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Abstract. Complex-valued periodic sequences, u, constructed by Göran Björck, are an-
alyzed with regard to the behavior of their discrete periodic narrow-band ambiguity func-
tions Ap(u). The Björck sequences, which are defined on Z/pZ for p > 2 prime, are
unimodular and have zero autocorrelation on (Z/pZ)r{0}. These two properties give rise
to the acronym, CAZAC, to refer to constant amplitude zero autocorrelation sequences.
The bound proven is |Ap(u)| ≤ 2/

√
p + 4/p outside of (0, 0), and this is of optimal magni-

tude given the constraint that u is a CAZAC sequence. The proof requires the full power
of Weil’s exponential sum bound, which, in turn, is a consequence of his proof of the Rie-
mann hypothesis for finite fields. Such bounds are not only of mathematical interest, but
they have direct applications as sequences in communications and radar, as well as when
the sequences are used as coefficients of phase-coded waveforms.

1. Introduction

1.1. Purpose. Let Z denote the ring of integers and let C denote the field of complex
numbers. Given an integer N , form the ring Z/NZ of integers modulo N .

Definition 1.1. Let u : Z/NZ :→ C be an N -periodic sequence. The discrete narrow band
ambiguity function, AN(u) : Z/NZ× Z/NZ→ C, is defined to be

AN(u)[m,n] =
1

N

N−1∑
k=0

u[m+ k]u[k]e−2πikn/N

for all (m,n) ∈ Z/NZ× Z/NZ.
The discrete autocorrelation of u is the function AN(u)[·, 0] : Z/NZ→ C.

The ambiguity function in Definition 1.1 stems from P. M. Woodward’s definition of the
narrow band ambiguity function defined on R× R [37].

Definition 1.2. An N -periodic sequence u : Z/NZ→ C is constant amplitude zero auto-
correlation (CAZAC ) if it satisfies the following properties:

(CA) |u[k]| = 1 for all k ∈ Z/NZ, and

(ZAC) C(u)[m] =
1

N

N−1∑
k=0

u[m+ k]u[k] = 0 for all m ∈ Z/NZ r {0}.

Clearly, C(u)[m] = AN(u)[m, 0] for each m ∈ Z/NZ. Equation (CA) is the condition
that u has constant amplitude 1. Equation (ZAC) is the condition that u has zero auto-
correlation.
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Our setting is almost exclusively limited to the case that N = p is prime. As such, Z/pZ
is a field.

We shall use a remarkable construction of CAZAC sequences up of prime length p to
prove optimal behavior of Ap(up). The construction is due to Göran Björck [8](1985),
[9](1990). By optimal behavior, we mean that if p is an odd prime, then

(1) |Ap(up)[m,n]| < 2
√
p

+
4

p
for all (m,n) ∈ (Z/pZ× Z/pZ) r {(0, 0)},

see Theorem 3.8. By comparison, a short and elementary calculation shows that for any
CAZAC u,

max
{
|Ap(u)[m,n]| : (m,n) ∈ (Z/pZ× Z/pZ) r {(0, 0)}

}
≥ 1√

p− 1
,

and therefore the bound (1) above is indeed of optimal order of magnitude.

Remark 1.3. The proof of Theorem 3.8 requires André Weil’s exponential sum bound, [35],
which is a consequence of his proof of the Riemann Hypothesis for curves over finite fields,
[36], announced in the Comptes Rendus in 1940. Further, there are no more elementary
means to prove the inequality (1). In fact, in estimating Ap(up), the critical term to
estimate is a Kloosterman sum; and, if there were an easier way to bound it by C/

√
p, then

there would be an easier way to prove Weil’s bound for Kloosterman sums, which is an
essential consequence of [35] and which has withstood the test of time vis a vis evolutionary
simplification.

Remark 1.4. Notwithstanding the level of mathematics required to prove the inequality
(1), as noted in Remark 1.3, we emphasize that our coding and implementation of Björck’s
CAZAC sequences is truly elementary. In this regard, see [4], as well as earlier Björck
experiments and constructions by one of the authors, e.g., see [7] and references therein,
cf. Remark 1.5. In the parlance of waveform design, Theorem 3.8 is an ideal discrete
“thumbtack” narrow band ambiguity function which can be used to design ideal phase-
coded waveforms devoid of any substantial time or doppler coupling in the continuous
narrow band ambiguity function plane. With regard to hardware implementation of these
phase-coded waveforms (as well as others stemming from low correlation sequences), the
power, bandwidth, and hardware requirements will introduce noise. It is understood that
modifications must be made to the formulation of a given low correlation sequence to permit
implementation while controlling this noise.

1.2. Background. The study of CAZAC sequences and of other sequences related to
optimal autocorrelation behavior has origins in several important applications, one of the
most prominent being in the general area of waveform design associated with radar and
communications, see, e.g., according to year of publication [20, 21, 11, 33, 34, 10, 31, 25, 24,
16, 2, 3, 22, 12, 7, 27]. There are hundreds of articles in this area and so this selection may
seem arbitrary, although several of these references contain focused lists of contributions
and specific applications. Also see Remark 1.5.

There are also purely mathematical origins for the construction of CAZAC sequences.
One such origin is due to Norbert Wiener, e.g., see new related constructions in [6, 5].
Another may be said to have originated in a question by Per Enflo in 1983. This particular
mathematical path has been documented and built upon by Bahman Saffari [28]. Enflo’s
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question is the following for a given odd prime p. Is it true that the Gaussian sequences,
u : Z/pZ→ C, defined by

u[k] = ζrk
2+sk

p , k = 0, 1, ..., p− 1,

where ζp = e2πi/p, r, s ∈ Z and p does not divide r, are the only unimodular sequences of
length p, with u[0] = 1, whose Discrete Fourier Transform (DFT) has modulus 1? This is
equivalent to asking whether such sequences u with u[0] = 1 are the only bi-unimodular
sequences of odd prime length. Enflo was interested in this because of a problem dealing
with exponential sums.

Enflo’s question has a positive answer for p = 3 and p = 5. In 1984, by computer
search, Björck discovered counterexamples to the Enflo question for p = 7 and p = 11, see
[8]. Later in 1985, Björck saw the role of Legendre symbols in his counterexamples, and
this led to his theorems in [9]. It also led to a host of mathematical problems, many still
unresolved, about the number of CAZAC sequences for a given length, see, [14, 6, 7, 4], as
well as a several valuable oral and email communications by Saffari [29].

Remark 1.5. It is relevant to mention a striking recent application of low correlation
sequences to radar in terms of compressed sensing [17]. In this case, the authors use Alltop
sequences [1] Theorem 2, cf. [32] Section 2.1.3. It then becomes natural to think in terms of
frames generated by Björck sequences for extending the high-resolution radar/compressed
sensing setting of the authors of [17].

Another approach to the problem addressed in Section 1.1 is found in [13], cf. [23]. The
authors obtain bounds comparable to those found herein, but their class of signals, called
the oscillator system, is not necessarily ZAC although excellent cross-correlation criteria
are obtained, something we have not pursued. More important, from the point of view
of application, the characterization and construction of the oscillator system are decidedly
representation theoretic. As such an explicit algorithm associated with the collection of
split tori in Sp requires a Bruhat decomposition.

The companion, [4], of this paper not only exhibits the simplicity of implementation
stressed in Remark 1.4, but also reflects the combinatorial and geometrical complexity in
the ambiguity function domain due to the role of the Legendre symbol in defining Björck
sequences. Some of this complexity is characterized by intricate Latin and magic square
patterns. Further, the simplicity of implementation gives rise to useful, efficient bounds off
of small neighborhoods of (0, 0) in the ambiguity function domain for compactly supported
waveforms on R having p lags whose coefficients are the elements of a Björck sequence up.
Also, it is not difficult to see that, as with the oscillator system, there is Fourier invariance
of Björck sequences, most simply calculated in the p ≡ 1 (mod 4) case, e.g., [26].

1.3. Outline. We define Björck sequences in Section 2. Properties of Kloosterman sums
are proven in Section 3.1. These, in turn, are used along with Weil’s results and the
proper decomposition formula to express Björck sequences in the way that allows us to
prove Theorem 3.8 in Section 3.2. Section 4 provides figures and data which motivated and
guided us.
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2. Björck sequences and multiplicative characters

For each prime number p, recall that the Legendre symbol modulo p is the function

χ =

(
·
p

)
: Z/pZ→ {+1, 0,−1} given by

χ[k] =

(
k

p

)
=


+1 if k ≡ m2 (mod p) for some m ∈ Z/pZ×,
0 if k ≡ 0 (mod p),

−1 if k 6≡ m2 (mod p) for all m ∈ Z/pZ.

The preimage of +1 under the Legendre symbol function is the set Q of nonzero quadratic
residues modulo p; and the preimage of −1 under the Legendre symbol function is the
set QC of quadratic nonresidues modulo p. Among the many properties of the Legendre
symbol, we shall use the fact that it is a character of the multiplicative group (Z/pZ)×.
This means that χ, when restricted to (Z/pZ)×, is a group homomorphism into C×; see
[15], Chapters V and VI.

Definition 2.1. The Björck sequence of length p, where p is a prime and p ≡ 1 (mod 4),
is defined by

u[k] = exp (iθχ(k)) = exp

(
iθ

(
k

p

))
, where θ = arccos

(
1

1 +
√
p

)
,

for all k ∈ Z/pZ.
The Björck sequence of length p, where p is a prime and p ≡ 3 (mod 4), is defined by

up[k] =

exp(iφ) if k ∈ QC ⊆ (Z/pZ)×, where φ = arccos

(
1− p
1 + p

)
,

1 otherwise,

for all k ∈ Z/pZ.

In the case p ≡ 1 (mod 4), Definition 2.1 is equivalent to the following definition for the
Legendre symbol sequence {0, 1, ...,−1, ..., 1} of length p. We replace the first term 0 by 1,
every term 1 by

η = exp

(
i arccos

√
p− 1

p− 1

)
=

1
√
p+ 1

+ i

√
p+ 2

√
p

√
p+ 1

,

and every term −1 by the complex conjugate of η; see [28] for a modest generalization.
As proven by Björck and differently in [4], we obtain a CAZAC, and hence bi-unimodular,
sequence with three values, viz., 1 at k = 0, and η and η at k ∈ (Z/pZ)×.

In the case p ≡ 3 (mod 4), Definition 2.1 is equivalent to the following definition for the
Legendre symbol sequence {0, 1, ...,−1} of length p. Replace the first term 0 by 1, and
replace every −1 by

ξ = exp

(
i arccos

1− p
1 + p

)
=

1− p
1 + p

+ i
2
√
p

1 + p
.

As proven by Björck and differently in [4], we obtain a CAZAC, and hence bi-unimodular,
sequence with only two values, viz., 1 and ξ.
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3. The main theorem

3.1. The Legendre symbol and Kloosterman sums.

Definition 3.1. Let p be a prime. For any integers a, b, the quantity

K[a, b; p] =
∑

x∈Z/pZ×
exp

(
2πi(ax+ bx−1)/p

)
,

where x−1 denotes the multiplicative inverse of x in the field Z/pZ, is a Kloosterman sum.

Kloosterman sums are always real-valued, as the following Lemma states.

Lemma 3.2. Let p be a prime. Then K[a, b; p] ∈ R for all integers a, b ∈ Z.

Proof. By the substitution y = −x, we have

K[a, b; p] =
∑

x∈Z/pZ×
e−2πi(ax+bx−1)/p =

∑
y∈Z/pZ×

e2πi(ay+by
−1)/p = K[a, b; p]. �

The following classical description of certain Kloosterman sums was first observed by
Hans Salié in equation (52) of [30], using a formula of Ernst Jacobsthal from a footnote
on page 239 of [19]. Jacobsthal’s footnote refers the reader to his 1906 Ph.D. thesis, but
fortunately the proof of his formula is not difficult to derive.

Lemma 3.3. Fix an odd prime p and an integer a not divisible by p. Let χ =

(
·
p

)
denote

the Legendre symbol modulo p.

a. (Jacobsthal, 1907) Let F : Z/pZ→ C be any function. Then∑
x∈Z/pZ×

F [x+ ax−1] =

p−1∑
x=0

F [x] +

p−1∑
x=0

χ[x2 − 4a]F [x].

b. (Salié, 1932) K[1, a; p] =

p−1∑
x=0

χ[x2 − 4a]e2πix/p.

The formulas of Lemma 3.3 are known, but we include their proofs because of the role
they play in our approach.

Proof. (a). Let g : (Z/pZ)× → Z/pZ be the function g[x] = x + ax−1. For each t ∈ Z/pZ,
set

N [t] = card{x ∈ (Z/pZ)× : g[x] = t}.
The desired sum can now be written as∑

x∈Z/pZ×
F [x+ ax−1] =

∑
x∈Z/pZ×

F
[
g[x]

]
=
∑
t∈Z/pZ

N [t]F [t].

Thus, it suffices to show that N [t] = 1 + χ[t2 − 4a].
Note that g[x] = g[ax−1]. Conversely, for any x, y ∈ (Z/pZ)× with g[x] = g[y], we must

have either y = x or y = ax−1, since 0 = g[x] − g[y] = (x − y)(1 − ax−1y−1). Thus,
N [t] ≤ 2 for all t ∈ Z/pZ, and N [t] = 1 if and only if t = g[x] for a point x ∈ (Z/pZ)× such
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that x = ax−1. This latter condition occurs if and only if x2 = a in Z/pZ; in that case,
t = g[x] = g[ax−1] = 2x, or equivalently, t2 = 4a. Thus, if we set

S = {g[x] : x ∈ (Z/pZ)×, x2 6= a},
then

N [t] =


2 if t ∈ S,
1 if t2 = 4a,

0 otherwise.

Note, on the other hand, that

1 + χ[t2 − 4a] =


2 if t2 − 4a is a square in (Z/pZ)×,

1 if t2 − 4a = 0 in Z/pZ,
0 otherwise.

Thus, it suffices to show that

(2) S = {t ∈ Z/pZ : t2 − 4a is a square in (Z/pZ)×}.
Given t ∈ S, pick x ∈ (Z/pZ)× such that t = g[x]. Then

t2 − 4a = (x+ ax−1)2 − 4a = x2 − 2a+ a2x−2 = (x− ax−1)2.

In addition, since t2 6= 4a for all t ∈ S, it follows that t2 − 4a is a square in (Z/pZ)×,
proving the forward inclusion.

Conversely, given t ∈ (Z/pZ) for which there is some z ∈ (Z/pZ)× with z2 = t2 − 4a,
set x = (t + z)/2 ∈ (Z/pZ)×. Then x(x − z) = (t2 − z2)/4 = a, and therefore g(x) =
x+ ax−1 = 2x− z = t. It follows that t ∈ S, proving equation (2) and hence part (a).

Part (b) is immediate by setting F [x] = e2πix/p and noting that
∑p−1

x=0 e
2πix/p = 0. �

Theorem 3.4. Fix an odd prime p. Let χ =

(
·
p

)
be the Legendre symbol modulo p. Then

e−πimn/pAp(χ)[m,n] ∈ R, and |Ap(χ)[m,n]| ≤ 2
√
p
,

for all m,n ∈ Z/pZ r {0}.

Proof. Fix m,n ∈ Z/pZ r {0}. Noting that χ is multiplicative and real-valued, we have

Ap(χ)[m,n] =
1

p

∑
k∈Z/pZ

χ[k +m]χ[k]e−2πikn/p =
1

p

∑
k∈Z/pZ

χ
[
k(k +m)

]
e−2πikn/p.

Let a = (mn)2/16, b = m/2, and c = −1/n, where we are doing the arithmetic in Z/pZ.
Substituting k = cx− b, we have

Ap(χ)[m,n] =
1

p

∑
x∈Z/pZ

χ
[
(cx− b)(cx+ b)

]
exp(−2πin(cx− b)/p)

=
e2πibn/p

p

∑
x∈Z/pZ

χ[c2x2 − b2]e2πix/p =
e2πibn/p

p
K[1, a; p],(3)

where the final equality is valid because b2 = 4ac2, and hence

χ[c2x2 − b2] = χ
[
c2(x2 − 4a)

]
= χ[c2]χ[x2 − 4a] = χ[x2 − 4a].
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Since (e2πibn/p)2 = e2πimn/p = (eπimn/p)2, we have e2πibn/p = ±eπimn/p, and therefore by
equation (3) and Lemma 3.2,

e−πimn/pAp(χ)[m,n] = ±1

p
K[1, a; p] ∈ R.

Finally, because a ∈ Z/pZ r {0}, we have |K[1, a; p]| ≤ 2
√
p, by Weil’s bound for Kloost-

erman sums in [35]. Thus, equation (3) gives |Ap(χ)[m,n]| ≤ 2/
√
p, as desired. �

Remark 3.5. In [35], Weil proves his bound for |K[a, b; p]| by first using Lemma 3.3 to
rewrite K[a, b; p] as

∑
χ[x2 − 4a]e2πix/p and then bounding the new sum. Philosophically,

then, it would be more direct not to convert the sum to the form
∑

exp(2πi(x+ ax−1)/p).
Nevertheless, we have applied the transformation in Lemma 3.3 because the latter form of
Kloosterman sums is better known than are the details of Weil’s proof.

3.2. Main bound. We shall need the following technical lemma, which gives bounds for
the ambiguity function of any sequence that is a function of the Legendre symbol.

Lemma 3.6. Fix an odd prime p and complex numbers r, s, t ∈ C. Let χ : Z/pZ → C be
the Legendre symbol modulo p, and let U : Z/pZ→ C be the function

U [k] =


r if χ(k) = 1,

s if χ(k) = −1,

t if k = 0.

Set R = (r + s)/2, S = (r − s)/2, T = t−R, and ζp = e2πi/p. Then

Ap(U)[m,n] = |S|2Ap(χ)[m,n] +
1

p

(
E1[m,n] + E2[m,n]

)
for all m,n ∈ Z/pZ r {0}, where E1[m,n] = RT̄ + R̄T ζmnp , and

E2[m,n] =

{
(ST̄ + S̄T ζmnp )χ[m] + (RS̄ + R̄Sζmnp )χ[n]

√
p if p ≡ 1 (mod 4),

(ST̄ − S̄T ζmnp )χ[m]− (RS̄ + R̄Sζmnp )iχ[n]
√
p if p ≡ 3 (mod 4).

Proof. For any two functions F,G : Z/pZ→ C, write

Bp(F,G)[m,n] =
1

p

∑
k∈Z/pZ

F [k +m]G[k]e−2πikn/p.

Define functions η, δ : Z/pZ→ C by

η[k] = 1 and δ[k] =

{
0 if k 6= 0,

1 if k = 0.

Thus, U = Rη + Sχ+ Tδ, and hence

Bp(U,U) = |R|2Bp(η, η) + |S|2Bp(χ, χ) + |T |2Bp(δ, δ)

+RT̄Bp(η, δ) + R̄TBp(δ, η) + ST̄Bp(χ, δ) + S̄TBp(δ, χ) +RS̄Bp(η, χ) + R̄SBp(χ, η).



8 JOHN J. BENEDETTO, ROBERT L. BENEDETTO, AND JOSEPH T. WOODWORTH

To compute Bp(U,U), we shall compute each of these nine terms separately. Since m 6= 0,
we have Bp(δ, δ) = 0. In addition, Bp(η, η) = 0, since

∑
k∈Z/pZ e

−2πikn/p = 0 and n 6= 0. We

also have Bp(χ, χ) = Ap(χ) by definition. Meanwhile, it is immediate that

pBp(η, δ)[m,n] = 1, pBp(δ, η)[m,n] = ζmnp ,

pBp(χ, δ)[m,n] = χ[m], and pBp(δ, χ)[m,n] = ζmnp χ[−m].

Next, pBp(η, χ)[m,n] = τ [−n; p], where τ [a; p] is the Gauss sum

τ [a; p] =
∑

k∈Z/pZ

χ[k]e2πiak/p.

However, Gauss proved that τ [a; p] = εχ[a]
√
p, where ε = 1 if p ≡ 1 (mod 4), and ε = i

if p ≡ 3 (mod 4); see, for example, Proposition 6.3.1 and Theorem 6.4.1 of [18]. Hence,
pBp(η, χ)[m,n] = εχ[−n]

√
p. Similarly,

pBp(χ, η)[m,n] =
∑

k∈Z/pZ

χ[k +m]e−2πikn/p =
∑

j∈Z/pZ

χ[j]e−2πi(j−m)n/p

= ζmnp τ [−n; p] = εζmnp χ[−n]
√
p.

Combining the nine computations above, and noting that

χ[−k] = χ[−1]χ[k]

{
χ[k] if p ≡ 1 (mod 4),

−χ[k] if p ≡ 3 (mod 4),

we have Bp(U,U) = |S|2Ap(χ) + (E1 + E2)/p, where E1 and E2 are the quantities in the
statement of Lemma 3.6. �

The following elementary bound will be needed to prove the p ≡ 3 (mod 4) case of
Theorem 3.8.

Lemma 3.7. Let X, Y ∈ R, and let z ∈ C with |z| = 1. Then

|zX + (1− z2)Y | ≤
√
X2 + 4Y 2.

Proof. Noting that zz = 1, we have∣∣zX + (1− z2)Y
∣∣ =

√(
zX + (1− z2)Y

)(
zX + (1− z2)Y

)
=
√
X2 +

(
z(1− z2) + z(1− z2)

)
XY + (1− z2)(1− z2)Y 2

=
√
X2 + |1− z2|2Y 2 ≤

√
X2 + 4Y 2,

since z(1− z2) + z(1− z2) = z − z + z − z = 0 and |1− z2| ≤ 2. �

We are now ready to state and prove our main result.

Theorem 3.8. Let p be an odd prime, and let up be the Björck function for p. Then the
ambiguity function, Ap(up), defined on Z/pZ× Z/pZ as

Ap(up)[m,n] =
1

p

∑
k∈Z/pZ

up[k +m]up[k]e−2πikn/p,
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satisfies the estimate

|A(up)[m,n]| < 2
√
p

+


4

p
if p ≡ 1 (mod 4),

4

p3/2
if p ≡ 3 (mod 4),

for all (m,n) ∈ (Z/pZ× Z/pZ) r {(0, 0)}.

Proof. Fix (m,n) ∈ (Z/pZ× Z/pZ) r {(0, 0)}. If m = 0, then n 6= 0, and we have

Ap(up)[0, n] =
1

p

∑
k∈Z/pZ

up[k]up[k]e−2πikn/p =
1

p

∑
k∈Z/pZ

e−2πikn/p = 0,

since |up[k]| = 1 for all k ∈ Z/pZ. On the other hand, if n = 0, then m 6= 0, and we have

Ap(up)[m, 0] =
1

p

∑
k∈Z/pZ

up[k +m]up[k] = 0,

because up has zero autocorrelation. Thus, by the fact that up is a CAZAC, we may assume
for the remainder of the proof that m,n 6= 0.

If p ≡ 1 (mod 4), then in the notation of Lemma 3.6, we have r = (1 +
√
p)−1(1 +

i
√

2
√
p+ p), s = (1 +

√
p)−1(1− i

√
2
√
p+ p), and t = 1. Thus,

R =
r + s

2
=

1

1 +
√
p
, S =

r − s
2

=
i
√

2
√
p+ p

1 +
√
p

and T = t−R =

√
p

1 +
√
p
.

The quantities E1 and E2 in Lemma 3.6 are therefore

E1[m,n] =

√
p(1 + ζmnp )

(1 +
√
p)2

and

E2[m,n] =
1

(1 +
√
p)2

[
(1− ζmnp )

√
p
√

2
√
p+ p · iχ[m] + (ζmnp − 1)

√
p
√

2
√
p+ p · iχ[n]

]
=

√
p

(1 +
√
p)2

[
i(1− ζmnp )

(
χ[m]− χ[n]

)√
2
√
p+ p

]
.

Noting that |1 + ζmnp |, |1− ζmnp |, and |χ[m]−χ[n]| are each less than or equal to 2 and that√
2
√
p+ p <

√
1 + 2

√
p+ p = 1 +

√
p, we obtain

|E1[m,n] + E2[m,n]| <
2
√
p

(1 +
√
p)2

+
4
√
p

1 +
√
p
<

2
√
p

(1 +
√
p)2

+ 4.

Hence, by Lemma 3.6 and Theorem 3.4, we have

|Ap(up)[m,n]| ≤ 2
√
p
|S|2 +

2
√
p(1 +

√
p)2

+
4

p
=

2
√
p(1 +

√
p)2

(
2
√
p+ p+ 1

)
+

4

p

=
2

√
p(1 +

√
p)2

(1 +
√
p)2 +

4

p
=

2
√
p

+
4

p
.
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Similarly, if p ≡ 3 (mod 4), then r = 1, s = (1 + p)−1(1 − p + 2i
√
p), and t = 1, and

therefore

R =
r + s

2
=

1

1− i√p
, S =

r − s
2

=
−i√p

1− i√p
, and T = t−R =

−i√p
1− i√p

.

Thus, the quantities E1 and E2 in Lemma 3.6 are

E1[m,n] =
i
√
p(1− ζmnp )

p+ 1

and

E2[m,n] =
1

p+ 1

[
(p− pζmnp )χ[m]− (i

√
p− ζmnp i

√
p)iχ[n]

√
p
]

=
p(1− ζmnp )

p+ 1

[
χ[m] + χ[n]

]
.

Since |S|2 = p/(p+ 1), we have∣∣∣|S|2Ap(χ)[m,n] +
1

p
E2[m,n]

∣∣∣ =
1

p+ 1

∣∣∣pAp(χ)[m,n] + (1− ζmnp )(χ[m] + χ[n])
∣∣∣.

Setting z = eπimn/p, X = e−πimn/ppAp(χ)[m,n], and Y = χ[m] + χ[n], so that X ∈ R with
|X| ≤ 2

√
p by Theorem 3.4, Y ∈ R with |Y | ≤ 2, and |z| = 1, Lemma 3.7 tells us that∣∣∣|S|2Ap(χ)[m,n] +

1

p
E2[m,n]

∣∣∣ ≤ √X2 + 4Y 2

p+ 1
≤
√

4p+ 16

p+ 1
=

2
√
p+ 4

p+ 1
.

Hence, by Lemma 3.6 and the fact that |1− ζmnp | ≤ 2, we obtain

|Ap(up)[m,n]| ≤
∣∣∣|S|2Ap(χ)[m,n] +

1

p
E2[m,n]

∣∣∣+
∣∣∣1
p
E1[m,n]

∣∣∣
≤ 2
√
p+ 4

p+ 1
+

2
√
p(p+ 1)

=
2

√
p(p+ 1)

(√
p2 + 4p+ 1

)
≤ 2(p+ 3)
√
p(p+ 1)

=
2
√
p

+
4

√
p(p+ 1)

≤ 2
√
p

+
4

p3/2
. �

Remark 3.9. The bounds in Theorem 3.8 may be improved very slightly but at the
great expense of simplicity. For example, if p ≡ 1 (mod 4), then the bounds |1 − ζmnp | ≤
2 and |1 + ζmnp | ≤ 2 could be improved, as obviously these quantities cannot both be
simultaneously close to 2. However, the resulting bound is far more complicated to write,
and the savings is only about 2p−3/2, as illustrated by considering ζmnp very close to −1.
Similarly, removing the simplification 4

√
p/(1 +

√
p) < 4 would also only save us about

4p−3/2.

4. Figures and table

Natural algebraic and analytic calculations convinced us that the proof of Theorem 3.8
depended on substantial number theoretic results. In parallel, Figure 1 supported the truth
of Theorem 3.8 before we proved it. The x-axis lists the primes between 1 and 1000. The
y axis lists the values,

(4) max
(m,n) 6=(0,0)

|Ap(up)[m,n]|.
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Figure 1. p and max{|Ap(up)[m,n]| : (m,n) 6= (0, 0)}

Figure 2. Ap(up) for p = 13

Figure 1 also displays the curves y = 2/
√
p and y = 2/

√
p+4/p for comparison. Figure 2, for

the case p = 13, illustrates the symmetries inherent in the function Ap(up) on Z/pZ×Z/pZ.
These are fully explained for all p in [4]; and they led to the realization of the complexity
involved in proving Theorem 3.8, as well as to a host of geometrical and combinatorial
phenomena and problems. Figure 3 illustrates Theorem 3.8 for the case p = 503.

Table 1 indicates some of the finer behavior of the quantity (4), over three different
ranges of primes. This data suggested to us that 2/

√
p was very nearly the upper bound

for |Ap(up)[m,n]|, (m,n) 6= (0, 0), and it helped lead us to the proof that 2/
√
p + 4/p

is an upper bound. In addition, although a number of primes p ≡ 1 (mod 4) require
a bound larger than 2/

√
p, we noted that only very few primes p ≡ 3 (mod 4) allowed

|Ap(up)[m,n]| > 2/
√
p for (m,n) 6= (0, 0). For example, p = 139 is the only such prime

in Table 1. Our broader calculations for other primes showed that the only such primes
between 1000 and 5000 are 1259, 2111, and 3511; the only ones between 10000 and 24360
are 13879, 16091 and 23719; and there are none between 100000 and 105000. Moreover, for
all seven of those primes, the maximum value of |Ap(up)[m,n]| − 2/

√
p for (m,n) 6= (0, 0)
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Figure 3. Ap(up) for p = 503

is still far smaller than 4/p, a fact which ultimately led us to the sharper bound for p ≡ 3
(mod 4) in Theorem 3.8.
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23. Christian Mauduit and András Sárközy, On finite pseudorandom binary sequences. I. Measure of pseu-

dorandomness, the Legendre symbol, Acta Arith. 82 (1997), no. 4, 365–377.
24. Wai Ho Mow, A new unified construction of perfect root-of-unity sequences, Proc. IEEE 4th Inter-

national Symposium on Spread Spectrum Techniques and Applications (Germany), September 1996,
pp. 955–959.

25. Branislav M. Popovic, Generalized chirp-like polyphase sequences with optimum correlation properties,
IEEE Transactions on Information Theory 38 (1992), no. 4, 1406–1409.

26. , Fourier duals of Björck sequences, SETA, 2010, pp. 253–258.
27. Mark A. Richards, James A. Scheer, and William A. Holm (eds.), Principles of Modern Radar, SciTech

Publishing, Inc., Raleigh, NC, 2010.
28. Bahman Saffari, Some polynomial extremal problems which emerged in the twentieth century, Twentieth

century harmonic analysis—a celebration (Il Ciocco, 2000), NATO Sci. Ser. II Math. Phys. Chem.,
vol. 33, Kluwer Acad. Publ., Dordrecht, 2001, pp. 201–233.

29. , Oral and email communications, 2004–2010.
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