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Abstract SetsΩ in d-dimensional Euclidean space are constructed with the prop-

erty that the inverse Fourier transform of the characteristic function1Ω of the setΩ

is a single dyadic orthonormal wavelet. The iterative construction is characterized by

its generality, its computational implementation, and itssimplicity. The construction

is transported to the case of locally compact abelian groupsG with compact open

subgroupsH. The best known example of such a group isG= Qp, the field ofp-adic

rational numbers (as a group under addition), which has the compact open subgroup

H = Zp, the ring ofp-adic integers. Fascinating intricacies arise. Classicalwavelet

theories, which require a non-trivial discrete subgroup for translations, do not apply

to G, which may not have such a subgroup. However, our wavelet theory is formu-

lated onG with new group theoretic operators, which can be thought of as analogues

of Euclidean translations. As such, our theory forG is structurally cohesive and of

significant generality. For perspective, the Haar and Shannon wavelets are naturally

antipodal in the Euclidean setting, whereas their analogues forG are equivalent.
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1 Introduction

1.1 Background

We shall give a general method for constructing single dyadic orthonormal wavelets,

which generate wavelet orthonormal bases (ONBs) for the space L2 of square-

integrable functions in two important antipodal cases. Thecases areL2(Rd), where

Rd is d-dimensional Euclidean space, andL2(G), whereG belongs to the class of

locally compact abelian groups (LCAGs) which contain a compact open subgroup,

and which are often used in number theoretic applications. The method and associ-
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ated theory forL2(Rd) were introduced by Manuel León, Songkiat Sumetkijakan,

and the first named author in [20] (1999), [21] (2001), [22] (2002), [23] (2003). The

theory forL2(G) was established by the authors in [17] (2004), [24] (2004).

This constructivemethod, which we refer to as theneighborhood mapping con-

struction(NMC) was inspired by groundbreaking operator theoretic work due to Dai

and Larson [34] (1998) and Dai, Larson, and Speegle [35] (1997). There was com-

parably compelling work, contemporaneous to [20] (1999), [21] (2001), in abstract

harmonic analysis by Baggett, Medina, and Merrill [11] (1999).

The catalyst for our original research was a preprint of the Soardi-Weiland pa-

per [91] (1998). The aforementioned, as well as less known but equally formidable

results by Zakharov [98] (1996), were aimed at establishingthe existence ofsingle

dyadic orthonormal waveletsψ for L2(Rd), d > 1, i.e., {ψm,n : m∈ Z, n∈ Zd} is

an orthonormal basis (ONB) forL2(Rd), where

ψm,n(x) = 2md/2ψ (2mx−n) . (1)

It turns out that the Fourier transform of such a functionψ is the characteristic

function1Ω of a setΩ , and such sets and their generalizations are calledwavelet

sets. Besides describing the NMC, we shall give a significant listof references to

illustrate a range of settings and problems associated withwavelet sets, and to pro-

vide perspective about the role and extent of the NMC in wavelet theory and its

applications.

For some time there was doubt about the existence of single dyadic orthonor-

mal waveletsψ for Rd, d > 1. In fact, the most common construction of wavelet

ONBs was from the theory of multiresolution analysis (MRA) which requires 2d−1

functionsψ j , j = 1, . . . ,2d −1, to generate the resulting ONB,{(ψ j)m,n}, see [81]

(1990), [38] (1992), [31] (1994), [76] (1994), [43] (1997),[78] (1998), [77] (1992),

[80] (1986), [48] (1992), [95] (1994), [8] (1995), [47] (1995) for MRA theory on
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Rd or, more generally on LCAGs containing cocompact discrete subgroups, cf. the

work on minimally supported wavelets [42] (1996), [53] (1996), [54] (1997). Thus,

the wavelets we construct, and those in [34] (1998), [35] (1997), [11] (1999) are not

derived from any MRA. On the other hand, there are unifying general approaches,

e.g., [85] (1998), [11] (1999), [12] (1999), [30] (1999), [84] (1993). There are also

results on wavelet theory in a variety of natural settings such as Lie groups and mani-

folds, sometimes coupled with structural constraints suchas MRA, e.g., [72] (1989),

[32] (1995), [58] (1995), [97] (1996), [69] (1996), [53] (1996) [4] (1997), [60]

(1997), [70] (1998), [71] (1998), [89] (1999), [7] (1999), [52] (1999), [3] (2000), [6]

(2000), [65] (2002), [83] (2002), [5] (2004), [59] (2004), [66] (2004), [61] (2005),

[45] (2005), [44] (2005), [90] (2009), [62] (2009), and classical work in harmonic

analysis on local fields, e.g., [96] (1975) and [37] (1983). This list contains several

papers dealing with thep-adics or other local fields on which we have focused in

our wavelet analysis ofL2(G), so we note the explicitness, generality, computabil-

ity, and algebraic cohesiveness of our approach. This will be spelled out in Sections

6–10.

Remark 1.1. a.Wavelet ONBs go far beyond the dyadic case. For example, thed×

d, dyadic diagonal matrixA (with 2s along the diagonal), corresponding to (1), can

be replaced by real expansived×d matrices for whichA(Zd) ⊆ Zd. As such, (1)

can be replaced by functions of the form

(
ψA

j

)
m,n

(x) = |det(A)|m/2ψ j(A
mx−n), (2)

where j = 1, . . .J, m∈ Z, n∈ Zd, e.g., see [80] (1986), [64] (1992), [25] (1999). We

mention this, since we can define non-separable filters with corresponding matrixA

andJ = 1 to obtain a single MRA waveletψA for which {(ψA)m,n} is an ONB for

L2(Rd).
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b.The reason we have not chosen this path to obtain single orthonormal wavelets,

in spite of the elegance of MRA, is to make use of the “zooming”property of the

dyadic case. In fact, by zooming-in and -out, because of powers of 2 (or of anyn≥

2), we can fathom multi-scale phenomena in a function and/orcontrol computational

costs vis-̀a-vis signal resolution in reconstruction.

Remark 1.2.One aspect of the applicability alluded to in Remark 1.1.b isto provide

another mathematical tool, along with dimension reductiontechniques, for example,

with which to manage massive data sets generated by data-creating devices such as

supercomputers, internet traffic, CAT scanners, and digital cameras. IDC estimates

that the world generated 487 billion gigabytes of information in 2008. This creates

formidable problems for obtaining digital representations suitable for storage, trans-

mission, and/or recovery, as well as for handling information accurately, efficiently,

and robustly. In the Epilogue we comment on the process of useful implementation

of single dyadic orthonormal wavelets forL2(Rd), d >> 0.

1.2 Notation and outline

We shall employ the usual notation in harmonic analysis and wavelet theory as found

in [15] (1997), [38] (1992), [82] (1992), and [94] (1971). The Fourier transform of

the functionf : Rd −→ C is formally defined by

f̂ (γ) =
∫

f (x)e−2π ix·γ dx,

where
∫

denotes integration overRd; and the inverse Fourier transformF∨ of F :

R̂d −→ C is formally defined by

F∨(x) =
∫

F(γ)e2π ix·γ dγ, x∈ Rd,
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whereR̂d is Rd considered as the spectral domain.Z is the ring of integers and

T designates the quotient group̂R/Z. If F is a 1−periodic function onR̂ with

Fourier seriesS(F)(γ) = ∑cne−2π inγ , then the Fourier coefficientscn are desig-

nated byF∨[n]. Further, translation of a functionf by x is designated byτx f , i.e.,

τx f (y) = f (x−y). Finally, if Ω ⊆ R̂d, then its Lebesgue measure is denoted by|Ω |.

The termmeasurablewill meanLebesgue measurable.

The paper is structured as follows. Sections 2–5 deal with the Euclidean theory

of wavelet sets and Sections 6–10 deal with the non-Euclidean theory. Section 11,

the Epilogue, briefly broadens some of the conventional perspective about wavelet

sets and their genuine applicability. Generally, we refer to our original papers for

the proofs of theorems. However, there are a few salient exceptions related to our

opinion of what constitutes general interest, or where we deem the details or struc-

ture of the proof to be particularly informative or surprising. In addition, we present

many examples.

Section 2 is devoted to the geometry of Euclidean wavelet sets, as well as to

fundamental roots based in Lusin’s conjecture (and thus Carleson’s theorem) and

the Littlewood-Paley theory. Section 3 provides the details of our neighborhood

mapping construction (NMC) of wavelet sets. It is highly motivated geometrically,

but ultimately rather intricate. In Section 4 we prove a basic theorem about frame

wavelet sets which we view as a major means of applying wavelet sets in a host

of signal processing applications dealing with large data sets. Finally, in Section 5,

for the Euclidean theory, we give geometrical examples withsuggestive topological

implications, as well as structural implications of the NMCand a hint of the breadth

and beauty of NMC constructible wavelet sets.

Early-on we were intrigued by the possibility and utility ofwavelet sets in num-

ber theory, based on one of the author’s ideas about idelic pseudo-measures [14]

(1979), [13] (1973). Sections 6–10 are our foray into this area. The background
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dealing with LCAGs, thep-adic field, and generic wavelet theory in this setting is

the subject of section 6. Our fundamental idea to ensure the mathematical cohe-

siveness and resulting group theoretic canonicity and mathematical beauty of our

approach is the subject of Section 7. With this background, Section 8 gives a basic

geometrical result for the number theoretic setting analogous to the point of view of

Section 2. This substantive theory is the background for thenumber theoretic con-

struction and algorithm of Section 9, which itself is drivenby the ideas of Section

3. Finally, in Section 10, we give examples indicating the incredible breadth of the

number theoretic NMC.

2 Geometry of Euclidean wavelet sets

2.1 Wavelet sets, tilings, and congruences

A set Ω , together with the property thatψ = 1
∨
Ω is a single dyadic orthonormal

wavelet, is awavelet set. Our construction of such setsΩ is the subject of Section

3, and our basic geometrical approach is not unrelated to constructions of Leonardo

da Vinci and Maurits C. Escher.

Remark 2.1.ConsiderΨ = {ψ1,ψ2, . . .ψM}⊆ L2(Rd). We sayΨ is aset of wavelet

generatorsfor L2(Rd) if

{
ψ i

m,n(·) = 2md/2ψ i(2m ·−n) : m∈ Z, n∈ Zd, i = 1, . . . ,M
}

is an ONB forL2(Rd). Auscher [8] (1995) proved that every set of wavelet gen-

erators forL2(R), whose members satisfy a weak smoothness and decay condition

on the Fourier transform side, must come from an MRA. Further, it is known, e.g.,

see [8] (1995), [82] (1992), that for a given dyadic MRA thereis a wavelet collec-
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tion consisting of 2d−1 elements. There is an analogous assertion for the expansive

matrix case.

Because of this remark, and notwithstanding Journé’s celebrated example of a

non-MRA wavelet basis forL2(R), e.g., [38] (1992), there was some question dur-

ing the mid-1990s about the existence of multidimensional single dyadic orthonor-

mal wavelets. Dai, Larson, and Speegle [35] (1997), referenced earlier, proved the

existence of such wavelets inL2(Rd), d > 1. Their proof depended on wavelet sets

and used operator algebra methods. Some of the initial reaction was a combination

of disbelief and disinterest, the latter response due to theprevailing intuition that

such wavelets would be difficult to implement in an effectiveway.

Definition 2.1. a. Let Ω ⊆ R̂d be measurable. Atiling of Ω is a collection{Ωl : l ∈

Z} of measurable subsets ofR̂d such that
⋃

l Ωl andΩ differ by a set of measure 0,

and, for alll 6= j,
∣∣Ωl ∩Ω j

∣∣= 0.

b. Let Ω , Θ ⊆ R̂d be measurable. If there exist a tiling{Ωl : l ∈ Z} of Ω and a

sequence{kl : l ∈ Z} ⊆ Zd such that{Ωl +kl : l ∈ Z} is a tiling ofΘ , thenΩ and

Θ areZd-translation congruentor τ-congruent. This is equivalent to the existence

of tilings {Ωl : l ∈ Z} and{Θl : l ∈ Z} of Ω andΘ , respectively, and a sequence

{nl : l ∈ Z} ⊆ Zd such thatΩl = Θl +nl , for all l ∈ Z.

c. Let Ω , Θ ⊆ R̂d be measurable. If there exist a tiling{Ωl : l ∈ Z} of Ω and

a sequence{ml : l ∈ Z} ⊆ Z, where{2ml Ωl : l ∈ Z} is a tiling of Θ , thenΩ and

Θ aredyadic-dilation congruentor δ -congruent. This is equivalent to the existence

of tilings {Ωl : l ∈ Z} and{Θl : l ∈ Z} of Ω andΘ , respectively, and a sequence

{ml : l ∈ Z} ⊆ Z such thatΩl = 2ml Θl , for all l ∈ Z.

d. We shall deal with tilings of̂Rd by translation or dilation of a measurable set

Ω ⊆ R̂d. Thus,{Ω +n : n∈Zd} is atiling of R̂d means that|R̂d r
⋃

n∈Zd (Ω +n) |=

0 and|(Ω +m)∩ (Ω +n)| = 0 whenm 6= n. Similarly,{2mΩ : m∈ Z} is atiling of

R̂d means that|R̂d r
⋃

m∈Z (2mΩ) | = 0 and
∣∣(2 jΩ)∩ (2mΩ)

∣∣= 0 when j 6= m.
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e. It is not difficult to see that the concept ofΩ beingZd-translation congruent to
[
−1

2, 1
2

]d
is equivalent to{Ω +n : n∈ Zd} being a tiling ofR̂d.

Remark 2.2. a.The notion of congruence plays a role in several facets of wavelet

theory besides the results in this paper. Congruence criteria were used by Albert

Cohen in 1990 to characterize the orthonormality of scalingfunctions defined by

infinite products of dilations of a quadrature mirror filter,e.g., [38, pp.182–186]

(1992). The same notion of congruence also plays a fundamental role in work on

self-similar tilings ofRd by Gröchenig, Haas, Lagarias, Madych, Yang Wang, et al.,

e.g., [67] (1997), [68] (2000).

b. The notion ofZd-translation congruence is intrinsically related to bijective re-

strictions of the canonical surjectionh : G−→ G/H, whereG is a locally compact

group andH is a closed subgroup. An analysis of this relation is found in[16, Sec-

tion 3] (1998) in the context of Kluv́anek’s sampling theorem for locally compact

Abelian groups. Kluv́anek’s sampling formula for a signalf quantitatively relates

the sampling rate with the measure of the subsets of a given bandwidth correspond-

ing to the frequency content off .

Wavelet sets and tilings are related by the following theorem. For an elementary

proof, as well as a more complicated one, see [20] (1999). Theexistence of wavelet

sets is not obvious, and this is the point of Section 3.

Theorem 2.1.Let Ω ⊆ R̂d be a measurable set.Ω is a wavelet set if and only if

i. {Ω +n : n∈ Zd} is a tiling of R̂d, and

ii. {2mΩ : m∈ Z} is a tiling of R̂d.

Corollary 2.1. Let Ω ⊆ R̂d. Ω is a wavelet set if and only ifΩ is Zd-translation

congruent to[0,1)d andΩ is dyadic-dilation congruent to[−1,1)d r
[
−1

2, 1
2

)d
.

Definition 2.2. A collection Ω 1, . . . ,Ω L of measurable subsets ofR̂d is a wavelet

collection of setsif {1∨Ω1, . . . ,1
∨
ΩL} is a set of wavelet generators forL2(Rd).
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We have the following generalization of Theorem 2.1. It should be compared

with Theorem 8.1, whose more complicated proof is included.

Theorem 2.2.Let Ω 1, . . . ,Ω L be pairwise disjoint measurable subsets ofR̂d. The

family{Ω l : l = 1, . . . ,L} is a wavelet collection of sets if and only if each|Ω l | = 1

and the following conditions are satisfied:

i. For each fixed l= 1, . . . ,L, {Ω l +k : k∈ Zd} is a tiling of R̂d;

ii. If Ω =
⋃L

l=1 Ω l , then{2 jΩ : j ∈ Z} is a tiling of R̂d.

Remark 2.3.In light of our dyadic results in this paper involving functions of the

the form1
∨
Ω , we point out that Gu and Han [49] (2000) proved that, in the setting

of Equation (2), if|detA| = 2, then there is a measurable setΩ ⊆ R̂d such that

{2md/2
1
∨
Ω (Amx− n) : m∈ Z, n ∈ Zd} is an ONB forL2(Rd). This result can be

viewed as a converse of the following theorem:if ψ ∈ L2(Rd) is a single wavelet

constructed from an MRA associated with(Zd, A), then|detA| = 2, see [9] (1995)

and [50] (1997), cf. [64] (1992) and [28] (1993).

2.2 Kolmogorov theorem and Littlewood-Paley wavelet ONB

In 1922, Kolmogorov [63] (1924) proved that ifF ∈ L2(T) andSN(F) is theNth

partial sum of the Fourier seriesS(F) of F , then

lim
n→∞

S2n(F)(γ) = F(γ) a.e. (3)

His proof is elementary, short, and clever; and the result isstill valid when{2n} is

replaced by more general lacunary sequences. Writing

∆ jF(γ) = ∑
2 j≤|n|<2 j+1

F∨[n]e−2π inγ , j = 0,1, . . . ,
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Equation (3) can be restated as

F(γ) = F∨[0]+
∞

∑
j=0

∆ jF(γ) a.e., (4)

which can be interpreted as a frequency decomposition ofF based on dyadic in-

tervals. Equation (4) plays a fundamental role in Littlewood-Paley theory, and was

stated and proved as a consequence of deep results in their theory in the setting

of Lp(T), p > 1, see [74, Theorem 5] (1931) and [75, Theorem 8] (1937). The

Littlewood-Paley theory is an important part of 20th century harmonic analysis,

e.g., see [29] (1978), [41] (1977), [46] (1991), [92, Chapter 14] (1970), and [93]

(1970).

From our point of view, Equation (4) can be adjusted to incorporate time-

frequency localization, at least within the constraints ofthe classical uncertainty

principle; and it can be thought of as a primordial wavelet decomposition, e.g., [82,

pp.19-20] (1992). In fact, in the setting ofR, the decomposition (4), properly lo-

calized in time and reformulated in terms of multiresolution analysis, becomes the

Littlewood-Paleyor Shannonwavelet orthonormal basis decomposition

f = ∑
m,n

〈 f ,ψm,n〉ψm,n, for all f ∈ L2(R), (5)

where

ψ̂ = 1Ω , Ω = [−1,−
1
2
)
⋃

[
1
2
,1)

is the Fourier transform of the Littlewood-Paley or Shannonwaveletψ.

The decomposition (5) can be proved in several standard ways, but the most

convenient is to combine the orthonormality of{ψm,n} with the fact that

∑
m,n

|〈 f ,ψm,n〉| = || f ||2L2(R), for all f ∈ L2(R), (6)
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e.g., see [38, pp. 115-16] (1992) and [46] (1991) for furtherdetails. The proof of

Equation (6) is the calculation

∑ |〈 f ,ψm,n〉|
2 = ∑

m,n
2m

∣∣∣∣
∫

Ω
f̂ (2mλ )e2π inλ dλ

∣∣∣∣
2

= ∑
m,n

∣∣∣∣∣
∫ 1

2

− 1
2

(
f̂ (2m(γ −1))1[−1,− 1

2 )(γ −1)+ f̂ (2m(γ +1))1[ 1
2 ,1)(γ +1)

)
e2π inγ dγ

∣∣∣∣∣

2

= ∑
m

∫ 1
2

− 1
2

∣∣∣ f̂ (2m(γ −1))1[−1,− 1
2 )(γ −1)+ f̂ (2m(γ +1))1[ 1

2 ,1)(γ +1)
∣∣∣
2

dγ (7)

= ∑
m

2m
∫

Ω
| f̂ (2mλ )|2dλ = ∑

m

∫

2mΩ
| f̂ (γ)|2dγ = || f ||2L2(R).

The points to be made are that (7) is essentially a geometrical argument, and also

that it can be generalized. The fact that (7) is a geometricalargument is immediate

from the second equality, which depends on theZ-translation congruence ofΩ and[
−

1
2
,
1
2

]
, and the last equality, which is due to the fact that{2mΩ} is a tiling of R̂.

Thus, the Shannon waveletψ does in fact give rise to a dyadic wavelet ONB for

L2(R). Moreover,ψ̂ = 1Ω so we are dealing with the wavelet setΩ =
[
−1,−1

2

)
∪

[
1
2,1
)
; and, most important, the proof that{ψm,n} is an ONB forL2(R) depends

entirely on the tiling criteria of Theorem 2.1.

In the next section we shall give a general construction of wavelet sets motivated

by the tiling criteria of Theorem 2.1. Intuitively, these criteria assert thatΩ must

have fundamental characteristics of both squaresandannuli.
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3 The construction of Euclidean wavelet sets

3.1 The basic construction

Let Ω0 ⊆ [−N,N]d ⊆ R̂d be a neighborhood of the origin with Lebesgue measure

|Ω0| = 1, and further assume thatΩ0 is Zd-translation congruent to

[
−

1
2
,
1
2

]d

. Ω0

will be iteratively transformed by the action of a mapping

T : Ω0 −→ [−2N,2N]d r [−N,N]d

for some fixedN, whereT is defined by the property that, for each fixedγ ∈

Ω0, T(γ) = γ +kγ for somekγ ∈ Zd.

Because of the requirements of our forthcoming construction, we shall assume

that the mappingT, defined in terms of the translation propertyTγ = γ +kγ , also has

the properties that it is a measurable, injective mapping onΩ0, see [21, Proposition

3.1] (2001).

Algorithm 3.1. We now describe our original NMC construction of wavelet sets Ω

depending onΩ0, N, andT. Let

Λ0 = Ω0∩

(
⋃

j≥1

2− jΩ0

)
andΩ1 = (Ω0 rΛ0)∪TΛ0.

Then,

Ω0 rΛ0 ⊆ Ω0 and TΛ0 ⊆ [−2N,2N]d r [−N,N]d.

Next, let

Λ1 = Ω1∩

(
⋃

j≥1

2− jΩ1

)
,

and letΩ2 = ((Ω0 rΛ0)rΛ1)∪TΛ0∪TΛ1. Then,
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(Ω0 rΛ0)rΛ1 ⊆ Ω0

and

TΛ0∪TΛ1 ⊆ [−2N,2N]d r [−N,N]d.

Notationally, we set((Ω0 rΛ0)rΛ1) = Ω0 rΛ0 rΛ1. Generally, for a givenΩn,

let

Λn = Ωn∩

(
⋃

j≥1

2− jΩn

)
,

and set

Ωn+1 = (Ω0 rΛ0 rΛ1 r · · ·rΛn)∪ (TΛ0∪TΛ1∪·· ·∪TΛn) . (8)

Then,

Ω0 rΛ0 rΛ1 r · · ·rΛn ⊆ Ω0

and

TΛ0∪TΛ1∪·· ·∪TΛn ⊆ [−2N,2N]d r [−N,N]d.

We defineΩ as

Ω =

(
Ω0 r

∞⋃

k=0

Λk

)
∪

(
∞⋃

n=0

TΛn

)
. (9)

Denoting

Ω−
n = Ω0 rΛ0 rΛ1 r · · ·rΛn−1

and

Ω+
n = TΛ0∪TΛ1∪·· ·∪TΛn−1,

we have

Ωn = ΩN−∪Ω+
n , Ω =

(
∞⋂

n=0

Ω−
n

)
∪

(
∞⋃

n=0

Ω+
n

)
, and|Ωn| = |Ω−

n |+ |Ω+
n | = 1.
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Thus, the setΩ is obtained by removing fromΩ0 all the Λis and sending these

disjoint subsets into[−2N,2N]d r [−N,N]d by means of the mappingT. It should

be noted thatΩ is Zd-translation congruent toΩ0.

Theorem 3.1.Ω defined by(9) is a wavelet set, see [20] (1999), [21] (2001).

The following is the generalization of Theorem 3.1 corresponding to the geomet-

rical characterization of Theorem 2.2.

Theorem 3.2.Let {Ω 1
0 , . . . ,Ω L

0} ⊆ R̂d, and assume T and eachΩ l
0 satisfy the hy-

potheses of Algorithm 3.1. Let{Ω 1, . . . ,Ω L} be the sequence of sets constructed in

Algorithm 3.1. Then,{Ω 1, . . . ,Ω L} is a wavelet collection of sets, i.e.,

{ψ l : 1∨Ω l : l = 1, . . . ,L}

is a set of wavelet generators for L2(Rd).

3.2 A generalization of the neighborhood-mapping construction

It is assumed in the original NMC of Section 3.1 thatΩ0 is contained in[−N,N]d

and that the range of the mappingT is contained in[−2N,2N]d r [−N,N]d. As it

turns out, this assumption on the range ofT is not necessary. The purpose of the

mappingT should only be to move the setsΛn, defined below, out ofΩ0. In this

section we prove that the procedure produces wavelet sets for a more general class

of mappingsT, thereby obtaining wavelet sets that we had not been able to obtain

by the original construction.

Let Ω0 be a bounded neighborhood of the origin that isZd-translation congruent

to the unit cube Q= [−1
2, 1

2]d. We shall consider measurable mappingsT : R̂d → R̂d

satisfying the following properties.



The construction of wavelet sets 17

i. T is aZd-translated mapping, i.e.,

∀γ ∈ R̂d, ∃nγ ∈ Zd such thatT(γ) = γ +nγ .

ii. T is injective.

iii. The range ofT − I is bounded, where I is the identity mapping onR̂d.

iv.
[⋃∞

i=1T iΩ0
]
∩ [
⋃∞

j=02− jΩ0] = ∅, whereT0 = I andT i = T ◦ · · · ◦T︸ ︷︷ ︸
i-fold

.

Compared to the original NMC, the first two conditions onT are unchanged,

while the last two relax the earlier assumption on the range of T. Condition iii

says thatT(γ) = γ + nγ cannot be arbitrarily far fromγ. There must be a uniform

bound on how farγ moves toT(γ) but the range ofT does not necessarily lie in-

side some square box. What conditioniv says is that for anyγ ∈ Ω0 the sequence

{T(γ),T2(γ), . . . ,Tn(γ), . . .} never returns toΩ0 or any 2− jΩ0, j > 1. This weak-

ens the earlier artificial assumption thatT has to move points inΩ0 out of a square

containingΩ0.

Algorithm 3.2. Let T satisfy conditionsi–iv. According to [21] (2001), [22] (2002),

we iteratively construct a sequence of setsΩn each of which isZd-translation con-

gruent to Q, and hence tileŝRd by Zd-translates, as follows. For eachn = 0,1, . . . ,

we define

Λn = Ωn∩ [
∞⋃

j=1

2− jΩn]

and

Ωn+1 = (Ωn rΛn)∪TΛn. (10)

This setΩn+1, defined by (10), is the same as the setΩn+1, defined by (8). How-

ever, by propertyiv and some set theoretic implications of it, we calculate that

Ωn+1 =

[
Ω0 r

n⋃

i=0

Λi

]
∪

[
n⋃

k=0

(
TΛk r

n⋃

i=k+1

Λi

)]
. (11)
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Because of (11), we define the set

Ω =

[
Ω0 r

∞⋃

i=0

Λi

]
∪

[
∞⋃

k=0

(
TΛk r

n⋃

i=k+1

Λi

)]
. (12)

Theorem 3.3.Ω defined by(12) is a wavelet set.

The proof is found in [23] (2006). It depends on several useful implications of

propertiesi–iv including the following result.

Proposition 3.1.For each n= 0,1, . . . , we have the following.

a. Ωn tiles R̂d byZd-dyadic translation, and

b. Ωn rΛn tiles R̂d by dyadic-dilation.

4 Frame wavelets

The concept of frame introduced by Duffin and Schaeffer [40] (1952) is a natural

generalization of an orthonormal basis.

Definition 4.1. a. A countable family{φi}i∈Z of functions inL2(Rd) is a framefor

L2(Rd) if there exist constants 0< A≤ B < ∞ calledframe boundsfor which

A|| f ||2 ≤ ∑
i∈Z

|〈 f ,φi〉|
2 ≤ B|| f ||2, for all f ∈ L2(Rd).

When the frame boundsA andB coincide,{φi} is called atight frame. If A= B= 1,

the inequality becomes the Parseval identity and{φi} is aptly called aParseval

frame, i.e.,

∑
i∈Z

|〈 f ,φi〉|
2 = || f ||2, for all f ∈ L2(Rd).
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b.An L2(Rd) functionψ is aframe wavelet, respectively,tight frame waveletand

Parseval frame wavelet, if the generated family{ψm,n : m∈ Z,n∈ Zd} is a frame,

respectively, tight frame and Parseval frame.

c. Ω ⊆ R̂d is a (Parseval) frame wavelet setif ψ = 1
∨
Ω is a (Parseval) frame

wavelet.

The following is the analogue of Theorem 2.1 for the case of Parseval frame

wavelets.

Theorem 4.1.Let Ω ⊆ R̂d be measurable. The following are equivalent.

i. Ω is a Parseval frame wavelet set.

ii. Ω is Zd-translation congruent to a subset of[0,1)d and Ω is dyadic-dilation

congruent to[−1,1)d r
[
−1

2, 1
2

)d
.

iii. {Ω +k : k∈ Zd} is a tiling of a subset of̂Rd and{2nΩ : n∈ Z} is a tiling of R̂d.

In recent years, frame wavelets, in particular tight and Parseval frame wavelets,

have been studied extensively, e.g., see [50] (1997) by Bin Han, as well as a related

paper by Dai, Diao, Gu, and Deguang Han, [33] (2002).

It is a natural question to ask whether the setsΩn constructed from finite itera-

tions in the NMC of Section 3 give rise to frame wavelets, respectively, tight frame

wavelets and Parseval frame wavelets, i.e., whether the functions1∨Ωn
are frame

wavelets, respectively, tight frame wavelets and Parsevalframe wavelets. It turns

out that1∨Ωn
is a frame wavelet with frame bounds 1 and 2, while we obtain Parse-

val frame wavelets from the auxiliary setsΩn rΛn (Theorem 4.4 below). We shall

prove this result not only because it is a bit surprising but also because it facilitates

the genuine implementation of wavelet set theory.

To this end, we need the characterization of tight frame wavelets due to Bin Han

[50] (1997) as well as to Ron and Shen (1997), Bownik (2000), Chui and Shi (2000),
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and Chui et al. [27] (2002) (Theorem 4.2 below). We also require Daubechies’ suf-

ficient condition for a function to be a frame wavelet [38] (1992), combined with

refinements by Kugarajah and Zhang (1995) and Hernández and Weiss [55] (1996)

(Theorem 4.3 below). The proof forR of Theorem 5.1 in [26] (2001) can be easily

generalized toRd, and this generalization is Theorem 4.3.

Theorem 4.2.Let ψ ∈ L2(Rd). The family

{ψm,n = 2md/2ψ(2m ·−n) : m∈ Z,n∈ Zd}

is a Parseval frame if and only if

∑
j∈Z

|ψ̂(2 jξ )|2 = 1 and tq(ξ ) =
∞

∑
j=0

ψ̂(2 jξ )ψ̂(2 j(ξ +q)) = 0

for almost everyξ ∈ R̂d and for all q∈ Zd r2Zd.

Theorem 4.3.Let a> 1, b> 0, andψ ∈ L2(Rd) be given. Suppose that

A = inf
||ξ ||∈[1,a]

[∑
n∈Z

|ψ̂(anξ )|2− ∑
k6=0

∑
n∈Z

|ψ̂(anξ )ψ̂(anξ +k/b)|] > 0,

B = sup
||ξ ||∈[1,a]

[∑
n∈Z

|ψ̂(anξ )|2 + ∑
k6=0

∑
n∈Z

|ψ̂(anξ )ψ̂(anξ +k/b)|] < ∞.

Then{a jd/2ψ(a j · −kb)} j∈Z,k∈Zd is a frame for L2(Rd) with frame bounds A/bd,

B/bd.

We begin the proof of Theorem 4.4 with the following lemma which uses Theo-

rem 4.2. The 1-dimensional version of Lemma 4.1 first appeared in Theorem 4.1 of

[50] (1997).
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Lemma 4.1.If a measurable setΘ tiles R̂d by dyadic-dilation andΘ ⊆ Ω for some

measurable setΩ that tiles R̂d by Zd-translation, then the functionψ ∈ L2(Rd)

defined bŷψ = 1Θ is a Parseval frame wavelet.

Proof. SinceΘ tiles R̂d by dyadic dilation a.e., we have

∑
j∈Z

|ψ̂(2 jξ )|2 = ∑
j∈Z

1Θ (2 jξ ) = 1⋃
j∈Z 2− jΘ (ξ ) = 1 a.e.

We then compute

tq(ξ ) =
∞

∑
j=0

ψ̂(2 jξ )ψ̂(2 j(ξ +q)) =
∞

∑
j=0

12− jΘ (ξ )12− jΘ−q(ξ )

=
∞

∑
j=0

12− j [Θ∩(Θ−2 j q)](ξ ).

From the second assumption,Θ ∩ (Θ −2 jq) ⊆ Ω ∩ (Ω −2 jq) = ∅. Therefore,tq =

0. Hence, by Theorem 4.2,ψ is a Parseval frame wavelet. ⊓⊔

Theorem 4.4.For each n≥ 0, Ωn rΛn is a Parseval frame wavelet set, andΩn is a

frame wavelet set with frame bounds1 and2, cf. Proposition 2.2 of [39] (2002).

Proof. By Proposition 3.1, Lemma 4.1, and the inclusionΩn rΛn ⊆ Ωn, it is clear

thatΩn rΛn is a Parseval frame wavelet set.

Let ψ̂ = 1Ωn. Then,

∑
j∈Z

|ψ̂(2 jξ )|2 = ∑
j∈Z

1ΩnrΛn(2
jξ )+ ∑

j∈Z

1Λn(2
jξ ) = 1+1⋃

j∈Z 2− jΛn
(ξ ).

It is straightforward from the definition that the sets 2− jΛn, j ∈ Z, are mutually

disjoint. This justifies the second equation. Therefore supξ∈R̂d ∑ j∈Z |ψ̂(2 jξ )|2 =

2 and infξ∈R̂d ∑ j∈Z |ψ̂(2 jξ )|2 = 1. SinceΩn tiles R̂d by Zd-translation, we have

ψ̂(2 jξ )ψ̂(2 jξ + k) = 1Ωn(2
jξ )1Ωn−k(2 jξ ) = 0 for all j ∈ Z and k ∈ Zd r {0}.
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Hence, we can invoke Theorem 4.3 to assert thatΩn is a frame wavelet set with

frame bounds 1 and 2. ⊓⊔

5 Examples of Euclidean wavelet sets

Theorem 5.1.

a. A convex set C cannot partition̂Rd by dilations; that is, the set
{

2 jC : j ∈ Z
}

cannot be a tiling of̂Rd.

b. A convex set is not a wavelet set.

Proof. a. i. The statement is clear in̂R, and, for simplicity, we shall only prove the

result in the cased = 2. The proof can be easily generalized toR̂d by replacing lines

in R̂2 with hyperplanes in̂Rd.

ii . Suppose thatC is a convex set and that
{

2 jC : j ∈ Z
}

is a partition ofR̂2.

DefineS=
{

γ ∈ R̂2 : γ ∈C and− γ ∈C
}

= C∩ (−C)⊆C. It is clear from the def-

inition that the setS is symmetric, i.e.,γ ∈ S if and only if−γ ∈ S. Clearly,S is also

convex. Most important,|S| = 0. This is proved by assuming|S| > 0 allowing us

to verify thatC must contain a neighborhood of 0, which, in turn, contradicts the

disjointness of 2jC, j ∈ Z, thereby giving|S| = 0.

iii . Next, we note that

(
2 jC
)
∩
(
−2iC

)
⊆





2 jS if j ≥ i

2iS if j ≤ i.
(13)

Thus, with our assumption
⋃

j∈Z 2 jC = R̂2, we compute
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∣∣∣R̂2
∣∣∣=
∣∣∣∣∣

(
⋃

j∈Z

2 jC

)
∩

(
⋃

i∈Z

−2iC

)∣∣∣∣∣

=

∣∣∣∣∣
⋃

i, j∈Z

2 jC∩
(
−2iC

)
∣∣∣∣∣ (14)

≤ ∑
i, j∈Z

∣∣∣2max(i, j)S
∣∣∣= 0

by (13) and since|S| = 0. (14) is obviously false, and so the proof is complete.

b. This is immediate from parta and Theorem 2.1. ⊓⊔

Theorem 5.2.Let C1,C2, . . . ,Cn be convex sets in̂Rd. If

⋃̇n

i=1

⋃̇
j∈Z

2 jCi = R̂d,

where the left side is a disjoint union, then n≥ d+1. In particular, if C1,C2, . . . ,Cn

are convex sets in̂Rd such that
⋃n

i=1Ci is a wavelet set, then n≥ d + 1, see [23]

(2006).

By definition,W ⊆ R̂d is asubspace wavelet setif the family

{(
1
∨
W

)
m,n : m∈ Z,n∈ Zd

}

is an ONB for a subspace ofL2(Rd).

Theorem 5.3.The set W⊆ R̂d is a subspace wavelet set if and only if the char-

acteristic function1E of the set E=
⋃

j<02 jW satisfies the following consistency

equation:

1+ ∑
k∈Zd

1E(γ +k) = ∑
k∈Zd

1E

(
1
2
(γ +k)

)
a.e.

In particular, W is a wavelet set for all of̂Rd if and only if, in addition,
⋃

j∈Z 2 jE

contains, up to a set of measure zero, a neighborhood of the origin, see [23] (2006).



24 John J. Benedetto and Robert L. Benedetto

Theorem 5.4.Every wavelet set in[−1,1]d r [−1
4, 1

4]d can be constructed by means

of the NMC.

The proof has some intricacies.

Corollary 5.1. For every wavelet setΩ in [−1,1]d,

∣∣∣Ω ∩ [−α,α]d
∣∣∣> 0 for all α >

1
4
.

Proof. If
∣∣∣Ω ∩

[
−1

4, 1
4

]d∣∣∣ > 0, then we are done. Otherwise, by Theorem 5.4, the

wavelet setΩ can be constructed by the NMC. By definition of the mappingT,

it can be shown thatΛ2 is the only one of the setsΛn that intersects the “square

annulus”
[
− 5

16,
5
16

]d
r
[
−1

4, 1
4

]d
. Again, sinceT is a Zd-translated mapping, it is

not possible forΛ2 to cover[−α,α]d r
[
−1

4, 1
4

]d
for anyα > 1

4. This completes the

proof. ⊓⊔

Theorem 5.5.For anyα < 1, a wavelet setΩ can not be contained in[−α,α]d.

Proof. Suppose thatΩ ⊆ [−α,α]d is a wavelet set. Then the integral translates of

Ω will tile R̂d, i.e.,
⋃̇

k∈Zd(Ω +k) = R̂d,

where
⋃̇

designates disjoint union.

Observe that for each fixedi = 1, . . . ,d, the union of all translatesΩ +(k1, . . . ,kd)

with ki 6= 0 leaves out the bandBi = {(x1,x2, . . . ,xd) ∈ Rd : α −1 < xi < 1−α},

i.e.,
⋃̇

ki 6=0
(Ω +k)∩Bi = ∅, for each i = 1,2, . . . ,d.

Therefore,
⋃̇

k6=(0,...,0)
(Ω +k)∩B = ∅,
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whereB =
⋂d

i=1Bi = (α − 1,1− α)d. This clearly implies thatB ⊆ Ω and that

∅ 6= B ⊆ Ω ∩ 2Ω , a contradiction to the dyadic-dilation congruence property of

wavelet sets. ⊓⊔

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 1 The setΩ7 for the 2-dimensional Shannon wavelet set of Example 5.1.

−1.5 −1 −0.5 0 0.5 1 1.5

−0.5

0

0.5

Fig. 2 The wedding cake set of Example 5.2.

Example 5.1.Figure 1 is theΩ7 ⊆ R̂2 approximant of the 2-dimensional generaliza-

tion of the Shannon wavelet set described in Section 2.2 for the “variables”Ω0 = Q

andT(γ1,γ2) = (γ1,γ2)− (sign(γ1),sign(γ2)).
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−1 −1/2 0 1/2 1
−5/3

−4/3

−1

−2/3

−1/3

0

1/3

2/3

Fig. 3 The wedding night set of Example 5.2.

−1 −1/2 0 1/2 1
−5/3

−4/3
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−1/3

0

1/3

2/3

Fig. 4 The wedding cake set of Example 5.2 con-
sisting of 2 connected sets.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Fig. 5 The connected wavelet set of Example 5.3.

Example 5.2.Wedding sets

The wedding cake wavelet set was defined in [34] (1998), [36] (1998), and it can be

constructed by our NMC method withΩ0 = Q andT(γ1,γ2) = (γ1 +signγ1,γ2) for

(γ1,γ2) ∈ Ω0. It was introduced as a simple wavelet set consisting of 3 connected

sets, see Figure 2. The interior of each component is connected. We constructed the

wedding night set in Figure 3, and it consists of two connected sets. The NMC also
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−2 −1 0 1 2
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2

Fig. 6 The 2-dimensional Journé wavelet set of Example 5.4.

allowed us to construct an alternative wedding cake set consisting of two connected

sets with connected interiors (Figure 4).

Example 5.3.An example of a connected wavelet set, in which the interior consists

of infinitely many components, was given in [21], see Figure 5. It is believed that

there is no connected wavelet set with connected interior.

Example 5.4.A generalization of the Journé wavelet set.

Since the Jourńe wavelet set can be constructed by the NMC withΩ0 =
[
−1

2, 1
2

)
and

T(γ) = γ +2sign(γ), one of itsd-dimensional versions can be produced by setting

Ω0 = Q and

T(γ1, . . . ,γd) = (γ1 +2sign(γ1), . . . ,γd +2sign(γd)),

see Figure 6 for the corresponding wavelet set inR̂2.

It should be noted that the NMC only produces wavelet sets that are bounded

away from the origin and infinity, i.e., they have holes at theorigin and are bounded

sets. Related work can be found in [73] (2002).
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6 Locally compact Abelian groups, wavelets, and thep-adic field

6.1 Thep-adic fieldQp

Theorem 6.1.Every locally compact abelian group (LCAG) G is topologically and

algebraically isomorphic toRd ×Go, whereRd is Euclidean space and Go is a

LCAG containing a compact open subgroup Ho.

This fact follows from a result in [1] (1965) combined with [56, Section 9.8]

(1963). For the remainder, we shall deal with wavelet theoryfor functions defined

on groupsGo.

A common example of a groupG0 is the fieldQp of p-adic rationals. Given

any prime numberp, the fieldQp is the completion of the fieldQ of rationals with

respect to thep-adic absolute value|prm/n|p = p−r for all r,m,n∈ Z with m andn

not divisible byp. Equivalently,Qp may be thought of as the set of Laurent series

in the “variable”p, with coefficients 0,1, . . . , p. This means that

Qp =
{

∑
n≥n0

anpn : n0 ∈ Z andan ∈ {0,1, . . . , p−1}
}
,

with addition and multiplication as usual for Laurent series, except with carrying of

digits, so that, for example, inQ7, we have

(4+1·7)+(6+5·7) = 3+0·7+1·72.

The p-adic absolute value extends naturally toQp, and under the operation of addi-

tion,Qp forms a LCAG, with topology induced by| · |p, and with compact open sub-

groupZp, the ring ofp-adic integers, consisting of Taylor series inp. Equivalently,

Zp is the closure ofZ ⊆ Qp with respect to| · |p. Further,Zp = {x∈ Qp : |x|p ≤ 1}.
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A few other details aboutQp appear in Section 6.3. In addition, Section 7.2

contains an informal discussion of the geometry ofQp and related groups, including

a rough sketch ofQ3 in Figure 7.

6.2 Wavelet theories onQp and related groups

The main obstacle to producing a theory of wavelets on groupslike Qp is thatQp

has no nontrivial discrete subgroups, and thus there is no lattice to use for trans-

lations. Some other LCAGs have both a compact open subgroup and a discrete

cocompact lattice. For example, Lang [69] (1996), [70] (1998), [71] (1998) con-

structed wavelets for the Cantor dyadic group (known to number theorists as the

field F2((t)) of formal Laurent series over the field of two elements) usingthe lat-

tice consisting of polynomials int−1 with trivial constant term. Farkov [45] (2005),

[44] (2005) later generalized Lang’s construction to otherLCAGs with a compact

open subgroup and a discrete cocompact lattice. However, for Qp and other LCAGs

with compact open subgroups, the lack of a lattice requires adifferent strategy.

Several authors [65] (2002), [59] (2004), [62] (2009), [90](2009) have con-

structed wavelets on such groups by the following strategy.Given a LCAGG with

compact open subgroupH, choose a setC of coset representatives forG/H, and

translate only by elements ofC . For example, ifG = Qp and H = Zp, we may

chooseC to consist of all elements ofQp of the form a/pn, wheren ≥ 1 and

0≤ a≤ pn−1, so that every element ofQp may be represented uniquely asx+s,

for x∈ Zp ands∈ C . Then, given an appropriate dilation operatorA : G→ G (such

as multiplication-by-1/p, in the case ofQp), it is possible to develop a correspond-

ing wavelet theory. For example, thep-adic wavelets of [65], as well as of those on

certain non-group ultrametric spaces in [61] (2005), are simply inverse transforms

of characteristic functions of disks, and they were shown tobe wavelets by direct
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computation. Meanwhile, the wavelets of [59], [62], and [90] all arise from ap-adic

version of MRA. Common to all of the above constructions, however, is the use of

translations by coset representatives.

Unfortunately, the chosen set of coset representatives is usually not a group; for

example, the setC ⊆ Qp of the previous paragraph is closed neither under addition

nor under additive inverses. As a consequence, the resulting theory seems limited.

In particular, all such wavelets known to date are step functions with a finite number

of steps.

Instead, we present a different wavelet theory for such groups, using a different

set of operators in place of translation by elements ofC . Although our operators

are not actual translations, they have the crucial advantage of forming a group. We

call thempseudo-translations. The resulting theory allows a much wider variety of

wavelets, including most of the wavelets produced by other authors, as well as many

others. After presenting the general theory and definition of our wavelets, we shall

show that it is possible to construct many such wavelets using a theory of wavelet

sets, and we shall give an algorithm for constructing a wide variety of wavelet sets.

We expect that it should also be possible to develop multiresolution analysis for our

wavelet theory, but this has not yet been done.

6.3 Prerequisites about LCAGs

In this section, we set some notation and recall a few standard facts about abstract

LCAGs; see [56] (1963), [57] (1970), [86] (1966), [87] (1968), and [88] (1962) for

details.

Let G be a LCAG with compact open subgroupH. Denote byĜ the dual group of

G, with action denoted(x,γ) ∈ C×, for x∈ G andγ ∈ Ĝ. Theannihilator subgroup

of H in Ĝ is
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H⊥ = {γ ∈ Ĝ : ∀x∈ H, (x,γ) = 1} ⊆ Ĝ,

which is, in turn, a compact open subgroup ofĜ.

The quotient groupG/H of course consists of cosetsx+H, also denoted[x], for

x∈ G. This quotient is discrete, becauseH is open inG. Moreover,G/H is isomor-

phic as a LCAG to the dual ofH⊥. The isomorphism is easy to write down; the

elementx+H ∈ G/H acts onH⊥ by (x+H,γ) = (x,γ), for anyγ ∈ H⊥. Similarly,

Ĥ andĜ/H⊥ are isomorphic discrete groups.

Setµ = µG andν = νĜ to be Haar measures onGandĜ, respectively, normalized

so thatµ(H) = ν(H⊥) = 1. These normalizations induce counting measures on the

discrete groupsG/H andĜ/H⊥, and they make the Fourier transform, given by

f̂ (γ) =
∫

G
f (x)(x,γ)dµ(x), for all f ∈ L2(G),

an isometry betweenL2(G) andL2(Ĝ). See, for instance, [57, Section 31.1] (1970),

[87] (1968), and [17, Section 1.3] (2004).

By way of example, consider again the caseG = Qp andH = Zp. The quotient

Qp/Zp is isomorphic toµp∞ , the subgroup ofC× consisting of all roots of unityζ

for which ζ pn
= 1 for somen≥ 0. Meanwhile,Qp is self-dual, with duality action

given by(x,γ) = χ(xγ), whereχ : Qp → C is the character given by

χ
(

∑
n≥n0

anpn
)

= exp
(

2π i
−1

∑
n=n0

anpn
)
.

The annihilatorZ⊥
p is justZp under this self-duality.

Our wavelet theory will of course require a dilation operator. Given an automor-

phismA : G→ G, there is a unique positive number|A|, themodulusof A, with the

property that for any measurable setU ⊆ G, we haveµ(AU) = |A|µ(U). Therefore,

for any f ∈Cc(G),
∫

G f ◦A(x)dµ(x) = |A|−1∫
G f (x)dµ(x). See, for example, [56,
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Section 15.26] (1963). In addition,A has an adjoint elementA∗ : Ĝ→ Ĝ, defined by

(Ax,γ) = (x,A∗γ) for all x∈ G andγ ∈ Ĝ. We have(A∗)−1 = (A−1)∗, |A|−1 = |A−1|,

and|A∗| = |A|.

7 Wavelets for groups with compact open subgroups

7.1 Pseudo-translations

In this section, we present the pseudo-translation operators to be used in our wavelet

theory. Rather than translating by one fixed element of each coset[s] ∈ G/H, we

shall construct an operatorτ[s] : L2(G) → L2(G) for each[s] ∈ G/H determined

only by the coset[s] = s+H, and not by a choice of a particular coset representative

s0 ∈ [s]. In addition, our operators will form a group, in thatτ[s]+[t] = τ[s]τ[t]. The

resulting operators are usually not true translations, butτ[s] will still be similar in

certain ways to the translation-by-s operator.

To construct our operators, however, weshall have to make a choice of coset

representative; but we choose a setD of coset representatives in̂G for Ĝ/H⊥, rather

than representatives inG for G/H. That is,D ⊆ Ĝ is a discrete subset (probably not

forming a subgroup) consisting of exactly one element of every cosetσ +H⊥. We

then defineτ[s] by its induced dual map̂τ[s] : L2(Ĝ) → L2(Ĝ), as follows.

Definition 7.1. Let G be a LCAG with compact open subgroupH ⊆ G. Let D ⊆ Ĝ

be a set of coset representatives inĜ for the quotientĤ = Ĝ/H⊥.

Define the mapη = ηD : Ĝ→ H⊥ ⊆ Ĝ by

η(γ) = the uniqueβ ∈ H⊥ such thatγ −β ∈ D .
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For each[s]∈ G/H, the pseudo-translation-by-[s] operatorτ[s] = τ[s],D : L2(G)→

L2(G) is given by

τ̂[s] f (γ) =
(
s,ηD (γ)

)
f̂ (γ).

Note that the true translation-by-soperatorTs : L2(G)→ L2(G) acts on the trans-

form side by

T̂s f (γ) = (s,γ) f̂ (γ).

Thus, τ[s] resembles a translation operator except for the correctionby ηD . The

function ηD (γ), in turn, should be viewed as giving the difference betweenγ and

the nearest “lattice” point, where we considerD to be an analog of the dual lattice.

In the Euclidean setting, whereD really is a dual lattice and the translating element

s really is in a lattice, the corresponding quantity
(
s,ηD (γ)

)
would exactly equal

(s,γ). Thus,ηD should be thought of as correcting for the fact thatD is not actually

a lattice.

The following proposition shows that the other promised properties ofτ[s] also

hold.

Proposition 7.1.Let G, H, andD be as in Definition 7.1. We have the following.

a. τ[s],D is well defined, i.e., if s+H = t +H, thenτ[s],D = τ[t],D .

b. τ[0],D f = f for all f ∈ L2(G).

c. τ[s],D ◦ τ[t],D = τ[s+t],D for all s, t ∈ G.

Proof. Given anys, t ∈ G lying in the same cosets+H = t +H and anyγ ∈ Ĝ, we

have
(
t,ηD (γ)

)
=
(
s,ηD (γ)

)(
t −s,ηD (γ)

)
=
(
s,ηD (γ)

)
,

becauset − s ∈ H and ηD (γ) ∈ H⊥. Part a follows. Similarly, partsb and c

are immediate from the observations that
(
0,ηD (γ)

)
= 1 and

(
s+ t,ηD (γ)

)
=

(
s,ηD (γ)

)(
t,ηD (γ)

)
. ⊓⊔
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Besides the elegant properties listed in Proposition 7.1, the reason for the partic-

ular forms ofτ[s],D andηD will become clear in Equation (20), during the proof of

Theorem 8.1.

7.2 Expansive automorphisms and dilations

When constructing wavelets inL2(Rd), one cannot use just any automorphismA :

G→ G as a dilation operator, but rather one with particular properties with respect

to the lattice. We now present the corresponding property needed for dilations in our

setting.

Definition 7.2. Let G be a LCAG with compact open subgroupH ⊆ G, and letA :

G→ G be an automorphism. We say thatA is expansivewith respect toH if both of

the following conditions hold:

i. H ( AH, and

ii.
⋂

n≤0AnH = {0}.

As noted in [17, Section 2.2] (2004), ifG has a compact open subgroupH and

expansive automorphismA, then |A| is an integer strictly greater than 1,G/H is

infinite, andG is not compact. In addition, on the dual side, we haveH⊥ ( A∗H⊥,

and
⋃

n≥0A∗nH⊥ = Ĝ.

The expansiveness condition, together with the original assumption thatG has

a compact open subgroup, says thatG andĜ both have a self-similar structure. In

particular, if we sketchH⊥ as a disk, then̂G is a union of larger and large dilates

of that disk. Meanwhile, each dilateA∗nH⊥ contains finitely many (in fact, exactly

|A|n) translates (i.e., cosetsσ +H⊥) of H⊥. Similarly, applying negative powers of

A∗, we can see thatH⊥ itself consists of|A| translates of the smaller disk(A∗)−1H⊥,

each of which itself consists of|A| translates of the still smaller disk(A∗)−2H⊥, and
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H⊥

A*H⊥

σ
3
+A*H⊥

σ
6
+A*H⊥

σ
1
+H⊥

σ
2
+H⊥

(A*)−1H⊥

Fig. 7 Ĝ for a LCAG G with compact open subgroupH and expansive automorphismA, with
|A| = 3.

so on. Thus,H⊥ has a fractal structure, much like the Cantor set, whileĜ is an

infinite union of translates ofH⊥. See Figure 7 for a sketch of such a groupĜ with

an expansive automorphism of modulus 3.

For example, ifG = Qp and H = Zp, we may chooseA : Qp → Qp to be

A(x) = x/p, which mapsZp to (1/p)Zp ) Zp, satisfying conditioni of Defini-

tion 7.2. Conditionii also holds, because
⋂

n≤0 pnZp = {0}. The modulus in this

case is|A| = |1/p|p = p. Figure 7 may therefore be considered to be a rough sketch

of Q3.

7.3 Wavelets

As in the Euclidean setting, an automorphismA : G → G induces an operator on

L2(G), sendingf (x) to |A|1/2 f (Ax); the constant in front, of course, ensures that the

resulting operator is unitary. Thus, we may make the following definition.
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Definition 7.3. Let G be a LCAG with compact open subgroupH ⊆ G, let D be

a choice of coset representatives inĜ for Ĥ = Ĝ/H⊥, let A : G → G be an auto-

morphism, and consider[s] ∈ G/H. Thedilated translateof f ∈ L2(G) is defined to

be

fA,[s](x) = |A|1/2 · (τ[s],D f )(Ax). (15)

Note that Equation (15) implies that

f̂A,[s](γ) = |A|−1/2 f̂
(
(A∗)−1γ

)(
s,η((A∗)−1γ)

)
. (16)

Now that we have appropriate dilation and translation operators, we are prepared

to define wavelets on our groupG.

Definition 7.4. Let G be a LCAG with compact open subgroupH ⊆ G, let D ⊆

Ĝ be a choice of coset representatives inĜ for Ĝ/H⊥, and letA : G → G be an

automorphism. ConsiderΨ = {ψ1, . . . ,ψN} ⊆ L2(G). We sayΨ is aset of wavelet

generatorsfor L2(G) with respect toD andA if

{ψ j,m,[s] : 1≤ j ≤ N,m∈ Z, [s] ∈ G/H}

forms an ONB forL2(G), where

ψ j,m,[s](x) = |A|m/2 · (τ[s],Dψ j)(A
mx),

as in Equation (15). In that case, the resulting basis is called awavelet basisfor

L2(G).

If Ψ = {ψ}, thenψ is asingle waveletfor L2(G).
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8 Geometry of wavelet sets forG

As we did forL2(Rd), we shall use the machinery of wavelet sets, and not MRA, to

construct wavelets forL2(G). Therefore, we state the following definition, cf. [34]

(1998), [35] (1997).

Definition 8.1. Let G, H, D , and A be as in Definition 7.4. LetΩ1, . . . ,ΩN be

measurable subsets of̂G, and letψ j = 1
∨
Ω j

for each j = 1, . . . ,N. We say that

{Ω1, . . . ,ΩN} is awavelet collection of setsif Ψ = {ψ1, . . . ,ψN} is a set of wavelet

generators forL2(G).

If N = 1, thenΩ = Ω1 is awavelet set.

We shall characterize wavelet sets in terms of properties analogous to the Eu-

clidean notions ofτ-congruence andδ -congruence, as described in Section 2. See

also [17, Section 3.2] (2004) for a broader discussion in oursetting.

Definition 8.2. Let G be a LCAG with compact open subgroupH ⊆ G, let D ⊆ Ĝ

be a choice of coset representatives inĜ for Ĥ = Ĝ/H⊥, and letΩ ⊆ Ĝ be a subset.

We sayΩ is (τ,D)-congruent to H⊥ if there exist measure zero subsetsV0 ⊆ Ω

andV ′
0 ⊆ H⊥, a sequence{σn}n≥1 ⊆ D , and a countable partition{Vn : n ≥ 0} of

Ω r {V0} into measurable subsets such that{Vn−σn : n≥ 1} forms a partition of

H⊥ rV ′
0.

Definition 8.3. Let {Wm : m∈Z} be a countable set of measurable subsets ofĜ. We

say that{Wm} tiles Ĝ if

ν
(

Ĝr
[ ⋃

m∈Z

Wm

])
= 0

and

ν(Wm∩Wn) = 0, for all m,n∈ Z, m 6= n.

Our first main result characterizes wavelet collections of sets in terms of the two

preceding definitions.
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Theorem 8.1.Let G be a LCAG with compact open subgroup H⊆ G, letD ⊆ Ĝ be

a choice of coset representatives in̂G for Ĝ/H⊥, and let A: G→ G be an automor-

phism. A finite set{Ω1, . . . ,ΩN} of measurable subsets of̂G is a wavelet collection

of sets if and only if both of the following conditions hold:

i. {A∗nΩ j : n∈ Z, j = 1, . . . ,N} tiles Ĝ, and

ii. ∀ j = 1, . . . ,N, Ω j is (τ,D)-congruent to H⊥.

In that case,̂G is σ -compact, eachν(Ω j) = 1, and each1Ω j ∈ L2(Ĝ).

Proof. See [17, Theorem 3.4]. The centerpiece of the proof is to showthat

N

∑
j=1

∑
m∈Z

∑
[s]∈G/H

∣∣〈 f ,ψ j,m,[s]〉
∣∣2 = ‖ f‖2

2, for all f ∈ L2(G), (17)

at least under the assumptions that the sum on left side of (17) converges (and in

particular, all but countably many terms of the sum are 0), and that propertiesi

andii of Theorem 8.1 hold, cf. the calculation (7) in Section 2.2. We now reproduce

the argument from [17].

By Plancherel’s theorem and (16), we have

∑
j,m,[s]

∣∣〈 f ,ψ j,m,[s]〉
∣∣2 = ∑

j,m,[s]

∣∣〈 f̂ , ψ̂ j,m,[s]〉
∣∣2

= ∑
j,m,[s]

|A|−m
∣∣∣
∫

Ĝ
f̂ (γ) · ψ̂ j

(
(A∗)−mγ

)
·
(
s,η((A∗)−mγ)

)
dν(γ)

∣∣∣
2

= ∑
j,m,[s]

|A|m
∣∣∣
∫

Ω j

f̂ (A∗mβ ) ·
(
s,η(β )

)
dν(β )

∣∣∣
2
, (18)

where we have substitutedβ =(A∗)−mγ. By propertyii , eachΩ j is (τ,D)-congruent

to H⊥, thereby giving us partitions{Vj,n}n≥0 of Ω j with ν(Vj,0) = 0 and sequences

{σ j,n}n≥1 ⊆ D , as in Definition 8.2. Thus, the right side of (18) becomes
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∑
j,m,[s]

|A|m
∣∣∣∑

n≥1

[∫

Vj,n

f̂ (A∗mβ ) ·
(
s,η(β )

)
dν(β )

]∣∣∣
2

(19)

= ∑
j,m,[s]

|A|m
∣∣∣∑

n≥1

[∫

Vj,n−σ j,n

f̂
(
A∗m(α +σ j,n)

)
·
(
s,η(α +σ j,n)

)
dν(α)

]∣∣∣
2

= ∑
j,m,[s]

|A|m
∣∣∣∑

n≥1

[∫

Ĝ
1Vj,n−σ j,n(α) · f̂

(
A∗(α +σ j,n)

)
·
(
s,η(α +σ j,n)

)
dν(α)

]∣∣∣
2
,

where we have substitutedα = β −σ j,n. Sinceα ∈ Vj,n−σ j,n ⊆ H⊥, the unique

point in (α +σ j,n +H⊥)∩D is σ j,n, and therefore

η(α +σ j,n) = (α +σ j,n)−σ j,n = α. (20)

As noted in Section 7.1, the convenient simplification of Equation (20) helps il-

lustrate the reason for the otherwise peculiar-looking description of η andτ[s],D in

Definition 7.1.

Next, we claim we can exchange the inner summation and integral signs in the

last term of (19). After all, we know that{Vj,n − σ j,n : n ≥ 1} tiles H⊥. Hence,

denoting the integrand of (19) byFj,n, writing Fj = ∑n≥1Fj,n, and noting thatFj,n

vanishes off ofVj,n−σ j,n, we see thatFj,n,Fj ∈ L2(H⊥) ⊆ L1(H⊥), and therefore

∑
n≥1

∫

Ĝ
Fj,n(α)dν(α) = ∑

n≥1

∫

Vj,n−σ j,n

Fj(α)dν(α) =
∫

H⊥
Fj(α)dν(α).

Thus, the right side of (19) becomes

∑
j,m

|A|m ∑
[s]∈G/H

∣∣∣
∫

H⊥

[
∑
n≥1

1Vj,n−σ j,n(α) · f̂
(
A∗m(α +σ j,n)

)]
(s,α)dν(α)

∣∣∣
2
. (21)

BecauseG/H is the (discrete) dual ofH⊥, Plancherel’s theorem tells us that
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∑
[s]∈G/H

∣∣∣
∫

H⊥
g(α)(s,α)dν(α)

∣∣∣
2
= ∑

[s]∈G/H

∣∣∣
∫

H⊥
g(α)([s],α)dν(α)

∣∣∣
2

=
∫

H⊥

∣∣g(α)
∣∣2dν(α),

for anyg∈ L2(H⊥). Thus, (21) becomes

∑
j,m

|A|m
∫

H⊥

∣∣∣∑
n≥1

1Vj,n−σ j,n(α) f̂
(
A∗(α +σ j,n)

)∣∣∣
2
dν(α),

which, in turn, is

∑
j,m

|A|m
∫

H⊥

[
∑
n≥1

∣∣∣ f̂
(
A∗(α +σ j,n)

)∣∣∣
2
1Vj,n−σ j,n(α)

]
dν(α), (22)

because, for fixedf , the setsVj,n −σ j,n are pairwise disjoint. We can now inter-

change the inner summation and integral as before, and (22) becomes

∑
j,m

|A|m ∑
n≥1

[∫

Vj,n−σ j,n

∣∣∣ f̂
(
A∗(α +σ j,n)

)∣∣∣
2
dν(α)

]

=∑
j,m

|A|m ∑
n≥1

[∫

Vj,n

∣∣∣ f̂
(
A∗(β )

)∣∣∣
2
dν(β )

]

=∑
j,m

|A|m
∫

Ω j

∣∣∣ f̂
(
A∗(β )

)∣∣∣
2
dν(β )

=∑
j,m

∫

A∗Ω j

∣∣ f̂ (γ)
∣∣2dν(γ). (23)

However,{A∗Ω j} tiles Ĝ. Hence, the right side of (23) is

∫

Ĝ

∣∣ f̂ (γ)
∣∣2dν(γ) = ‖ f̂‖2

2 = ‖ f‖2
2,

proving Equation (17). ⊓⊔
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9 The construction of wavelet sets for G

9.1 The basic construction

Motivated by the NMC described in Section 3, we now present analgorithm for

constructing wavelet collections of sets. As before,G is a LCAG with compact open

subgroupH, D is a choice of coset representatives inĜ for the quotientĜ/H⊥, and

A : G→ G is an automorphism, which we now assume to be expansive with respect

to H.

Our algorithm begins with the following data.

i. A nonnegative integerM ≥ 0. SetW = (A∗)MH⊥.

ii. A positive integerN ≥ 1.

iii. For eachj = 1, . . . ,N, a measurable setΩ j,0 ⊆W that is(τ,D)-congruent toH⊥.

iv. For eachj = 1, . . . ,N, a measurable injective functionTj : W → (A∗W)rW such

that

Tj(γ) = γ −σ ′
j(γ)+σ j(γ), for all γ ∈W,

whereσ j(γ) ∈ D , andσ ′(γ) is the unique element ofD ∩ (γ +H⊥).

We also set the following compatibility requirements on theabove data.

v. The unionΩ̃0 =
⋃N

j=1 Ω j,0 contains the neighborhood(A∗)−ℓH⊥ of the origin,

for some integerℓ ≥ 0.

vi. For any distinctj,k∈ {1, . . . ,N}, either

TjW∩TkW = ∅

or

Tj = Tk and Ω j,0∩Ωk,0 = ∅.
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Note, however, that we donot require the setsΩ1,0, . . . ,ΩN,0 to be disjoint. The

possibility that two or more of them overlap will be dealt with in the algorithm to

be described below. Also, note that, becauseA is expansive, the setW containsH⊥

and(A∗)−1W properly containsW.

Meanwhile, as in Section 3, the mappingsTj should be understood as slicingW

into finitely many measurable pieces and then translating each piece, with the injec-

tivity condition requiring that the images of the pieces do not overlap. In Section 3,

the translation is by an element of the lattice. In our setting, however, the translation

is by an element of the formσ −σ ′, whereσ ,σ ′ ∈ D , andσ ′ + H⊥ contains the

piece in question, whileσ +H⊥ contains its image. This more complicated descrip-

tion is required for the proof of the algorithm’s validity; see Section 9.2.

Algorithm 9.1. Given the initial data described above, our algorithm proceeds in-

ductively, building setsΛ j,n+1 andΩ j,n for eachn ≥ 0, as follows. Given the sets

Ω j,n and their unionΩ̃n =
⋃n

j=1 Ω j,n for a particularn≥ 0, defineΛ j,n+1 to be the

overlap

Λ j,n+1 = Ω j,n∩
[ ⋃

m≥1

(A∗)−mΩ̃n

]

if n≥ 1, or

Λ j,1 = Ω j,0∩
[( ⋃

m≥1

(A∗)−mΩ̃n

)
∪
( j−1⋃

k=1

Ωk,0

)]

if n = 0.

This additional complication at then= 0 step could just as well have been used in

the Euclidean setting ofRd, but it first appeared in [17] (2004) in the non-Euclidean

setting in order to give the resulting algorithm the flexibility required to generate

certain wavelets previously constructed by Kozyrev [65] (2002).

Then, for eachj, build Ω j,n+1 from Ω j,n by translatingΛ j,n+1 ⊆ Ω j,n+1 by Tj ,

i.e.,

Ω j,n+1 =
(
Ω j,n rΛ j,n+1

)
∪TjΛ j,n+1.
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Finally, for eachj = 1, . . . ,N, we set

Λ j =
⋃

m≥1

Λ j,m and Ω j = (Ω j,0 rΛ j)∪TjΛ j . (24)

Intuitively, Ω j is a sort of limit of the sequence of sets{Ω j,n}n≥0. We refer the

reader to [17, Section 4.1] (2004) for a more detailed description of the algorithm,

including verification thatΛ j,n+1 does indeed always lie inW, and hence it makes

sense to considerTjΛ j,n+1.

9.2 Validity of the algorithm

The following theorem appeared as [17, Theorem 4.2] (2004).

Theorem 9.1.Let G be a LCAG with compact open subgroup H⊆ G, letD ⊆ Ĝ be

a choice of coset representatives inĜ for Ĝ/H⊥, and let A: G→ G be an expansive

automorphism. Given the data listed in Section 9.1, the sets{Ω1, . . . ,ΩN} of (24)

produced by the algorithm of Section 9.1 form a wavelet collection of sets.

We refer the reader to [17, Section 4.2] (2004) for the proof.The idea of the proof

is to verify that{Ω1, . . . ,ΩN} satisfy conditionsi andii of Theorem 8.1.

To verify condition i, we first check that
⋃

m∈Z A∗mΩ̃ coversĜ, whereΩ̃ =

⋃N
j=1 Ω j . This fact follows from the expansiveness ofA and the stipulation in the

algorithm’s initial data that̃Ω0 ⊇ (A∗)−ℓH⊥. To prove that the covering of̂G is in

fact a tiling, we first note thatΩ1,1, . . . ,ΩN,1 are pairwise disjoint, essentially by

definition, becauseΛ j,1 contains any overlap betweenΩ j,0 andΩk,0 for k < j. The

algorithm maintains this disjointness forΩ1,n, . . . ,ΩN,n for eachn ≥ 1, as well as

for the limiting setsΩ1, . . . ,ΩN. Meanwhile, the setsΛ j,n are the overlaps between

Ω j,n and the union of dilates
⋃

m≥1(A
∗)−mΩ̃n. By translating them viaTj out to
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(A∗W) rW, future overlaps should be successively smaller (as they will be com-

pressed by(A∗)−m for m≥ 1), so that in the limit, the dilates of̃Ω by different

powers ofA∗m are disjoint. Of course, the details of this verification of condition i

are much more complicated, but that argument in [17] (2004) is not fundamentally

different from the corresponding argument forRd in [20] (1999), [21] (2001).

The proof of conditionii , on the other hand, requires a slight deviation from the

methods of [20] (1999), [21] (2001). In both settings, the proof is relatively straight-

forward, because eachΩ j,n andΩ j is of the form(X rY)∪TjY, whereY ⊆ X ⊆W,

and X is already known to be(τ,D)-congruent (or, in theRd setting, simplyτ-

congruent) toH⊥. In theRd setting, theτ-congruence of the new set is immediate,

because the lattice elements used for translations form a group. In our setting, with

no lattice, the more complicated definition ofTj is required, with both the subtrac-

tion and the addition of an element ofD . The resulting(τ,D)-congruence of the

new set again follows easily, but the reader should note thatthe extra step of first

subtracting the old element ofD is crucial. Other than that slight complication,

however, the proof of conditionii is largely similar to those in [20] (1999), [21]

(2001).

10 Examples of wavelet sets forG

We now present some examples of wavelet sets. All the examples and figures here

are taken from [17] (2004). See also [24] (2003) for more examples.

Example 10.1.Let G be a LCAG with compact open subgroupH, let D be a choice

set of coset representatives in̂G for Ĝ/H⊥, and letA be an expansive automorphism

of G.

TakeM = 0, so thatW = H⊥, setN = |A|−1 ≥ 1, and letσ1, . . . ,σN be theN

elements ofD ∩ [(A∗H⊥)rH⊥]. For eachj = 1, . . . ,N, defineTj(γ) = γ −σ ′
0 +σ j ,
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whereσ ′
0 denotes the unique element ofD ∩H⊥, and defineΩ j,0 = H⊥. Note that

{H⊥,T1H⊥, . . . ,TNH⊥} is a set of|A| = N + 1 compact open sets which together

tile A∗H⊥. See Figure 8 for a diagram of{Tj} andΩ j,0 ( j = 1,2,3) in the case that

|A| = 4.

∧

∧

∧

T1

T2

T3

H⊥

σ1+H⊥

σ3+H⊥

σ2+H⊥

Fig. 8 The mapsTj and the setsΩ1,0 = Ω2,0 = Ω3,0 of Example 10.1, for|A| = 4.

As noted in [17, Section 5.1], applying the algorithm of Section 9 to this data

gives

Ω j = σ j +H⊥ for all j ∈ {1, . . . ,N}.

Indeed, because the setsΩ1,0, . . . ,ΩN,0 all coincide, the algorithm immediately sets

everyΩ j,n, for j ≥ 2 andn≥ 1, to be the final setΩ j = σ j + H⊥. Meanwhile, the

more gradual evolution ofΩ1,n asn increases is illustrated in Figure 9; ultimately,

the dark shading will cover precisely the top-most regionΩ1 = σ1 +H⊥.

In this case, the choiceD of coset representatives is ultimately irrelevant; ifσ j

andσ ′
j belong to the same coset ofH⊥ in Ĝ, thenσ j + H⊥ = σ ′

j + H⊥. However,

as the later examples should illustrate, that happy circumstance is specific to this

example, as is the fact that we can actually write down explicit formulas for the

resulting wavelets. Indeed, as noted in [17, Proposition 5.1] (2004), the wavelet
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Fig. 9 The setsΩ j,m ( j = 1,2,3, m= 1,2) of Example 10.1, for|A1| = 4.

generators are

ψ j(x) = (x,σ j)1H(x),

for j = 1, . . . ,N. This simple formula leads to the surprising observation that these

wavelets can be considered simultaneously to be analogs of both Haar and Shannon

wavelets. See [17, Section 5.1] (2004) and [24, Section 4] (2004). They had been

previously discovered in the special cases of the Cantor dyadic group by Lang in

[69] (1996), and ofQp by Kozyrev in [65, Theorem 2] (2002).

Example 10.2.We can also easily produce single wavelets with the algorithm of

Section 9.1. LetG be a LCAG with compact open subgroupH, let D be a choice of

coset representatives in̂G for Ĝ/H⊥, and letA be an expansive automorphism ofG.

TakeM = 0, so thatW = H⊥, setN = 1, and letσ1 be any one of the|A| − 1

elements ofD ∩ [(A∗H⊥)rH⊥]. DefineT1(γ) = γ −σ ′
0 +σ1, whereσ ′

0 denotes the

unique element ofD ∩H⊥, and defineΩ1,0 = H⊥. See Figure 10 for a diagram of

T1 andΩ1,0 in the case that|A| = 4.

As noted in [17, Section 5.2] (2004), it is easy to check that eachΛ1,n is a transla-

tion of (A∗)−nH⊥, which is a dilation ofH⊥ of measureν(Λ1,n) = |A|−n. Thus, each
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∧

H⊥

σ1+H⊥

σ3+H⊥

σ2+H⊥

Fig. 10 The mapT1 and setΩ1,0 of Example 10.2, for|A1| = 4.

step of the algorithm translates one more successively smaller translate of(A∗)−nH⊥

out of H⊥ and intoH⊥ +σ1. See Figure 11 for illustrations ofΩ1,1 andΩ1,2 in the

case|A|= 4; it should be easy to extrapolate whatΩ1,n looks like for anyn≥ 1, and

ultimately, what the wavelet setΩ1 is.

Fig. 11 Ω1,1 andΩ1,2 of Example 10.2.
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Example 10.3.We close by giving one more example to illustrate that many other

wavelets can be generated by the algorithm of Section 9.1, ifone is willing to use

more complicated translation functionsTj .

Let G = Q3, with compact open subgroupH = Z3, and letA be multiplication-

by-1/3, so thatA is expansive, with|A| = 3. As usual, identifyĜ asQ3 andH⊥

asZ3. Let D be a set of coset representatives inĜ for Ĝ/H⊥ including σ ′
0 = 0,

σ1 = 1/3, andσ2 = 2/3.

TakeM = 0, so thatW = H⊥, setN = 1, and letΩ1,0 = H⊥. Forγ ∈ H⊥, define

T1(γ) =





γ +2/3 if γ ∈ 1+3Z3,

γ +1/3 if γ ∈ (3Z3)∪ (2+3Z3),

as in Figure 12. Again, our algorithm is guaranteed to produce a single wavelet, but

this time, becauseT1 breaksH⊥ into two pieces before translating, the wavelet set

in question is more intricate than those of Examples 10.1 and10.2. See Figures 13–

14 for some of the resulting setsΩ1,m. Note in particular the very small disk that

was moved fromΩ1,2 to Ω1,3. The ultimate setΩ1 will have successively smaller

disks moved from 1+ 3Z3 to 5/3+ 3Z3 (i.e., from the left heavily-shaded disk of

Figure 12 to the right one) and from 2+3Z3 to 7/3+3Z3 (i.e., from the lower right

lightly-shaded disk of Figure 12 to the upper right one). As noted in [17, Section 5.3]

(2004), we can describe this set explicitly as

Ω1 =

[
Z3 r

∞⋃

n=1

(
(−5/8+32n−2 +32n−1Z3)∪ (−7/8+32n−1 +32nZ3)

)
]

∪
∞⋃

m=1

(
(−7/24+32n−2 +32n−1Z3)∪ (−5/24+32n−1 +32nZ3)

)
.
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∧

∧

∧
Z3

1−3 +Z3

2−3 +Z3

Fig. 12 The mapT1 of Example 10.3.

Fig. 13 Ω1,0 andΩ1,1 of Example 10.3.
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Fig. 14 Ω1,2 andΩ1,3 of Example 10.3.

11 Epilogue

We view the construction of wavelet sets as more than a sidebar in wavelet theory

and its applications. There is, of course, the shear beauty and intricacy of many

wavelet sets, and the natural questions of generalization,e.g., [20] (1999), as well

as what type of theory will be required for such generalization, recalling the theories

of [34] (1998) and [11] (1999) in the past.

There is also a host of geometric problems to be resolved. Forexample, besides

the connectivity questions raised by Figures 2, 3, 4, one would like to know if there

are connected wavelet sets with connected interior. Further, there are unresolved

convexity questions. We know from [23] (2006) that a waveletsetΩ ⊆ R̂d cannot

be decomposed into a union ofd or fewer convex sets, and, in particular, wavelet

sets cannot be convex, see Theorem 5.1. In recent work, [79] (2008), Merrill has

constructed wavelet setsΩ ⊆ R̂2 that are finite unions of 5 or more convex sets. The

lower bound “5” forR̂2 is not necessarily sharp, and the existence of wavelet sets

Ω ⊆ R̂d, d > 2, which are finite unions of convex sets is not known.
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Another topic of investigation is the tantalizing relationbetween wavelet sets and

fractals, e.g., [22] (2002), see [18] (2009) for background.

Besides the purely mathematical issues of the previous paragraphs, there is the

question of applicability of wavelet sets. Naturally, one might be suspicious of ever

applying the wavelet sets in Figures 1 and 5 or the even more exotic ones in [20]

(1999). However, Theorem 4.4 of Section 4, which we now repeat, provides the

basis for implementation.

Theorem 4.4.For each n≥ 0, Ωn rΛn is a Parseval frame wavelet set, andΩn is a

frame wavelet set with frame bounds 1 and 2.

In fact, sets such asΩ0 rΛ0 or Ω1 can be elementary, computable shapes, and

so we can construct a single wavelet frame{ψm,n}, whereψ̂ = 1Ω1rΛ1, say, for

L2(Rd), d >> 0. Further, if rapid decay of the wavelet is desirable, thereare existing

frame preserving smoothing results, e.g., [2] (2001), [19](2009), [10] (2006), [51]

(1997), [50] (1997), [54] (1997), and research questions, see [19] (2009). Thus,

single wavelet frames can be easily constructed to give computable decompositions

of the elements ofL2(Rd), d >> 0, see Remark 1.2 in Section 1 about large data

sets.
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