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: LetM ‘he a 77.1‘2- locally convex topqﬁlo_g:l,cal vectanr sp,ac:'q_ and 1ét the
dirgcf@_ﬂi system Vg T Q0 weakly in M. ."It-foll.qms from the Hahn-Bapach
theqrem that, the "we,a_,lg and strong qloéuras of the convex lmii.;-l of { Vg
are the same. Thup there is {Ki;} centained in the dqﬁvéx hull of -ya:}
s'u.c_h that ,xﬁ m O in M. 1In genaral_ we have na knowledge abowut the xp
except that pr;e;sr are la_'._:neam combinations p_f the Te with non-negative
ceei‘f_ipianﬁs whose sum is 1. In partieular, we ‘ha':‘ré ne _'Toéplitz‘ con- 'l
di’qio;a'gua;rameaing the gonvergence to O of a particular 'colum! .Qf
these coefficients as‘é“ "imq:neas,esi. - |

Banach and Saks flj éhqwed t.h_a'i; for M = IF sy L <p<=, we have:
I w0 weakly imp;ias thers is {xlg} g{yn} sugh that.
* oaee X

m .

Similar results have been proved for gome other normed spaces, althqugh
the re_asﬁl{a is not true in 113", We méntion the work of 3. Mazuyr [2) and
‘the references given theve. | B |

We shall digenss such matters for muclear spaces. BRecall that M
i8 nuclear if, when {Pt} 18 a system of semi-norms describing the
topology of M, we have the following sitwatien [L]: for each k there
18 &, {Tn}ﬁ—"_ M, .{Qn}\- al {P‘n} CM go that for all x e M




| Tn(x) | < p (%), Pk(‘_*n) =1

and

<0,

x = gj_ cn'l’n(x) ?’n

in the topology of Py Also, a T, locally convex space M with semi-

norms { P‘b} 1s general nuclear if the above conditions for nuclearity

hold, exoept possibly pk( ;.I.n) 2 1, and if the topology on M is weaker
than that given by the iz,ma-r products

o+ £ st

Note, of course, that Hk _defines an inner product since we pan take
‘ . iarge
> : n ‘
Qn z 0 4if we replace T n by Tn_e 3 and that { Hk} and { pk}

define equivalent topologies on general nuclear spaces since
H(xx) 2 5 ¢ (x)?
e nPt ’

We prove

T‘heorem Assume M is a metrizable .general nuclear space and let

;}rm- ~—» O weakly. Then there is {xk} - { yn} such that

>0 in M.

It is, of ecourse, true that if M is semi-Montel, weak convergence
of {xn} implies convergence in the topology of M. TFurther, bounded
gets are totally bounded in nuclear spaces, so that if a nuclear space

is quasi-complete it is semi-Montel. Thus; a completeness criterion on




because it shows that the

s nuclear spacs ylslds the semi-refiexivity of the space, and this-propu
erty was also vital in thg Banach-Saks proof for Lp, p > 1., 1In fact,
weale sequential convergence in any nuclesr space implies convergence
since the completion of any nuclear space is nuclear, Even more; weak
convergence implies convergence in any Schwarts space. Considering the
above theorsm and the weak convergence properties of nuelssr spaces it
is natural to ask the relation between nuclear and general nuclsari in
fact, Pietsch [3] has recently proved the two concepts equivalent. We
present the foilcwing proof since it does not use the Pietsch result agd
“pk(ph) boundedness" condition is not necessary

in nuclear space arguments - as indeed is the case by Pietsch's theorem.

Proof {of theorem). Let {pk } be an increasing sequence of semi-norms
determining the topology of M,
We shall use a Moore-Smith argument to show that Y, 0 weakly in M

implies Iy —® 0 weakly for each inmer product.

For given k we choose {ﬂa}} s Pyos { cy } by general miclearity and

consider the sum

r S
s{r,m) = E:% GnT%(yﬁ} TH(Y)
- - n=4 -

where y is any element of M3 for this y and & > 0 we shall

find M >0 5o that m > M implies

bl

(1 H(y,¥y) < 5 .
Since Yy > ¢ weakly we have for each » thatb

lim s(r,m) = 0,
m -»e




41so, for each m, I1im s(r,m) exists and eguals Hk(ym s Ve
. T =

Note that

(2) ] Z chn(ym)T (y) b2 pn(y) ¥ e
. : n=r

n=y
pt(ym} is bounded independent of m since the weak convergence of the
éequence { ym} yields its weak boundedness; hence, by Mackey's
theorem, {ym} is bounded in M,

Thus, the right hand side of (2) converges to O independent of m g that

is, 1lim s(r,m) exists uniformly for all m.
T3

Therefore s (1) follows by the Moore-Smith theorem; and we have that weak
convergence in M yislds weak convergence for each inmer product H}c'
Further, since subsequences of weakly convergsnt sequences also converge

weakly, we have that these subsequences converge weakly for each HkA.

Iet <M, Hk > Dbe the immer product space M with inner product Hk 3
also, we write y >y if mZn, and a. ¥, —> O if the arith-
metie means of y,, converge to O.

We now give the procedure for choosing {xm } .

By a variation of the Banach-Saks proof, which we describe in detail be-

m

low, there is {yl m} - {ym} such that a.: -z 0 in
H

Y1,m

<M, Hl > . This follows since Iy = 0 weakly in < M, Hl > .

Also, there is no loss of generality in letting Y11 = ¥y
2
m
yl -2 0 weskly in <M, H2 > since {yl m} . {ym} . We choose

a subsequence Vs . 2 C K&y such that
2.m lm

) m .
(3) 8o ¥y 0 in <N, H,>




AL

and

(L3 ‘ for each m, yZ,m > yl,m .

We proceed as fqlloﬁs to find such a sequence { y?,m} . Let ngl = yl,l
g¢ that yz,l > yl,l « - let T e { yl,m} have the progﬁerty that
for all ¥y, € {yl,m} such that Yy > Yo we have
]‘H2 (yE,l’ y;l) ] £ 13 then let V2,2 be one of these y, with
_the further property that y2,2 > yl,Z « We use the weak converw
gence of {&l,m} ‘in <M, H, > to do this.

Gimilarly, to chooss gz,m*i ,wel_lat Yy € {yl,m} have the property

that for all T, € { Xil._,.m } with yn Ed Yo ‘wa have

(5} ng (yg’la yn)Jf:— 3—/319 e g JHE (yzsm, YH)J f 1/1!1 s

Again, we do this by the weak convergence of {yl m} to 0 in
. B . ‘

<M, H

5 > e We t@en let YZ,m*l -be one of these ¥, with the

farther property that Yo m‘i'i = T e
N 8l ) 3 .

. n this manner we clearly find {32 m} so that (L) is satisfied. We
. B . bh .
can prove (3) using (5) by an inequality which we indicate bslow

for 4 number of other cases and because of the weak boundaries

of {ym} .
Generally, then, we have yk,m -2 0 weakly in <M, Hk 4 > 2nd we
can choose {y_kﬂ,m } c {yk,m} so that yk-ﬂ_,l = yk,l’ and,

for each m,




6

. < , <
(6) ]Hk,g.l(yk*l:l! Ykg.j_’m_;.l); - l/m.! L S 1Hk41(3'k,,.l,ms yk-*l,m*l” - l/m

and

Tkelm ~ Ti,m

A’S_ before we use (6) to prove a. Vietl,m —> 0 in <M, H,, >.

m . .
Let X = Vpom ‘We shall show as X o 0 in each <M, H > and

) k
this will prove the result. We do this by f:i.rét showing that for

sach k

(7) B (o %) 3 1/, kZnZm.

£ < - ;
We have IHn_ (yn,n’ yn,m*l}] 2 1/m so that since ym'!-l,m*l > yn,m»*l’

an (xn’ xm‘»‘“l)] = 1/m 3

further, n 2 k implies Hn o Hk. since the sequence {pk} was
chosen (without loss of generality) to be increasing, and there-
fore (7Y follows. |

. L
For k = 1 we have the semi-norm [Hl(x,:f:)]2 and

] . (Kl * L + xm x-l H+ oaee ¥ xm ) j <

l : 3 C )
nt m

(8)

| M, + 2

11 1 1 L <
—5[211 #* ]4"2' I Z(mul)m 4 Z Hfl(xn’xn)] =
n n=1 g m

where IHl(xn ,xn)} = Ml since {ym} is weakly bounded and

. therefore bounded in M.




Because of (8) we have a. X Bso in < M, Hy >,
For k22 we proceed similarly to the k =1 case although there is
) an additional technicality with which we must deal,

For such 2 k we have

52
=121 * L«
ma

mu—-

1 il
oo # 2(me1) e Z B (x5 7,) * Ep(m—l)Mk:I .

Here p is the number of integers less than k¥ and Mk is a bound in
<M, ch = for {ym } . Thus (9) becomes less than or equal to

2 4+ M (1“*’ 2p)

ep

'_]:é [2(m-§1) + mM,_ 2p(m-,1)MK} =
m . . "

m

and the rlght hand side converges to 0 as m - = - that is,

a.xm——rﬂe’o in <M,Hk> and we are done,

qed
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