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Abstract—The problems of neglecting spatial features in hyper-
spectral imagery (HSI) and the high complexity of Local Tangent
Space Alignment (LTSA) still exist in the nonlinear dimensionality
reduction with LTSA for classification. Therefore, this paper pro-
poses an innovative ENH-LTSA (Enhanced-Local Tangent Space
Alignment) method to solve the two problems. First, random pro-
jection is introduced to preliminarily reduce the dimension of HSI
data. It aims to improve the speed of neighbor searching and the
local tangent space construction. Then, the new method presents
the similarity measure via the adaptive weighted summation
kernel (AWSK) distance. The AWSK distance considers both spec-
tral and spatial features in HSI data, and attempts to ameliorate
the k-nearest neighbors (KNNs) of each pixel. Furthermore, the
adaptive spatial window is proposed to automatically estimate the
proper window size for the description of spatial features. After
that, fast approximate KNNs graph construction via Recursive
Lanczos Bisection is incorporated into the new method to reduce
the complexity of KNNs searching. When finishing constructing
each local tangent space, the new method uses a fast low-rank
approximate singular value decomposition to speed up eigenvalue
decomposition of the global alignment matrix that is constituted
with local manifold coordinates. Five groups of experiments with
two different HSI datasets are designed to completely analyze and
testify the ENH-LTSA method. Experimental results show that
ENH-LTSA outperforms LTSA, both in classification results and
in computational speed.

Index Terms—ENH-LTSA, hyperspectral image classification,
LTSA, nonlinear dimensionality reduction.
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I. INTRODUCTION

T HE classification problem is very important in the pro-
cessing of hyperspectral imagery (HSI), because the

classification results greatly benefit realistic applications, such
as environment monitoring [1], [2], vegetation mapping [3],
[4], geological surveying [5], [6] and land use analysis [7],
[8]. However, numerous bands as well as strong intra-band
correlations cause HSI data trapped into the problem of “curse
of dimensionality” [9]. Especially, the “Hughes” phenomenon
shows that achieving accurate classification results requires
extremely many training samples [10], whereas collecting
samples is time-consuming and costly. In this condition, di-
mensionality reduction is a good choice to solve the above
problems for classification.

Dimensionality reduction methods can be divided into two
categories, feature selection and feature extraction. Feature
selection selects the best band combinations whereas feature
extraction preserves most important spectral features through
mathematical transformations. Feature extraction includes
linear methods and nonlinear manifold learning methods.
The linear methods such as Principal Component Analysis
(PCA) and minimum noise fraction (MNF) perform well in
HSI data and have low computational complexity. Nonlinear
manifold learning methods extract features by reconstructing
the underlying manifold from which the HSI data was sampled
and require high computational complexity. Manifold learning
methods are more suitable for HSI data because of the non-
linear structure of HSI data that originates from multi-scattering
and the heterogeneity of pixels [11]. Therefore, we focus our
research on dimensionality reduction with manifold learning
methods.

Different manifold learning methods have been presented
such as Isometric Mapping (Isomap) [12], Laplacian Eigen-
maps (LE) [13], local tangent space alignment (LTSA) [14] and
locally linear embedding [15]. These methods can be further
categorized into two groups: local methods and global methods.
LTSA is regarded as representative of the local methods. It
attempts to recover the underlying manifold of HSI data by
aligning the local tangent space of each pixel [14]. Until now,
scholars have done some works on LTSA for the purpose
of HSI classification. The performances of LTSA and other
manifold learning methods were investigated via classification
[16], [17]. The Generalized Supervised Local Tangent Space
Alignment (GSLTSA) method uses kernel functions to improve
the ability of LTSA in classifying hyperspectral datasets [18].
Ma presented supervised local manifold learning-weighted
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-nearest neighbor (SLML-KNN) classifier and showed that
the method performs better than unsupervised LTSA and KNN
classifier [19]. Yang studied the manifold alignment framework
via LTSA. The method uses common underlying geometries
of two multi-temporal HSI datasets for classification [20].
Researches above greatly benefit the applications of LTSA in
HSI classification. However, two problems still have never
been addressed.

1) The spatial features in HSI data are neglected. HSI data
consists of an ensemble of images, and each pixel repre-
sents a spatial location in the image scene. Factors such as
terrain, soil composition, illuminations, and in spatial reso-
lution limits cause the spectral responses of ground objects
in the same class vary with spatial locations [21]. There-
fore, the processing of HSI data should consider the effects
of spatial variations in spectral signatures [22]. However,
in LTSA, the -nearest neighbors (KNNs) graph construc-
tion only considers the Euclidean distances between pair-
wise pixels in the spectral space, and always ignores the
spatial features in HSI data.

2) Applying LTSA to HSI data requires high computational
complexity. The computational time of LTSA increases ex-
ponentially with image size at the rate of where
is the number of pixels. The computational time correlates
closely with the neighborhood size in KNNs graph and the
dimension of the LTSA embeddings. Consequently, as for
HSI data with larger image sizes and more bands, the com-
putational time for achieving higher dimensional embed-
dings is expensive. High performance computing schemes
have been proposed [23], [24], but the complex computing
models and the expensive cost make it unsuitable for engi-
neering applications.

In this paper, an enhanced LTSA (ENH-LTSA) method
is proposed to solve these two problems. The ENH-LTSA
method has three main innovations. First, we propose a simi-
larity measure based on adaptive weighted summation kernel
(AWSK) distance when searching for neighbors in manifold
learning. The AWSK distance differs from the regular weighted
summation kernel distance because it uses an adaptive spatial
window rather than a uniform window to estimate the spatial
feature of each pixel. The AWSK distance combines both
the spatial and spectral features of HSI data to improve the
LTSA embeddings. Second, we reduce the computational com-
plexity of LTSA using three schemes: random projection, the
fast approximate KNNs construction with Recursive Lanczos
Bisection (RLB), and the fast low-rank approximate singular
value decomposition (SVD). Random projection maps HSI
data into a lower dimensional space and reduces the dimension
of input data to ENH-LTSA. The RLB algorithm speeds up the
KNNs graph construction via the divide-and-conquer scheme,
lowering its complexity from to where

for a mutually selected overlapping
parameter . and are the number of bands and pixels in
the image scene respectively. The fast low-rank approximate
SVD decomposition decreases the complexity of eigenvalue
decomposition of the global alignment matrix from to

where is the dimension of embedding. Third, our
combination of three speed improvement schemes takes very
little cost of reducing the accuracies of classification results.

This classification advantage together with the computational
speed advantage makes ENH-LTSA more applicable in the
engineering applications than LTSA.

The remaining of the paper is organized as follows. In
Section II, the LTSA method in HSI data is described. In
Section III, the schemes in improving classification results
and computational speed are presented, and then the new
ENH-LTSA method for dimensionality reduction of HSI data
is summarized. In Section IV, the results of five groups of
experiments using two different HSI datasets are presented in
order to verify our new method. Conclusions and future work
are given in Section V.

II. THE LTSA METHOD IN HSI DATA

The LTSA method assumes that the manifold lying in HSI
data is locally linear, and two linear mappings into the same
local tangent space are available, both from each pixel in
the spectral space and from its counterpart in the embedded
space [14]. The method attempts to construct local geometric
structures using the tangent space of the neighborhood of each
pixel. It then aligns the overlapping local space to achieve
the global manifold coordinates. Assume real vector sets

and
stand for HSI data and its low-dimension embedding from
LTSA, where and and are the dimensions of the spectral
space (i.e., is the number of bands) and the embedded space
respectively, and denotes the number of pixels. The method
of LTSA in HSI data consists of three main steps. First, the
KNNs graph is constructed with the similarity measure using
Euclidean distance between each pair of pixels and . If
a pixel lies in the neighborhood of defined by a set of
KNNs , the edge between them has the
length equal to the Euclidean distance between the two pixels.
If the pixel lies outside the neighborhood, the edge between
the two pixels has length 0. Second, the -dimensional tangent
subspace is constructed to approximate pixel points in each
neighborhood , and the local coordinates
for pixels in each local space is obtained by minimizing

(1)

where is the coordinates of the central point in the local
tangent space, and is the local affine transformation ma-
trix for pixels in . The local coordinates for pixels in is

where is the corresponding singular
vectors of the largest right singular values for the
centered and is the average of . The linear
feature of local tangent space assumes that there exists a linear
mapping from local manifold coordinates to global manifold
representations . The global coordinates are achieved via
the affine transformation of local coordinates using

(2)
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where and are the
global coordinate matrix and the local reconstructed error ma-
trix of pixels in , and is the desired local affine transfor-
mation matrix. Finally, the global coordinates is determined
via the minimum of in

(3)

where the constraint guarantees that global manifold
coordinates can be uniquely determined. The optimization
matrix in (2) that minimizes the local reconstruction error

for a fixed is given by

(4)

where is the pseudo-inverse matrix of . Substituting (4)
into (3) gives

(5)
where is the global alignment ma-
trix of local coordinates where is the selection
matrix and . is the cor-
responding singular vectors of the largest left singular values
from the centralized . The global embedded coordinates
are the eigenvectors corresponding to the 2 to eigenvalues
of the global alignment matrix .

III. THE ENH-LTSA METHOD IN HSI DATA

In this section, the new method of ENH-LTSA is described.
First, The ENH-LTSA method utilizes the AWSK distance to
measure the similarity between pairwise pixels. Second, the new
method introduces random projection to preliminarily reduce
the dimension of HSI data. Third, fast approximate neighbors
using RLB improves the speed of KNNs graph construction.
Fourth, the fast low-rank approximate SVD decomposition al-
gorithm reduces the complexity of the eigenvalue decomposi-
tion of the global alignment matrix. Finally, the new ENH-LTSA
method is summarized.

A. Similarity Measure Using the AWSK Distance

The similarity measure between pairwise pixels is generally
based on the Euclidean distance between the two pixels in the
spectral space. A smaller Euclidean distance indicates a higher
similarity between the two pixels. In recent years, spatial fea-
tures of HSI data have been considered in the similarity mea-
sure. Spatial features are always represented by the spatial vari-
ations in spectral signatures of HSI data. Ground objects within
a spatially adjacent neighborhood have similar geological and
environmental conditions, and directly affect spectral signatures
of its central ground object. Therefore, the spatial variations in

spectral signatures of each pixel can be described by the rela-
tions with its spatial surroundings. Fauvel included spatial in-
formation (size, orientations and local contrast) within a spatial
neighborhood into morphological files through an ensemble of
opening and closing reconstruction and then stacked them with
spectral features for subsequent classification [25], [26]. To im-
prove classification accuracies, spatial features were modeled
as a spatially distributed random process, and Markov random
fields were used to model the spatial variations of spectral sig-
natures [21]. The spatial homogeneity index, derived from the
root mean squares between the original HSI data and its spatially
multi-scale Gaussian filtered results, was proposed to represent
the spatial features of HSI data [27]. However, these methods
have the drawback of scale selection, especially for the small
or complex structures in the image scene [28]. In contrast, the
kernel function has the advantage inhibited from Mercer con-
ditions, which guarantees that the scaled summations of kernel
matrices are valid mercer kernels [29]. Furthermore, the kernel
methods perform well in high-dimension data. Therefore, the
composite distance using kernel functions has been designed to
describe the spatial features of HSI data [30].

Different with prior works, we consider the spatial features of
HSI data when reducing dimensionality, and then classify man-
ifold representations with widely used classifiers. Although
some similar works have been done in current literatures
[31]–[33], our work differs from them because ENH-LTSA
incorporates the new AWSK (adaptive weighted summation
kernel) distance to improve the neighbor searching of each
pixel and promotes the embedding results. The AWSK distance
improves the regular weighted summation kernel distance with
an adaptive spatial window for each pixel. The AWSK distance

between pixels and combines the spatial
and spectral features using the Gaussian RBF kernel function,
and is computed as

(6)

where is a positive parameter between 0 and 1, which rep-
resents the tradeoff between the spatial and spectral RBF dis-
tances. is the normalized spectral vector of pixel , and

is the spatial vector of pixel , which is calculated as the
mean of normalized spectral vectors within a squared spatial
window centered at (for instance, 3 3, 5 5, and 7 7).

is the squared Euclidean distance between spectral or spa-
tial vectors of pairwise pixels, and is the variance of the RBF
kernel. In some sense, spatial vectors are extracted from spec-
tral vectors of HSI data, and so it is appropriate to have the same
variance for both the spatial and spectral distances. The RBF
kernel function only measures the distance between pairwise
pixels. The function does not control the tightness of fitting the
training samples like the applications in anomaly detection and
classification, and therefore the parameter has no significant
effect on the resulting KNNs graph.
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Fig. 1. The different spatial locations of pixels from ground objects in the same
class.

In (6), spatial vectors that reflect the spatial variations in
spectral responses correlate strongly with the size of the spatial
neighborhood of each pixel. Generally, the weighted summa-
tion kernel distance utilizes the uniform size of spatial window
for each pixel in the image scene of HSI data. However, this
leads to certain problems. For instance, although pixels and

in Fig. 1 stand for Soybeans-notill, the spatial neighborhood
of should be greater than that of , because the former is
surround by pixels within the same class while the latter is
at the edge of two different ground objects. A larger window
size for pixel would incorporate many spatially uncorrelated
pixels from other classes and introduces noise into the spatial
vectors.

We use an adaptive spatial window to achieve a proper spatial
vector for each pixel. Our method considers the spatial location
of each pixel and adaptively estimates the proper window size.
The idea of adaptive spatial window is this: among a range of
spatial windows, the proper window contains spectral vectors
that have the minimal variations among its components. Assume
the range of spatial windows centered at each is ,

, and assume the number of spectral vector set
in window is .The adaptive spatial window for each pixel
performs the following three steps. First, for each window ,
the variance vector of its member pixels is cal-
culated where is the variance function. Next, the vector

from all
spatial windows is calculated. Finally, the spatial window
corresponding with is chosen as the proper window for
the spatial feature of .

The adaptive spatial window could avoid over-smoothing
and always achieve a proper window for each pixel. For the
spatial windows having the same ground objects, with the ex-
panding window sizes from the smallest, spectral responses of
their inner components will have slight differences. The slight
differences actually reflect their latent differences in physical
conditions, such as terrain, soil composition and illuminations.
The average variance could amplify these subtle
differences and make them obvious. The minimum average
variance then corresponds to the proper spatial window in
which all components have minimal differences in physical
conditions. With the continuous expanding window size, if the
window includes pixels from different ground objects, it will
bring about a larger average variance. In particular, if one pixel

stands on the boundary of two different classes of ground ob-
jects, the smallest spatial window is the proper one and has the
minimum average variance. The image resolutions also affect
the result of proper spatial window. However, for a certain HSI
data with determined spatial resolutions, each pixel can achieve
a proper window corresponding to its spatial resolutions. Image
resolutions do not affect the implementation of the adaptive
spatial window. The range of spatial windows is manually
selected by cross-validation or practical experiences, and the
maximum size of the spatial window should be smaller than
the image scene. For HSI data consisting of large pitches that
represent the same ground objects, the maximum window size
should be larger; for HSI data constituted with small pitches
of the same ground objects, the maximum window size should
be smaller. The smallest window size in this paper is set to be
3 3, because of considering the strong correlations between
the centering pixels and its surrounding pixels despite that they
are not in the same class. The computational complexity of
adaptive spatial window is less than where
is the number of pixels in the largest spatial window from the
range. In practice, spatial vectors of HSI data are calculated
in sequence, and the blank spectral vectors within the spatial
window centered at boundary pixels are filled via a mirroring
scheme. Calculation of spatial vectors can be regarded as a
kind of automatic smoothing filtering and can be processed
separately.

The AWSK distance combines the spatial feature with spec-
tral feature of each pixel in the image scene, and also adaptively
adjusts the window size to benefit the estimation of spatial fea-
tures. Yet different from the similarity measure using Euclidean
distance, a larger AWSK distance results in a higher similarity
between pairwise pixels.

B. Reducing Bands of HSI Data Using Random Projection

Random projection has been proven to be a computationally
efficient and sufficiently accurate method for dimensionality re-
duction in high dimensional data. It has been used in the classi-
fication of text data [34], facial recognition [35], and anomaly
detection and imagery reconstruction of HSI data [36]–[38]. We
focus on the mathematical process of reducing the number of
bands rather than its further applications such as anomaly de-
tection and HSI data reconstruction.

The Johnson-Lindenstrauss Lemma provides the theoretical
support of using random projection. The lemma states that
if points from a high dimensional manifold-modeled dataset

in a -dimension space are projected into a randomly
selected subspace with a proper dimension , the distances
between pairwise points are approximately preserved with high
probability [39], [40]. Random projection maps the HSI data

is into a -dimension ) subspace, using a
random matrix whose columns have unit lengths. The
process of random projection is illustrated below:

(7)

where is a random matrix, and is the projected
HSI data in the -dimension space. Random projection has a
computational simplicity only scaling to . Random
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projection is linear and non-adaptive, and the mapping relies
on the matrix . The matrix is usually constructed using
Gaussian random entries that are independently and identically
distributed (i.e., i.i.d.) with zero mean and variance. The
random matrix guarantees columns of the matrix are almost or-
thogonal and uncorrelated. Furthermore, the geodesic distances
between pairwise pixels are almost isometricly preserved after
projection.

In ENH-LTSA with HSI data, random projection speeds
up the fast approximate KNNs graph construction (mentioned
below) from to where , and
promotes the speed of local linear space construction from

to while approximately preserving the
inner structures of HSI data.

C. The Fast Approximate KNNs Graph Construction

In LTSA of HSI data, the computational complexity of reg-
ular KNNs graph construction depends linearly on the number
of bands, and quadratically on the number of pixels [38], [41].
For a large scale image scene, the computations become un-
wieldy for real applications. Therefore, the fast approximate
KNNs graph construction via RLB is adopted to speed up the
regular method while barely compromising the accuracy [42].

Fast approximate KNNs graph construction via RLB divides
the dataset points into two overlapping subsets, recursively
compute the approximate KNNs graph for each subset, and then
merge the results into a final graph. In HSI data, the datasets
are firstly recursively divided into overlapping halves. The size
of overlap between two subsets is controlled with a parameter

. The method of spectral bisection splits the pixels into two
subsets using the hyperplane based on the largest singular
triplet of the centered data [43]. Let be
a centered subset of HSI dataset , and let be the
largest singular triplet of using the Lanczos algorithm with

[44], [45]. For any hyperplane , the

squared sum maximizes when

the unit vector . This hyperplane then achieves optimal
separation. Next, if the size of subset is less than the predefined
threshold (usually ), the approximate KNNs graph
is computed with the regular method. Finally, the approximate
KNNs graph of each subset is glued to construct the final whole
graph. If a pixel point belongs to more than one subset, then its
KNNs are selected from its neighbors in each subset.

The fast approximate KNNs method combined with random
projection reduces the computational complexity of regular
KNNs graph construction from to where

and for a predefined
overlapping parameter . is the initial dimension of HSI
data, is the projected dimension, and is the number of
pixels.

D. The Fast Low-Rank Approximate SVD Decomposition of
the Global Alignment Matrix

In LTSA, the eigenvalue decomposition of the global align-
ment matrix requires at least floating-point operations
using the regular algorithm where is the number of pixels.

The fast low-rank approximate algorithm is introduced to re-
duce the complexity into , where is the dimension of
embedding. The algorithm also provides accurate approxima-
tion to the original matrix with low-rank eigenvectors [46]. As-
sume the global alignment matrix as , the fast low-rank
approximate algorithm tries to find the best -rank approxima-
tion to with

(8)

where is the matrix where the greatest eigenvalues appear
in decreasing order on the diagonal , is the corresponding
eigenvectors of the greatest eigenvalues and . The
LTSA method requires the eigenvectors corresponding to the
bottom 2 to eigenvalues, and therefore we approximate the
matrix to achieve the desired eigenvectors
where is the largest eigenvalues in the matrix . Let be
a positive integer with , and assume as an integer
with and . The real random matrix

is first constructed with entries that are zero mean and unit
variance, and the product matrix is computed with

. Next, the SVD decomposition of is utilized to
form a real matrix where is the leftmost
block of eigenvectors of , and the product matrix is
computed with . Then, the SVD decomposition of
is performed as where and are
real matrixes with orthonormal columns and is a real
nonnegative matrix with zero entries off the diagonal. After that,
the product matrix is obtained with . Finally,
the bottom 2 to singular values of the global alignment matrix

are the reciprocals the 2 to diagonal entries of , and the
manifold representations of ENH-LTSA are the left 2 to
columns of matrix .

E. The Summary of the New ENH-LTSA Method

The ENH-LTSA method improves the neighbor searching
and increases the computational speed of LTSA. The AWSK
distance combines spatial features and spectral features of HSI
data and improves the embedding result. The computational
complexity is reduced through the following three schemes:
1) Random projection reduces the dimension of HSI data from

to ( ) and speeds up the KNNs graph con-
struction and local tangent space construction, while approx-
imately preserving the inner data structures; 2) The fast ap-
proximate KNNs graph construction via RLB reduces the com-
plexity of regular method from to ; 3) The
fast low-rank approximate SVD decomposition algorithm re-
duces the complexity of regular eigenvalue decomposition of
the global alignment matrix from to .

The proposed method of ENH-LTSA is shown in Fig. 2,
which consists of the following steps:

1) The HSI data is preprocessed with random projection in (7)
in order to reduce the original dimension.

2) The fast approximate KNNs graph is constructed using the
RLB described above and the AWSK distance in (6). The
adaptive spatial window estimates the neighborhood for
the spatial feature of each pixel.
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TABLE I
THE CONTRAST IN COMPUTATIONAL COMPLEXITY BETWEEN ENH-LTSA AND LTSA

Fig. 2. The method of ENH-LTSA in HSI data.

3) The local linear space of each pixel is obtained by approx-
imating pixels within its neighborhood, and local coordi-
nates are obtained by minimizing (1). And then the global
alignment matrix of local coordinates is achieved via min-
imizing (5).

4) The global coordinates are computed with the fast low-
rank approximate SVD decomposition of the global align-
ment matrix.

The contrast in the computational complexity between ENH-
LTSA and LTSA is described in Table I, where

and is the overlapping parameter with value
between 0 and 1, and is the projected dimension of random
projection. is the number of the pixels, is the size of neigh-
borhood, and is the dimension of embedding. is the number
of windows in the range of spatial windows and is the number
of pixels in the large window from the range. From the table, the
determination of adaptive spatial windows has a small contribu-
tion to the total computational complexity of ENH-LTSA. And
the computational complexity of ENH-LTSA is observed to be
strictly lower than the regular LTSA method.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we examine the computational speed and the
classification accuracy of ENH-LTSA in five groups of experi-
ments using two different HSI datasets.

Fig. 3. The image of Indian Pines dataset.

A. The Description of Datasets

The Indian Pines dataset was taken from the website of Mul-
tispectral Image Data Analysis System in Purdue University
(available at https://engineering.purdue.edu/~biehl/MultiSpec
/aviris_documen-tation.html). The dataset consists of AVIRIS
data collected by JPL and flown by NASA. The dataset was
acquired on June 12, 1992 with about 20 m spatial resolutions
and 10 nm spectral resolutions covering the spectral range
within 200–2400 nm. The image scene shown in Fig. 3 was a
145 145 pixels section of a larger imagery covering 6 miles
west of West Lafayette, IN. Preprocessing work including ra-
diometric correction and the bad band removal was performed,
leaving 220 bands with the calibrated data value proportional
to radiance. The image scene has sixteen classes of ground
objects. The ground truth information for training and testing
samples in each class is listed in Table II(a).

The Urban dataset was acquired by the Hyperspectral
Digital Imagery Collection Experiment (HYDICE) and was
downloaded from the US Army Geospatial Center (available
at https://www.tec.army.mil/hypercube). It was captured in
October 1995, having spatial and spectral resolutions of 10 nm
and 2 m respectively. A sample image section of 307 307
pixels covering an area at Copperas Cove near Fort Hood,
TX is shown in Fig. 4. The low SNR band sets [1–4, 76, 87,
101–111, 136–153, 198–210] was eliminated from the initial
210 bands, leaving 162 bands. Twenty-two classes of ground
objects exist in the image scene. Table II(b) shows the ground
truth information for training and testing samples in each class.

B. Experimental Results

We conduct five groups of experiments with the Indian Pines
and Urban datasets described earlier. These experiments com-
pare computational speeds and classification accuracies. Since
the algorithm of fast low-rank approximate SVD decomposition
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TABLE II
THE GROUND TRUTH INFORMATION OF TRAINING AND TESTING SAMPLES IN EACH CLASS FOR INDIAN PINES AND URBAN DATASETS.

Fig. 4. The image of Urban dataset.

reduces the complexity of ENH-LTSA and has no parameters,
we focus on the effects of random projection and the fast approx-
imate KNNs on classification results. Three widely used classi-
fiers are utilized: the KNN classifier [47], the Naïve Bayes (NB)
classifier [48] and the Support Vector Machine (SVM) classi-
fier [49]. The classification results are evaluated by the average
classification accuracy (ACA), overall classification accuracy
(OCA) and kappa coefficient (KC). The measure of Euclidean
distance is used in the KNN classifier with ; in the SVM
classifier, the RBF kernel function is utilized, and the variance
parameter and the penalization factor are obtained via cross-val-
idation. For each dataset, we repeatedly sub-sample the training
samples and testing samples for ten times. The training sets for
both datasets are visually shown in Fig. 5. The following results
without notations are average and standard deviation of results
on these ten different and independent experiments.

1) Effect of AWSK Distance on Classification: The exper-
iment estimates the impacts of AWSK distance in improving

neighbor searching for classification. We improve LTSA by re-
placing the Euclidean distance with the AWSK distance and
named it as AWSK-LTSA. We then compare the ACAs, OCAs
and KCs of LTSA and AWSK-LTSA on dimension-reduced re-
sults. For both datasets, the original vectors of both spatial and
spatial features in AWSK distance are scaled within 0–1, and
the variance of Gaussian kernel is set to 1 for the reason of
simplicity. The range used to determine the proportion is set
from 0 to 1 with a step interval as 0.05. For the Indian Pines
dataset, the range of spatial neighbor window is set manually
from 3 3 to 11 11 pixel sizes, and the proportion of spa-
tial information determined by cross-validation is 0.35. For the
Urban dataset, the range of spatial window is set manually from
3 3 to 9 9 pixel sizes, and the corresponding is set as
0.55 by cross-validation. Since the AWSK distance has no re-
lations with the dimension of embedding , we select the in
which the LTSA classification result is best and compare the
corresponding classification results between AWSK-LTSA and
LTSA. From the range between 10 and 100 with the step in-
terval as 5, with cross-validation, the dimension of embedding
for the Indian Pines and Urban datasets are set as 55 and 40 re-
spectively, and the projected dimensions of ENH-LTSA for
both datasets are 80 and 60 respectively. The neighborhood size

is manually set as .
Table III lists the classification results for the two datasets.

For each dataset, AWSK-LTSA obviously surpasses LTSA in
the ACAs, OCAs and KCs. The smaller standard deviations of
the accuracies show the robustness of classification results from
AWSK-LTSA. Fig. 6(a)–(c) show the classification accuracy
for each class using LTSA and AWSK-LTSA on Indian Pines
dataset. For all three classifiers, the AWSK-LTSA outperforms
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Fig. 5. The spatial distributions of training samples for (a) Indian Pines dataset and (b) Urban dataset.

TABLE III
THE CLASSIFICATION ACCURACIES AND STANDARD DEVIATIONS (STD.) OF LTSA AND AWSK-LTSA WITH DIFFERENT CLASSIFIERS

TABLE IV
THE CONTRAST IN CLASSIFICATION ACCURACIES AND STANDARD DEVIATIONS

(STD.) BETWEEN KNN AND AWSK-KNN CLASSIFIERS ON THE ORIGINAL

INDIAN PINES AND URBAN DATASETS

LTSA in classification accuracies for almost all classes. That
means that AWSK distance improves the neighbor searching so
that the ground objects in different classes differ more greatly.
The classification results of the Urban dataset in Fig. 6(d)–(f)
also support the idea above. In addition, we compare the classi-
fication results on original HSI data using the regular KNN clas-
sifier and the AWSK-KNN (the distance measure in KNN clas-
sifier is improved with AWSK distance). The results are listed
in Table IV. For each dataset, the AWSK-KNN classifier per-
forms better than the KNN classifier in ACAs, OCAs and KCs.
All the above prove that the AWSK distance that considers the
spatial features of HSI data improves the classification results.

2) Computational Speed of ENH-LTSA: The experiment
compares the speed of ENH-LTSA and LTSA. In this exper-
iment, we study the overall computational performance of
ENH-LTSA rather than each individual step. The neighborhood

TABLE V
THE CONTRAST IN COMPUTATIONAL SPEED BETWEEN ENH-LTSA AND LTSA
(THE RATIO MEANS THE QUOTIENT OF THE COMPUTATIONAL TIME IN LTSA

DIVIDED BY THAT OF ENH-LTSA)

size of the Indian Pines and Urban dataset in the experiment are
set to and respectively. These settings
provide a sufficient number of neighbor points for constructing
the local space and also provide a contrast between the compu-
tational performance of ENH-LTSA and LTSA. The dimension
range of the embedding for the Indian Pines dataset is 15–65,
and the range for the Urban dataset is 10–40. The projected
dimension for the Indian Pines and Urban datasets are 80 and
60 respectively. The overlapping parameters of the Indian
Pines and Urban datasets are 0.2 and 0.1 respectively, and other
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Fig. 6. The classification accuracies in each class for AWSK-LTSA and LTSA using different classifiers for Indian and Urban datasets. (a) KNN. (b) NB. (c)
SVM. (d) KNN. (e) NB. (f) SVM.

parameter configurations in ENH-LTSA for both datasets are
the same as those of experiment 1).

We run the experiment on a Dell Computer with Xeon E5400
2.83 GHz processor, 32 GB of RAM and a Windows 7 operating
system. The codes for ENH-LTSA and LTSA are performed
with Matlab 2010b. The total computational times of ENH-
LTSA and LTSA with varying and are listed in Table V.

For the Indian Pines dataset, with and , the
ENH-LTSA method improves the computational speed of LTSA
by about 3 times. With the increase of and , the computational
speed of ENH-LTSA reaches up to more than 5 times of LTSA
at and . For the Urban dataset, the speed im-
provement from LTSA to ENH-LTSA increases with increasing

and . From the application point of view, accurate classifica-
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Fig. 7. The classification accuracies in each class for ENH-LTSA and other DR methods with different classifiers. (a) KNN. (b) NB. (c) SVM. (d) KNN. (e) NB.
(f) SVM.

tion results require the embedding with a moderate dimension
more than 10. We then conclude that the ENH-LTSA improves
the computational speed of LTSA by at least 3 times.

3) Classification With ENH-LTSA: This experiment in-
vestigates the behaviors of ENH-LTSA in classification. To

make a holistic analysis, ENH-LTSA is compared with other
state-of-the-art dimensionality reduction methods, LTSA,
LLTSA (Linear Local Tangent Space Alignment) [50], PCA,
and LE. The parameter configurations for each method are
as follows. For all the dimensionality reduction methods, the
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TABLE VI
THE CLASSIFICATION ACCURACIES AND STANDARD DEVIATIONS (STD.) OF DIFFERENT DIMENSIONALITY REDUCTION METHODS USING DIFFERENT CLASSIFIERS

ON INDIAN PINES AND URBAN DATASETS

dimension of embedding for the Indian Pines and Urban
datasets are 55 and 40 respectively, and the neighborhood size
is . In ENH-LTSA of the Indian Pines dataset, the
overlapping parameter is 0.2 and the projected dimension

is 80. For the Urban dataset, is 0.1 and is 60. Other
parameters in ENH-LTSA of both datasets are the same as those
in pervious experiments. Fig. 7 shows the contrast of classifi-
cation accuracies in each class between ENH-LTSA and the
other four methods. For of the Indian Pines dataset, shown in
Fig. 7(a)–(c), the ENH-LTSA classification accuracies surpass
LTSA, LLTSA, PCA and LE in most class. A similar perfor-
mance is seen on the Urban dataset, shown in Fig. 7(d)–(f).
Table VI lists the classification accuracies (ACAs, OCAs and
KCs) and standard deviations for each dimensionality reduction
method with different classifiers. For both datasets, the classifi-
cation accuracies of ENH-LTSA are better than those of LTSA.
Among all methods, the classification accuracies of PCA are
the lowest, and the next to last one is LLTSA. The classification
accuracies of LE are lower than those of LTSA while they are
higher than those of LLTSA and PCA. The results show the
superiorities of LTSA, LE and ENH-LTSA, and are similar
to the work by Crawford [16]. Furthermore, in combination
with Table III, we observe that the classification accuracies of
ENH-LTSA are only slightly inferior to AWSK-LTSA for both
datasets. That means the speed improvement in ENH-LTSA
degrades only a little classification accuracies.

4) Effect of Random Projection on Classification: Tables I
and V show that the random projection can reduce the compu-
tational time of ENH-LTSA. In this experiment, we analyze the
effects of random projection on the classification results as a
function of the projected dimension . The parameter config-
urations of ENH-LTSA in each dataset are the same as those
of experiment 3). The ranges of projected dimension for the
Indian Pines and Urban datasets are 80–200 and 60–160 re-
spectively. Since the curves of OCAs, ACAs and KCs versus
with increasing are similar to each other, we only present
the curves between and ACAs of ENH-LTSA for different

classifiers in Fig. 8. The curves in the figure are the average
results obtained from ten times running of independent experi-
ments. For each classifier and each dataset, the ACAs of ENH-
LTSA are robust with only slight fluctuations with changing .
That means a proper chosen has little adverse impacts on
the classification results, and random projection does not in-
troduce a significant distortion into the HSI data. The expla-
nation is that random projection preserves the Euclidean and
geodesic distances between each pair of pixels when the dataset
is projected into a moderate number of dimensions [37]. The
slight fluctuations of ACAs result from the random matrix in the
random projection.

5) Effect of Fast Approximate KNNs on Classification: We
want to explore the effects of overlapping parameters on the
classification of ENH-LTSA. In the experiment, the parame-
ters configurations of ENH-LTSA for each dataset are the same
as those in experiment 3). Since the curves of OCAs, ACAs
and KCs versus with increasing are similar to each other, we
only present the curves between and ACAs of ENH-LTSA
for different classifiers in Fig. 9. The curves in the figure are
the average results obtained from ten times running of inde-
pendent experiments. For each dataset and each classifier, the
ACAs increase slowly when increasing from 0.05 to 0.4 with a
few small fluctuations. That means a larger overlapping param-
eter results in a slightly more accurate approximation of actual
KNNs graph and improves the classification results. Yet from
the application point of view, the ACAs of ENH-LTSA with
lower is sufficient, since the low complexity of the KNNs
graph construction comes at only a small cost of classification
accuracy.

V. CONCLUSIONS AND FUTURE WORK

The LTSA method in HSI data for classification suffers from
two main problems: the neglect of the spatial features and the
high computational complexity. This paper presents a new
method based on LTSA, named ENH-LTSA, to address these
problems. The AWSK distance is proposed to construct the
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Fig. 8. The relationship between the ACAs and the projected dimension with different classifiers for (a) Indian dataset and (b) Urban dataset.

Fig. 9. The relationship between ACAs and the overlapping parameter with different classifiers for (a) Indian dataset and (b) Urban dataset.

KNNs graph in ENH-LTSA. The AWSK distance utilizes an
adaptive spatial window that considers the spatial surroundings
of each pixel to estimate the proper window size for each
spatial feature. The distance then combines the spatial features
with spectral features of HSI data. The ENH-LTSA method
reduces the complexity of LTSA through three schemes. First,
random projection preliminarily reduces the dimension of HSI
data. Second, the fast approximate KNNs construction via RLB
lowers the complexity of regular KNNs graph construction.
Third, the fast low-rank approximate SVD decomposition
decreases the computational time of eigenvalue decomposition
of the global alignment matrix. The three schemes working
together make ENH-LTSA superior to LTSA in computational
speed. Based on two different HSI datasets, five groups of
experiments are performed to completely testify and analyze
ENH-LTSA. The results show that ENH-LTSA surpasses
LTSA either in the classification results or in the computational
speed, and outperforms LLTSA, LE and PCA in classification
results. Moreover, the ENH-LTSA is not overly sensitive to
the projected dimension and the overlapping parameter. These
advantages make ENH-LTSA more feasible than LTSA in real
applications of HSI data classification. However, in the paper,
we did not carefully explore the effects from spatial resolutions

of HSI data on adaptive spatial window. In the future work,
we will study the relations between them to improve the per-
formance of adaptive spatial window. Moreover, we will apply
our speed improvement schemes into other manifold learning
methods.
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