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Abstract SetsQ in d-dimensional Euclidean space are constructed with the-prop
erty that the inverse Fourier transform of the characierighctionl of the setQ

is a single dyadic orthonormal wavelet. The iterative cartiton is characterized by
its generality, its computational implementation, andgitsplicity. The construction

is transported to the case of locally compact abelian gr&psth compact open
subgroup$i. The best known example of such a grouis- Qy, the field ofp-adic
rational numbers (as a group under addition), which hasdhgact open subgroup
H = Zp, the ring of p-adic integers. Fascinating intricacies arise. Classieaklet
theories, which require a non-trivial discrete subgrougranslations, do not apply
to G, which may not have such a subgroup. However, our waveletytis formu-
lated onG with new group theoretic operators, which can be thoughs @irelogues

of Euclidean translations. As such, our theory @is structurally cohesive and of
significant generality. For perspective, the Haar and Shiamvavelets are naturally

antipodal in the Euclidean setting, whereas their analefues are equivalent.






The construction of wavelet sets

John J. Benedetto and Robert L. Benedetto

1 Introduction

1.1 Background

We shall give a general method for constructing single dyathonormal wavelets,
which generate wavelet orthonormal bases (ONBs) for theespa of square-
integrable functions in two important antipodal cases. Géses arez(]Rd), where
RY is d-dimensional Euclidean space, aiot{G), whereG belongs to the class of
locally compact abelian groups (LCAGSs) which contain a caotppen subgroup,

and which are often used in number theoretic applicatiohe.method and associ-
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ated theory folL.?(RY) were introduced by Manuel lém, Songkiat Sumetkijakan,
and the first named author in [20] (1999), [21] (2001), [22]42), [23] (2003). The
theory forL?(G) was established by the authors in [17] (2004), [24] (2004).

This constructivemethod, which we refer to as tmeighborhood mapping con-
struction(NMC) was inspired by groundbreaking operator theoretidvdue to Dai
and Larson [34] (1998) and Dai, Larson, and Speegle [35]{L9here was com-
parably compelling work, contemporaneous to [20] (1998)] [2001), in abstract
harmonic analysis by Baggett, Medina, and Merrill [11] (2R9

The catalyst for our original research was a preprint of thar&i-Weiland pa-
per [91] (1998). The aforementioned, as well as less knowmdually formidable
results by Zakharov [98] (1996), were aimed at establistiegexistence afingle
dyadic orthonormal wavelety for L2(RY),d > 1, i.e., {mn: me Z, ne Z% is

an orthonormal basis (ONB) fa?(RY), where

Wmn(X) = 2MY2 (2™x—n). 1)

It turns out that the Fourier transform of such a functigris the characteristic
function1 of a setQ, and such sets and their generalizations are calkeeklet
sets Besides describing the NMC, we shall give a significantdisteferences to
illustrate a range of settings and problems associatedwadtielet sets, and to pro-
vide perspective about the role and extent of the NMC in wetviileory and its
applications.

For some time there was doubt about the existence of singldiclyprthonor-
mal waveletsy for R, d > 1. In fact, the most common construction of wavelet
ONBs was from the theory of multiresolution analysis (MRAioh requires 2— 1
functionsy;j, j = 1,...,29 — 1, to generate the resulting ONB(Yj)mn}, see [81]
(1990), [38] (1992), [31] (1994), [76] (1994), [43] (199T}8] (1998), [77] (1992),
[80] (1986), [48] (1992), [95] (1994), [8] (1995), [47] (199for MRA theory on
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RY or, more generally on LCAGs containing cocompact discrebgeoups, cf. the
work on minimally supported wavelets [42] (1996), [53] (89954] (1997). Thus,
the wavelets we construct, and those in [34] (1998), [359729[11] (1999) are not
derived from any MRA. On the other hand, there are unifyingegal approaches,
e.g., [85] (1998), [11] (1999), [12] (1999), [30] (1999)4]8(1993). There are also
results on wavelet theory in a variety of natural settinghsas Lie groups and mani-
folds, sometimes coupled with structural constraints sisdMRA, e.g., [72] (1989),
[32] (1995), [58] (1995), [97] (1996), [69] (1996), [53] (@8) [4] (1997), [60]
(1997), [70] (1998), [71] (1998), [89] (1999), [7] (199957] (1999), [3] (2000), [6]
(2000), [65] (2002), [83] (2002), [5] (2004), [59] (2004%€] (2004), [61] (2005),
[45] (2005), [44] (2005), [90] (2009), [62] (2009), and c&=al work in harmonic
analysis on local fields, e.g., [96] (1975) and [37] (1983)isTist contains several
papers dealing with the-adics or other local fields on which we have focused in
our wavelet analysis df?(G), so we note the explicitness, generality, computabil-
ity, and algebraic cohesiveness of our approach. This wiifielled out in Sections

6-10.

Remark 1.1. aWavelet ONBs go far beyond the dyadic case. For example] the
d, dyadic diagonal matriX (with 2s along the diagonal), corresponding to (1), can
be replaced by real expansidex d matrices for whichA(z9) C Z9. As such, (1)

can be replaced by functions of the form

(W) o (%) = [ det(A) ™25 (AT~ ), @)

wherej=1,...J,me Z, nc Z9 e.g., see [80] (1986), [64] (1992), [25] (1999). We
mention this, since we can define non-separable filters wittesponding matri®
andJ = 1 to obtain a single MRA wavelap” for which {(¢*)mn} is an ONB for
L2(RY).
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b. The reason we have not chosen this path to obtain singlermthmal wavelets,
in spite of the elegance of MRA, is to make use of the “zoomipgdperty of the
dyadic case. In fact, by zooming-in and -out, because of ppa&2 (or of anyn >
2), we can fathom multi-scale phenomena in a function arad/iotrol computational

costs visa-vis signal resolution in reconstruction.

Remark 1.20ne aspect of the applicability alluded to in Remark 1.1tb {grovide
another mathematical tool, along with dimension redudié@hniques, for example,
with which to manage massive data sets generated by dattngeevices such as
supercomputers, internet traffic, CAT scanners, and digiaeras. IDC estimates
that the world generated 487 billion gigabytes of inforroatin 2008. This creates
formidable problems for obtaining digital representasgisnitable for storage, trans-
mission, and/or recovery, as well as for handling inforaatccurately, efficiently,
and robustly. In the Epilogue we comment on the process déiLiseplementation

of single dyadic orthonormal wavelets fof(R%), d >> 0.

1.2 Notation and outline

We shall employ the usual notation in harmonic analysis asblet theory as found
in [15] (1997), [38] (1992), [82] (1992), and [94] (1971). & Rourier transform of

the functionf : RY — C is formally defined by

fy) = [ 109e 2™ alx

where [ denotes integration ovétd; and the inverse Fourier transforf of F :

R4 — C is formally defined by

FY(x) :/F(y)ezmx'ydy, xeRY,
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whereRY is RY considered as the spectral domdthis the ring of integers and
T designates the quotient gromfb/Z. If F is a 1-periodic function onR with
Fourier seriesS(F)(y) = 3 cne 2™, then the Fourier coefficients, are desig-
nated byFV[n]. Further, translation of a functioh by x is designated byf, i.e.,
i« f(y) = f(x—y). Finally, if Q C RY, then its Lebesgue measure is denote(bly
The termmeasurablevill meanLebesgue measurable

The paper is structured as follows. Sections 2-5 deal wétEiclidean theory
of wavelet sets and Sections 6—10 deal with the non-Eudlitlesory. Section 11,
the Epilogue, briefly broadens some of the conventionalgeets/e about wavelet
sets and their genuine applicability. Generally, we refeodr original papers for
the proofs of theorems. However, there are a few salientptires related to our
opinion of what constitutes general interest, or where weardthe details or struc-
ture of the proof to be particularly informative or surpmnigi In addition, we present
many examples.

Section 2 is devoted to the geometry of Euclidean waveles, set well as to
fundamental roots based in Lusin’s conjecture (and thuse€am’s theorem) and
the Littlewood-Paley theory. Section 3 provides the dstafl our neighborhood
mapping construction (NMC) of wavelet sets. It is highly imated geometrically,
but ultimately rather intricate. In Section 4 we prove a baseorem about frame
wavelet sets which we view as a major means of applying wagels in a host
of signal processing applications dealing with large data.g=inally, in Section 5,
for the Euclidean theory, we give geometrical examples witlgestive topological
implications, as well as structural implications of the NM@d a hint of the breadth
and beauty of NMC constructible wavelet sets.

Early-on we were intrigued by the possibility and utilitywéavelet sets in num-
ber theory, based on one of the author’s ideas about ideindmsmeasures [14]

(1979), [13] (1973). Sections 6-10 are our foray into thisaarThe background
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dealing with LCAGs, thep-adic field, and generic wavelet theory in this setting is
the subject of section 6. Our fundamental idea to ensure tithematical cohe-
siveness and resulting group theoretic canonicity and emagtical beauty of our
approach is the subject of Section 7. With this backgrouedti&n 8 gives a basic
geometrical result for the number theoretic setting aralsdo the point of view of
Section 2. This substantive theory is the background fontimaber theoretic con-
struction and algorithm of Section 9, which itself is drivieynthe ideas of Section
3. Finally, in Section 10, we give examples indicating therédible breadth of the

number theoretic NMC.

2 Geometry of Euclidean wavelet sets

2.1 Wavelet sets, tilings, and congruences

A set Q, together with the property that = 1}, is a single dyadic orthonormal
wavelet, is avavelet setOur construction of such se€? is the subject of Section
3, and our basic geometrical approach is not unrelated tstxartions of Leonardo

da Vinci and Maurits C. Escher.

Remark 2.1Conside® = {@*, ¢?,... ¢M} C L?(RY). We say¥ is aset of wavelet

generatorgor L2(RY) if
{%n(.) = 2242 _n):meZ,neZdi= 1,...,|v|}

is an ONB forL?(RY). Auscher [8] (1995) proved that every set of wavelet gen-
erators forL?(R), whose members satisfy a weak smoothness and decay canditio
on the Fourier transform side, must come from an MRA. Furtihés known, e.g.,

see [8] (1995), [82] (1992), that for a given dyadic MRA thex@ wavelet collec-
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tion consisting of — 1 elements. There is an analogous assertion for the expansiv

matrix case.

Because of this remark, and notwithstanding Jéisricelebrated example of a
non-MRA wavelet basis foc?(R), e.g., [38] (1992), there was some question dur-
ing the mid-1990s about the existence of multidimensiomegjle dyadic orthonor-
mal wavelets. Dai, Larson, and Speegle [35] (1997), refmdrearlier, proved the
existence of such wavelets iif(RY), d > 1. Their proof depended on wavelet sets
and used operator algebra methods. Some of the initialioeashs a combination
of disbelief and disinterest, the latter response due tgtbeailing intuition that

such wavelets would be difficult to implement in an effectivay.

Definition 2.1. a. Let Q C RY be measurable. Aling of Q is a collection{Q, : |
Z} of measurable subsets&f such thatJ, Q andQ differ by a set of measure 0,

and, for alll # j,

QNQj|=0.

b. Let Q, © C RY be measurable. If there exist a tilifg, :1 € Z} of Q and a
sequencgk; : | € Z} C Z9 such that{ Q, +k : 1 € Z} is a tiling of ©, thenQ and
© areZd-translation congruenor T-congruent This is equivalent to the existence
of tilings {Q : 1 € Z} and{O : | € Z} of Q and®, respectively, and a sequence
{m :1 €z} CZ9 such thatQ = @ +ny, for all | € Z.

c. Let Q, © C RY be measurable. If there exist a tili{g2, : | € Z} of Q and
a sequencgém : | € Z} C Z, where{2M™Q, : | € Z} is a tiling of ©, thenQ and
© aredyadic-dilation congruentr d-congruent This is equivalent to the existence
of tilings {Q : 1 € Z} and{6 : | € Z} of Q and®, respectively, and a sequence
{m :1 €Z} CZsuchthatQ =2M@, foralll € Z.

d. We shall deal with tilings oRd by translation or dilation of a measurable set
Q CRY Thus,{Q+n:neZ%} is atiling of RY means thaR9 \. U,,a (2 +n) | =
0 and|(Q +m)N (Q +n)| = 0 whenm# n. Similarly, {2"Q : me Z} is atiling of
RY means thatR? \ Upez (2MQ) | = 0 and|(2/Q2) N (2"Q)| = 0 whenj # m.
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e.ltis not difficult to see that the concept 6f beingZ9-translation congruent to

-3, %]d is equivalent to{ @ +n: n € Z9} being a tiling ofRY.

Remark 2.2. aThe notion of congruence plays a role in several facets oeleav
theory besides the results in this paper. Congruence iariteare used by Albert
Cohen in 1990 to characterize the orthonormality of scalumgctions defined by
infinite products of dilations of a quadrature mirror filterg., [38, pp.182—-186]
(1992). The same notion of congruence also plays a fundaineai in work on
self-similar tilings ofRY by Grochenig, Haas, Lagarias, Madych, Yang Wang, et al.,
e.g., [67] (1997), [68] (2000).

b. The notion ofZ%-translation congruence is intrinsically related to bijeere-
strictions of the canonical surjectidnt G — G/H, whereG is a locally compact
group andH is a closed subgroup. An analysis of this relation is found.6) Sec-
tion 3] (1998) in the context of Kluanek’s sampling theorem for locally compact
Abelian groups. Klu@nek’s sampling formula for a signélquantitatively relates
the sampling rate with the measure of the subsets of a givetwadth correspond-

ing to the frequency content df

Wavelet sets and tilings are related by the following theorEor an elementary
proof, as well as a more complicated one, see [20] (1999) exlstence of wavelet

sets is not obvious, and this is the point of Section 3.

Theorem 2.1.Let Q C RY be a measurable se® is a wavelet set if and only if
i. {Q+n:nezd}isatiling ofRY, and

ii. {2"Q :me Z} is atiling of RY.

Corollary 2.1. Let Q C RY. Q is a wavelet set if and only @ is Z%-translation

congruent td0,1)® and Q is dyadic-dilation congruent tp-1,1)4 \. [—3, %)d

Definition 2.2. A collection Q1,..., Q' of measurable subsets Bf is awavelet

collection of setsf {1/,,,...,1/, } is a set of wavelet generators fot(RY).
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We have the following generalization of Theorem 2.1. It dtidee compared

with Theorem 8.1, whose more complicated proof is included.

Theorem 2.2.Let Q1,..., Q" be pairwise disjoint measurable subsetsRdt The
family {Q' :1 = 1,...,L} is a wavelet collection of sets if and only if ed¢d | = 1

and the following conditions are satisfied:

i. Foreach fixed = 1,...,L, {Q'+k: ke z9} is atiling of RY:;
ii. If Q= Q', then{2iQ : j € Z} is atiling of RY.

Remark 2.3In light of our dyadic results in this paper involving furais of the

the form 1}, we point out that Gu and Han [49] (2000) proved that, in thérae

of Equation (2), if|detA| = 2, then there is a measurable $2tC RY such that
{2md/21 ) (A™ —n) : me Z,n € Z9} is an ONB forL?(RY). This result can be
viewed as a converse of the following theorafg ¢ L?(RY) is a single wavelet
constructed from an MRA associated Wi, A), then| detA| = 2, see [9] (1995)
and [50] (1997), cf. [64] (1992) and [28] (1993).

2.2 Kolmogorov theorem and Littlewood-Paley wavelet ONB

In 1922, Kolmogorov [63] (1924) proved thatkf € L?(T) andSy(F) is theNth

partial sum of the Fourier seri&F) of F, then

lim Sy (F)(y) =F(y) a.e. 3)

n—oo

His proof is elementary, short, and clever; and the resutilisvalid when{2"} is

replaced by more general lacunary sequences. Writing

AF(y)= Y  FYIe®™,  j=01,.,

2i<|n|<2i+1
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Equation (3) can be restated as

Fiy) =F/[0+ S AF(y) ae. @)
35

which can be interpreted as a frequency decompositidh based on dyadic in-
tervals. Equation (4) plays a fundamental role in Littlewdealey theory, and was
stated and proved as a consequence of deep results in teeiy tim the setting

of LP(T), p > 1, see [74, Theorem 5] (1931) and [75, Theorem 8] (1937). The
Littlewood-Paley theory is an important part of 20th ceptbharmonic analysis,
e.g., see [29] (1978), [41] (1977), [46] (1991), [92, Charité] (1970), and [93]
(1970).

From our point of view, Equation (4) can be adjusted to inooage time-
frequency localization, at least within the constraintgted classical uncertainty
principle; and it can be thought of as a primordial waveletateposition, e.g., [82,
pp.19-20] (1992). In fact, in the setting &, the decomposition (4), properly lo-
calized in time and reformulated in terms of multiresolatemalysis, becomes the

Littlewood-Paleyor Shannorwavelet orthonormal basis decomposition

f=S(f,Umn)mn,  forall f € L*(R), (5)

m,n

where
1 1

=10, Q=[-1—= =1
,‘lU .Q7 [ ? 2)U[2? )
is the Fourier transform of the Littlewood-Paley or Shannawvelety.
The decomposition (5) can be proved in several standard,vimysthe most

convenient is to combine the orthonormality{afi,m»} with the fact that

[(F )| = [ fl[72gy.  forall feLl?(R), (6)

mn
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e.g., see [38, pp. 115-16] (1992) and [46] (1991) for furtthetails. The proof of

Equation (6) is the calculation

2

/ F(2mA)e g
Q

S (F Yma) = 3 2"

? 2
/j (f(zm(vf D)Ly (=D + F @ y+1) g4 (v+ 1)) 2Ty g

-1+ F @)1y v+ dy @)

_ 2“‘/?2’“;\ 24\ — / F12dy = |1£[[2m..
S [If@nRA =3 [ 1fwitdy=1lf,

The points to be made are that (7) is essentially a geomketiigament, and also
that it can be generalized. The fact that (7) is a geometaigaiment is immediate
from the second equality, which depends onZh&anslation congruence @ and
{—;, ;] , and the last equality, which is due to the fact th2lfQ} is a tiling of R.

Thus, the Shannon wavelgtdoes in fact give rise to a dyadic wavelet ONB for
L2(R). Moreover,§ = 1o so we are dealing with the wavelet @t= [—1,—3) U
[%,l); and, most important, the proof thétmn} is an ONB forL2(R) depends
entirely on the tiling criteria of Theorem 2.1.

In the next section we shall give a general construction eiled sets motivated

by the tiling criteria of Theorem 2.1. Intuitively, theseteria assert tha2 must

have fundamental characteristics of both squarekannuli.
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3 The construction of Euclidean wavelet sets

3.1 The basic construction

Let Qo C [-N,N]¢ C RY be a neighborhood of the origin with Lebesgue measure
d
. . 11
|Qo| = 1, and further assume th& is Z9-translation congruent t%—z, 2] . Qo

will be iteratively transformed by the action of a mapping

T:Qp— [2N,2N]Jd < [=N,N]d

for some fixedN, whereT is defined by the property that, for each fixgde
Qo, T(y) = y-+k, for somek, € Z°.

Because of the requirements of our forthcoming constraoctiee shall assume
that the mapping , defined in terms of the translation propefty = y+ky, also has
the properties that it is a measurable, injective mappin@grsee [21, Proposition

3.1] (2001).
Algorithm 3.1. We now describe our original NMC construction of wavelesggt

depending orf2g, N, andT. Let

No=QoN (U 2—J'Qo> andQ; = (Qo~ Ag) UTAo.
j>1

Then,

Qo~ /o C Qo and TAg C [—2N, 2N]d [N, NJ9.

Next, let

A=N <U 2j.Ql> :

i>1

and letQ; = ((Qo~No) N~ A1) UTAQUTA;. Then,
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(Qo~No) N1 C Qo

and

TAGUTAL C [=2N,2N]d < [=N, NJd.

Notationally, we sef(Qp ~ Ag) ~ A1) = Qo ~\ Ap ~ Az1. Generally, for a giver2,,

let
/\n == Qnﬂ (U ZJQn> 3
j>1
and set
Qn1 = (_Qo\/\o\/\]_\---\/\n)U(T/\0UT/\1U~~-UT/\n). (8)
Then,
Qo~No~AN1 - ~N C Qo
and
TAGUTALU---UTAn C [—2N,2N]9 [-N,N]d.
We defineQ as
Qz(Qo\U/\k>U<UT/\n>. 9)
k=0 n=0
Denoting
Qn = Q~No~ANA1~ N ANpo1
and
QrT =TNAUTAU---UTAn_1,
we have

Qn=0NUQi, Q= <ﬂ Q;) U (U Q,T) ,and|Qy| = Q| +]Q7 | =1
n=0 n=0
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Thus, the sel2 is obtained by removing fronfy all the Ajs and sending these

disjoint subsets int¢—2N, 2N]d . [-N,N]¢ by means of the mapping. It should

be noted thaf is Z4-translation congruent t@.
Theorem 3.1.Q defined by(9) is a wavelet set, see [20] (1999), [21] (2001).

The following is the generalization of Theorem 3.1 corresfing to the geomet-

rical characterization of Theorem 2.2.

Theorem 3.2.Let {Q¢,...,Q5} C RY, and assume T and each), satisfy the hy-
potheses of Algorithm 3.1. LéR?! ..., Q'] be the sequence of sets constructed in

Algorithm 3.1. Then{Q?,..., Q} is a wavelet collection of sets, i.e.,

{@1):1=1,...1}

is a set of wavelet generators fof (RY).

3.2 A generalization of the neighborhood-mapping consttion

It is assumed in the original NMC of Section 3.1 ti24 is contained inf—N, N]¢

and that the range of the mappifigis contained in—2N, 2N]4 . [-N,N]d. As it
turns out, this assumption on the rangeTofs not necessary. The purpose of the
mappingT should only be to move the sefs,, defined below, out ofy. In this
section we prove that the procedure produces wavelet sessrfmre general class
of mappingsT, thereby obtaining wavelet sets that we had not been ablbttono
by the original construction.

Let Qg be a bounded neighborhood of the origin thaZ$stranslation congruent
to the unit cube Q= [ 3, 1]9. We shall consider measurable mappifigsR? — R

satisfying the following properties.
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i. TisaZz4-translated mapping, i.e.,
vy e RY, 3n, € Z4 such thafl (y) = y+n,.

ii. T isinjective.
iii. Therange off —Iis bounded, where | is the identity mapping BA.

iv. (U T'Qo) N[UT-02 1 Qo] = @, whereT? =landT' =T o---oT.
i-fold
Compared to the original NMC, the first two conditions drare unchanged,

while the last two relax the earlier assumption on the rarfg@.oConditioniii
says thafl (y) = y+n, cannot be arbitrarily far frony. There must be a uniform
bound on how faly moves toT(y) but the range ol does not necessarily lie in-
side some square box. What conditiorsays is that for any € Qg the sequence
{T(y),T?(y),...,T"(y),...} never returns ta@2 or any 2 /Qy, j > 1. This weak-
ens the earlier artificial assumption tHahas to move points i®y out of a square

containingQo.

Algorithm 3.2. Let T satisfy conditions—iv. According to [21] (2001), [22] (2002),
we iteratively construct a sequence of s@seach of which iZ9-translation con-
gruent to Q, and hence tilRd by Z9-translates, as follows. For eaoh=0,1,...,

we define

An=nn[J27 Q)
j=1

and

Qn+l = (Qn \An) UT/\n (10)

This setQ,, 1, defined by (10), is the same as the @gt 1, defined by (8). How-

ever, by propertyv and some set theoretic implications of it, we calculate that

Oni1= : (11)

n
Qo UAi} U

i=0

O(TAk\ Lnj /\i>

k=0 i=k+1
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Because of (11), we define the set

Qo A
i=0

Q= U . (12)

O(T/\k\ LnJ /\i>

k=0 i=k+1

Theorem 3.3.Q defined by(12)is a wavelet set.

The proof is found in [23] (2006). It depends on several uséfiplications of

properties—v including the following result.

Proposition 3.1.For each n=0,1,..., we have the following.

a. Qn tiles RY by Z4-dyadic translation, and

b. Qn~ A tiles RY by dyadic-dilation.

4 Frame wavelets

The concept of frame introduced by Duffin and Schaeffer [4Q9BR) is a natural

generalization of an orthonormal basis.

Definition 4.1. a. A countable family{ @ };cz of functions inL?(RY) is aframefor

L2(RY) if there exist constants @ A < B < « calledframe boundsor which

AlfIP< S [(f,@)P <B|[f|[>,  forall f eL*RY).
€7

When the frame boundsandB coincide {@} is called aight frame If A=B=1,
the inequality becomes the Parseval identity dqgg is aptly called aParseval
frame i.e.,

S (@ =If[>,  forall feL?R?).
i€Z



The construction of wavelet sets 19

b. An L?(RY) functiony is aframe waveletrespectivelytight frame waveleand
Parseval frame wavelgif the generated familyf Ymn: me Z,n € Zd} is a frame,
respectively, tight frame and Parseval frame.

c.QCRYis a (Parseval) frame wavelet sét ¢ = 1}, is a (Parseval) frame

wavelet.

The following is the analogue of Theorem 2.1 for the case ofd®al frame

wavelets.

Theorem 4.1.Let Q C RY be measurable. The following are equivalent.

i. Q is a Parseval frame wavelet set.
i. Q is Z9-translation congruent to a subset ff,1)¢ and Q is dyadic-dilation
congruent td—1,1)4 \ [-3, %)d

iii. {Q+k:keZ}isatiling of a subset oRY and{2"Q : n e Z} is a tiling of RY.

In recent years, frame wavelets, in particular tight ands@aal frame wavelets,
have been studied extensively, e.g., see [50] (1997) by Bim, lds well as a related
paper by Dai, Diao, Gu, and Deguang Han, [33] (2002).

It is a natural question to ask whether the s@fsconstructed from finite itera-
tions in the NMC of Section 3 give rise to frame wavelets, esipely, tight frame
wavelets and Parseval frame wavelets, i.e., whether thetitws 1, are frame
wavelets, respectively, tight frame wavelets and Pardesaie wavelets. It turns
out thatl/, is a frame wavelet with frame bounds 1 and 2, while we obtaimsé?a
val frame wavelets from the auxiliary se@, ~. A, (Theorem 4.4 below). We shall
prove this result not only because it is a bit surprising lteh &ecause it facilitates
the genuine implementation of wavelet set theory.

To this end, we need the characterization of tight frame Veaselue to Bin Han

[50] (1997) as well as to Ron and Shen (1997), Bownik (2008yi@nd Shi (2000),
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and Chui et al. [27] (2002) (Theorem 4.2 below). We also negDiaubechies’ suf-
ficient condition for a function to be a frame wavelet [38] 929, combined with
refinements by Kugarajah and Zhang (1995) and EBietlez and Weiss [55] (1996)
(Theorem 4.3 below). The proof f@ of Theorem 5.1 in [26] (2001) can be easily

generalized t@®Y, and this generalization is Theorem 4.3.

Theorem 4.2.Lety € L?(RY). The family
{Wmn=2"Y2y(2™. —n) : me Z,ne 29}
is a Parseval frame if and only if

S 19@RE)P=1 and (& zbwzuf 0(2(&+0) =
JEZ

for almost every € RY and for all qe Z9 <. 29.

Theorem 4.3.Leta> 1, b> 0, andy € L?(RY) be given. Suppose that

HEHE[la nez nez

I3 [BEOF -5 5 BEOPELE Kb >0
k#£0

= e 13 19E) [+ ; 2 1 BEPEE kb)) < e
l1Elel 1a
Then{al¥/2y(al - —kb)};_z cz0 is a frame for B(RY) with frame bounds A,

B/bd.

We begin the proof of Theorem 4.4 with the following lemma efhuses Theo-
rem 4.2. The 1-dimensional version of Lemma 4.1 first apgkard@heorem 4.1 of

[50] (1997).
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Lemma 4.1.1f a measurable se® tiles RY by dyadic-dilation and® C Q for some
measurable se@ that tilesR? by Zd-translation, then the functiogy € L2(R9)

defined byl = 1o is a Parseval frame wavelet.

Proof. Since® tiles RY by dyadic dilation a.e., we have

S PREP=5 1628 =1 2 i0(8) =1 ae.

JEZ J€Z

We then compute

Z)QU (216)P(2I(E +q) %]lz i0(é)1y-ig_q(¢)

= ]Zollzfi[em(efziq)](f)'

From the second assumpti@® (0 —2/q) C QN (Q —2/g) = @. Thereforetq =

0. Hence, by Theorem 4. is a Parseval frame wavelet. O

Theorem 4.4.For each n> 0, Q, \ A, is a Parseval frame wavelet set, ati is a

frame wavelet set with frame bountiand 2, cf. Proposition 2.2 of [39] (2002).

Proof. By Proposition 3.1, Lemma 4.1, and the inclus@p~ A, C Q,, itis clear
thatQn ~ A, is a Parseval frame wavelet set.

Lety = 1g,. Then,

> 1@ P(21)? = Loyl (218) + > I, 215)_1+]1UJEZZ in, (&)
jez i€z JEZ

It is straightforward from the definition that the setsia,, j € Z, are mutually
disjoint. This justifies the second equation. Thereforeégﬁgpzjez|$(21E)|2 =
2 and inf a3 jez |P(21€)]? = 1. SinceQy tiles RY by Z9-translation, we have

PREP(AE +K) =10, (21&)1g, k(2/E) =0 for all j € Z andk € Z9 . {0}.
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Hence, we can invoke Theorem 4.3 to assert thats a frame wavelet set with

frame bounds 1 and 2. a

5 Examples of Euclidean wavelet sets

Theorem 5.1.
a. A convex set C cannot partitid@d by dilations; that is, the se{ZjC: j € Z}
cannot be a tiling oRR¢.

b. A convex set is not a wavelet set.

Proof. a. i The statement is clear i, and, for simplicity, we shall only prove the
resultin the casd = 2. The proof can be easily generalize@%by replacing lines
in R? with hyperplanes ifR¢.

ii. Suppose tha€ is a convex set and thg2!C: j € Z} is a partition ofR2.
DefineS— {ye R2:yeCand—yc c} —CN(~C) CC. Itis clear from the def-
inition that the seBis symmetric, i.e.y € Sif and only if —y € S. Clearly,Sis also
convex. Most importantS| = 0. This is proved by assumin@ > 0 allowing us
to verify thatC must contain a neighborhood of @hich, in turn, contradicts the
disjointness of £, j € 7, thereby givingS = 0.

i . Next, we note that

21Sif j >i

(2ic)n(-2¢c)cq (13)
2s if j <i.

Thus, with our assumptiol);;, 2/C = R2, we compute
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# (el

= 2cn(-2¢c) (14)
i,J€Z

< amaxiig — 0
L

by (13) and sincéS = 0. (14) is obviously false, and so the proof is complete.

b. This is immediate from pad and Theorem 2.1. O

Theorem 5.2.Let G,Cy,...,C, be convex sets RY. If

- _ R
Ui:lUjGZZJCi =R,

where the left side is a disjoint union, thererd + 1. In particular, if C;,Cy,...,Cy
are convex sets iRY such that J , Ci is a wavelet set, then r d + 1, see [23]

(2006).

By definition,W C Rd s asubspace wavelet séthe family

{(ll\y\,)myn ; meZ,neZd}

is an ONB for a subspace bf(RY).

Theorem 5.3.The set WC R is a subspace wavelet set if and only if the char-
acteristic functionllg of the set E= Uj<021W satisfies the following consistency
equation:

1+ Y Le(y+K = Y e (;(y+k)) ae.

kezd kezd

In particular, W is a wavelet set for all & if and only if, in addition U<z, 2iE

contains, up to a set of measure zero, a neighborhood of ig@psee [23] (2006).
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Theorem 5.4.Every wavelet set ifi-1,1]% . [ %, 1] can be constructed by means

of the NMC.
The proof has some intricacies.

Corollary 5.1. For every wavelet se® in [—1,1]9,

1
‘Qﬂ[—a,a]d’ >0 foralla> 7.

Proof. If ‘Q Nn[-3, %}d’ > 0, then we are done. Otherwise, by Theorem 5.4, the

wavelet setQ can be constructed by the NMC. By definition of the mapping

it can be shown thaf\, is the only one of the set4, that intersects the “square

annulus” [—1%,1—56](1 N [—%,%]d. Again, sinceT is a Z3-translated mapping, it is
not possible for\, to cover[—a, a]? \ [~ 1, %]d foranya > %. This completes the

proof. O
Theorem 5.5.For anya < 1, a wavelet seR can not be contained if-a, a]°.

Proof. Suppose tha@ C [—a,a]? is a wavelet set. Then the integral translates of
Q willtile RY, i.e.,

Uga(@+K) =R,

WhereU designates disjoint union.

Observe that for each fixee= 1, ..., d, the union of all translate@ + (ky, ..., Kq)
with ki # 0 leaves out the banB = {(x1,%p,...,X3) €RY:a -1 < x <1—a},
ie.,

Uki#o(-Q-Fk)ﬂBi =g, foreachi=1,2,...,d.

Therefore,

Uk#O’_._’O)(Q +kKNB=g,
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whereB = ;B = (a — 1,1—a)4. This clearly implies thaB C Q and that
@ # B C QN2Q, a contradiction to the dyadic-dilation congruence propef

wavelet sets. a

Fig. 1 The setQ; for the 2-dimensional Shannon wavelet set of Example 5.1.

0-57 n
-0.51

I I I I I ]
-15 -1 -0.5 0 0.5 1 15

o

Fig. 2 The wedding cake set of Example 5.2.

Example 5.1Figure 1 is theQ; C R2 approximant of the 2-dimensional generaliza-

tion of the Shannon wavelet set described in Section 2. héottariables’Qy = Q

andT (v, Y2) = (1, Vo) — (sign(y1), sign(y2)).
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213 0

1/3¢ i

ot A

-1/3¢ -1/3¢

-2/31 ‘ -2/3¢
i

_1. _1.

—-4/3 | -4/3}

-5/3 : . -5/3 : . . .
I 12 0 12 1 oS 12 o 12 1

Fig. 3 The wedding night set of Example 5.2 Fig. 4 The wedding cake set of Example 5.2 con-

sisting of 2 connected sets.

-1 -05 1

0.5

-0.5

Fig. 5 The connected wavelet set of Example 5.3.

Example 5.2Wedding sets

The wedding cake wavelet set was defined in [34] (1998), [B898), and it can be
constructed by our NMC method willg = Q andT (1, y») = (y + signyi, y») for
(y1,¥2) € Qo. It was introduced as a simple wavelet set consisting of iected
sets, see Figure 2. The interior of each component is coathédte constructed the

wedding night set in Figure 3, and it consists of two conregtetts. The NMC also
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, |
15
1
05
o
-0.5
-1
-15
‘im0 0029m=
-2 -1 0 1 2

Fig. 6 The 2-dimensional Jouenwavelet set of Example 5.4.

allowed us to construct an alternative wedding cake setistimg of two connected

sets with connected interiors (Figure 4).

Example 5.3An example of a connected wavelet set, in which the interoisests
of infinitely many components, was given in [21], see Figurdt &5 believed that

there is no connected wavelet set with connected interior.

Example 5.4A generalization of the Jouenwavelet set.
Since the Jourwavelet set can be constructed by the NMC W= [—3,3) and
T(y) = y+2signy), one of itsd-dimensional versions can be produced by setting

Qo=Qand

Ty, ¥a) = (vu+2signva), ..., Ya +2signya)),

see Figure 6 for the corresponding wavelet sétin

It should be noted that the NMC only produces wavelet setsatre@bounded
away from the origin and infinity, i.e., they have holes atdhigin and are bounded

sets. Related work can be found in [73] (2002).
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6 Locally compact Abelian groups, wavelets, and thg-adic field

6.1 Thep-adic fieldQp

Theorem 6.1.Every locally compact abelian group (LCAG) G is topologigand
algebraically isomorphic t&RY x G,, whereR? is Euclidean space and s a

LCAG containing a compact open subgrougp H

This fact follows from a result in [1] (1965) combined withg5Section 9.8]
(1963). For the remainder, we shall deal with wavelet thdoryfunctions defined
on group<Ge.

A common example of a grou@y is the fieldQp of p-adic rationals. Given
any prime numbep, the fieldQy is the completion of the fiel@ of rationals with
respect to thg-adic absolute valug'm/n|, = p~" for all r,m,n € Z with mandn
not divisible byp. Equivalently,Q, may be thought of as the set of Laurent series

in the “variable”p, with coefficients 01,..., p. This means that

Qp:{ )3 anp”;nerandane{0,1,---7I0—1}},

n>ng

with addition and multiplication as usual for Laurent ssriexcept with carrying of

digits, so that, for example, i®7, we have
(4+1-7)+(6+5-7)=340-7+1-72.

The p-adic absolute value extends naturallyQg, and under the operation of addi-
tion, Qp forms a LCAG, with topology induced bly|p, and with compact open sub-
groupZp, the ring ofp-adic integers, consisting of Taylor seriesgnEquivalently,

Zp is the closure of C Qp with respect td - |p. FurtherZp, = {x € Qp : x|p < 1}.
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A few other details abou@, appear in Section 6.3. In addition, Section 7.2
contains an informal discussion of the geometr{)gfand related groups, including

a rough sketch o3 in Figure 7.

6.2 Wavelet theories o, and related groups

The main obstacle to producing a theory of wavelets on gréikesQ, is thatQ,
has no nontrivial discrete subgroups, and thus there isttiodao use for trans-
lations. Some other LCAGs have both a compact open subgnodpaliscrete
cocompact lattice. For example, Lang [69] (1996), [70] @9971] (1998) con-
structed wavelets for the Cantor dyadic group (known to nemtbeorists as the
field Fo((t)) of formal Laurent series over the field of two elements) usirgglat-
tice consisting of polynomials itr 1 with trivial constant term. Farkov [45] (2005),
[44] (2005) later generalized Lang’s construction to oth€AGs with a compact
open subgroup and a discrete cocompact lattice. Howevegfand other LCAGs
with compact open subgroups, the lack of a lattice requidifferent strategy.
Several authors [65] (2002), [59] (2004), [62] (2009), [42P09) have con-
structed wavelets on such groups by the following strat€jyen a LCAGG with
compact open subgroup, choose a set’ of coset representatives f@&/H, and
translate only by elements &. For example, ifG = Qp andH = Zp, we may
choose® to consist of all elements d@, of the forma/p", wheren > 1 and
0<a< p"—1, so that every element @, may be represented uniquelyxs s,
for x € Zp ands € €. Then, given an appropriate dilation operatarG — G (such
as multiplication-by-1p, in the case of)p), it is possible to develop a correspond-
ing wavelet theory. For example, tipeadic wavelets of [65], as well as of those on
certain non-group ultrametric spaces in [61] (2005), amepdy inverse transforms

of characteristic functions of disks, and they were showhdavavelets by direct



30 John J. Benedetto and Robert L. Benedetto

computation. Meanwhile, the wavelets of [59], [62], and][@Darise from ap-adic
version of MRA. Common to all of the above constructions, beer, is the use of
translations by coset representatives.

Unfortunately, the chosen set of coset representativesuially not a group; for
example, the se&t” C Qp of the previous paragraph is closed neither under addition
nor under additive inverses. As a consequence, the regtitteory seems limited.
In particular, all such wavelets known to date are step fanstwith a finite number
of steps.

Instead, we present a different wavelet theory for suchmgpusing a different
set of operators in place of translation by element&ofAlthough our operators
are not actual translations, they have the crucial advarééprming a group. We
call thempseudo-translationsThe resulting theory allows a much wider variety of
wavelets, including most of the wavelets produced by oth#ras, as well as many
others. After presenting the general theory and definitfoouo wavelets, we shall
show that it is possible to construct many such waveletsgusitheory of wavelet
sets, and we shall give an algorithm for constructing a wiléety of wavelet sets.
We expect that it should also be possible to develop muttinti®n analysis for our

wavelet theory, but this has not yet been done.

6.3 Prerequisites about LCAGs

In this section, we set some notation and recall a few stanfdats about abstract
LCAGs; see [56] (1963), [57] (1970), [86] (1966), [87] (1968nd [88] (1962) for
details.

Let G be a LCAG with compact open subgrodp Denote by@ the dual group of
G, with action denotedx,y) € C*, forx € Gandy € G. Theannihilator subgroup

of HinGis
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H'={yeG:vxeH, (xy)=1}CG,

which is, in turn, a compact open subgroupﬁaf
The quotient grougis/H of course consists of cosets- H, also denotedk], for
x € G. This quotient is discrete, becaudds open inG. Moreover,G/H is isomor-
phic as a LCAG to the dual dfi. The isomorphism is easy to write down; the
elementx+H € G/H acts onH* by (x+H, y) = (x,y), for anyy € HL. Similarly,
H andé/HL are isomorphic discrete groups.
Sety = [ andv = vg to be Haar measures &andG, respectively, normalized
so thatu(H) = v(H+) = 1. These normalizations induce counting measures on the

discrete group&/H andG/Hi, and they make the Fourier transform, given by

f(y):/Gf(x)(x,y)du(x), for all f € L2(G),

an isometry betweeb?(G) ansz(é). See, for instance, [57, Section 31.1] (1970),
[87] (1968), and [17, Section 1.3] (2004).

By way of example, consider again the c&se- Q, andH = Zp. The quotient
Qp/Zp is isomorphic toug-, the subgroup of* consisting of all roots of unity,
for which an = 1 for somen > 0. Meanwhile Qp, is self-dual, with duality action
given by(x,y) = x(xy), wherey : Qp — C is the character given by

-1
x(n;Oanp”) = exp(Zmn;oanp”)-
The annihilatorzé is justZ, under this self-duality.

Our wavelet theory will of course require a dilation operaiven an automor-
phismA: G — G, there is a unique positive numby|, themodulusof A, with the
property that for any measurable §etC G, we haveu(AU) = |A|u(U). Therefore,
for any f € Ce(G), Jg f o A(X)du(x) = |A|™L [5 f(x)du(x). See, for example, [56,
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Section 15.26] (1963). In addition, has an adjoint eleme#t' : G — G, defined by
(Ax y) = (x,A*y) for all x e G andy € G. We have(A*) 1 = (A-1)*, |A| 1= |A" ],
and|A"| = |A.

7 Wavelets for groups with compact open subgroups

7.1 Pseudo-translations

In this section, we present the pseudo-translation opertidoe used in our wavelet
theory. Rather than translating by one fixed element of eashktfs| € G/H, we
shall construct an operatary : L?(G) — L%(G) for each[s € G/H determined
only by the cosefs] = s+H, and not by a choice of a particular coset representative
So € [g]. In addition, our operators will form a group, in thag, ;) = 137y The
resulting operators are usually not true translations,thuwill still be similar in
certain ways to the translation-tseperator.

To construct our operators, however, sigall have to make a choice of coset
representative; but we choose a gedf coset representatives@n‘or é/ H-, rather
than representatives @& for G/H. Thatis,2 C Gis a discrete subset (probably not
forming a subgroup) consisting of exactly one element ofyeeeseto +H+. We

then definerg by its induced dual mapg : L2(G) — L2(G), as follows.

Definition 7.1. Let G be a LCAG with compact open subgrotipC G. Let 2 C G
be a set of coset representative§ifor the quotientd = G/H~.

Define the mam =y : G — H- C Gby

n(y) = the uniqueB € H* such thaty— g € 2.
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For eachs| € G/H, the pseudo-translation-Hg-operatorg = 7y » : L%(G) —
L?(G) is given by

— —_—

19 f(y) = (sna(y)) f(y).

Note that the true translation-lseperatorTs : L>(G) — L?(G) acts on the trans-

form side by

Thus, 1ig resembles a translation operator except for the corredtjon,. The
functionng(y), in turn, should be viewed as giving the difference betwgeamd
the nearest “lattice” point, where we consideito be an analog of the dual lattice.
In the Euclidean setting, where really is a dual lattice and the translating element
sreally is in a lattice, the corresponding quant(t;mg(y)) would exactly equal
(s,y). Thus,n4 should be thought of as correcting for the fact thais not actually
a lattice.

The following proposition shows that the other promisedperties ofriy also

hold.

Proposition 7.1.Let G, H, andZ be as in Definition 7.1. We have the following.

a. Ty, is well defined, i.e., if $ H =t +H, thentg 4 = Ty, 4-
b. 79 o f = f forall f € L%(G).

C. Tjg,7° Tij,2 = T[syy),2 foralls;t € G.

Proof. Given anys,t € G lying in the same coset+H =t +H and anyy € G, we

have

(t,nz(y) = (sn2(y) (t—=snaz(y)) = (s,n2(y)),

becauset —s € H and ny(y) € H*. Parta follows. Similarly, partsb and c

are immediate from the observations tH@tns(y)) = 1 and (s+t,ns(y)) =

(s,n2(y)) (t,n2(y)). O
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Besides the elegant properties listed in Proposition Aelyéason for the partic-
ular forms oftg » andny will become clear in Equation (20), during the proof of

Theorem 8.1.

7.2 Expansive automorphisms and dilations

When constructing wavelets Ir?(R%), one cannot use just any automorphiam
G — G as a dilation operator, but rather one with particular prige with respect
to the lattice. We now present the corresponding properdee for dilations in our

setting.

Definition 7.2. Let G be a LCAG with compact open subgrotpC G, and letA:
G — G be an automorphism. We say thfais expansivevith respect tH if both of

the following conditions hold:

i. HC AH, and

ii. Nn<oA™H = {0}.

As noted in [17, Section 2.2] (2004), @ has a compact open subgrodpand
expansive automorphise, then|A| is an integer strictly greater than G/H is
infinite, andG is not compact. In addition, on the dual side, we hieveC A*HL,
andUpsoAMH L = G.

The expansiveness condition, together with the originaliagption thatG has
a compact open subgroup, says tBaand G both have a self-similar structure. In
particular, if we sketctH' as a disk, therG is a union of larger and large dilates
of that disk. Meanwhile, each dilat&"H contains finitely many (in fact, exactly
|A|") translates (i.e., cosets+ H+) of H-. Similarly, applying negative powers of
A*, we can see thad * itself consists ofA| translates of the smaller digR*)~1H -+,

each of which itself consists ¢A| translates of the still smaller digla*)~?H"*, and
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Fig. 7 G for a LCAG G with compact open subgroup and expansive automorphisfy with
|Al = 3.

so on. ThusH* has a fractal structure, much like the Cantor set, wiiles an
infinite union of translates dfi-. See Figure 7 for a sketch of such a grdﬁwith
an expansive automorphism of modulus 3.

For example, ifG = Qp andH = Z,, we may chooséA : Qp — Qp to be
A(x) = x/p, which mapsZp to (1/p)Z, 2 Zp, satisfying condition of Defini-
tion 7.2. Conditionii also holds, becaugg,o p"Zp = {0}. The modulus in this

case igA| = |1/p|p = p. Figure 7 may therefore be considered to be a rough sketch

of Qs.

7.3 Wavelets

As in the Euclidean setting, an automorphigm G — G induces an operator on
L2(G), sendingf (x) to |A|*/2f (Ax); the constant in front, of course, ensures that the

resulting operator is unitary. Thus, we may make the follapdefinition.
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Definition 7.3. Let G be a LCAG with compact open subgrothC G, let Z be
a choice of coset representativesGrfor H = G/H~, letA: G — G be an auto-

morphism, and considés] € G/H. Thedilated translateof f € L?(G) is defined to
be

faig(X) = |AY2 (19,5 ) (AX). (15)

Note that Equation (15) implies that

fas(v) = [AY2E((A) " ty) (s, n (A7) 1y)). (16)

Now that we have appropriate dilation and translation dpesawe are prepared

to define wavelets on our grou

Definition 7.4. Let G be a LCAG with compact open subgrotpC G, let 2 C
G be a choice of coset representativesGirfor é/HL, and letA: G — G be an
automorphism. Considé¥ = {1, ..., Yn} C L?(G). We sayW is aset of wavelet

generatordor L2(G) with respect taZ andA if
{Uimg:1<j<NmeZ[s e G/H}
forms an ONB folL?(G), where
Wi mg () = |A™2 (Tig,0 1)) (A™X),
as in Equation (15). In that case, the resulting basis i®dalwavelet basidor

L%(G).

If ¥ = {y}, theny is asingle wavelefor L%(G).
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8 Geometry of wavelet sets folG

As we did forL?(RY), we shall use the machinery of wavelet sets, and not MRA, to
construct wavelets fat?(G). Therefore, we state the following definition, cf. [34]

(1998), [35] (1997).

Definition 8.1. Let G, H, 2, and A be as in Definition 7.4. Lef24,...,Qn be
measurable subsets & and lety; = ]lgvzj for eachj = 1,...,N. We say that
{Q1,...,Qn} is awavelet collection of sef6 W = {,..., Yn} is a set of wavelet
generators fot%(G).

If N=1, thenQ = Q, is awavelet set

We shall characterize wavelet sets in terms of propertiedogous to the Eu-
clidean notions off-congruence and-congruence, as described in Section 2. See

also [17, Section 3.2] (2004) for a broader discussion insetting.

Definition 8.2. Let G be a LCAG with compact open subgrotpC G, let 2 C G
be a choice of coset representative&ifor H = G/H, and letQ C G be a subset.
We sayQ is (1,2)-congruent to H- if there exist measure zero subs¥¢sC Q
andV{ C H, a sequencéan}n=1 C 2, and a countable partitiofV;, : n > 0} of
Q ~ {Vo} into measurable subsets such thg; — o, : n > 1} forms a partition of
H- V.
Definition 8.3. Let {Wy : me Z} be a countable set of measurable subse@ dfe
say that{Wn} tiles G if

v(E [ UWn]) =0

mez
and

v(WmNW,) =0, forallmneZ, m#n.

Our first main result characterizes wavelet collectionseté ;1 terms of the two

preceding definitions.
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Theorem 8.1.Let G be a LCAG with compact open subgroupHs, let 2 C G be
a choice of coset representativesGrfor G/H., and let A G — G be an automor-
phism. A finite sefQs,..., Qn} of measurable subsets Gfis a wavelet collection

of sets if and only if both of the following conditions hold:

i. {A"Q;:neZ,j=1,...,N} tilesG, and
i. Vi=1,...,N, Qjis (1,2)-congruent to H.

In that caseG is o-compact, eaclv(Q;) = 1, and eachi g, € L%(G).

Proof. See [17, Theorem 3.4]. The centerpiece of the proof is to gshaw

N

2
SY Y [fuims)| =Ifl13, foral feL*G), (17)
|=1meZ[sleG/H

at least under the assumptions that the sum on left side dfc@r®erges (and in
particular, all but countably many terms of the sum are 0y tvat properties
andii of Theorem 8.1 hold, cf. the calculation (7) in Section 2.2 Wéw reproduce
the argument from [17].

By Plancherel’s theorem and (16), we have

‘ 2

= |AI~™ (V) - @i ((A)=My) - (s,n((A")~My)) dv(y)
5 | LB ™) ( )

2
-3 J,, F&m8)-(sn®) avip)] (18)
j,m
where we have substitutg= (A*)~"y. By propertyii, eachQj is (1, Z)-congruent
to H, thereby giving us partition§V; n}n>0 of Q; with v(Vj o) = 0 and sequences

{0jn}n>1 C 2, as in Definition 8.2. Thus, the right side of (18) becomes
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. - )
J'%S]IAI n;-/\/j.,nf(A B)'(SJ‘I(B))dv(B)H (19)

I £ 2
B J'.%s] |A|m nZl -/Vj.n—oj,n f (A*m(a M Gj’n)) ' (S’ nia+ Gj’n)) dv(a)} ‘

= 5 AT S [ L1 apa(@) TR @+ 030) - (s +030) dvi@)]

s it

where we have substituterl = B — 0j n. Sincea € Vjn— 0jn C H*, the unique

pointin (a + gjn+H*)NZ is 0j n, and therefore
N(a +0jn) = (a +0jn) — Gjn=a. (20)

As noted in Section 7.1, the convenient simplification of &ipn (20) helps il-
lustrate the reason for the otherwise peculiar-lookingdpson of n andtg » in
Definition 7.1.

Next, we claim we can exchange the inner summation and aiteggns in the
last term of (19). After all, we know tha§Vj, — 0jn: n > 1} tiles H*. Hence,
denoting the integrand of (19) W », writing Fj = 5 ~1 Fjn, and noting thaf;

vanishes off ok/j n — 0j n, we see thakj o, Fj € L>(H*) C LY(H'), and therefore

ngl/éFj,n(a)dv(G) = ngl/vj‘noj.n Fj(a)dv(a) = /HL Fi(a)dv(a).

Thus, the right side of (19) becomes

A 5 L [ bt F s 0y0) saydv(@)| (1)

BecauséG/H is the (discrete) dual dfi+, Plancherel’'s theorem tells us that
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[ sesaav@] = 5 | [ geis,adva]
géc/H A

[
~ [ late)*av(a).
H

s e%/H

for anyg € L2(H+). Thus, (21) becomes

SIAm

J;m

z 1y, -0 (@) f(A*(a + aj,n)) ‘Zdv(a),
n>1

which, in turn, is

f(A"(a+0in) )vajﬁn,aj.n(a)} dv(a), (22)

siam [3

J,m n>1

because, for fixed, the setsVj, — gj» are pairwise disjoint. We can now inter-

change the inner summation and integral as before, and é&2ntes

f(A*(a+0j,n))‘2dv(a)}

22 o
()| dvip)]

;,;m Qj
-3 / o () 2dv(y). (23)
J,m i

However,{A*Q;} tiles G. Hence, the right side of (23) is

L fwlavi = 1713 = 1713

proving Equation (17). ad
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9 The construction of wavelet sets for G

9.1 The basic construction

Motivated by the NMC described in Section 3, we now presenalgorithm for
constructing wavelet collections of sets. As bef@éds a LCAG with compact open
subgroufH, Z is a choice of coset representativeﬁrﬁor the quotienﬁ/Hl, and
A: G — Gis an automorphism, which we now assume to be expansive asfect
toH.

Our algorithm begins with the following data.

i. A nonnegative integevl > 0. SetW = (A*)MH -,
ii. A positive integelN > 1.
ii. Foreachj=1,...,N, ameasurable s€;, CW thatis(t, Z)-congruent taH -
iv. Foreachj=1,...,N, a measurable injective functidi: W — (A*"W) \\W such
that

Ti(y) =y—0j(y)+0oj(y), foralyew,
wheredj(y) € 2, andd’(y) is the unique element & N (y+H"').

We also set the following compatibility requirements on éheve data.

v. The unionQy = U'j\‘zl Qj o contains the neighborhoge@\*)~H of the origin,
for some integef > 0.

vi. For any distinctj,k € {1,...,N}, either
TWNTW = @

or

TjZTk and .Qjﬁoﬁ.Qk’o:@.



42 John J. Benedetto and Robert L. Benedetto

Note, however, that we doot require the set®1, ..., Qn o to be disjoint. The
possibility that two or more of them overlap will be dealt vih the algorithm to
be described below. Also, note that, becafise expansive, the s&Y containsH*
and(A*)~W properly containsV.

Meanwhile, as in Section 3, the mappinfsshould be understood as slicidg
into finitely many measurable pieces and then translatioh peece, with the injec-
tivity condition requiring that the images of the pieces @b overlap. In Section 3,
the translation is by an element of the lattice. In our sgttitowever, the translation
is by an element of the fornd — ¢/, whereo, o’ € 2, ando’ +H* contains the
piece in question, while +H-' contains its image. This more complicated descrip-

tion is required for the proof of the algorithm’s validityee Section 9.2.

Algorithm 9.1. Given the initial data described above, our algorithm pedsein-
ductively, building set?\ n,1 and Qj ,, for eachn > 0, as follows. Given the sets

Qj n and their unionQ, = Uj-1Qjn for a particulam > 0, defineAj o1 to be the

overlap
Ajni1= -Qj,nﬂ [ U (A*)fm_én}
m>1
ifn>1,or -
Aj1=QjoN [( U (A*)’mﬁn) U ( U Qk,o)}
m>1 k=1
if n=0.

This additional complication at thre= 0 step could just as well have been used in
the Euclidean setting @9, but it first appeared in [17] (2004) in the non-Euclidean
setting in order to give the resulting algorithm the flextlirequired to generate
certain wavelets previously constructed by Kozyrev [6902).

Then, for each, build Qj n1 from Qj, by translating/j n.1 C Qjn1 by Tj,
ie.,

Qjni1= (Qjn~Ajni1) UTiA] ns1.
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Finally, for eachj = 1,...,N, we set

Aj=JAim and Qj=(Qjo~A)UTA;. (24)
m>1
Intuitively, Q; is a sort of limit of the sequence of se{®;n}n>0. We refer the
reader to [17, Section 4.1] (2004) for a more detailed dpsori of the algorithm,
including verification that\; ,,1 does indeed always lie W, and hence it makes

sense to considaiAj n1.

9.2 Validity of the algorithm

The following theorem appeared as [17, Theorem 4.2] (2004).

Theorem 9.1.Let G be a LCAG with compact open subgrougHs, let 2 C G be
a choice of coset representativesﬁrfor é/ H-, and let A G — G be an expansive
automorphism. Given the data listed in Section 9.1, the &84s..., Qn} of (24)

produced by the algorithm of Section 9.1 form a wavelet ctiba of sets.

We refer the reader to [17, Section 4.2] (2004) for the probé idea of the proof
is to verify that{Q,, ..., Q} satisfy conditions andii of Theorem 8.1.

To verify conditioni, we first check thaUmeZA*mﬁ coversG, whereQ =
U}\Lle. This fact follows from the expansivenessAfand the stipulation in the
algorithm’s initial data thaf2y O (A*)~‘HL. To prove that the covering & is in
fact a tiling, we first note tha, 1,...,Qy 1 are pairwise disjoint, essentially by
definition, becausdj ;1 contains any overlap betwee o and Qg fork < j. The
algorithm maintains this disjointness f@ p, ..., Qnn for eachn > 1, as well as
for the limiting setsQy, ..., Qn. Meanwhile, the setd , are the overlaps between

Qjn and the union of dilatesjmzl(A*)*mﬁn. By translating them vid; out to
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(A*"W) W, future overlaps should be successively smaller (as théybeicom-
pressed by(A*)~™ for m > 1), so that in the limit, the dilates a? by different
powers ofA*™ are disjoint. Of course, the details of this verification ohditioni
are much more complicated, but that argument in [17] (2094pt fundamentally
different from the corresponding argument & in [20] (1999), [21] (2001).

The proof of conditiornii, on the other hand, requires a slight deviation from the
methods of [20] (1999), [21] (2001). In both settings, thegdiis relatively straight-
forward, because ead;j , andQ; is of the form(X \Y)UT;Y, whereY C X CW,
and X is already known to bér, 2)-congruent (or, in th&k? setting, simplyt-
congruent) taH-. In theRY setting, ther-congruence of the new set is immediate,
because the lattice elements used for translations forrowpgtn our setting, with
no lattice, the more complicated definitionGfis required, with both the subtrac-
tion and the addition of an element 6. The resulting(t, 2)-congruence of the
new set again follows easily, but the reader should notettiwaextra step of first
subtracting the old element @ is crucial. Other than that slight complication,
however, the proof of conditioii is largely similar to those in [20] (1999), [21]

(2001).

10 Examples of wavelet sets fo

We now present some examples of wavelet sets. All the exanale figures here

are taken from [17] (2004). See also [24] (2003) for more exam

Example 10.1Let G be a LCAG with compact open subgrohp let 2 be a choice
set of coset representativesﬁﬁor é/ H., and letA be an expansive automorphism
of G.

TakeM = 0, so thaWW = H+, setN = |A| —1 > 1, and letdy,..., oy be theN

elements ofZ N[(A*"H+) \H*]. For eachj = 1,...,N, defineTj(y) = y— 0} + 0j,



The construction of wavelet sets 45

whered}, denotes the unique element@fnH+, and define?; o = H*. Note that
{HL, TiHL, ..., TyH*} is a set of|A| = N+ 1 compact open sets which together
tile A"H-. See Figure 8 for a diagram ¢T;} andQj o (j = 1,2,3) in the case that
|Al = 4.

Fig. 8 The mapsT; and the set£; o = Qs = Q3 of Example 10.1, fofA| = 4.

As noted in [17, Section 5.1], applying the algorithm of $&tt9 to this data
gives

Qj=0j+H' forallje{1,...,N}.

Indeed, because the s&?sp, ..., Qn o all coincide, the algorithm immediately sets
everyQj n, for j > 2 andn > 1, to be the final se@; = gj + H. Meanwhile, the
more gradual evolution a1 , asn increases is illustrated in Figure 9; ultimately,
the dark shading will cover precisely the top-most regibn= g1 + H*.

In this case, the choic& of coset representatives is ultimately irrelevanigif
ando] belong to the same coset k- in G, thenoj +H* = o] + H*. However,
as the later examples should illustrate, that happy cirtamee is specific to this
example, as is the fact that we can actually write down eitdlicmulas for the

resulting wavelets. Indeed, as noted in [17, Propositid} &004), the wavelet
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Fig. 9 The set€j m (j = 1,2,3, m= 1,2) of Example 10.1, fofA;| = 4.

generators are

¥ () = (x.07)Ln (),

for j =1,...,N. This simple formula leads to the surprising observatiat these
wavelets can be considered simultaneously to be analogstloHaar and Shannon
wavelets. See [17, Section 5.1] (2004) and [24, Section @042 They had been
previously discovered in the special cases of the Cantodidygroup by Lang in

[69] (1996), and of), by Kozyrev in [65, Theorem 2] (2002).

Example 10.2We can also easily produce single wavelets with the algoritt
Section 9.1. LeG be a LCAG with compact open subgrotlip let 2 be a choice of
coset representatives@for G /H+, and letA be an expansive automorphism@®f

TakeM = 0, so thatW = H+, setN = 1, and leto; be any one of théA| — 1
elements o7 N[(A*"HL) \ H']. DefineTy(y) = y— 0§+ 01, whereo], denotes the
unique element o7 NH*, and defineQ; o = H*. See Figure 10 for a diagram of
Ty andQq o in the case that\| = 4.

As noted in [17, Section 5.2] (2004), itis easy to check tlaahé\, , is a transla-

tion of (A*)""H-+, which is a dilation oH* of measure’ (A1) = |A|~". Thus, each
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Fig. 10 The mapT; and setQ; o of Example 10.2, fofA;| = 4.

step of the algorithm translates one more successivelylan@nslate of A*) ~"H -+
out of H* and intoH* + 01. See Figure 11 for illustrations @ ; andQ; » in the
caselA| = 4; it should be easy to extrapolate wii2t, looks like for anyn > 1, and

ultimately, what the wavelet s€?; is.

Fig. 11 Q1 andQ » of Example 10.2.
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Example 10.3We close by giving one more example to illustrate that mamgiot
wavelets can be generated by the algorithm of Section 9dhéfis willing to use
more complicated translation functiofs

Let G = Q3, with compact open subgrolh = Z3, and letA be multiplication-
by-1/3, so thatA is expansive, witHA| = 3. As usual, identifyG as Q3 andH~*
asZs. Let 2 be a set of coset representativesﬁrfor (§/HL including oy = 0,
01 =1/3,ando, = 2/3.

TakeM = 0, so thatV = H, setN = 1, and letQ; o = H. Fory € H*, define

y+2/3 ifyel+3Zs,
Ti(y) =
y+1/3 ifye (3Zs3)U(2+3Z3),

as in Figure 12. Again, our algorithm is guaranteed to predusingle wavelet, but
this time, becaus®; breaksH ' into two pieces before translating, the wavelet set
in question is more intricate than those of Examples 10.118n2. See Figures 13—
14 for some of the resulting se€; ,,. Note in particular the very small disk that
was moved from; » to Q1 3. The ultimate sef2; will have successively smaller
disks moved from % 373 to 5/3+ 3Z3 (i.e., from the left heavily-shaded disk of
Figure 12 to the right one) and from#23Z3 to 7/3+ 3Z3 (i.e., from the lower right
lightly-shaded disk of Figure 12 to the upper right one). Atedl in [17, Section 5.3]

(2004), we can describe this set explicitly as

Q1= |Zz~ | ((—5/8+3"2+3"1Z3) U (—7/8+ 3" 1+ 3Z3))
n=1

[

Ul ((-7/24+ 324 3" 17,) U (—5/24+ 301 1 39'Z3)) .

m=1
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Fig. 12 The mapT; of Example 10.3.

Fig. 13 Q10 andQy ; of Example 10.3.
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Fig. 14 Q45 andQ; 3 of Example 10.3.

11 Epilogue

We view the construction of wavelet sets as more than a sidebeavelet theory
and its applications. There is, of course, the shear beadyirdricacy of many
wavelet sets, and the natural questions of generalizagion, [20] (1999), as well
as what type of theory will be required for such generalaatiecalling the theories
of [34] (1998) and [11] (1999) in the past.

There is also a host of geometric problems to be resolvedeXample, besides
the connectivity questions raised by Figures 2, 3, 4, onddhike to know if there
are connected wavelet sets with connected interior. Furthere are unresolved
convexity questions. We know from [23] (2006) that a wavekttQ C RY cannot
be decomposed into a union dfor fewer convex sets, and, in particular, wavelet
sets cannot be convex, see Theorem 5.1. In recent work, 2098}, Merrill has
constructed wavelet se@® C R? that are finite unions of 5 or more convex sets. The
lower bound “5” forR? is not necessarily sharp, and the existence of wavelet sets

QC ]ﬁd, d > 2, which are finite unions of convex sets is not known.
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Another topic of investigation is the tantalizing relatioetween wavelet sets and
fractals, e.g., [22] (2002), see [18] (2009) for backgraund

Besides the purely mathematical issues of the previougpashs, there is the
question of applicability of wavelet sets. Naturally, onght be suspicious of ever
applying the wavelet sets in Figures 1 and 5 or the even mayticeanes in [20]
(1999). However, Theorem 4.4 of Section 4, which we now rep@avides the

basis for implementation.

Theorem 4.4.For each n> 0, Q, \ A, is a Parseval frame wavelet set, af is a

frame wavelet set with frame bounds 1 and 2.

In fact, sets such aQq . Ap or Q1 can be elementary, computable shapes, and
so we can construct a single wavelet frafignn}, where@i = 1o, ,, say, for
L2(RY), d >> 0. Further, if rapid decay of the wavelet is desirable, tlagesexisting
frame preserving smoothing results, e.g., [2] (2001), [28P9), [10] (2006), [51]
(1997), [50] (1997), [54] (1997), and research questioes, [49] (2009). Thus,
single wavelet frames can be easily constructed to give otethfe decompositions
of the elements of?(RY), d >> 0, see Remark 1.2 in Section 1 about large data

sets.
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