Irregular Sampling and Frames

John J. Benedetto

Abstract. A theory of irregular sampling is developed for the class
of real sampling sequences for which there are L? -convergent sampling
formulas. The sampling sequences are effectively characterized, and
the formulas are accompanied by methods of compuling coefficients.
These sampling formulas depend on the theory of coherent state (Ga-
bor) frames and an analysis of the inverse frame operator. The results
include regular sampling theory and the irregular sampling theory of
Paley-Wiener, Levinson, Beutler, and Yao-Thomas. The chapter also
presents a new aliasing technigue, perspective on stability and unique-
ness, and references to recent contributions by others.
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2 John J. Benedetto

§1. Introduction

The subject of sampling, whether as method, point of view, or theory, weaves
its fundamental ideas through a panorama of engineering, mathematical, and
scientific disciplines. Results have been discovered in one or another discipline
independently of similar results in other disciplines. The spectacular exposi-
tions and research-tutorials of Biitzer et al. [21] and Higgins [31] not only es-
tablish the pervasiveness of sampling, but leave the reader with a sense that the
time has arrived for an eflicacious synthesis of the subject. As an example from
the past, Schwartz’s treatise [57] on distribution theory was a compendium of
diverse past accomplishments, a unification of technologies, an original for-
mulation of ideas and techniques both new and old, and a research manual
leading to new mathematics and applications, c¢f. a similar phenomenon in
wavelet theory at the present time, e.g., Meyer’s treatise [47]. The stage is set
for a comparable development in sampling theory.

QOur more focused and realistic goal in this chapter is to use the theory of
frames to formulate applicable sampling formulas in an elementary and unified
way for irregularly spaced sampling sequences. The treatment is general with
regard to the spacing of the sampling sequences, and the sampling formulas are
mathematical theorems when mild hypotheses are made. Our basic technique
involves an analysis of the inverse frame operator, and the formulas include a
good deal of the existing theory as well as new material. We have also developed
an algorithm associated with the sampling formulas, and there are undoubtedly
other algorithms for various specific applications. The theory of frames is due to
Duffin and Schaeffer [24], and there is an extraordinary presentation by Young
[64] on the subject. Our basic formulas are stated in §8, and these results, as
well as other observations throughout the chapter, are part of a collaborative
venture with Heller, e.g., [9], [10]. Item [9] is referenced in various sections,
and item [10] deals with multidimensional sampling and applications of our
algorithm.

We do not repeat material covered in [21], [31], except to round out a
discussion now and then. In particular, we reference, rather than prove, certain
well-known and occasionally difficult theorems.

The titles for §§2-4 are self-explanatory. In §5 we utilize coherent state
framnes to obtain the results of §2 in another way. This leads to a new point
of view on aliasing, and sets the stage for the case of irregular sampling in §6
and §8. §6 presents the sampling theory of Paley-Wiener, Levinson, Beutler,
and Yao-Thomas, but it does so in terms of the theory of exact frames and
the inverse frame operator. §7 provides results so that the formulas in §8 can
be implemented. §9 is perhaps the most idiosyncratic section of the chapter,
and it deals with stability and uniqueness. In §9, we have also chosen to point
out the deep work for Beurling [12], [13], Beurling and Malliavin [14], [15], and
Landau [41], and to hint at exciting questions which remain to be answered.

810 is divided into two parts. The first part is brief but important. It lists
references to new ideas in irregular sampling. It is, of course, dangerous to make
such a list, since I am undoubtedly unaware of other excellent work besides
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that listed. However, irregular sampling, in the context of coherent states and
wavelets, 1s a subject whose time has come; and these new contributions fit
into the theme of the chapter. The second part of §10 shows how aliasing
problems provide a transition from the coherent state setting of this chapter
to the threshold of the wavelet and wavelet packet setting of some of our other
work.

Besides the usual notation in analysis as found in the books by Hérmander
[32], Katznelson [38], Schwartz [57], and Stein and Weiss [59], we use the con-
ventions and notation described in §11.

§2. The Classical Sampling Theorem

LY(R) is the space of complex-valued integrable functions f defined on the
real-line IR. The L!-norm of f € L}(R) is

wm=[WM&<m

where “[” designates integration over R. The Fourier transform fof fe
L(IR) is defined as

ﬂw=/mw%Mﬁ

for ecach ¥ € IR(= R). A(R) is the space of such Fourier transforms. The
A-normof F = f € A(IR) is

1 la = 11

L?(IR) is the space of complex-valued square integrable functions, i.e., the
space of finite-energy signals. The L?-norm of f € L*(R) is

WM;(/WWWQ%<M

and the Fourier transform of f € L?(IR) is a well-defined element of L2(IR).
Katznelson’s book [38] is a standard and excellent reference for the Fourier
analysis we shall use.

The classical sampling theorem is —

Theorem 1. Let f € LY(IR)N A(R), or let f € L*(IR). Assume there are
constants T',§} > 0 such that

supp f € [-0, 9, (1)
ie., f = 0 off of the interval [—2, )], and

0<2TQ < 1. (2)
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Then : )
LORE D P Rt S (3)

where the convergence is pointwise on IR for f € L}(IR) N A(RR), or the con-
vergence is uniform on IR and in L?-norm for f € L*(IR).

Proof: Our proofs shall be honest but brief, to highlight their simplicity.
a. Let f € LY{IR)N A(R). Foreach t € R,

0= [ femaay
= f " Gy
-§2

Q
— ch/ 821*:'1'(t—nT)'-{ d’)’
—Q

sin[27nt — nT
- Z Cn [ﬂ'(t —(tnT) ) ! 4)

where G is defined as

i, i hl<o,
G —
™) {o, Q<)< L,

extended %—periodicaﬂy on IR. The Fourier series of G is

G(y) = Y epemmimC),

where

S

Cn = Tf G(y)e™ ™ v(T) gy,

Sk

Thus, ¢, = Tf(nT).

The calculation (4) is justified as follows. The first equation is a conse-
quence of a classical inversion theorem for f € L'(IR) N A(R), the second
equation follows by the definition of G, the third equation results from the fact
that Fourier series of integrable functions can be integrated term by term, and
the fourth equation is clear by a simple calculation.

b. Let f € L?(R). By the definition of the L2-Fourier transform,

Q
56~ [ cmemar], =o. (5)

. If SyG is the N-th partial sum of the Fourier series of G then
Q Q
| snemerar - [ svamen ),
-0 -0

= | [ 1@ (e - (k@) d
= [[1@)(G = SxG), = |G - S¥ G| oy_qq » (6)
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where the second equation is a consequence of the Plancherel theorem. Also,
we have

lim ||G— SNG”L2{.._Q’Q] =0,

N-—voo )

since

Jim |G =SNGl g, 4 =0

because of properties of Fourier series of square integrable functions. Combining

this information with (5), (6), Holder’s inequality, and the definition of ¢, we

obtain (3) with convergence in the L?-norm, cf. the proof of Proposition 9.
Assuming the result for L2-convergence, we prove the uniform convergence

on IR by means of Hélder’s inequality and the Plancherel theorem. B

Discussion 2. a. A common and essential feature of both proofs of Theorem
1 is the interplay between Fourier series and Fourier transforms.

b. The space L!(IR) N A(R), with norm ||f|l = ||fllx + [|f|l1, is & re-
flexive Banach space. Similarly, the space L'(IR) N A(R) N L2(1R), with norm
WA = lIflli + I £lls + I fll2, is a reflexive Banach space. Along with the Hilbert
space L2(IR), both these spaces are useful in sampling theory. In Theorem 1,
the hypotheses f € L*(R)NA(IR) and (1) allow us to conclude that f € LZ(R),
so that the second proof also works for the first case.

c. There is an intriguing and labyrinthine history associated with Equa-
tion (3), e.g., [31].

Calculation 3. Classical sampling and the Poisson summation formula.
There is another attractive proof of (3) which we shall now outline. The
proof uses the Poisson summation formula,

» 5,,T)A = % N busr (1)

where 6,7 1s the Dirac §-measure supported by the point nT € R. We are
not awarding this (correct) proof “Theorem” status since we do not wish to
stress smoothness requirements {(in the function version of (7)) or distributions
in this section, e.g., [32], {38, pages 130-131, number 15], and [57].
Implementing (7), we see that if f and s are well-behaved functions, then

£= (3 bur) ]+ (8)

if and only if

.71 N

f = (TZTn/Tf) 5y (9)
where (Tn/Tf) (v) = f(y - 7). Assuming (1) and (2), we obtain the validity of

(9) in the case 3 = T on [-9,Q] and supp§ C [k, 75]. For such an s and
using the fact,

bntf = f(nT)9,
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the equivalence of (8) and (9) allows us to conclude that

F=>" f(nT)rars. (10)
Equation (10) reduces to (3) for the case,
8 =T 1),
or, equivalently, N
s() =T Smw;’ - (11)

Example 4. It is natural to investigate an appropriate converse of Theorem
1. Suppose we assume Equation (3),with convergence in the L%-norm, for all
f € L*(IR) satisfying (1). Can we conclude the validity of (2), ie., is

270 < 17

We shall answer this question in the positive. Assume T, > 0 satisfy
27€) > 1 and define

£ = ) ¢ )
T

Clearly, X
f =T 1(%)1

and, in particular, (1) is satisfied. Since

0, if n#o0,

f(”T)z{l if n=0

then the right side of the sampling formula (3) is

sin 27§t
27t

g(t) = 2TQ

The functions f and g are not equal since both are continuous on IR, and
f(0) = 1 and ¢(0) = 2TQ > 1. (For another proof that f # g, note that
g=T 1(9).)

Definition 5. a. In the sampling formula (3), the sampling period is T', the
sampling sequence is {nT : n € ZZ}, and the sequence of sampled values is
{f(nT):n € ZZ}.

b. Let 2Q be a given frequency bandwidth (of a linear time-invariant
system having an even frequency response). For example, consider the ideal
lowpass filter with cutoff frequency . Because of Theorem 1 and Example
4, the minimum rate at which each element f € L?(IR), for which supp f C-
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[—£2, ], must be sampled for exact reconstruction is 20 samples per unit time.
This sampling rate, 2Q, is the Nyquist rate.
If the unit time is seconds (for convenience) and we define

1

Tzﬁ,

then the Nyquist rate or sampling frequency is 1/T samples per second, ie., 1
sample per T seconds, from which we obtain the maximal sampling period of T'.

The effect of undersampling continuous (in fact, analytic) signals f €
L*(IR) satisfying (1), vis a vis the goal of exact reconstruction by means of (3),
is called aliasing.

Definition/Discussion 6. Aliasing.

a. Suppose 2T€2 > 1. For simplicity, let us further assume that 1 > TQ.
Consider the Fourier series of G, deﬁned in the proof of Theorem 1. Since Gis
—»pemodlc it is of the form Z F('y , where, from the analysis of Theorem 1,
F must vanish off of [— 2T’ 11] By our hypotheses onT and Q, [Q— =, —Q+ 1]
is the only subset of [—5k, 2T] where the Fourier series of G can be expected
to converge to . That this i 1s the case follows since both 7y /¢ F and 7_1 ;7 F
are non-zero on subsets of [~ 2T1 2T] The ensuing phenomenon, caused by this
non—convergence of the Fourier series on all of [~ 5%, 2T] 18 aliasing. The term

“aliasing”, due to Tukey, catches the flavor of high and low frequencies from
the Fourier series “assuming the alias of each other”, cf. the more quantitative
discussion of aliasing in §§5 and 10 as well as [50).

b. Old motion pictures of fast moving events produce “jumpy’ v1deo, and
this is a classical example of aliasing. In fact, each frame of film is a sampled
value, but the sampling rate is not sufﬁciently high to produce exact recon-
struction of the event.

In Definition 5b, we referred to the notion of a “linear time-invariant
system”. This is an elementary engineering concept, e.g., [48], [51], which also
has a long history in mathematics, e.g., [1, pages 216-217]. To be a little more
precise, let X and Y be Banach sub-algebras of the convolution algebra M;(IR)
of bounded Radon-measures, let § € X, assume X C Y, andlet L : X —» YV
be a continuous linear map. L is a linear time-invariant system if the impulse
response Lé = h has the property that

VfeX, Lf=h=«f.

The Fourier transform £ is the frequency response of the system, and L or h
is called a filter if the inclusion supp b C IR is proper.

We omit the proof of the following result. The proof is similar to that
of Theorem 1, and it becomes valid when natural hypotheses are added to
the statement of the “theorem”. The “theorem”, itself, provides the classical
sampling formula for linear time-invariant systems.
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Theorem 7. Let L: X — Y be a linear time-invariant system with impulse

response h € Y and frequency response h. Assume there are constants T,82>0
such that

0<2TQ < 1,

and define the function
? 1 2mwit
s(t) = T] 4T dry, (12)
~a f(7)
Let f € X satisfy the support condition,

supp f C [-9,9).

Then
=Y (LHnT)rurs. i (13)

The function s, in Equations (10), (11), (12) and (13), is a sampling func-
tion. In the case of (11) we obtain the classical sampling formula (3). Qur goal
in the sequel is to obtain sampling formulas of the form,

F=Sftasn (14)

and

f = ch(f)Ttnsa (15)

where {¢,} is an irregular sampling sequence, i.e., {t,} is not uniformly spaced.
Later, we shall comment on the other parameters in (14) and (15). Also, there
are versions of (14) and (15) corresponding to {13).

§3. The Paley-Wiener Theorem

In light of the support hypothesis in Theorem 1 and Theorem 7, we make the
following definition.

Definition/Notation 8. a. Let 2 > 0, and define the space,
PWq = {f € L*(R) : supp f C [-2,91}.

PWgq is the Paley-Wiener space, and it is a Hilbert space, considered as a
closed subspace of L*(IR) taken with the L?-norm. The support condition,

supp f C [—Q, €, is described by saying that f is Q-bandlimited.

b. Let -
sin
d(t) = ——
(=2,
and define the L'-dilation

da(t) = Ad(tX).
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-(“d” is for Dirichlet.) Equation (3) can be written as
F(t) =T ) f(nT)(7ar dzr)(t).
PWy, is a reproducing kernel Hilbert space in the sense that

PWq = {f € L*(R) : f * daz = f},

cf., the usual development of reproducing kernel Hilbert space in [30], [61], [64].
c. ¥ fe PWq then f € L?[-9,Q] C L1[-Q, ], where the inclusion is a
consequence of Holder’s inequality. Further, if we define the function,

2
9(z) = /9 F)e™ dy, z=t+iyeC,

then ¢ is a continuous function on € and g = f a.e. on RR.
In the other direction, if F' € L?[—,Q] and we define the continuous
function

Q
£ty = / F(1)@™"dy, t € R,
=0

then f € PWg and F' = f a.e. on IR. These observations are elementary facts
from real and harmonic analysis, e.g., [2], [38].

d. A function f : C — € which is analytic at every point of C is entire;
and an entire function is of exponential type A if for each B > A

AC =C(B) >0 suchthat VzeC, |f(2)] < CeBlal, (16)

Proposition 9. If f € PWgy then f is an entire function of exponential type
2782, and

VER,  f(t) = / fem

i.e., pointwise equality as well as L?-norm equality.

Proof: If f € PWq then

Q
g(z) = / fe™7dy, z=t+iyeC,
)

is a well-defined continuous function on €. One proof that g is entire follows
from Fubini’s and Morera’s theorems. Finally,

< | el dy

Q 2
< e2mlvl® f_n |f()] dy < 19 /_9 (1)l dvy

= (e 2ml2R o o,
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Now, the Fourier inversion theorem for L?(IR) asserts that

50 = [ fonem ay

in L?(IR). Consequently, ||f — g|lz2 = 0 so that f = ¢ a.e., and, hence, f can
be identified with ¢ on R. B

In this case, inf{B > 278 : (16) is valid} = 27} also satisfies (16) with
the constant C' = || fi|1, cf. [19, page 104, Equations (6.8.4)-(6.8.6)].

The converse of Proposition 9 is the Paley-Wiener theorem which plays a
role in much of what follows.

Theorem X. (Paley-Wiener, [49, Theorem X]). Let f € L%(IR). Then f €
PWy, if and only if f is an entire function of exponential type 2x().

Discussion 11. a. There are a number of similar formulations of Theorem
10; and, besides the proof in [49], proofs of Theorem 10 can be found in [19,
- pages 103-108], [56, pages 370-372]. The sufficient condition in Theorem 10, in
order that f € L?2(IR) be an element of PWyq, can be replaced by the condition,

AC >0 suchthat Vze €, |[f(z)| < Ce?™2,

b. Because of our interest in d-dimensional sampling, we note that d-
dimensional versions of the Paley-Wiener theorem were proved early-on, e.g.,
[52]. Further, there are distributional versions in R?, e.g., [32, volume I, pages
181-182 (cf. pages 21-22 of Hérmander’s first edition)], [57]. A proof of the
Paley-Wiener theorem for L2(IR%) is found in [59, pages 112-114).

Example 12. There is an analogue of Theorem 10 for the usual Laplace
transform, which was also proved by Paley and Wiener [49, Theorem V]. To
state this result, we first define the classical Hardy space H? to be the set of
functions f, analytic in the right half plane, with the property that

i

F)
sup ( / If(t+iy)|2dy) < oo,
>0

of., Lemma 7.7a. Further, if F : R — C is supported by [0,c0), its Laplace
transform is

L(F)(z) = / " F(y)e dy.

The Laplace transform analogue of Theorem 10 is the representation the-
orem: if f € H? then there is F' € L:(IR), supported by [0, 00), for which

f(z) = L(F)(2), z=1t-+1y and t> 0.
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The converse is true, and is not difficult to prove.

The LP-version of this result is due to Doctsch (1936), using results of
Hille and Tamarkin (1935). Weighted versions were initiated by Rooney in the
1960s; and a general theory for weighted L? and H? spaces was formulated by
the author, with Heinig and Johnson, in the 1980s, e.g., [6] for references.

§4. Frames and Exact Frames

Definition 13. a. A sequence {¢,} € H, a separable Hilbert space, is a frame
if there exist A, B > 0 such that

VieH, Alfl* <Y I(f,9a) < BlIFIP,

where (,) is the inner product on H and the norm of f € H is Il = (f, f)=.
For example, if H = L?(IR) and f,g € H then (f,¢) = [ f(¢)g(¢) dt. A and B
are the frame bounds, and a frame {g,} is tight if A = B.

A frame {gp} is exact if it is no longer a frame when any one of its elements
is removed. l

Clearly, if {g,.} is an orthonormal basis of H then it is a tight exact frame
with A=B=1.

b. The frame operator of the frame {g,} is the function: § : # — H
defined as Sf = > (f,9x) gn- In Theorem 14a, the first expansion is the frame
expansion, and the second is the dual frame expansion.

The theory of frames is due to Duffin and Schaeffer [24] in 1952. Exposi-
tions include [64] and [28], the former presented in the context of non-harmonic
Fourier series and the latter in the setting of wavelet theory.

Theorem 14. Let {g,} C H be a frame with frame bounds A and B.
a. S is.a topological isomorphism with inverse S~ : H — H. {S7¢,} is
a frame with frame bounds B~! and A™', and

VF€H, f=> (£5"ga)gn=> (f,0n)S gn inH.

b. If {gn} is tight, ||gn|| = 1 for alln, and A = B = 1, then {g,} is an
orthonormal basis of H.
¢. If{gn} is exact, then {¢,} and {S~'g,} are biorthénormal, i.e.,

vm?” (9m,5-19n> = 6mn,

and {S~'gn} is the unique sequence in H which is biorthonormal to {g,}.

d. If {gn} is exact, then the sequence resulting from the removal of any
one element is not complete in H, i.e., the linear span of this resulting sequence
is not dense in H.

Discussion 15. Vitali’s theorem.

We comiment on Theorem 14a because it is surpr-isingly useful and because
of a stronger result by Vitali (1921).
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To prove part b we first use tightness and A = 1 to write,

lgmll® = llgmll* + D 1(gm>gn)I%

nFEM

and obtain that {g.} is orthonormal since each ||gn|| = 1. To conclude the
proof we then invoke the well-known result: if {g,} C H is orthonormal then
it is an orthonormal basis of H if and only if

VfeH, ’f”2 Elf:gn

In 1921, Vitali proved that an orthonormal sequence {g,} € L?[a,b] is
complete, and so {g.} is an orthonormal basis, if and only if

Vi€ [a,8], z|f o) dul = —a. (17)

For the case H = L?[a,b], Vitali’s result is stronger than part b since (17) is
tightness with 4 = 1 for functions f = 1j, 4.

Other remarkable and important contributions by Vitali are highlighted
in [2].

Definition 16. Let H be a separable Hilbert space. A sequence {g,} C H
is a Schauder basis or basis of H if each f € H has a unique decomposition
= 3" ¢n(f)gn- A basis g, is an unconditional basis if

JC suchthat VF CZ., where card F <co, and

Vb,,cn € C, where n€ F and |b,] < e,

Il Z bugn|l < Cf Z cnganll-

necF nck

An unconditional basis {g,} is bounded if
JA,B >0 suchthat Vn, A <||g.] < B.

Separable Hilbert spaces have orthonormal bases, and orthonormal bases
are bounded unconditional bases.

Kothe (1936) proved the implication, b implies c, of the following theorem.
The implication, ¢ implies b, is straightforward; and the equivalence of a and
¢ is found in [64, pages 188-189].

Theorem 17. Let H be a separable Hilbert space and let {g,} C H be a
given sequence. The following are equivalent:
a. {gn} is an exact frame of H;

b. {gn} is a bounded unconditional basis of H;
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¢. {gn} is a Riesz basis, i.e., there is an orthonormal basis {u,} and a
topological isomorphism L: H —+ H such that Lg, = u, for each n.

Definition/Discussion 18, Weyl-Heisenberg (Gabor) and Fourier frames.

 a. Let g € L?(IR) and suppose we are given sequences {a,}, {b,} C IR.
Recall that translation is defined by (7,9)(t) = ¢(t — a) and, notationally,
we write ep(t) = 2™, If {e}, 7,,9} is a frame for L*(R) it is called a Ga~
bor or Weyl-Heisenberg frame. Fourier frames {es,, } were defined in [24] for
L?[-T,T). Precisely, if {es,,} is a frame for L?[-T,T] it is called a Fourier
frame for L2[-T,T).

b. Gabor’s seminal paper [26] (1946) deals with “regularly latticed” sys-
tems {€msTnag}, where g is the Gaussian; and it turns out that the Heisenberg
group is fundamental in analyzing the structure of modulations and transla-
tions such as {emsTnag} for ¢ € L*(IR). This explains our terminology in part
a. Gabor won the Nobel prize for his conception and analysis of holography
(1947), which is a method for photographically recording a three-dimensional
image; and, as demonstrated by Schempp, the Heisenberg group also plays a
role in this setting. The special kind of light required to demonstrate the ca-
pability of holography is a single frequency form called coherent light; and it
became readily available after the laser was developed in 1960. Further, the
coherent states of quantum mechanics are the elements of {e;;7ne9} in the
case ¢ is the Gaussian and ab = 1, For the Gaussian ¢ and ab = 1, {€mpTnag}
is not a frame, cf. [58] for ab < 1.

Duffin and Schaeffer’s Fourier frames were also part of a larger picture,
dealing with problems in non-harmonic Fourier series and complex analysis
and the work of Paley-Wiener, Levinson, Plancherel-Pélya, and Boas, cf. §7.

c. {ep,Ta,g} is a frame for LZ(IR) if and only if {r, (e, ¢)} is a frame
for L*(R).

Our Weyl-Heisenberg frames will often be defined for L2(IR). As such, we
note that

Vg € L*(R), (eq,75,8)" = eX™onbme, r_. g,

where “¥” designates the inverse Fourier transform.

Theorem 19. Let ¢ € L*(IR) and suppose a,b > 0. Define
G(t) = lg(t ~ na)*.
Assume that there exist A, B > 0 such that
0<A<G()<B<oo aeon R, (18)

and that supp ¢ C I where I is an interval of length 1/b. Then {embTnag} is a
frame for L*(IR), with frame bounds b=! A and b~! B, and

Vfe L*(R), S7f= %c- (19)
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Theorem 20. Let g € L*(IR) and suppose a,b > 0. Assume {enoTmsd} is a
frame for L?(IR). Then

S (enaTmb §) = €naTmp S™1 . (20)

Example 21. a. Let ¢ € L?(IR) and suppose a,b > 0 satisfy ab = 1. If
{€mbTnag} is a frame then it is an exact frame. This remarkable fact (for

ab = 1) can be proved using properties of the Zak transform which we now
define.

b. The Zak transform of f € L*(IR) is defined as
Z f(z,w) = a'/? Z f(za + ka) 2™k

for (z,w) € R x R and a > 0. It turns out that the Zak transform is a unitary
map of L2(IR) onto L%(Q),Q = [0,1) x [0,1).

c. If{empTnae g} is a frame for ab = 1, it is a bounded unconditional basis
(part a and Theorem 17). In particular, the frame decomposition,

Vf = L2(IR,), f = Z Cm,n €mb Tna 9,

from Theorem 14a is unique; and it is easy to verify that

Ym,n, cmn=(f,S" meTnag)
/ / Zf E w) «-2mma:e—21rmw dedw.
Zg(z,w)

Results in the same spirit as the one stated in Example 21a have been
formulated in the coherent state literature for many years; and, in this context,
they seem to go back to the analysis of von Neumann found in [60, pages 405-

407]. The following is a representative list of such results and the proofs are
not difficult, e.g., [5], [28].

Theorem 22. Let g € L*(IR) and suppose a,b > 0 satisfy ab = 1.
a. {embTna g} is complete in L2(IR) if and only if |Zf| > 0 a.e.
b. {embTna ¢} is an orthonormal basis of L*(IR) if and only if |Zf] =1
a.e.
{€mbTna g} is a frame for L?(IR) with frame bounds A and B if and
only if A < |Zg|* £ B a.e. In this case, {emyTna ¢} is an frame (Example
21a).

We shall now state the Balian-Low Theorem, which can be proved using
the Zak transform.
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Theorem 23. Let g € L%(IR) and supposea,b > 0 satisfy ab = 1. If {eémbTnag}
is a frame then either tg(t) ¢ L*(R) or vi(v) ¢ L2(R).

We first learned of the Balian-Low “phenomenon” in an early preprint of
[23]. It turns out that this result has been proved at various levels of precision;
and [8] contains an analysis of these proofs, as well as a complete, new proof
based on some established ideas.

Discussion 24. Exact frames: oversampling and undersampling,

a. We have stated Theorem 22 and 23 since a comparison of the exact
frame case (ab = 1 for regular lattices) and the more general frame case is
fundamental in our approach to irregular sampling. For example, exact frames
{embTna g} (in particular, orthonormal bases) don’t have the flexibility to take
into account the oversampling occurring naturally in biological processes such
as cochlear processing; our contention is that general frames do have such flex-
ibility. The oversampling reflected in Theorem 26 generally involves sampling
functions s with more rapid decay in the Fourier domain than the classical
sampling function in Theorem 1. The goal is better computational efficiency
for low pass filters; the price to be paid is a sampling rate greater than the
Nyquist rate. Of course, we can sample greater than the Nyquist rate for the
clagsical sampling function, but the slow decay in the Fourier domain is still a
liability.

b. Using the notation from §2, recall that undersampling occurs if 272 >
1, where {nT} is the sampling sequence and 2{ is the given frequency band-
width. If ¢ = T and b = 2Q then ab > 1, cf. the proof of Theorem 25. It is
an expected fact, with a surprisingly abstract proof, due to Rieffel [55], that if
g € L*(R) and a,b > 0 satisfy ab > 1 then {emsTne 9} is complete in L2(IR),
cf. [23].

The quantity A = -;—b is the natural density of the so-called von-Neumann
lattices {(na,mb)}, e.g., Definition 36 and Example 37c.

The most significant contribution in classical analysis related to Rieffel’s
theorem is due to Landau [43]. Using a theorem of Daubechies [23, Theorem
3.1], he proved that if ¢ and § have sufficient decay and {empTna g} is a Gabor
frame for L?(IR), then ab < 1. This is, of course, weaker than Rieffel’s theorem,
but the method, although intricate, is constructive. The following are sufficient
decay conditions to implement Daubechies’ theorem: there are constants C' > 0
and o > -;- such that

C

o C .
V{t,7) e R xR, |g(t)[§m)‘g and IQ(V)ISW-

Of course, if a > 3/4 and ab = 1 then, by Theorem 23, there are no such ¢ for
which {emb'rm g} is a Gabor frame.

§5. Regular Sampling and Frames

The theme of this section is to deal with classical sampling results by frame
methods in the case that the inverse frame operator §—! is a multiplier. The
following is Theorem 1 proved by such methods [9, Theorem 3.1].
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Theorem 25. Let T, > 0 be constants for which
0 <270 < 1.

Then
VfePWa, f=T) f(nt)rardesn in L2(R). (21)
(The Dirichlet kernel dy was defined in Definition/Notation 8).

Proof: Let ¢ = (29)"1/2d2.,.r9, and set ¢ = T and b = 2. Theorem 19 is
applicable and so {en7Tmed} is a frame. Consequently, by Theorem 14a and
Theorem 20,

Vfe LZ(IR), f = Z(f, enaTmbS_l.&)EnaTmb.a in Lz(IAR) (22)
Since supp § is compact, we have
Yhe LH(R), S~'h=2TQh

by Theorem 20; and, hence, (22) becomes

Vfe Lz(IR), f= 2TQZ(J€’ 6na7—mb§>7'—naembg in LZ(IR')' (23)
If f € PWq then

(20)-1/2 f(—nT), i m=0,

0, if m#£0. (24)

(f; enaTmb.é) = {

The sampling formula (21) follows from (23) and (24). B

Using the same method from the theory of frames we can prove the fol-
lowing result {9, Theorem 3.3], which we “proved” by Poisson summation in
Calculation 3 and which we had in mind in our comment about oversampling
in Discussion 24a. The condition, § > 0 on (— QJUIQ, 55), can be relaxed,
e.g., [29].

Theorem 26. Let T, > 0 be constants for which

Lo
2T

0<2TQ < 1,

and let g € S(IR) have the following properties:
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Set .
GO = laly—mb)? and s(t) = T(%)"(),

where Q + L. < b <

o Then 0 < A< G(y) < B< oo, s€S(R), supps =
suppd, §:Té on

T
[, 9], and

Vfe PWa, f= Zf(nT)TnTs in L*(R).

(S(IR) is the Schwartz space, e.g., [57], and the result is true for g and s having
significantly less smoothness. )

Example 27. a. In Theorem 25, {€,,Tmp§} is a tight frame with frame bounds
A = B =1 in the case 272 = 1, where a = T and b = 2{). From Theorem
14b, {eénaTmsd} is an orthonormal basis if and only if 2772 = 1.

b. To construct functions g € S(IR) satisfying the hypotheses of Theorem
26, we proceed as follows for 27 < 1.

We begin in the standard “distributional way” by defining

_ gle=1vD
vl = 5T &

where ¢ EAC""O(]IA-'{) vanishes on (—oc,0] and equals e~/¥ on [0,00). Thus,

e € C°(IR) is an even function satisfying the conditions, supp . = [—e, €]
and fe(y) dy = 1. Next set

1 n
Yuyv = Tﬁlv *1ly.v, U,V CIR,

so that ¢y is 1 on U and vanishes off of U + V' — V. The function ¢ will be
defined in terms of § as § = 9y v * ¢, where we shall now specify ¢, U, and
V given 2TQ < 1. Let U = [—u,u], where u € (9, %) is arbitrary, and let
e = u — ). Choose V = [—v,v] by setting v = 2%, where w = 5% + €. These
choices are necessitated by a simple geometrical argument, and the resulting

function § satisfies the desired properties.

Definition/Discussion 28. Aliasing.

a. The proof of Theorem 25 required the support condition, f € PWy,
to verify both parts of (24). When f is not Q-bandlimited, so that aliasing
occurs, phase information contributed by m # 0 in (23) is required in the
frame decomposition of a signal, cf. Definition/Discussion 6. To quantify this
observation, we define the aliasing pseudomeasure a; g on R (for the low pass

filter dz2rq ) to be the distributional Fourier transform, a; g = A}:n, where each
t is fixed and

Ao = Z(eZWi(ZmQ)t — memal(g) € L(RR).
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The study of pseudomeasures is intimately related to spectral synthesis {1], cf.
§9. In equation (25) of part b we shall see the relation between the aliasing
pseudomeasure and the manner in which aliasing is manifested in our proof of
Theorem 25.

b. Let f € L?(R) and assume 272 = 1. Then, formally,

f(t) =T Z f(nT)Tang,rg (t)
+ T Y (f % arg)(nT)rnrdaxa(t). (25)

To verify (25), we write (23) as a sum, > m=0,n T 2ometo,n» and obtain

f(t)y =270 ((291)1 72 ] F (7)19(7)3—2“*'”7’7(17) g(t +nT)

m#0 n

+ 270 Z Z (W /f("}’)lg("}’ - 2mQ)e“2“i"T7dfy> X

e—2wi(2mﬂ)(t+"T)g(t -+ nT): (26)

where g = (2Q)1/2dy.q. Equation (26) can be written as

1 7 —2minT
214 Z (29)1/2 (/ flr)e Tdy — V/{;Q a~

+2rQ’y” Z(ﬁ,— [ 70 10ty = 2m@)emrminay )

m#) n

f(fy)e“zwi"T7dfy)g(t + nT)

errz'(ZmQ)(t+nT)g(t + nT),

and so

f(t) = 2123 F(nT) s dana(t =)

+ 2T9{ ) Z(W / Fintaly - 2m9)e“2”"“”d7) X

m#0 n

eZﬂi(Zmﬂ)(t—l-nT)g(t + TLT)

The bracketed term in (27) can be written as

{---}:W;g(ﬂ-ni’)x
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(Z 627ri(2m9)(t+nT) f ]6(’}’)19(7 _ 2m9)e_2“i"T7dfy
m#0

> /f(’Y)ln(fy QmQ)e—zﬂmTvd,Y)

m#{)

= Z WT—an%Q (t)x

(#} ([ fertats ~ ameyemtmnriay)

(ezm‘(2mﬂ)(i+nT) — 1)) .

At this point we use our hypothesis that 272 = 1 so that the bracketed term
becomes

{ } TZTwansz(t)Z 21”(ZmQ)t 1)%

m##0

f Fn1aly ~ 2mQ)e~minT7dy

=75 ( [ Fepeen (X e~ taly = 2) ) i)

m7£0
=T Y (f * aro)(nT)Tnrdana(t).

Combining this calculation with (27) yields (25).

In general, we must assume f € L*{IR) N A(IR) to expect the convergence
of (25) in L%(R).

¢. The aliasing error of f € L%(R) for the low pass filter darg with
sampling at the Nyquist rate 2 is the second term on the right side of (25),
viz.,

T Z(f * at,Q)(nT)Tanng (t) = Ef(t).

Formally, standard calculations give

lefleo <2 [ 1

§6. Irregular Sampling and Exact Frames

The theory of non-harmonic Fourier series was developed by Paley and Wiener
[49, Chapters 6 and 7] and Levinson [44, Chapter 4]. Related work preceding
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[49] is due to G. D. Birkhoff (1917), J. L. Walsh (1921), and Wiener (1927).
The Paley-Wiener and Levinson theory has been reformulated and analyzed in
terms of irregular sampling by Beutler [16], [17], who obtained completeness
results, and Yao and Thomas [63], who obtained an irregular sampling theo-
rem. The Yao and Thomas expansion was discovered independently by Higgins
(1976) using reproducing kernels, e.g., [30].

In this section we shall state and prove the Yao-Thomas irregular sampling
expansion by frame methods. The coefficients in the expansion are the values of
the given signal at the given irregularly spaced sampling points, and, because
of our frame methods, the setting is necessarily in terms of exact frames, cf.
§8. Whereas we implemented $~! as a multiplier in §5, in this section we
shall invoke the formula for S~ contained in the following result, which is a
consequence of Theorem 14.

Proposition 29. Let H be a separable Hilbert space and let {g,} C H be an
exact frame with inverse frame operator S—1. Then

VfeH, S7Tf=) (f,5 a9 gu, (28)

and so §~! is the frame operator of the dual frame {S~1¢,}.

In the case of irregular lattices, we have the following result [9, Theorem
4.1], which is the analogue of Theorem 19 for IR. Although this result (Theorem
30) and Corollary 31 are concerned with frames and not exact frames, they are
required in our proof of Theorem 32.

Theorem 30. Let ¢ € PWy for a given @ > 0. Assume that {a,}, {bn} are

real sequences for which
{es,} is aframe for L*[-,1)],
and that there exist A,B > ( sucﬁ that |
0<A<G(Y)<B<oo ae on IR,

where

G(7) =D 1y — bm) .

Then {eq,Ts,,§} is a frame for L2(IR) with frame operator S; and {e, 7, §}
is a tight frame for L*(RR) if and only if {e,,} is a tight frame for L*[-9,9)]
and G is constant- a.e. on IR.

Corollary 31. Let us assume the hypotheses and notation of Theorem 30,
and set Im = [—Q, Q] 4 b,. Then, for each fixed m, {4, } is a frame for
L?(I1,,) with frame operator Sy, and

Vhe L(R), Sh=>> (1,,§)Sm(hm,,§) in L*(R).
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Proof: We compute
Sh=Y"> (h€a, T 8)eanTond
m n
= () _{hs €anTomd)ean)1r,
m b
= Z(Tbmg)(Z(BTbm§3 6a'u)Imean ]‘Im)
m n

= (1,8)Sm(h,,5). W

We can now prove the irregular sampling theorem for exact frames. Clas-
sical properties of the sampling functions {s,} in Theorem 32 are recorded in .
the remainder of the section.

Theorem 32. Let {¢,, } be an exact frame for L?[~$), Q] for a given > 0 and
real sequence {ay}. Define the sampling function s, in terms of its involution
3n(t} = Sn(—t), where

LY
VEE R, n(t) = j Ton()e2™Y dy,

and where {h,} C L*[-Q, Q] is the unique sequence for which {e,, } and {h,}
are biorthonormal. (In particular, 8, € PWq.} I t, = —a, then

VfePWa, f=Y f(ta)sa in L*(IR).

Proof: {9, Proof of Theorem 5.2]. Let ¢ = (29)‘1/2d2,r9, and set b, = 2mfl,
Since {eq, } is a frame we can apply Theorem 30, and, hence, {e,,7,,§} is a
frame for LZ(R) with frame operator S. In particular,

Vhe L*(R), h=> (h,ee,m,d)S  (ea,m,§) in LH(R).  (29)
Similarly to (24), we obtain

(2Q) 12 f(—a,), f m=0,

0, . if m#£0 (30)

(Frears §) = {

for f € PWy.
By means of Corollary 31 we can then verify that

S =208;' on L*-9,Q).
Thus, since g € PWgq, we compute

S~ (eanT0d) = (202 577 (€0, L)y
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so that, by the exactness hypothesis and Proposition 29, the right side is

(202 Z(ean,hm)[mg,m ha = (20)1/2 B,

Combining these two equalities with (29) and (30) gives the reconstruction,

Vi e PWa, f=) (20)72 f(—an )2/ Ay in L*(R),

and the result follows. B

Definition/Discussion 33. a. For a given @ > 0, a real sequence {a,}
satisfies the Kadec-Levinson condition if

n 1,1
sup lan - 551 < 7(55)- (31)

b. Levinson [44, Theorem 18] (1940) proved that if (31) is assumed then
{eaq, } is complete in L#[—Q, Q], and there is a unique sequence {%h,} for which
{€a, } and {h,} are biorthonormal, ¢f. Theorem 1l4c. Kadec (1964) provided
the direct calculation proving that {e,,} is an exact frame for Z?[—Q, §], cf.
Theorem 60 and [64, pages 42-44|. Levinson [44, Theorem 19, in particular,
page 67} proved that the bound “i” in (31) is “best possible”, i.e., there ex-
ists {an} C R for which equality is obtained in (31) and {e,,} is complete in
L?[—Q, 9], but {eq4, } is not an exact frame for L[, Q).

¢. There are exact frames of exponentials that do not satisfy the Kadec-
Levinson condition, [24, page 362], [29]. On the other hand, it is not
known whether there are bases of exponentials which are not exact frames
for L?[-,9)], e.g., [64, page 197].

The explicit formulas in the following result were proved in [49, pages 89-
90 and pages 114-116] and [44, pages 48 fI.]. The calculations by Paley and
Wiener were refined by Young (1979), e.g., [64, pages 148-150].

Theorem 34. Let the real sequence {a,} satisfy the Kadec-Levinson condi-
tion for a given > 0. Then {e,,} is an exact frame for L?[—, )], there is a
unique sequence. {h,} C L?[~Q,Q] for which {e,,} and {h,} are biorthonor-
mal, and &,, defined in Theorem 32, is of the form

(32)

where

ty

Gun

) = (¢ - a0) [ 1= )1 -
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Definition/Example 35. a. Let {L,} be a sequence of functions defined on
IR and let {t,} be a real sequence. {L,,t,} is a Lagrange interpolating system
of functions L, with respect to the sampling sequence {t,} if

Ymyn € ZZ, Lu(tn) = bman.
b. Historically, Lagrange’s interpolation is the method of defining a spe-

cific polynomial L of degree deg L < N such that L interpolates from N + 1
given points (¢;, f(¢;)) e R x C,j =0,...,N. L is of the form

L) = ) f(tm)Lm(t),
m=0

where
_ p(t)
Ln®) = )t —tm)
and
N
p(t) = _H(t — 1),

cf. the form of equation (32). Clearly,
Vm,n=0,...,N, Lyu(tn) = bmn,

since
Ptn) = [] (tm — 1))
j#m
and
t_tm) = [[ ¢ -t

j#Fm

One goal of such interpolation is to provide polynomial approximation for
afunction f whose values are known at {¢; : § = 0,..., N}. Such approximation
is useful for a variety of reasons, e.g., to estimate [ f(t) dt even when we have
complete knowledge of f. Unfortunately, the Lagrange polynomials L,, tend
to oscillate wildly for large values of V.

To deal with this oscillation, the notion of spline and natural spline were
defined on the interval [to,ty] for a given set of points {t; : 7 = 0,...,N}.
A function S : [tg,tx] — C is a spline of degree M if S € CM~1[ty,tn] and
S, restricted to each interval [t;_1,1;], is a polynomial of degree deg$S < M.
Because of igsues dealing with degrees of freedom and symmetry with respect
to endpoints, we deal with M = 2K — 1 and suppose

Vi=K, K+1,...,2K -2, SW(t) = SW(ty) =0,



24 John J. Benedetto

If a spline satisfies this additional condition, it is a natural spline. A funda-
mental fact about natural splines is that for a given data set {(¢;, f(¢;)) : j =
0,...,N}, there is a unique natural spline S which interpolates the data in the
case N - 12> K.

An important type of inequality, which we shall state for M = 3 and which
addresses the oscillation problem of Lagrange polynomials, is the following.
Let S be the natural spline interpolant for a given data set {(t;, f(¢;)) : j =
0,...,N}. If f : [to,tn] — C is another interpolant of the data, f' is absolutely
continuous, and f(2) € L2[ty,tn], then

fN ISE®))? dt < ftN |7 ()|? dt.

to to

The curvature of a function f at ¢ is f®(#)/(1 + (f'(¢))?)3/2. Consequently,
if f' is small then f(?) approximates the curvature; and so the natural spline
interpolant can be viewed as the interpolant of minimum curvature in this case.

c. Let {e4,} be an exact frame for L?[—Q, ], and set t, = —a. We know
there is a unique sequence {h,} for which {e, } and {h,} are biorthonor-
mal. If we define {s,} as we did in Theorem 32, then {s,,t,} is a Lagrange
interpolating system since

Sm(tn) = 3(—tn)
Q .
[ oy
-0
— (hn(q,),ezma,,ry)'

d. We shall not discuss Lagrange interpolation any further except to make
the following observations:

i. Lagrange interpolating systems not only provide a backdrop for
classical considerations with splines (part b), but also play a role in expanding
on the obvious relations between multiresolution analysis in wavelet theory
and the theory of splines, e.g., [22], [46], [47, pages 24-25]. This is all the more
interesting since we have used Lagrange interpolating systems in the context of
exact Fourier frames associated with coherent states and the Heisenberg group,
whereas wavelet theory is characterized by translations and dilations and the
azx + b group.

ii. Interpolation problems are a fundamental part of the theory of
entire functions, e.g., {19], cf. [63].

iii. Interpolation problems have a dual relationship with the ideas we
shall sketch in §9, e.g., [41].

iv. If, instead of PWq, we consider the space of pseudo-measures sup-
ported by [—£, 2], then Beurling (1959-1960) has characterized the conditions
in order that a discrete set {(¢;, f(¢;))} € IR x C can be used to interpolate a
Fourier transform f on R of such a pseudo-measure, e.g., [12}]; the conditions
are in terms of uniformly discrete sequences (§7) and uniform Beurling density
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(§9)-

At the end of §2 we set our goal of obtaining the sampling formulas (14)
and (15). In Theorem 32, accompanied by the well-known formulas of Theorem
34, we have (14), viz.,

f= Ef(tn)s'n-

Because of the setting of exact frames and biorthonormal sequences, (14) has
a dual frame formulation,

= Z:‘L'Tt(.]‘:)'f't,a, déwﬂa

e.g., [29]. We shall now proceed to obtain (15) in §§7 and 8.

§7. The Duffin-Schaeffer Theorem and Frame Conditions
Definition 36. a. A sequence {a,} C IR is uniformly discrete if
3d > 0, such that Ym # n, |am — ax] > d. (33)

A uniformly discrete sequence {a,} € R is uniformly dense with uniform
density A > 0 if

JA > 0 and 3L > 0, such that Vn € 7, |a, ~ %| < L, (34)
The description “uniform” is used since (34) has the form

sup |a £|<oo
ne% " A .

b. Classically, an increasing sequence {a,} C IR has natural density A > 0
if
lm ™) _ A

r—o0 r

where
ror

no(r) = card{a, € [—5, 5]}

(“card” is cardinality). If a sequence fails to have a natural density it always
has (finite or infinite) upper and lower natural density defined in terms of lim
and lim, resp. e.g., [19, Section 1.5]. In §9 we shall deal with

ni(r) = card{a, € I,|I| =1},

where I is an interval, and with upper and lower uniform Beurling densities.

Example 37. a. Let a, = nT, where T > 0 is fixed and n € ZZ. Then
nT ¢ [~N, N]if and only if nT' > N or nT < —N. Thus, card{nT € [-N, N|}



26 John J. Benedetto

is essentially 2N/T" and so {nT'} has natural density 1/T. Clearly, this example
is uniformly dense with uniform density 1/T; in fact, d = T in (33), and any
L > 0 can be used in (34) for the case A = 1/T, ie., supla, — £| = 0 for
A = 1/T.If {nT} is a sampling sequence then the natural density A = 1/T is
the number of samples per second, e.g., §2, Definition 5b.

In this case, if 2I'Q =1 then {e,r} is an orthonormal basis of L2[—, ],
cf. Theorem 38.

b. Uniform density is more restrictive than natural density. To see this, let
{an} C IR be an increasing sequence satisfying (34), and assume lim, o0ty =
oo. This latter assumption is weaker than (33). Suppose {a,} satisfies the

convenient, but non-essential, symmetric distribution, a_, = —a,, < 0 for each
n > 1. We shall prove that

b

r—ro0

with A > 0 as in (34).
Because of (34) we have

An 1 < 1
n  A|l"n’
and, hence,
n
lim —=A
00 a'ﬂ

By definition,
Vn>1, ne(2a,) =2n+1,

and, so, '
. no(gan) . 2n- + ].
lim ————= =1

noo 2an nsoo 2ay

=A

by the previous step and the assumption that lim,_,o a, = co. Of course,
we really want to consider no(r)/r instead of n¢(2¢,)/(2ay). For a given ay,
n 2 1, let a; be the first element of the sequence for which ap, > a,, ie,
Qp = Qpy) = ... = Gp-1 < ap. Then, for any r € (an, ap),

no(2r) =2(p—-1)+1,
and so

no(2r)  2p—-1 2(p—-1)+1
< =
2r 2a, 2ap_1

since 1/r < 1/a,. As indicated above,

lim 2(10__1_)_"'__1_ =
p—oe 2&.},_1

A
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and so
m ) <,
r—oo T
Similarly,
Lim no(r) > A,

r—oo T
and we have shown that the natural density of {a,} is A.
c. If we consider the von Neumann lattice {(ra,mbd) : (n,m) € ZZ x 7Z}
for fixed a,b > 0, then the expected definition of its natural density is
lim card{(na,mb) € [-r,r] x [-r,7]}
00 4r2

= A.

In this case the cardinality in the numerator is essentially (2r/a)(2r/b), and so

1
A= 7

Thus, we can phrase the Balian-Low phenomenon (Theorem 23) in terms of the
natural density of the von-Neumann lattice. Further, if the natural density A
of the von Neumann lattice is less than 1, then {emsTnqag} is not even complete
in L2(IR), no matter which g € L?(IR) is chosen, e.g., Remark 24b.

d. Suppose {a,} C R is a sequence satisfying the Kadec-Levinson condi-
tion,

n 1/1
sup b~ 551 < (a1
defined in §6, Definition/Remark 33. We observe that {a,} is uniformly dense
with uniform density 252.
To see this we note that (34) is immediate for A = 20} and L = i (2—19—)
To verify (33), we compute
_ m m n n
lam =anl = lan = 56+ 55~ 30 T 30 ~ !

m "

y m n
- AAAA _—— AT
Z I35 ~ 50 ('“’“ 50! T lag a"")
> 1 LAY _L(1)_g,
-2 2 \2Q 2\2Q
for m # n.

Theorem 38. (Duffin and Schacfler, {24, Theorem 1]). Let {a,} € IR be a
uniformly dense sequence with uniform density A. If 0 < 2Q < A then {e,_ }
is a Fourier frame for L?[~),{)].

After 40 years, Theorem 38 is still difficult to prove, and, among other
notions and estimates, its proof involves fundamental properties of entire funec-
tions of exponential type.

We shall prove the following component of Theorem 38 since it is useful
in our strengthening of this theorem, since it is associated with related work
by Plancherel and Pélya (1937-1938) and Boas (1940), and since it is not too
difficult to verify.



28 _ John J. Benedetto

Lemma 39. Let {e,,} be a Fourier frame for L*[~Q, ] for a given sequence
{an} C IR and a given > 0, and let {b,} C IR satisfy the condition,

sup |ap — bl = M < 00, (35)
necZ

Then
3C = C({an}, 2, M) such that

36
Vi€ PWa, Y If(=ba)? S CD If(~an)f. )

Proof: a. We first note that

1/2

1)
Vfe PWo and VE20,  |If®; < (2rq2)* ( f_ Q|f(v)!2dfy) . (37)

This is a consequence of Plancherel’s theorem and the Q-bandlimitedness of f,
Le.,

1FOIE = @rin)* FIE < (20 f i

b. By Taylor’s theorem and the fact that f € PWy is entire, we have
an
F(ba) - f(—an)wzf an) (4 )

for each n. We use Holder’s inequality to obtain the estimate,

(%) o 2 o0 ap — by 2
(=) = F(—an)? < (Z e ) (Z ('—,jm'f)—)
k=1

k=1

for any positive number p; and hence

2 (k) -y 2
F(—ba) = Fl=an)]? < (M9 1)2'i-—-£~—)'- (38)

P2k L]

c. Because of (37) and the Fourier pmrmg FEE) & (2miv)* f(7), we have
f*) € PWgq when f € PWq. Thus, using (37) again and the (upper) frame
hypothesis, we compute

k21, ) 1fP(=an)l’ < B| V3 < BEr)|fI3, (39)
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where B is the upper frame bound of {e,, }. Consequently, combining (38),
(39) and the lower frame estimate with lower frame bound A, we have

Vi€ PWa, 3 If(=ba)— f(—an)P
oo 2k
<o’ — Y (22) 7 Zisig

k=1

e (£ ) S

k=1
= KZZIf(_an)IZ: ' (40)

which is finite for any fixed p > 27 Q.
d. Because of Minkowski’s inequality, (40) allows us to write

(S ire?) " <@+ 1) (Dle-anr)
and (36) follows. &

Theorem 40. Let {a,} = A; U Ay C IR be a disjoint union, where A; is
a uniformly dense sequence {ay ,} with uniform density A and where Ay =
{aa,n} satisfies the condition,

Sup |a1,n — a2.n| =M < oo,
ne#

If0 <2Q < A then {e,,} is a Fourier frame for L*[—, Q]

Proof: Since A; is uniformly dense with uniform density A and 0 < 20 < A,
we cant apply Theorem 38 to assert that {e, : @ € A;} is a Fourier frame for
LA[-8, Q] with frame bounds A and By. Thus,

VfePWa, Alfll3< D If(~a)?

<Y f(=a)lP = Y If(~a)f + Z |f(=a)l?
aCA, a€Ay
<(A+C) Y If(—a)ff <1 +O)Bilfl3, (41)

a€A1 '

where the inequalities follow since f(—a) = (f,e,) for a € Ay, by the inclusion
Ay C© Ay U A, because of Lemma 39, and by the upper frame condition,
respectively. :
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Clearly,

Do fea P =D I(Fead+ D [(Fredl’

a€A1 aeAg

and, hence, from (41) we see that {e,,} is a Fourier frame for L*[—, Q2] with
frame bounds A and B=(1+C)B;,. B '

Example 41. In light of Theorem 40 and Theorem 44, and the usefulness of
such results in applying Theorem 46 and some of the other material in §8, we
shall now point out the generality of sampling sequences {t,,} determined by
the hypotheses of these theorems, letting a, = —1,,.

Suppose {a1,»} has uniform density A = 1, upper bound L € IN, and
lower uniformly discrete bound d. Let {a,} = {a1,n} U {ag,n}, where {az»}
satisfies the hypothesis of Theorem 40. There are two phenomena we wish to
mention about such sequences.

First, if d is small enough then {a;,,} can have the property that there is a
subsequence of ZZ each of whose elements can have as many as 2L + 1 elements
of {a1,n} close to it. For example, let L = 3 and d = 1/10, and, for simplicity of
exposition let {b,} = {a1,,} be symmetric. Set by = 1, by = 5—3d, by = 5-—2d,
by =5—d, bs =5,bs =5+44d, by =5+2d, bg =5+ 3d. Hence, 2L + 1 =7
elements of {b,} are within a distance of 3d = 3/10 of n = 5. In this case, of
course, it is necessary that by > 6.

Second, for properly chosen {asn}, {a,} can have the property that
iy oo(tngt — an) = 0.

The types of sequences used in the hypotheses of Theorems 40 and 44
are more closely related than they appear, but we shall not pursue that topic
here, cf. Formula 45. The main point is that the sampling sequences that can
be used in our theory of §8 are much more general that those allowed by the
Kadec-Levinson condition and the classical results of §6. Of course, one does
have to show a little respect for Theorem 32 vis a vis the frame decompositions
of §8, since there are exact frames which do not satisfy the Kadec-Levinson
condition.

We can prove an important refinement of Theorem 40, by invoking the
following result from the Plancherel-Pélya theory [52], cf., [18], [19, pages 97—
103].

Lemma 42. a. Forall f € PWq,

/ F(E -+ iy)[2dt < el 2.

b. Let {an} C R be a uniformly discrete sequence with lower bound d
(as in (33)). Then

V€ PWa, Y I|f(—aa)l® < B|fl3, (42)
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where B can be taken as

4 w
= e (74 -1).

Proof: a. We shall omit the classical proof of part a which involves a
Phragmén-Lindelof argument, e.g., [52], [64, pages 94-96]. Instead, in Remark
43 we shall hint at our verification of part a which is appropriate for our mul-
tidimensional work.

b. 1. Let f be an element of PWg. Then

w
Vzo € CandVr >0,  [f(20)] < 51;; |F(z0 +re®)|2d6,  (43)

—T

ie., the continuous function f has the property that |f|* is subharmonic. (Of
course, we really know that f is an entire function.) The verification of (43) is
standard. First, log | f| is upper semicontinuous, and one uses Jensen’s formula
to prove that u = log | f| satisfles an inequality analogous to (43). Then, since
$(t) = e?! is an increasing convex function on R, we obtain a similar inequality,
viz., (43) for ¢ o u.

b. ii. We multiply both sides of (43) by r and integrate between 0 and £
to obtain

Voo €€, i)l < — // | F(z0 + rei®) |2 dodr

2 dtd =t
7 //Iz z0]<d f(z)*dtdy, ==t 1y.

Therefore, letting ¢, = —a,, we can make the estimate,

4
2 < - 2
S IftR)P < 7 foms% |7 (z + to)|?dtdy
4 3 3 iy
5@[%2/_% |F(t + tn + iy)|2dbdy
4 % t'rz.'i"';i
=Wf_i§:/tnmi Lf(t + iy)|dtdy

<A 1 ias (44)

where the last inequality follows by the definition of d.
b. iil. We apply part a to estimate the right side of (44), and obtain

S (—an)f? < / P el gy | £

71'2Qd2 ( 1) “f”%
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Discussion 43. The Plancherel-Pélya theory.

a. The following formal calculation for f € PWy can be made rigorous,
not only to provide an alternative to the Phragmén-Lindeltf proof of Lemma
423 but to allow a means of dealing with analogous problems in d-dimensions

[10]:
1/2
(/[f(t + z’y)lzdt)
/2
= (/I/Q f(ﬁn{)627rit76_27ry7df¥|2dt)
-
- / Q / 9 Fn)F(A)e2mO+) / ™M dt | dAdy "
-0 J=0

Q _ . a 1/2
- ( [ Foemm | 6(7—A)f(7)6‘2””d7d)\)
-0 Q.

o 1/2
m( / (|f</\)xe-w*)2d/\) < 2R 1],
-0

where the manipulations with § and [ e?™(¥~2dt can be dealt with properly
by approximate identity arguments.

'b. Boas [18, Theorems 1,2,3] has provided a proof of Lemma 42 different
from the argument of Plancherel-Péyla, cf. [19, pages 100-101] for another ex-
position of the Plancherel-Pdélya proof. An attractive feature of Boas’ approach
in 1940 is that it leads us to rewrite (42) as a weighted Fourier transform norm
inequality, viz.,

17113, < BIFI, - (45)

In the case of (42), v is the discrete measure

V= Zﬁ_an,

{4 is the absolutely continuous measure p = 1¢qy (usually more comfortably
written as “du(y) = 1(g)(v)dy”), and PWy is the weighted L%-space, Li(]]?\’,)
Weights such as 1 = 1(gy play a role in the Bell Labs uncertainty principle
theory from the early 1960s, e.g., [42], and measure weights play a significant

role in the general uncertainty principle theory, e.g., [6] as well as [19, Chapter
10].

In the same spirif as Theorem 40, Theorem 38 and the ideas of Plancherel-
Pélya play a major role in the following recent observation by Jaffard [33].
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Theorem 44. Let {a,} C IR be the union of a finite number of uniformly
discrete sequences and a uniformly dense sequence having uniform density A.

If0<2Q <A then {e,,} is a Fourier frame for L*[-Q, (].

Proof: Let {a,} = 4; U...UA,, where A; has uniform density A and each
of the A; is uniformly discrete. Take any © > 0 for which 0 < 2Q < A. Then,
by Theorem 38, {e, : @ € A1} is a Fourier frame for L?[—{, Q]. Thus,

Vi€ PWa,  AlflE < > {fred)l?

<Y WFrea)P =D 1f(—an). (46)

For the upper frame bound, we invoke Lemma 42 and obtain

Yi=1,...,m and VYfe& PWg,

> [ eall® < Byl £115-

aEA;

Consequently,

Do =an)® =3 7 [(F ea)l” < B3, (47)

J=1 a€4;

where B = By + ... + B,. Combining (46) and (47), we obtain our result. B

Formula 45, The frame radius. .

We have just used the Duffin-Schaeffer theorem (Theorem 38) to prove
Theorem 44. Theorem 44 provides a density/discreteness condition on a se-
quence {an} € IR to ensure that {e,, } is a Fourier frame; and it turns out
that this condition on {a,} € R is not only sufficient but necessary in order
that {e,, } be a Fourier frame [33, Lemma 2], cf. Theorem 40.

There is the following closely related problem for a given sequence {a,} C
IR: determine

Q0 = sup{Q > 0: {e,, } is a Fourier frame for L*[—Q, Q]}.

The quantity Q, € [0, 0] is the frame radius of {a,}, and the problem has
recently been resolved by Jaffard [33, Theorem 3], and requires the Duffin-
Schaeffer theorem (Theorem 38), as well as an important result by Landau
[41], f. §9.

Jaffard’s solution includes the following formula for the frame radius in
the case 2, € (0, 00):

2, = 3 sup AQ), (48)
b
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where b is a uniformly dense subsequence of {a,} having uniform density A(b).
The proof of (48) uses Theorem 38 to prove the inequality,

Q. > %sup A(b). (49)
b

To verify (49) let us assume for simplicity that {a,} is uniformly dense with
uniform density A, If Q, < 3 A we can choose Q € (., 3 A) and contradict the
definition of Q. by applymg Theorem 38; therefore 2, > A Details to prove
the general case, (49), are found in [33] and are not dlﬂ‘lcult The opposite
inequality not only requires Landau’s theorem, mentioned above, but also a
more formidable contribution by Jaffard.

§8. Irregular Sampling and Frames

The results of §7 will be used in conjunction with Theorem 46 to formulate
sampling formulas such as Equation (50) in terms of given sequences {tn} of
sampling points.

Theorem 46 [9]. Suppose > 0 and Q; > 2, and let the sequence {t,} C R

have the property that {e_q_ } is a Fourier frame for L*[—Q4, Q4] with frame op-
erator S. Further, let s € L?(IR) have the properties that § € L>(IR), supp § C

[~01,], and § =1 on [—Q,Q]. Then

VfePWa, f=)Y c(f)rs,s in L*(R) (50)

where

en(f) = <5_'1 (1), e-—tn>

Proof: Since {e_s,} is a frame for L?[—Q,;] and suppf C [-0,0] we
have

f= flay =Z<S‘1(f1(m)),e_tn> er, in L2—0y, ). (51)

[—$21,82:]

[—94,21]

Equation (51) is a direct consequence of Theorem 14a and the fact that S -1
being a positive operator, is self-adjoint. Using the hypothesis, f € PWg, we
can rewrite (51) as

~

F=)" enlf)e-taliay) in LH(R). (52)

In fact,

N
17 =" en(He-taLian)li3
M

Q. X N
= [ =3 enlDen P
_ﬂl M

N

=lf =) enlPe-talliaray0u»

M
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and so (52) is valid.
Next, we note that f = £, and, hence,

N
I1F = ealF) e )13
. M

N
F3= " en(Fle—tn Lia))13
M

N
<I3li% 11F =D en(f)e—ta Lian)ll3-
: M
Using this estimate, Equation (52), and the hypotheses on 3, we obtain

=3 calf)e=,8) in LY. (53)

Finally, we obtain Equation (50) from Equation (53) and the Plancherel theo-
rem. B

In the following result, an operation must be performed on a given se-
quence to construct a subsequence {t,} with which we can implement Theo-
rem 46. As such, it doesn’t quite fit into the mold of §7, so we state it now as
a lemma to be used in the proof of Theorem 48.

Lemma 47 [29]. Let {ax} C IR be a strictly increasing sequence for which

Hm ap = +o00
k—ZFoo

and
sup(ag+1 —ap) =T < oo,
k
Assume €}y > 0 satisfies the condition

270, < 1.

There is a constructible subsequence {a, } of {ar} such that, setting —t, =
ag,,{e—_t, } is a frame for L2[— 0y, Q4] '

Proof: Since 2T%; <1 we can choose € > 0 so that

1

T< S 1 c

Next, choose § > 0 such that

1

T+6<—2QI+E,



36 John J. Benedetto

and define intervals I, as

n 1 1
Vn>1 IL=— (= — ,
e [291+6 2(2Q1+6 6)

n 1 1
291+E+ 5(2914—6 —6)] ’
Note that {I,} is a disjoint collection since
n+1 1 1
(291 +e “5(291+e _5))
n 1 1
- = -6)) = .
(291+e+2(291+e )) §>0 (54)

The length of each interval I, is

1
291-}-6

|I.n[= —6>T.

Therefore, by the definition of T, each I, must contain elements of {a;}. For
each n, choose precisely one such element ag,, e.g., the smallest or largest
element of {ax} N I, and designate it as —t, = ay,,.

Writing an = —tn, (54) implies that

Vrn, (@ny1—an) >8>0

Further,

n 1 1
n— < - -0} =1L,
o 20, e 2(2ﬂl+e )

by the definition of I,,. Consequently, {ax} is a uniformly dense sequence with
uniform density A = 2Q; +¢ > 2€;. By the Duffin-Schaeffer theorem, Theorem
38, {e_y, } is a frame for L2[—Q4, ] HE

In general, Lemma 47 is false when 27Q; = 1, e.g., [29].

Combining Theorem 46 with Lemma 47 we obtain —

Theorem 48. Let {a;} C IR be a strictly increasing sequence for which

lim ap =+
k—too

and
sup(ars1 —ag) =T < co.
k

For a given Q1 > 0, assume 0, > ) satisfies the condition,

270 < 1,
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and let s € L*(IR) have the properties that 3 € L®(IR), suppé C [, %],
and § =1 on [—,Q|. There is a constructible subsequence {ax,} of {a;}
such that, setting —t, = ay,,{e_,} is a frame for L*[—Q4,Q] with frame
operator S, and

viePWa, =3 (S (fln)se-i) s in L*R).

Tt
[—Q1,01] "

Naturally, the implementation of Theorem 46 depends on the computa-
tion of the coefficients in Equation (50). For the case of exact frames these
coefficients are computed in the following result in terms of the Lagrange in-
terpolating system introduced in Theorem 32. We shall not now pursue the
expansions resulting from a combination of Theorem 46 and Theorem 49, and
we refer to {9, Theorem 6.3] for a proof of Theorem 49.

Theorem 49 [9]. Suppose Q > 0 and @y > Q, and let the sequence {t,} C R
have the property that {¢,,} is an exact frame for L*[—§;, V] with frame
operator S, where «,, = —t,. Define the function s,, in terms of its involution
3n(t) = Sp(—t), where

1131
VEE R, &n(t) = [ Ton(7)e¥ ™7 dy,
—{1y

and where {hn} C L*[—{, ] is the unique sequence for which {e,, } and
{hn} are biorthonormal. The coefficients of the expansion in Equation (50) are

Vo, (S (fL@o)re-tn) = (Fem), (55)

[—€21.80] :

where f € PWg.

Of course the real purpose of Theorem 46 is to provide sampling formulas
with effectively computed coefficients, where the sampling sequences are not
constrained by exactness. This is the role of the following algorithm which is
expanded upon in [10].

Algorithm 50 [9]. It is possible to estimate the coefficients in Equation (50),
and, in the process, to see to what extent the coeflicients contain information
from the sampled values f(,). '

a. Let {e.s, } be aframe for L?[—Qy, Q] with frame operator S and frame
bounds A and B. Recall that if S; and S, are operators, then S > S5 means
that

Vi, (Suf, ) 2 S f, f).

Thus, by our frame hypothesis, we have

AI £ S < BI,
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where [ is the identity operator. Consequently, we can compute

A+B° S _A+BAI:(AJ;‘3—;3M)I
and 2 A+B—2B
- 2592 - Bl = (e )h
and, hence,
11— A+BS||_i;§<1, (56)

where the norm in (56) is the operator norm.
b. Because of (56) and the Neumann expansion we have

A-I—BZ( “A+B ) > (57).

where the convergence criterion in (57) is the operator norm topology on the
space of continuous linear operators on L?[—Q4, 1] (into itself). In fact, (56)
and the Neumann expansion really yield

> k
(A +B ) g( ) ; (58)
and 9
(A n BS) (9)=
Imeans A+ B
2 Sf’
so that since S~ is linear we have
2Byt (59)
Equations (58) and (59) give Equation (57).
c¢. Substituting (37) into (50), we have
o0 2 .
Cn(f):;}A+B<( _A-l-—BS) (fl(ﬂl))ve—tn>[ o o] (60)

for f € PWq, Q < {14. '
We can easily calculate the terms of Equation (60), e.g.,

2 o
A-|—B<f1(91)’e"t">[~.91,m] A—I-Bf( n)




Irreqular Sampling and Frames | 39

and
25 {(1 5259 (o)
f[—1,82]
— MLB Ftn) — (Z‘-%‘E)z [291 Fta) + Z f(tn, )dana, (tn —tm)]

ni#ER

are the cases k = 0 and k = 1, respectively. Thus, if we truncate the expansion
(60) after the k£ = 0 term, then

nlf) ™ s Fltn),

which is a particularly auspicious estimate when A = B = 1.

Motivated by Theorems 46 and 48, and noting the importance of the frame
bounds in Algorithm 50 we have —

Theorem 51. Suppose & > 0, and let the sequence {a,} C IR have the
properties that {a,} is strictly increasing, lim, 1.0 ¢, = o0, and

0<d<inf(apy1 —an) <8Up(@nt1 — an) =T < 00.

Assume 2T7Q < 1. Then {e, } is a Fourier frame for L*[—Q,QQ] with frame
bounds A and B satisfying the inequalities

(1—~2TQ)2
> A\ T AR
Az T
and
< - wdd __ i
B_7r2ﬂd2(e 1)

Proof: The upper bound for B is a consequence of Lemma 42b.
The lower bound for A depends on the following result by Grochenig [27,
Theorem 1]. Let K : PWgq — PWgq be defined as

Kf=dya* ) f(tn)las
where t, = —a, and 1, is the characteristic function of the interval

[(an+1 + an)/2, (an+2 + a'n+1)/2)'

Then
[Kfllz < (1+2TQ)|fll2 and ||f — Kfll2 <2TQ|f]2.
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Consequently, ||K~Y|| < 1/(1 —2TQ), so that since f = K-'Kf we

have

171 < 7=l 2 Flta)al

\/T 9 1/2
< _ ¥
< o= ()
for all f € PWq, e.g., [29, Corollary 4.4.4]. B

Remark 52. Our “major frame” sampling formula in this section did not
deal with frames for L?(R), but with Fourier frames for L?[—Qy,4]. This
provides a gain in simplicity and an opportunity to implement the results from
§7. On the other hand, we lose the flexibility to consider aliasing as we did in
§5. Further, we can prove Theorem 46 in terms of Gabor frames for L2(IR).
This will allow us to deal with aliasing, and to obtain better implementation
of Algorithm 50, e.g., [10].

The following examples are concerned with Gabor frames for L*(IR) and
L?(IR). Details are found in [9, §4], and the material plays a role in [10].

Example 53. Let {a,}, {bm} be real sequences and let 2 > 0. Assume that
{eq, } is a Fourier frame for L*[~$, Q], and that there exist d, A > 0 such that

Ym € 72, 0<d<bptr — b A <29,

where lim,, 400 bm £ co. (In particular, {b, } is uniformly discrete.) Suppose
g € PWq has the properties that § € L®(IR) and inf{|§(7)|? : v € I} > 0 for
some interval I C [—Q,Q] having length |I| = A. Then {e,, 7§} is a frame
for L2(IR), cf. Theorem 51. This result follows once we verify the hypotheses
of Theorem 30.

Example 54. Suppose we assume the hypotheses of Theorem 30, and that we
consider the case a, = na and ¢ = fﬂ-

a. Let S be the fraime operator for the frame {e,, 73,9} (for L%(IR))
obtained by Theorem 30. A routine calculation allows us to conclude that

VfeIXR), S§7'f= —2}5{;
where G(v) = >_1¢(7 — bw)|?.

bh. Part a allows us to write

_ . 1 enaT,, g

S l(enaTbmg) = m naG g'.'
whereas ] .
-1 4 €naTh,, 9

enaTsn 81§ = ﬁ:-b—g

Consequently, the operators S~ and e,,7p,, are not commutative for irregular
sequences. For perspective, recall that our frame approach to the classical sam-
pling theorem utilized the commutativity of these operators when we invoked
Theorem 20 in the proof of Theorem 25.
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§9. Stability and Uniqueness

For a given sequence {a,} C IR, a major part of the sampling theory we
have presented has depended on whether {e,,} is a frame or exact frame for
L?[-Q, ). A more basic problem is to determine whether {e,,} is complete
in L2[—Q, (], i.e., whether the linear span of {e,, } is dense in L*[-, Q2]. The
ultimate contribution to this problem is due to Beurling and Malliavin [14],
[15], cf. [36], [54] for superb expositions of this profound material. Our remarks,
although elementary, are geared to this work of Beurling and Malliavin, as well
as other important contributions by Beurling [12], [13, Volume 2, pages 341-
350} and Landau [40], [41].

Definition 55, Let {f,} be a real sequence, set a,, = —#, for each n, and let
Q>0

a. {tn} is a uniqueness sequence for PWy if for all f € PWy for which
f(tn) = 0 for each n, we can conclude that f is the 0-function.

b. {¢,.} is an energy stable sequence for PWq if there is a constant A > 0
such that

VfePWa, Allfl} <) IF¢)P (61)

Thus, for energy stable sequences, small errors in the samples cause a small
error in estimating the energy of the original signal.

Theorem 56. Let {f,} be a real sequence, set a, = —t, for each n, and let
Q> 0. :

a. If {e,,} is a Fourier frame for PWq then {t,} is an energy stable
sequence for PWgq; and if {t,} is an energy stable sequence for PWq then it
is a uniqueness sequence for PWgy.

b. {t,} is a uniqueness sequence if and only if {e,,} is complete in
L9, Q).

c. If {t,} is a uniformly discrete and energy stable sequence for PWq
then {e,, } is a Fourier frame for PWq. In general, the converse is false.

Proof: a. The first part follows from the lower frame bound inequality. The
second part follows since the hypothesis implies [|f|lz = 0 when f € PWy
vanishes on {t,}, and since f = 0 on IR when ||f||z = 0.

b. Suppose {t,} is a uniqueness sequence and f annihilates {e,, }, where
f € PWq. By the Fourier inversion formula, f vanishes on {t,}; and so, by
uniqueness, we have that f = 0 on IR. We conclude that {e,, } is complete by
the Hahn-Banach theorem.

For the converse, take any f € PWg which vanishes on {t,}. Then, by
the Fourier inversion formula, f annihilates {e,, }; and so, by completeness, we
have that § = 0 on [-0, Q]. We conclude that f = 0 on IR, and, consequently,
{tn} is & uniqueness sequence for PWy.

c. The first part follows from Lemma 42b of §7 and the definition of an
energy stable sequence for PWg. The second part is a consequence of Example



42 John J. Benedetto

41 and Theorem 44, ie., there are Fourier frames {e,, }, where {a,} is not
uniformly discrete. &

Discussion 57. Stability.

‘ a. The classical sampling formula tells us that each f € PWy is uniquely
determined by its values on {nT'}, where 2T'Q2 = 1. Suppose 1 > Q and {nT}}
is the sampling sequence for f € PWgq, where 2710y = 1. Then 2T1Q < 1, and
knowledge of {f(nT})} reflects oversampling, which is essential information for
many applications, e.g., [62]. (Undersampling gives rise to numerical instability
and aliasing, e.g., §2, Definition/Remark 6 and §11.) On the other hand, if the
values of f € PWgq are known on {n7} : n < 0} then the Pélya-Carlson theorem
uniquely determines f on all of IR, ¢f. [3], [7], [11], [25], [64] for discussions of
this type of uniqueness theorem and prediction theory. At first glance, this
result would seem to imply that knowledge of an oversampled speech signal
f € PWgq allows us to predict the speaker’s words in the future. As Pollak [53,
pages 74-75] observed, the weakness in this argument is due to the effect of
instability. In fact, it can be proved that an arbitrarily small error in f(—17)
can produce an arbitrarily large error in f(t), for arbitrarily small £ > 0, cf.
[19, Chapter 9.2].

b. Let {t,} be a real sequence. Suppose Y is a metric space of continuous
functions on R, and let X be a metric space of sequences {f(t,) : f € Y'}; we
denote the corresponding metrics by py and px. Assume the mapping,

L:X Y
{f(ta)} = f,

is well-defined. Then the sampling process, f — {f(tn)}, is stable for the
metrics py and px if the linear map L is uniformly continuous, i.e., if

Ve>0, 36 >0 suchthat px({f(tn)} {9(ts)}) <& implies py(f,g)<e.

Recall that if metric spaces X and Y are also topological vector spaces
then linear maps L : X — Y which are continuous at the origin are uniformly
continuous, Le., for every neighborhood W of 0 € Y there is a neighborhood
V of 0 € X such that

Vegoy € X, wy—2, €V implies L{zy—z,) € W.

In the case of (61), be have the situation that Y = PWy, X = {f(t.) :
f €Y}, and py and px are the metrics defined from the usual norms on L2(RR)
and [*(7Z), respectively. The mapping L is well-defined if the Bessel map

B: PWq — IX(7Z)
Fo {F(ta)}

is well-defined and injective, cf. {7, §2.5].
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An aspect of stability concerns conditions to ensure the preservation of
expansion properties under small perturbations. A typical problem is to find
conditions so that a sequence {g,} of functions which is close to a basis {f,}
is itself a basis, e.g., Definition 16. The solution to this problem is due to
Paley and Wiener {49, pages 100-106] for orthonormal bases {f,} on PWg,
and the generalization to bases is due to Boas (1940}, cf. the treatment in [64].
“Paley-Wiener stability” in the sense of the following theorem has even become
a topic in the theory of locally convex topological vector spaces. We shall state
the result at the more down to earth level of Hilbert spaces.

Theorem 58. Let H be a separable Hilbert space and let {fn} C H be a
basis of H. Suppose that {g,} C H and 6 € [0,1) satisfy the condition that

VF C7., where card F'< o0, and Ve, € C, where n € F,
1D ealfa =gl S 61D entall (62)
nel nel
Then {g,} is a basis, and, even more, there is a topological isomorphism L :

H — H such that Lf, = g, for each n, cf. Theorem 17c.
Proof: The hypothesis (62) implies the continuity of the linear map L defined

by
L (Z Cnfn) = Z Cn(gn - fn),

where > cnf, € H; and, further, L is bounded by 8 < 1 in the operator
norm, cf. (56). Thus, L = I — L is a topological isomorphism and Lf, =
fn_(fn_gn) = ¢p. B

Example 59. In the case {f.} is an orthonormal basis, or even an exact
frame, Theorem 58 allows us to conclude that {g.} is an exact frame when

(62) holds.

The following is a well-known calculation for the setting A = L*{-Q, Q].
It provides an elementary proof for a special case of Kadec’s theorem quoted
in Definition/Discussion 33b.

" Theorem 60. Let {a,} be a real sequence and let @ > 0. Suppose

on log2 (1
sup |, — ﬁ-[ =L< (ﬁ) . (63)

iy

Then {e,, } is an exact frame for L?[—Q, ).

" Proof: Let H = L2[—Q, )] and denote the norm on L[, Q) by |[...|. Recall
that {¢a,q } is an orthonormal basis of H. Clearly,

€an (V) — enja)(7) = eminy/Q (62”5’*(%“%) — 1)
 riny/a o= 2miy(an — )]
— miny/ Z o : (64)

k=1
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where the right side is defined on [—Q, ] and extended 2Q-periodically on IR.
Also, we have the estimate

k 1 @ k 2 i k
Il = 55 [ A roRay) <@t (65)

forall f€ H and &k > 0.
For a given finite sequence {c,:n € F} we use (64), (65), and the or-
thonormality of {e,/@2qa)} to make the estimate,

1Y enl€an = enja)l
neF
[27iy(an — 45)]F
= || Z;Cnen/(zm(’r) Z kl I
ne

< “ Z '('%%’;")“’}’k(z Cn(a‘n - %)ken/(zg)(’}’)) “

2(2”“) 132 enlan — o rensam

<
= (278
_ Z ‘Tl'. ) Z Icnlzlan Ql?k‘)ljz
k=1 Rl
> (2 LQ
<3 OIS cewom
k=1 nEF
= (e2"L8 _ 1)l| > enenseall-
ner

This estimate allows us to implement (62) if e27% —1 < 1, i.e., if 2rLQ < log 2;
but this is precisely our hypothesis (63). The result follows from Theorem 58
and our observation in Example 59. H

In light of the Kadec-Levinson bound of “1/4”, we should note that 1°g 2
% since log16 < 7 = 3.14... . In fact, log 16 = 2. 77259

Discussion 61. Two eiega,nt pieces of analysis should be mentioned with re-
gard to the Paley-Wiener stability condition (62). Harry Pollard proved that,
when dealing with completeness, (62) can be replaced by

1Y enlfn —ga)l* < 67) 2 cafull® + 1Y engall®, (66)
nel neFl nel

for some 8,8, € [0,1) (Annals of Math., 45 (1944), 738-739). Béla Sz. Nagy
proved that, when dealing with exact frames, (62) can be replaced by a condi-
tion even weaker than (66) involving the additional mixed term

| Z enfalll Z cngnl

nelF neEF



Irregular Sampling and Frames 45

(Duke Math. J., 14 (1947), 975-978).

Example 62. a. Let {a,} be a real sequence satisfying the density condition
(34), viz.,

|an —

n
—| < L.
Al <L (67)
Also, suppose 2 > 0 satisfies

2Q < A, (68)

For this calculation, assume n € IN and a, > 0. From (67) we obtain AL >
Aa, —n sothat (£+21)> % and hence

—?—(é—‘[iﬂ) > A.

Qn n

Consequently, (68) allows us to conclude that

m — >2Q. (69)

n—oo On

b. The point of part a is that uniformly discrete sequences satisfying (67)
and (68) give rise to Fourier frames {eq, } for L*[—£, Q] by the Duffin-Schaeffer
theorem (Theorem 38), and condition (69) is weaker than (67) and (68). The
hope is that (69) would lead to completeness which, of course, is weaker than
the frame property. Such is the case as we see in the following result {Theorem
63) of Paley and Wiener (1934).

c. This particular theorem of Paley and Wiener is a significant extension of
a completeness theorem due to Pélya and Szasz (Jahresbericht der Deutschen
Mathematiker Vereinigung, 43 (1933), 20), whose density condition is (69)
with “lim” instead of “lim”. The added depth of this Paley and Wiener result
ig due to the use of their fundamental theorem on quasi-analytic functions, viz.
[49, Theorem XII}, which, in turn, is closely related to the Beurling-Malliavin
theory and has many other applications, e.g., [3], [4].

Theorem 63. (Paley-Wiener, [49, Theorem XXVII]). Let {a,} C R be a
strictly increasing sequence of positive numbers, and assume the density con-
* dition

— 7

Hm — > 2Q.

n—oo Op

Then {e+,, } is complete in L*[—Q, Q].

Discussion 64. Theorems 60, 38 (and 44), and 63 have density hypotheses and
conclude with exact frame, frame, and completeness properties, respectively.
Theorem 60, depending as it does on Theorem 58, shows how its density hy-
pothesis is tied-in with Paley-Wiener stability.

At the completeness level, a celebrated example by Kahane [35] exhibits
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sparse non-uniformly distributed sequences {a,} C R for which {e,, } is com-
plete in L2[—8, ], for arbitrarily large Q. The Beurling-Malliavin theory refer-
enced at the beginning of this section places such examples in the same theory
as the seemingly more regular sequences of Theorem 63 (or Theorem 60).

We shall not go into the Beurling-Malliavin completeness theory. Instead,
we shall define the lower and upper uniform Beurling densities mentioned in
§7, Definition 36b. The lower uniform Beurling density is the correet condition
to formulate a converse of the frame result, Theorem 38.

Definition 65. a. Let {a,} C R be a strictly increasing sequence for which
limy 4o @y = Foo, and define

n=(r) = ir}f nr(r) and n¥(r) =supni(r),
I
where I C IR is an interval, » > 0, and
ni(r) = card{a, € I:{I|=r}.
Clearly, there are sequences {a,} for which
Vr>0, nt(r)=co.

The lower and upper uniform Beurling densities of {a,} are

N (IR

'r
and

At = A+({an}j = TILI'I(}O n""(r),

-
respectively. These limits exist since n~ is superadditive and nt is subadditive,
cf. [37, §§10.6-10.11].

b. Suppose A~({an}) = At({an}) = A € [0,00). Then the natural
density of {a,} (Definition 36b),

lim ng_(r),
o0 T
exists and equals A since
—r 7
L
¢. Uniform Beurling density is closely related to the more classical notion
defined by the right side of (69). For example, card{a; € I : |I| = an} = n if
I =[0,ay] in the case gp = 0 and a; > 0 if and only if § > 1. Thus,

n~(r) < card{a, € } < ntr).

n (@) o 0 17 (an)

Gy an Gpn

In fact, the Duffin-Schaeffer theorem (Theorem 38) is valid if the uniformly
discrete sequence {a,} satisfies the condition, A=({a,}) > 2Q.

We can now state the converse of the Duffin-Schaeffer theorem alluded to
before Definition 65, cf., §7, Formula 45.
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Theorem 66. (Landau [41]). Let Q > 0 and let {a,} C R be a uniformly
discrete energy stable sequence for PWq. (Thus, {eq, } is a Fourier frame for
L*[-Q,2].) Then

A™({an}) = 262

Discussion 67. Frames and completeness.

Theorem 66 is a special case of a deep contribution by Landau [41]. Lan-
dau’s results extend to higher dimensions and multiband signals. This latter
notion means that N-frequency bands are analyzed instead of [, ], cf. the
subband coding inherent in the analysis of decimation and aliasing in §10.

A critical insight, which one can extract from Landau’s work, is that irreg-
ular sampling reconstruction formulas such as those in §8 necessarily depend
on a close relation between the bandwidth and the lower uniform Beurling
density of the sampling set. This relationship is not fundamental in dealing
with the analogous problem for obtaining completeness, thereby adding a level
of complexity to this latter problem, e.g., Discussion 64.

Definition 68. a. Let D C R and E C IR be closed sets. Balayage is possible
for (D,E)if

Vu € My(IR), Jv, € My(D) such that Vye E,

/82ﬂ£i1dﬂ(t) =/62wit1dyu(t).

b. This notion of balayage stems from Poincaré’s balayage process in po-
tential theory; and, historically, E was a collection of potential theoretic kernels
instead of group characters or frequencies.

A dual formulation of studying balayage problems has the flavor of classical
spectral synthesis, e.g., [1, Equation (3.2.52)]. Further, Beutling’s theorern,
Theorem 69, is a special case of his balayage theory which depends on specific
systhesizable sets [12], [13, Volume 2, pages 341-350].

Theorem 69. (Beurling 1959-1960). Let D C IR be a closed set and let
E = [-Q,9Q] for some € > 0. Balayage is possible for (D, E) if and only if
D contains a uniformly discrete sequence {a,} whose lower uniform Beurling
density satisfies the inequality,

A~ ({an}) > 2Q.

Problem 70. Discussion 43b and the definition of (energy) stable sequences
lead us to the following problem: find those sequences {t,} such that the for-
mula,

[ =Y s, (70)

or similar “continuous analogues of series” formulas are valid for all f € PWq
for which [ f(t)dt exists. The existence of the integral can be considered either
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in the ordinary sense or as a principal value integral. The general question is
quite difficult, and, in light of the Welghts mentmned in Discussion 43b, there
are a number of rela,ted questions.

In the case t,, = nT, we shall see that the analogue of (70) itself is

f fit)dt =T f(nT). (71)

Even in this case there are questions to be answered if { f(nT')} € P(Z)\I} (7).

The following elementary result gives some positive information in the
case of regular sampling sequences.

Theorem 71. Let T,22 >0 andlet f e PWg.

a. If {f(nT)} €lMZL) and 2T <1 then [ f(t)dt exists as a principal
value integral and (71} is valid.

b. Assume fe CX(R) or that

C
= 14142

3C such that Vte R, |f(t)|+lf(l)(t)|+lf(2)(t); (72)

If TQ <1 then (71} is valid.
c. If 2TQ =1 then {f(nT)} € I*(ZL) and

JECR I DHICATR
Proof: a. By the classical sampling theorem, the right side of

F=TY f(nT)rardane

converges uniformly on IR. Thus,

s S
VS > 0, f_ O =T Y fn) /_ _rardara (1)
=TY fuT) - D feDe(S, )y (1)

and, now, a standard argument, first recorded in {34} (as far as I know) and
using the hypothesis {f(nT)} € I}(ZZ), allows us to compute

Jim. > F(nT)e(S,n) = 0.

Hence, the principal value integral [ f(£)dt exists and (71) is valid by (73).

b. The function-form of the Poisson summation formula recorded in §2,

Equation (7} is
Y F(%) =T fuT). (74)




Irregular Sampling end Frames 49

If fe PWq, f is continuous, and @ < 1/T then (74) becomes
f0) =T f(»T)

and this is (71). Our hypothesis, f € C(IR) or (72), implies the continuity
of f and the validity of (74), e.g., [38].

c. By hypothesis, even for 2TQ <1, f =T5 f(nT)marderg in L2(R),
and so f = TY f(nT)e_prlg in LQ(]R). If 2TQ =1 and we extend
f %-periodically on IR, then we can conclude that {f(nT)} € I*(ZZ) by the
square integrability of f on [, ).

Since o .
/ e—21ri(m—n)T'yd _ sm(Qﬂ“(m - H)TQ)
v =
—0 a(m —n)T

and {f(nT)} € I*(ZZ), we have

1/2
_ TV (n sin(27(m — n)TQ)
”f”z =T (mzn f( T)f( T) i'r(m—n)T )

1

by the Plancherel theorem, and the result follows, B

Discussion 72. There are several interesting historical remarks concerning
(71) in [31, page 63] and some wonderful examples in {20].

In the proof of Theorem 7la, we cannot integrate the classical sampling
formula term by term over IR, even though the series converges uniformly.
There are counterexamples, and we mention the point since there has been a
little confusion on this issue in some of the literature. Of course, formally, (71)
is an immediate consequence of the classical sampling formula.

In the proof of Theorem 71b, we only required T2 < 1 instead of 27'Q2 < 1.
Also, our hypotheses for the validity of the Poisson summation formula can
be weakened, but the formula cannot be used indiscriminately. One of the
difficulties in Problem 70 is that “Poisson summation formulas” require some
regularity, and there are deep open questions here concerning fundamental
problems in number theory.

Because of the proof of Theorem 7lc, we note that if 272 < 1, then the

mapping,

PWq — 2(ZZ)
f=A{Tf(nT)},

is a well-defined, continuous linear injection, ¢f. the discussion on Bessel se-
quences in [7, §2]. To verify this claim, consider the function G and sequence
{¢n} of Fourier coefficients defined in Theorem 1. By the Plancherel theorem
for Fourier series, we can assert that ) |eq|? < oo; and each ¢, = T f(nT) by
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Proposition 9. Thus, the mapping is well-defined, and the fact it is an injection
is clear. The continuity is a consequence of the inequality,

(S irsem)r) " = VT,

or (for more general situations) of the uniform boundedness principle. Similar

easy calculations yield the surjectivity of the above mapping in the case 27} =
1.

Example 73. a. Our proof of Theorem 71b combined the Poisson summation
formula and bandlimitedness to obtain (71). Although this is an entirely stan-
dard procedure, we do mention that Wiener used it in a calculation for a work
by Bhatia and Krishnan on light scattering (Proc. Royal Soc., London, Ser. A,
192 (1948), 181-194). Wiener verified that if 27Q2 < 1 then

1 sin 2782t — nT) 2
VER, =D, ( 3wt — nT) ) ’ (75)

cf. the classical sampling formula. Equation (75) is an immediate consequence
of the Poisson summation formula applied to

flu) = 47Qw(2Qu — 4Qrt)

where ¢ € R is fixed and w is the Fejér kernel

o) = o= (22Y,

whose Fourier transform is max(1 — 2x|v|,0). (We use “w” for Fejér since we
cannot use “f”, and Fejér’s original surname was Weiss.) (75) is not unexpected
since f(t) = 1, although not in L2(IR), has distributional Fourier transform é
which has the required support property, viz., supp § = {0} C [, Q], and the
sampling function 4 is 1 on the support of f, e.g., Theorem 486.

b. The proof of the Poisson summation formula involves a periodization
procedure. Thus, if f € L}(IR) then

F(ty=) f(t+nT), teR,

is T-periodic and F' € L(IR/TZ), i.e., F defined on IR is Lebesgue integrable
on every interval of length n7'. With this in mind we shall now take another
look at part a but with some of the material of §10 in mind. For convenience,
we let T' = 1 and, because of §10, we switch to the frequency axis.

First, let g € L?(IR), and note that {r,¢} is orthonormal if and only if

Yoy + )l =1 ae. (76)
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Now let g = 1f1), 50 that {r,g} is an orthonormal basis of some sub-
space Vy of L*(IR). For this function, the method of multiresolution analysis in
wavelet theory generates the classical Haar orthonormal basis of LZ(R), e.g.,

[47]. |
Note that
§(7) = e ™V dx(7), (77)
and, by (76),
G =Yl +mf =1 ae. (78)

G € L*(R/Z) since § € L*(IR); and, because of (78), the nth Fourier coefficient
of GG is 6o,. Lest the equivalence of orthonormality and (76) cause trepidation,
the Fourier coefficients of ¢ can be computed directly as

g% i(—n) = f T ()t = o

—n

Combining (77) and (78), we obtain
sinw(y — n)) 2
1= — ] .
2 ( m(y —n)

In particular,
2

s 1
sin? 7y N Z (v +n)?’ ¢ 2, (79)
so that .
72 = —_—
and we can even obtain Fuler’s formula,

2 *o1
T

n=1

by taking limits correctly in {79).
§10. Irregular Sampling - Approaches and Topics

Recent Contributions 74. We begin our final section by listing contribu-
tions by others on the topic of irregular sampling, including new closely related
methods. Our caveat about this list was made in the Introduction; and, gen-
erally, we shall only give a “sampling” of works by some authors who publish
“regularly” in the field. We shall not list work referenced in [21], [31], except
to point out that Kluvinek’s fundamental article {39] gets better with time.
Further, there is a new book by Marks [45] and a forthcoming venture by the
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authors of [21] and [31]. We emphasize again that many contributions are not
cited.

Cenker, C., Feichtinger, H., and Herrmann, M., Iterative algorithms in
irregular sampling, a first comparison of methods, 1991, preprint.
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Signal Processing, 16 (1989), 129-148.
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sampling theory, April 1990, preprint.
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Aachen, September 1990.
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preprint.
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Publishers, to appear.
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Seip, K., An irregular sampling theorem for functions bandlimited in a
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Zeevi, Y. and Shlomot, E., Pyramidal image representation in nonuniform

systems, SPIE, Vol. 1001, Visual Communications and Image Processing,
(1988), 563-570.
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Now let’s turn to the second part of §10, where we shall discuss aliasing and
the transition from coherent states, which has been the topic of this chapter, to
formulating a backdrop for a similar treatment of wavelets and wavelet packets.

Background 75. Let T' > 0 be a sampling period. The measure (on IR),

pP= Zé‘nTa

is the sampling impulse train where §,7 is the Dirac measure at nT. The
measure p is tempered (but not bounded); and, by the Poisson summation
formula (Equation (7)), p is the tempered measure,

b= 3 bur

If f is continuous on IR then the product fp exists as a measure, and

fp=>_ f(nT)énr (80)

is the sampled signal. The “distributional” verification of (80) is immediate:

Vg€ C(R), fp(g) =p(f9) =) f(nT)g(nT),

and

(3 £T)6ar ) (9) = D S0 T)g(n ).

We write fp = fp, and assume f is well-behaved enough to ensure that
the exchange formula,

f p = f * ﬁ:
is valid, e.g., [57] provides conditions for validity. Thus
- i a
f P T Z Tn/ rf.

Let us consider the sampling frequency % and the low pass filter h =

Tdyp having frequency response h = T1, /(21)- The formal cutput of the
sampled signal f, in this linear time-invariant system is

hafp =T f(nT)rarder. (81)

(If we define a frequency bandwidth 2Q by 2TQ = 1, then the right side of
(81) is the classical sampling formula.) Formally, then,

(h* fp) = Loy Z Tn/Tf- (82)
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Example 76. Let f(f) = sin2xtvy,, for some vy > 0. Distributionally, we
calculate

1
f= %(7%5 - T—‘Yoé)a (83)

since, for example,

(T‘VO(S)A(t) — (7.%6(7))(6211'#7) — 670(7)(627'-”7) —_ 6211-1'1570.

Now let us choose a sampling period T, with corresponding sampling fre-
quency 1/T, so that
1 1
o T
Consider the linear time-invariant system L defined by (81) where h = T'd,. /T
Because of (83), the right side of (82) consists of the two non-zero terms,

Yo € (

.1
Yo T/rf = =57 dyet g

and .
Lgom-a/rf = T 570——11:'

Note that —q -+ .,.135 >0 and 7 — % < 0. In any case,

1 1
(h * fp)A = —55((5%_70 - 6_(%_,.),0)), "j_,"' — %Yo > 0.

Thus, if ¥0 € (5%, ), the original fr‘equency Yo takes on the identity or
alias of the lower (and,, incidentally, negative in this example) frequency v — % ,
i.e., the output of the sampled signal is

e fy(t) = sin(2mt(yo - %))

instead of sin 27ty,. We undersampled the original signal f, and consequently
were not able to reconstruct it by the right side of (81). Undersampling means
that the sampling period is big so that the sampling frequency is small; in
our case, this meant that % < 4o, cf. Definition/Remark 6. (The condition
Yo < 7 was not essential to make this point about undersampling and aliasing,
but serves to pick out certain elements on the right side of (82).)

Definition 77. a. Let f be a discrete signal, ie., f is a complex-valued
function defined on ZZ. For example, f could be the sampled signal for some
continuous function in the case T' = 1. The decimation or downsampling of f
is the discrete signal f; : ZZ — C defined as

VneZ, fan]= f2n].
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We hasten o point out that this terminology is in the spirit but not the letter
of the word “decimation”. Also, we could just as easily have defined fy as

filn] = flkn].

b. Formally, the Fourier series of f : ZZ — C is the 1-periodic function,

P =Y flnlem?min, (39)

where the Fourier coeflicients are

fln] = /U F(v)e*™™ dy, (85)

cf. the proof of Theorem 1. [38] contains a rigorous treatment of the theory of
Fourier series. The most natural and difficult (to prove) convergence result in
the theory is Carleson’s theorem (1966): if F € L?(IR/7Z) and f is defined by
(85) then the series in (84) converges to F' a.e.

c. Let the discrete signals f and f, have Fourier series F' and Fj, respec-
tively. Formally, it is easy to see that Fj is a 1-periodic function and

vel, R =5(FQ+FG+3). (59)

d. In Equation (80) we defined the sampled signal of a given continuous
function. We shall now define the sampled signal of a given discrete signal f.
With Equation (80) in mind, we define

8lm — n] = dmn,

and consider the sampling period T' = 2. Thus, the sampled signal f, of f is

Vi€ Z, flil=)_ fl2nlélj - 2n].
If F}, is the Fourier series of fp, then F, is a %— periodic function and

VveR, Fy)= %(F(v) +F(y + %))

e. The process of decimation can be viewed as taking place in two steps,
viz., forming f, from f and then forming f; from f,. In terms of Fourier series,
this process is reflected by the two equations,

Fo(1) = 5(F() + Fly +3))

DN

and
Fy() = Fy(3).
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Definition/Discussion 78, Aliasing.
In characterizing aliasing in terms of undersampling, we say that aliasing
occurs in the decimation process if

supp F (\suppT_1/2F # ¢ (87)

in the first step of decimation, when forming f, from f. (Technically, we should
deal with the interiors of the supports in (87).} In this case, F'is the unaliased
component and 7_j ;5 F is the aliased component. The reason for this termi-
nology is that there is vy for which F(vo) = F(v0 + ). Consequently, we have
the expected expansion,

F(y0) =) fln]e”mmn,

and the “aliased” expansion,

F(y) =Y (-D)"flnJe™*mw,

cf. Definition/Discussion 6.

The decimation process and accompanying aliasing phenomenon logically
lead us to the method of subband coding, to the notion of a quadrature mirror
filter (QMF), and to our closing material, which can be viewed as an introduc-
tion to wavelets and wavelet packets.

Before defining a QMF (Definition 79), we shall make the following re-
marks about subband coding. First, a subband coding procedure filters a spec-
trum, e.g., a speech spectrum, into separate frequency subbands, and down-
samples the signals corresponding to the given subbands. In the case of two
subbands we have the “2-decimations” of Definition 77a and Theorem 80; and,
hence, we preserve, and don’t increase, the number of data points from the
original signal. The resulting signals are encoded for transmission and trans-
mitted. Finally, they are decoded, interpolated, e.g., by inserting zeros, and
reconstructed as a single message at the receiver. There are important reasons
for this procedure. These include limiting noise from encoding and decoding to
the relevant subbands, allocating bits based on perceptual criteria for a given
subband, providing a structure to deal with compression problems, and sending
“Images” at various levels of resolution to control “expense”. The early work
on subband coding is well documented in the IEEE ICASSP and information
sciences publications from the 1970s and early 1980s.

QMFs are used in subband coding to remove aliasing, e.g., Theorem 81.

Definition 79. Let H € L%(IR/ZZ) be the Fourier series of i € [2(ZZ). The
discrete signal A is a quadrature mirror filter with frequency response H if

HOP +HHG 43P =2 ae (59)

In particular, ||H|iz2¢1) = 1.
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Theorem 80. Let g;, ki, go, ho be filters corresponding to linear time-invariant
systems, and let f be a discrete signal. (“1” is for “in” and “o” is for “out”.)
Consider the filterings/decimations

folnl = ) gilk — 2n]f[4]

fadnl = hilk — 2n] f[k)

and the inserting zeros/filterings

Go ¥ fﬂ,g; and ho * fO,h;;
where
fo,g:[2n] = fg[n] and fog2n+1]=0.

Define
fg,h = go ¥ fﬂ,gi + ho * fO,hn

and let the Fourier series of the various sequences be denoted by the corre-
sponding capitalized letter. Then

Fg,h = %F(Go—éi + Ho—ﬁ—i)
: (59)
+ 5 T_1/2F(Gor_142Gs + Hom_1 12 Hy).

By Definition/Discussion 78, the second term on the right side of (89) is the
aliased component. The following result shows how QMF's give rise to alias-free
reconstruction; and, together with Theorem 80, it is an essential component of
the wavelet packet point of view.

Theorem 81. Consider the setup of Theorem 80, and suppose ¢ = ¢; =
go, b= h; = h,, and

G(1) =~ H(y +3) (90)
Assume h is a QMF. Then the aliased component of (89) vanishes, and
Fyr=F
If & is a low-pass filter, then g defined by (90) is a high-pass filter; and the
filterings/decimations f; and f5 defined in Theorem 80 give rise to relatively

disjoint subbands. In the case of (90),

gln] = (~1)" h[-n +1]. (91)
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We mention this because of Theorem 83, where Equation (91) appears again,
cof. [47] for the development of Definition 82, the proof of Theorem 83, and

historical comments.

Definition 82. A multiresolution analysis {V;,6} of L?(R) is an increasing
sequence of closed linear subspaces V; C L*(IR} and an element 8 € ¥, for
which the following properties hold:

L ;= {0} and UV, = I(R),
il. f(t) e V; ifandonlyif f(2t) € Viy,
ii. feV, and ke ZZ imply mf € W,
iv. {710} is an exact frame for the Hilbert space Vj.

Let {V;,6} be a multiresolution analysis of LZ(IR). If ¢ € V; is defined by

o) = o) (S oty + )

then {rx¢} is an orthonormal basis of Vj, ¢f. Equation (76).

Theorem 83. Let {V;, ¢} be a multiresolution analysis of L?(IR), where {Ty¢}
is an orthonormal basis of Vj.
a. Let W; be the orthogonal complement of V; in V4, ie.,

Vin=V, 0 W,.

There is 1 € Wy such that {ry3} is an orthonormal basis of Wy, and {¢ »}

is an orthonormal basis of L*(IR), where
Y () = 2™/ (27t — ).

{¥m,n} is called a wavelet basis.
b. The functions ¢ and  satisfy the following properties:
i, o(t) = V2 X hlnlp(2t — n)
and
¢(27) = Zs H(v)¢(v),
where h is a QMF having Fourier series H;
i, 9(t) = VEY glnfe(2t — n)
and
$(29) = —e 2" () H (v + 3)9(7),
where
gln] = (=1)"h[-n +1].
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§11. Notation

IR is the real line and C is the set of complex numbers. L?(IR), 1 < p < oo,
is the space of Lebesgue measurable functions f:IR — C for which

I =/ |f(t>|?dt)1/p < oo,

where “[” indicates integration over R. The usual adjustment is made to
define L*°(IR) and its norm ||-- - ||cc. The Fourier transform of f € L!(R) is
the function f defined by

) = / F(B)e—2mt gy,

where v € If{(: IR); and a similar definition is made for f € L*(R). If F is
defined on R then

V()= /F(qf)ez”“"'d*y.

The pairing between f and f is designated by f < f, and the space of abso-
lutely convergent Fourier transforms is A(IR) with norm || f||a = || f]ls.

C>(IR) is the space of infinitely differentiable functions on IR, S(R) is
the Schwartz space of “rapidly decreasing” elements of C*°(IR), and C°(IR)
is the space of compactly supported elements of C°(IR). C(IR) is the space
of continuous functions on IR, and C.(IR) is the space of compactly supported
elements of C(IR). C™|a, b] is the space of m-times continuously differentiable
functions on [a, b]. The space of pseudo-measures is the Banach space dual of
A(IR) with norm || --- || 4; and the space M;(IR) of bounded Radon measures
is the Banach space dual of C.(R) (or C°(IR) or S(IR)) taken with the norm
[ |loc. o is the Dirac measure supported by the point @ € R, and &y = 6 is
the unit under convoluion in the Banach algebra M;(IR).

7Z is the set of integers, IN is the set of positive integers and T = IR/ZZ is
the circle group identified with any interval [a, a+1) CR. ?(Z), 1 < p < oo,
is the space of sequences f: ZZ — € for which (3 |f(n)|1’)1/p < 00, where “37

indicates summation over 7. Just as IR is the dual group of R, so T is the dual
group of 7ZZ. LP(T), 1 < p < oo, is the space of 1-periodic Lebesgue measurable
functions F' on IR for which

1 1/p
IFlm = ([ IF@Par) < oo

If fis defined on R and p is a positive measure then

Il = ( | |f<t)|2dﬂ<t>)”2.
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The following special symbols are used throughout the chapter.
(Tag)(t) = g(t — a),
eb(t) = e‘Zm’tb’
) (t)—{l’ if telS
(o, i tes,

Lio)(t) = 1_q,0(f),

sin ¢

d(t) =

, “d” for Dirichlet,

7t

ir(t) = Af(EN),

P 1, f m=n
0, if ms#n,

card S is the cardinality of S, |S|is the Lebesgue measure of S, ¢ is the empty
set, and supp F is the support of F.
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