmn are
sampled values in the sense of the approximation (5.7).

It is more analytically precise to think of Equation (7.1) as a “two-
dimensional” wavelet frame expansion using the calculations in Example
11. Be “two-dimensional”, we mean that we are dealing with {Z,, : m €
Z} defined in (3.1) as a sampling set in two-dimensional ¢ — s space.
In this case, the wavelet frame expansion, which is a consequence of
Example 11, is a two-dimensional irregular sampling formula whose co-
efficients are sampled values of y in the same way that (5.6) and (5.7) are

related. In any case, the actual implementation is based on Proposition
7, i.e., Equation (7.1), and Algorithm 8.
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7.2 AN APPLICATION TO SPEECH
CODING

In this subsection, we shall show how to use WAM processing in speech
coding. Let y be an acoustic signal on a time interval I of duration |Z],
and let Ly = {(y,%mnn)} be the corresponding WAM data defined in
Sections 3.4 and 3.5. For this discussion we shall also refer to the WAM
data as the set of WAM coefficients. A basic problem in speech coding
is to designate a bit rate b, and a bit allocation b, for transmitting sets
of coefficients corresponding to a speech signal y, and to reconstruct Y
at this given bit rate and bit allocation. There are different goals for
different versions of the problem, but one criterion of success is to obtain
good reconstruciton using low bit rates and, even more, to obtain good
reconstruciton of a given signal y embedded in certain types of noises.
Naturally, since we are dealing with WAM, the sets of coefficients to be
transmitted will be WAM coefficients.

Because of the auditory modelling of Section 3, the reconstruction the-
ory developed in Sections 4 and 5, and the properties of the mammalian
auditory filter bank given in Section 6, it turns out that WAM coeffi-
cients solve the aforementioned coding problem at a mathematical level,
cf., [9] for its practical implementation. In particular, signal reconstruc-
tion is theoretically perfect because of the frame decompositon theory
and irregular sampling formulas we have given. Further, the structure of
the mammalian auditory filter bank, coupled with the thresholding tech-
nique defined below, allow for signal reconstruction of signals embedded
in certain levels of white noise, since the WAM coefficients of white noise
tend to spread out over the ¢ — s plane and to have low amplitude.

In order to justify these claims, suppose we are given a bit rate of b,
bits per second, and that we are also specified an allocation of b, bits
per WAM coefficient (y, 4 »). The signal y is defined on I, but is only
known to the receiver to the extent that it will receive the coefficients
{{y;%¥mn)} at the bit rate b, with bit allocation b,. Since b, and b, are
fixed, we can define a fixed transmittal coefficient rate ¢, = r/be, ie.,
given b, and b., we send ¢, WAM coefficients per second to the reciever.
Consequently, with the coefficient rate fixed and specified, the maximum
number of coefficients n, that we are able to transmit for the function Y
of duration |I| is

e = Cr II I ’
Le., n; is the maximum number of coefficients with which the signal

y may be represented. With respect to WAM data, n. can be related
to a threshold value ¢ in the following way. We define the distribution
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function
)‘(5) = card{(:% '%bm,n) > 5}

for 6 € [0, M], where M = sup{|(y, ¥mn)|}. Note that we have neglected
negative coefficients. The distribution function A is monotonically de-
creasing and continuous from the left. As such, we may define an inverse
A7l as

VneN, A l(n)=inf{velo,M]: A(v) < n}.
Hence, if we choose a threshold value § as

6= )\_l(nc),

then we are within our bit rate and bit allocation constraint for encoding
the signal 3.

We now reconstuct y by the WAM implementation method of Section

7.1 using the set
{{y: Ymn) > 6}

of thresholded WAM coefficients as the initial sequence ¢y (in Section
7.1). Many examples demonstrating the effectiveness to reconstruct y
appear in [8].
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