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1.1 The Classical Sampling Theorem
Cauchy proved the following result in 1841 [Cau4l].

Theorem 1.1. [Cauchy’s Theorem] Let
f(t): Z cn€27ritn7

In|<M
and set N =2M + 1. Then
. = 1_./m (=1)™

Theorem 1.1 is a sampling theorem since (1.1) allows us to write f as a
sum of its sampled values f (%), m =0,1,..., N—1, each multiplied by the
corresponding translate m/N of the sampling function %Slsrl‘n—ﬁ\t” Further,
it fits into the format of the Classical Sampling Theorem, Theorem 1.2,
since the polynomial f can be thought of as an M-bandlimited function.

Cauchy used Lagrange’s interpolation formula in one of his proofs of (1.1).

Remark 1.1. [Interpolation and Number Theory]

a. Theorem 1.1 influenced some developments in interpolation theory and
number theory at the end of the 19th century. For the former subject there
is the work of Borel, Hadamard, and de la Vallée-Poussin during the period
1898-1908, e.g., [HM26, page 50], [Hig85, pages 29-50], and [Boab4].

b. Let 7(z) denote the number of primes less than or equal to . The prime
number theorem (PNT) asserts that w(x) ~ z/logx, x — co; and the PNT
was proved independently in 1896 by Hadamard and de la Vallée-Poussin.
Earlier, in 1894 (in a note in the Comptes Rendus Acad. Sci., Paris), von
Koch constructed entire functions f having the form of nonperiodic versions
on R of Cauchy’s formula (1.1). Using such functions f as building blocks
for more complicated expressions F', he was able to write 7w(n) in terms of
values F'(m) for m < n.
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von Koch quoted the work of Hadamard and Poincaré on entire functions,
and, although his approach plays a role in Steffensen’s point of view [Stel4],
one suspects it was not pursued after 1896.

It should be pointed out that the PNT is equivalent to the fact that
VteR, ((1+it)#0, (1.2)

where ( is the Riemann zeta function; and both Hadamard and de la Vallée-
Poussin proved (1.2). A reasonable way to prove that (1.2) implies the PNT
is to use Wiener’s Tauberian Theorem [Ben75, pages 128-136] or the so-
called Wiener-Ikehara Tauberian Theorem, cf., [Whi35, page 64] to see a
role of the Tauberian Theorem in dealing with the study of the Newton-
Gauss interpolation formula as developed by both Steffensen [Stel4] and
E. T. Whittaker [Whil5].

c. In 1915, E. T. Whittaker [Whil5, page 187] introduced the terminology
cardinal function in the context of interpolation theory, cf., the results of
J. M. Whittaker [Whi29a].

For a given sequence {c, } C C and a fixed value of T' > 0, E. T. Whittaker
considered a class X (R) of functions on R, each of whose elements f has
the property that

VneZ, Tf(nT)=cnp. (1.3)

He referred to X(R) as a cotabular set of functions. For a given f € X (R)
he then posed the problem of finding f. € X(R) which is Q-bandlimited,
where 27 = 1. His goal was to replace a “given function f € X(R) by
a cotabular function in such a way as to remove all the rapid oscillations
from it” [Whil5, page 184]. He referred to his solution

fe(t) = (sin2mtQ) Y e (=D"

e (1.4)

as the cardinal function of X (R). (Whittaker’s use of the adjective “cardi-
nal” is in the sense of “primary” or “to hinge upon” from cardo, cardinis,
the Latin noun for hinge.)

We shall now state the Classical Sampling Theorem. To do so, we define

the Fourier transform of f € L'(R) to be the complex-valued function
f R — C defined by

vyeR, fly) = / F(tye=2mitr d, (1.5)

where integration is over the real line R, and R is R considered as a fre-
quency domain. L*(R) is the space of complex-valued (Lebesgue) integrable
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functions on R; and the Plancherel Theorem allows us to define f for
f € L*(R), the space of square-integrable functions, i.e., |f|*> € L*(R). The
L?morm of f € L*(R) is ||f|lr2w) = ([ |f(t)[* dt)*/?. The Paley-Wiener
space PWq is

PWq = {f € L*(R) : supp f C [-Q,Q]},

where “suppf ” designates the support of f, i.e., the smallest closed set
outside of which f vanishes. For further reference, FV denotes the inverse
Fourier transform of F, and e, (t) = 77,

Theorem 1.2. [Classical Sampling Theorem] Let T,Q > 0 satisfy the condi-
tion that 0 < 2T'QY < 1, and let s € PWy a7y satisfy the condition that 5 is a
bounded function on R which equals 1 on [—2,Q]. Then

Vf€PWa, f=TY f(nT)rurs, (1.6)

where the convergence of the sum is in L?-norm and uniformly on R, and where
(Tn7s)(t) designates the translation s(t — nT).

In the sampling formula (1.6), the sampling period is T, the sampling
sequence is {nT : n € 7}, the sequence of sampled values is {f(nT) :
n € Z}, and the sampling function is s. Since the sampling sequence is
equispaced, Theorem 1.2 is a uniform or regular sampling theorem.

The sampling rate is the number of samples taken per second. Because
of Theorem 1.2, if f € PWq and 27Q2 < 1, and if f is sampled every T
seconds, then f can be perfectly reconstructed in terms of these sampled
values. In this case, with 27'Q < 1, the minimum sampling rate for which
we have reconstruction by (1.6) for all f € PWq is 2Q) samples per second.
This minimum sampling rate, 2Q, is the Nyquist rate [Nyq28].

Remark 1.2. [History and Proof of the Classical Sampling Theorem]

a. An important special case of Theorem 1.2 is for the Dirichlet sampling
function

sin 27wt
it

s(t) = , (1.7)

in which case 2T’ = 1 since 5 = 1|_g ), the characteristic function of the
frequency interval [—Q, Q). (If Q = 1/2, s is the sinc function.) It should be
pointed out that in the case 27TQ2 < 1 and s is smooth, then the sampling
formula converges faster than in the case of (1.7).

b. Theorem 1.2 is often called the Shannon Sampling Theorem, because of
Shannon’s use of (1.6) in his theory of communication, see [Sha48a], [Shad8b],
[Sha49a], [Sha49b]. Shannon was in fact aware of the role of (1.6) in commu-
nication theory prior to his own work, and his application of Theorem 1.2
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in this work should not in any way be confused with his profound contri-
butions.

Theorem 1.2 is also sometimes named after E. T. Whittaker (1915) and
Kotel’'nikov (1933), but, as we indicated in Remark 1.1, the result was
already known prior to their results. (A feature of this volume is Katsnel-
son’s English translation of Kotel’nikov’s famous paper [Kot33], which was
written in Russian and has not been readily available.)

There is an extensive and important literature on uniform sampling for-
mulas such as (1.6). Jerri’s tutorial review [Jer77] (1977) has had an enor-
mous influence, as have the fundamental papers of Butzer and his school,
e.g., [But83b] and [BSS87], and the important historical survey by Higgins
[Hig85], see also Higgins’ [Hig96a] and Zayed’s [Zay93] books.

c. The proof of Theorem 1.2 is elementary but depends on the beautiful idea
of periodization. The essential calculation is

1f =T Y f(T)mursllzm)

[n|<N
— 1 £ —2minTy =
= 1f() T 3 f@T)e > A sy (18)
[n|<N
= 1IG = 5wl 2 ) = IF(G = 53l s

where G is the 1/T-periodic function on R defined as fAl(_Q,Q) on [— 5, =)
and where Sy is the N-th partial sum of the Fourier series of G. The right

side of (1.2) tends to 0 as N — oo.

The notions of periodization and the details for (1.2) are found in [Ben97].

d. A conceptually equivalent proof to that outlined in part ¢ makes use of the
Poisson Summation Formula (PSF),

TS f(t+nT) = Zf(%) 2mint/T (1.9)

which itself is essentially equivalent to (1.6). The details of proof of Theo-
rem 1.2 by means of PSF are also found in [Ben97].

Periodization and the PSF are meaningful ideas in the setting of locally
compact groups and their discrete subgroups; and there are applications
as varied as the Euler-Maclaurin and Selberg trace formulas. It should be
pointed out that the proof of the PSF can be a delicate exercise depending
on the space of functions or distributions being considered, see [BZ97] for
various proofs and the role of the notion of a sampling multiplier.

In the following result, we generalize Theorem 1.2 to the case of non-
bandlimited functions. The hypotheses seem technical but are natural.
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Theorem 1.3. [Nonbandlimited Gabor Sampling Theorem] Let T,Q > 0 be
constants for which 0 < 2T'QY <1, and let g € PWy o7y have the properties that
g 1s bounded on R, g =1 on [-Q,Q], and, in case 2TQ < 1, G is continuous and

—~ 1 1
31> 0 on (5~ UL, ).
Set v
6= 3 latr - mb)f* and s(6) = (£) (0.
mEZ
where @+ 1/(2T) < b < 1/T in case 2TQ <1 and Q+1/(2T) =b if 2TQ = 1.
Then s € PWy,(2r), § is bounded on R, =1 on [-Q,Q],

VEEL’R), f=T Y (f earTms@)T nr(emss), (1.10)

m,n€Z

and, as a consequence,
Vf€PWa, f=TY f(nT)rurs, (1.11)

.. 2
where the convergence of each sum is in L™ -norm.

Remark 1.3. [Gabor Systems and Aliasing] Equation (1.11) is the Classical
Sampling Theorem for bandlimited functions f and for the sampling function s.
Note that if f € PWq, then (f, enrTmbg) = 0 for all m # 0, and so equation
(1.11) is a consequence of (1.10) since (f, enrg) = f(—nT).

Theorem 1.3 first appeared in [BH90] (1990), also see [Ben92], [Ben94]. The
proof depends on the fact that the so-called Gabor system {enTTmsg} is a frame
for L* (]@) Frames will be defined in Section 1.2. There are analogues of Theo-
rem 1.3 in terms of wavelet systems {2™/% (2™t — n)}, e.g., [Mey90], [Dau92],
and there are many classical expansions of nonbandlimited functions, e.g., [BS92].

Criteria for linear spans of Gabor systems to be dense in L*(R) go back to
von Neumann [vN55, pages 405 ff.], cf., [BGZ75]. Signal decompositions in terms
of Gabor systems, leading to Gabor frames, were initiated by Gabor [Gab46] in
1946, see [BF94] (Chapters 3 and 7) as well as [FS98].

Equation (1.10) can be thought of in terms of quantifying aliasing error. In
fact, we know that in dealing with high frequency time series it is necessary to
sample closely in order to capture all of the fluctuations. Thus, in the case of
very high frequency information f, thought of as “infinite frequencies” and hence
nonbandlimited, we can not reconstruct f with a discrete set of samples. In this
context, the terms of the sum in (1.10) for n € Z and m # 0 can be thought
of as dealing with the “infinite frequencies” associated with an arbitrary signal
f € L*(R).

Besides the extension Theorem 1.3 of Theorem 1.2 to the case of non-
bandlimited functions, we can also ask about d-dimensional versions of
Theorem 1.2. To this end we give the following definition.
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Definition 1.1. [Lattices] A lattice H C R? is the image of Z¢ under some
nonsingular linear transformation, i.e., H is a discrete subgroup of Euclidean
space R? consisting of integral linear combinations of elements vy, va, ... ,vg € R,
which form a basis for R?. The reciprocal lattice A C R% of H is the lattice
consisting of all v € R? with the property that the inner product (z,v) is an
integer n, for each z € H.

A unit cell of a lattice A is aset E C ]@d, not necessarily connected, such that
T ={y+ E:v € A} is a tiling or partition of R%, i.e., the elements of 7 are
pairwise disjoint and

UG +E) =R (1.12)
YEA

There are many possible choices for the unit cell of a given lattice. For example,
the Voronoi cell or Brillouin zone is the unit cell of A defined as the set of all
points in R? closer to the origin than to any other lattice point.

Theorem 1.4. [A d-dimensional Uniform Sampling Theorem] Let H C R?
be a lattice and let E C R? be a unit cell of the reciprocal lattice A. Define the
sampling function

1 .
vx c Rd, SE(:E) — _/ e?ﬂ't(ﬂa’}’) d,.)/7
|E| J&

where |E| is the Lebesque measure of E, and let f € L*(R?) have the property
that f =0 a.e. off of E.

a. There is a continuous function f. on R? such that f = f. a.e.

b. If f is continuous on RY, then

F=> f@mse,

yeH

where the convergence of the sum is in L*-norm and uniformly on R?.

Remark 1.4. [Early Applications Motivating d-Dimensional Uniform Sam-
pling]

In the mid-1950s, Brillouin [Bri56] (1956) discussed 3-dimensional uniform
sampling with regard to some crystallographic problems (see the terminology
“Brillouin zone” prior to Theorem 1.4), and Bracewell [Bra56] (1956) used 2-
dimensional uniform sampling with regard to issues in radio astronomy. Miya-
kawa’s basic formulation [Miy59] (1959), in terms of the “Nyquist relationships”
between lattice and unit cell, was in the context of multivariate stochastic pro-
cesses, see Sasakawa’s applications of Miyakawa’s Theorem in [Sas] (1960-61).
Petersen and Middleton [PM62b] (1962) completed Miyakawa’s approach, both
theoretically and with many important examples, cf., Prosser’s sampling theorem
and analysis of truncation error in [Pro66]. Although not “early” relative to the
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1950s, we also mention Dubois’ application [Dub85] (1985) to video systems and
Mersereau’s work on hexagonal sampling [Mer79] (1979).

Motivating-applications from mathematics go back to J. M. Whittaker’s uni-
form sampling theorem [Whi35] (1935) for entire functions f of order less than
two. The sampled values in Whittaker’s formula are f(m + in), m,n € Z; and,
as noted by Pélya, the formula yielded a positive solution to Littlewood’s conjec-
ture that if {f(m + in)} is bounded then f is a constant. There are many other
papers on d-dimensional uniform sampling, and Higgins’ exposition [Hig85] is a
reasonable place to start (but not to finish!).

The proofs of Theorem 1.4 and its uniform variants (sic!) are conceptually
similar to that of Theorem 1.2. They depend essentially on periodization in the
guise of the proper PSF or of the canonical Fourier expansions associated with
R? and its discrete subgroups. The Nyquist hypothesis 2I'Q < 1 and bandlimited
hypothesis f € PWq of Theorem 1.2 are replaced in Theorem 1.4 by the pairing
H, A (where A is essential for choosing some unit cell E C HA{d) and the hypothesis
that ]?: 0 off of E, respectively.

Our final topic in this section is Igor Kluvanek’s uniform sampling the-
orem [Klu65] (1965) for locally compact abelian groups (LCAGs). We are
stating it, not only for its own sake, but because this more abstract context
allows us to see clearly the role of congruence in conceiving uniform sam-
pling formulas, see Remark 1.11. Further, the relation between congruence
and uniform sampling has implications in wavelet theory, see Remark 1.13,
and provides an understanding of “saving bandwidth” in some applications,
see Example 1.12. ~

Let G be a LCAG with dual group G, and let H C G be a discrete
subgroup. H+ denotes the annihilator subgroup

L={ye@:VzeH, (z) =1}

Haar measure on a locally compact abelian group X is denoted by mx.
In our case, we adjust the Haar measures on G, H-, and G/H* so that

mG/HL( /HL) =1, mpg({z}) =1=mg.({7}) forz € H and v € H*,

and
I

Discrete annihilator subgroups of R? are lattices A considered in Theo-
rem 1.4. The PSF for LCAGs has been known from early-on, e.g., [Loo53,
page 153] and [Rei68]. It is

/Hfde:/HL Fdmy., (1.13)

and it can be used to prove Theorem 1.5.
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Theorem 1.5. [Kluvdnek’s Uniform Sampling Theorem for LCAGs] Let H C
G be a discrete subgroup of a LCAG G, with discrete annihilator subgroup H+ C
G. Let E - G be any subset of finite Haar measure for which the canonical
surjective map

h:G— G/H* (1.14)

restricted to E is a bijection; and define the sampling function

Ve € G, sg(x)= /E(z,'y)dm@(v), (1.15)

where mg is adjusted to have the property that mg(E) = 1. Let f € L*(G), and
assume f =0 a.e. off of E.

a. There is a continuous function f. on G such that f = f. a.e.

b. If f is continuous on G, then

f=> flyrss,

yeH

where the convergence of the sum is in L*-norm and uniformly on G. Fur-
ther, the “Gaussian quadrature” formula

I£1Z2 ) = D If W)

yeEH

s valid.

Remark 1.5. [The Nyquist Rate and the Role of Congruence]

a. The Nyquist hypothesis 272 < 1 and the bandlimited hypothesis f € PWq
of Theorem 1.2 are replaced in Theorem 1.5 by the pairing H, H+ (where,
because of (1.12), H* is essential for choosing some set E C G) and the

~

hypothesis that f = 0 off of E, respectively.

Clearly, the sampling function sg defined in Equation (1.15) is the analogue
of the Dirichlet sampling function defined in Equation (1.7).

b. Of course, in the case of sampling functions s € L*(R) for which ¥ is the
characteristic function 1g of some set F, the set E can be more compli-
cated than the interval [—Q,Q) C R. This is precisely the point of our
formulation of Kluvanek’s theorem in terms of the bijectivity hypothesis
associated with (1.14). For example, in the case of G = R, E = [-Q, ),
and H = 207 we have a tiling {2Qn + E : n € Z} of R as in (1.12). On
the other hand, there are many other such tilings for this lattice H-. We
could take E = [-2Q, —Q) U[Q, 2Q), just as one does in defining the Shan-
non (or Littlewood-Paley or sinc) wavelet, see more on this relationship in
Remark 1.6.
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c. We note that since H* is discrete, then @/HJ‘ is compact because it can
be identified with the dual group of H, e.g., [Rud62, Chapter 2.1], thereby
allowing us to make the normalization mg, ;. (G/H*) =1 prior to The-
orem 1.5. This, along with the other aforementioned normalizations, es-
tablishes fixed Haar measures on a/HL7 H,H*, and G. Finally, we can
normalize Haar measure on G so that if the Fourier transform is formally
defined as

oy = /G F(@)(~z,y)dmal(z),

then the formal inversion formula is
f@ = [ Fo)edma.
&}

All of these normalizations are required to state the PSF (1.13) and to
prove Theorem 1.5.

Example 1.1. [Efficient Sampling] Let s be the Dirichlet sampling function in
(1.7). Suppose f € PWsq and 27'(5Q2) = 1. Then the Classical Sampling Theorem
asserts that

1
f= 100 Zf (IOLQ) Tn/10925; (1.16)

and, in particular, sampling takes place on the set {n/10Q2 : n € Z}. If f has
the further property that fvanishes off of E = [-5Q, —4Q) U [4Q,5Q) C @, then
(1.16) still requires sampling on the set {n/10Q2}. On the other hand, we can
consider E C R as the domain of the function h of (1.14) with the property that
h(E) = R/H" so that H* = {2Qn : n € Z} and H = {n/2Q : n € Z}. Thus, in
this case, Theorem 1.5 allows us to write

P =552 1 (og) Tapmase;

and, in particular, we need only sample from the set {n/2Q}.

Remark 1.6. [Wavelets and Tiling] The notion of congruence inherent in the
canonical function h of (1.14) and our choice of E plays a role in many areas of
mathematics including several closely related to the present topic.

a. In 1990 Albert Cohen used such congruence criteria to establish orthonor-
mality of scaling functions associated with wavelet multiresolution analysis
(MRA), for a given quadrature mirror filter (QMF), e.g., [Dau92, pages
182-186].

b. Congruence of the type described by (1.14) and in Remark 1.5 also plays
a fundamental role in the recent deep work on self-similar tilings of R? by
K. Grochenig, A. Haas, J. C. Lagarias, W. Madych, Yang B. Wang, et al.,
e.g., [GM92], [LW9I7].
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c. Until recently, it had been thought that integer dilates and multi-integer
translates of more than one function were required to generate a wavelet
orthonormal basis for R?, d > 2. This is the case when such bases are
generated from a MRA. However, in 1992, using the notion of congruence
and other methods, David Larson and Xingde Dai showed the existence of
(non-MRA) dyadic wavelet orthonormal bases for R?, d > 2, from a single
function ¢ [DL97], [XDS97], cf., [HWWO97]. These bases are of the form

Vmon(z) = 2729022 —n), meZ, nelZ’

cf., the 1-dimensional form in Remark 1.3.

The first specific constructions of single dyadic wavelets are due to Soardi
and Weiland [SW98] and Zakharov [Zak96]. A general and implementable
method of construction was introduced by Benedetto and Leon [BL], [BL0O]
in 1998. Their method depends essentially on the function h of (1.14) and,
in particular, on the underlying properties of the d-dimensional version
of the Shannon wavelet mentioned in Remark 1.5. These properties are
similar to those used by Leonardo da Vinci and Maurits C. Escher in some
of their drawings.

1.2 Non-Uniform Sampling and Frames

This section serves as an introductory exposition of the subject of non-
uniform sampling, hopefully providing some motivation and historical back-
ground. As with Section 1.1, it is constrained, not only by available space,
but also by the authors’ perception of the subject and their limitations.

Our point of departure is not non-uniform sampling, but rather the topic
of closed spans of complex exponentials. Throughout this section, we let
A={\:k€Z,A1 <0< Ao, and limy_, 1o A, = £00} C R be a strictly
increasing sequence, which is uniformly discrete or separated in the sense
that

3§ > 0 such that Yk €Z, Agy1 — A > 6.
Further, for each R > 0, we let
Xr=5pan{ey: A €A}

denote the closed linear span of {ey : A € A} in L?[-R, R]. Paley and
Wiener [PW34, Chapter VI] refer to Xg as the “closure” of the set {ex : A €
A} of complex exponential functions. If Xp = L*[—R, R], then {e) : A € A}
is complete in L*[—R, R)].

Definition 1.2. [The Closure of Sets of Complex Ezponential Functions]
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a. The radius of completeness R.(A) of A is
R.(A) =sup{R >0: Xr = L’|—R, R]}.

R.(A) is well-defined since it is clear that if Ry < R2 and Xg, = L?[—Rs, R2],
then Xg, = L?[~ Ry, R1].

b. An essential problem is to compute R.(A), and in particular to find an
intrinsic property of A so as to conclude that Xp = L*[—R, R] for a given
R. Note that Xz = L?[~R, R] for each R < R.(A) and Xg # L*[-R, R]
for each R > R.(A). Rc(A) is equal to the radii of completeness for the LP-
spaces LP[—R, R], 1 < p < o0, as well as the space C[—R, R] of continuous
functions on [—R, R], e.g., [Sch43].

The following theorem is an early, fundamental, and deep result due to
Paley and Wiener [PW34, Section 26].

Theorem 1.6. [A Paley—Wiener Completeness Theorem] Assume that A has
the property that Ao = 0 and A_r = —\ for k > 1. For each v > 0 let n(vy) be
the cardinality of {A\x : k>1 and A\ <~}. If

lim sup n() > 2R, (1.17)

y— 00

then Xg = L*[-R, R).

Remark 1.7. [Completeness and Density]

a. The “lim” on the left side of (1.17) is a density condition, and such condi-
tions are essential hypotheses, not only for completeness theorems such as
Theorem 1.6 and Equation (1.23) below, but also for non-uniform sampling
formulas such as (1.31) and (1.32).

In engineering terms and in the context of non-uniform sampling, we can
expect completeness if the number of samples per unit time exceeds on
average twice the largest frequency in the given signal, i.e., if the aver-
age sampling rate exceeds the Nyquist rate. This sampling criteria is a
density condition, and accurately quantifying the correct density to obtain
completeness is difficult, e.g., see Definition 1.3 and Remark 1.8.

Further, there are genuine engineering applications of some of these com-
pleteness theorems in uniquely determining signals from their non-uniformly
spaced samples, e.g., Beutler’s work [Beu66b] using results of Levinson.

b. Paley and Wiener’s book [PW34] (1934) is the progenitor and driving force
for an extensive and deep theory relating refinements of Theorem 1.6 with
various notions of density, see Definition 1.17. Some of the many notable
works since then are due to Levinson [Lev40] (1940), Duffin-Eachus [DE42]
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(1942) and Duffin-Schaeffer [DS52] (1952), Kahane [Kah62] (1962), Beurl-
ing and Landau, e.g., [Lan67a] (1967), and Beurling and Malliavin [BM62]
(1962), [BM67] (1967).

There are also world class expositions due to Koosis [Koo79] (1970),
[Ko096] (1996) and Redheffer [Red77] (1977) reflecting the authors’ pro-
found understanding of the problems and their own seminal contributions
from the 1960s, cf., [Boa54]. A more recent and justly influential exposition
is due to Young [You80].

. Paley and Wiener’s formulation and vision relating density and complete-

ness also has an important history prior to their work.

Theorem 1.6 is a significant extension of a completeness theorem due to
Pélya and Szdsz (Jahresbericht der Deutschen Mathematiker Vereinigung,
43 (1933), 20) whose density condition is (1.17) with “lim” instead of “lim”.
The added depth of Theorem 1.6 is due to the use of Paley and Wiener’s
fundamental theorem on quasi-analytic functions, viz., Theorem XII of
[PW34].

Wiener, himself, proved a completeness theorem in 1927 [Wie27] assuming
a uniform density criterion, see Definition 1.3. Such a criterion allows a
comparison between the sequences {e, : n € Z} and {ex : A € A} in the
sense that the completeness of {ex : A € A} can be deduced from the
completeness of {e, : n € Z}.

Wiener was influenced by Birkhoff [Birl7] and Walsh [Wal21] for this
point of view, and there was related work by Carleman [Car22] (1922)
and Pélya [P6129] (1929), among others. There was also important work
by Dini [Dinb4] (1917), who not only obtained completeness theorems,
but actually provided non-harmonic Fourier series expansions Y ¢, ey, for
sequences {\,} obtained from some transcendental equations from math-
ematical physics. Dini’s formulation of non-harmonic Fourier series (see
Definition 1.4) in this context goes back to his 1880 classic book on Fourier
series.

. The material in parts b and c is expanded as background in a forthcoming

tutorial on multidimensional non-uniform sampling [BWal.

Definition 1.3. [Density Criteria] Let A = {\¢ : kK € Z, A-1 < 0 <

Xo, and limg_y400 Ay = oo} C R be a strictly increasing uniformly discrete
sequence, and define the function

na = Z kl[>\k%k+1)

whose distributional derivative is nj = Y xea Or- Clearly, ifn : (0,00) — {0,1,...}

is defined by n(y) = card{Ax : |Ax| < 7}, where “card” is cardinality, then
n(y) = na(y) —na(=7).
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a. A reasonable definition of the density of A is

lim ")
y—r o0 2’}/

when this limit exists. As such, and since na(yx) = k, we shall define the

natural density of A as

D(4) = lim i (1.18)

i —
k|— oo /\k

when the limit in (1.18) exists. Otherwise, we consider the upper, resp.,
lower, natural densities

D} (A) = limsup )\i, resp., D, (A) =liminf i

|[k|—oco Ak [k| =00 Ak

b. A has uniform density D, (A) > 0 if

3C > 0 such that V|y| > 0, |na(y) — Du(A)y] < C. (1.19)

Since na(Ax) = k, the uniform density inequality (1.19) is equivalent to
the condition that

30 > 0 such that Vk, |~ — D) < -,
Ak Ak |
or, equivalently,
k c
- < = L.
A Du(A)| = D.(A) L

In particular, if D, (A) exists, then D, (A) exists and equals D, (A), cf.,
Proposition 1.18. In fact, uniform density can be viewed as natural density
constrained by a convergence rate of 1/|\g].

c. For each v > 0 and each interval I C R of length v, let nr(y) = card {\; €
I}. Define

n”(y) =infns(y) and n'(y) = supn; (7).

The lower and upper Beurling densities of A are

Dy () = tim 0 and DFA) = tim )

~y—00 Y Yoo Y

respectively. These limits exist since n~ is superadditive and n™" is subad-
ditive, although it is more common to replace the limits by a liminf and
lim sup, respectively.

Proposition 1.1. [Relation between Densities]
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a. If A has uniform density D, (A) € (0,00), then
D, (A) = D (A) = Du(A).

b. If D, (A) = D; (A) = D(A), then the natural density D, (A) exists and

Remark 1.8. [Beurling-Malliavin Density]

a. By definition of R.(A), it is clear that Paley and Wiener’s Theorem 1.6 is
equivalent to the assertion that

S D) < Re(A). (1.20)

Pélya [P6129] introduced the notion that is called the Pdlya mazimum
density D (A) of A, and it has the property that D (A) > D;f(A). In
1935 Levinson proved that if A is a positive sequence, then

D) < R, (1.21)

see [Lev40] and [Red77, page 22].

Further, Paley and Wiener [PW34] (Theorem XXXIV on page 94) proved
that if A = {Ax : Ao = =X,k =0,1,...} has uniform density D,(A) > 0
with small enough bound in (1.19), then

R.(A) < %DM(A). (1.22)

Other upper bounds on R.(A) are due to Koosis [Koo58] (1958) and Red-
heffer, e.g., [Red54] (1954).

b. In light of (1.20), (1.21), and (1.22), it is not unreasonable to conjecture
that $D;f(A) = R.(A) for symmetric sequences A, see [Sch43, page 130]
for the conjecture in terms of D, (A). Kahane [Kah58] (1958) constructed a
symmetric sequence with the properties that D, (A) = 0 and R.(A) = oco.
Kahane’s sequence A is not uniformly discrete, cf., the results of Koosis
[Koo60] and Redheffer [Red68] from the early 1960s.

c. In one of the highlights of 20th century analysis, Beurling and Malli-
avin [BM62], [BM67] in 1960-1961 devised a notion of density, denoted
by Dpm(A), allowing them to prove

%Dbm(A) — R.(A). (1.23)

The direction, Rc(A) > Dy (A), is the easier to prove; and the direction,
Rc(A) € LDy (M), requires a deep study of the canonical product,

(%)
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using potential theory. The explanation par excellence is due to Koosis
[Ko096], cf., [Kah61].

Besides its influence in the study of evaluating the radius of completeness
R.(A) of A in terms of density criteria, Paley and Wiener’s book [PW34]
(1934) has also inspired the study of non-harmonic Fourier series, cf., our
observation in Remark 1.7 about Dini’s innovations in this area. As we
shall see, the following definition, which also contains some historical back-
ground, essentially includes the notion of non-harmonic Fourier series.

Definition 1.4. [Frames] Let H be a separable Hilbert space with inner prod-
uct (z,y) and norm ||z|| = (z, z)'/>.

a. A sequence {z, : n € Z% C H is a Schauder basis or basis for H if
each y € H has a unique decomposition y = > cn(y)z, in H, where

{en()} CC

b. A basis {z,} for H is an unconditional basis for H if
3C > 0 such that VF C Z%, finite, and V{bj,¢; : j € F} C C,

where |b;| < |cj| for each j € F, we have

1D bazall S CI Y cawall

nekr neFr

An unconditional basis {z,} C H is bounded if

3A,B >0 such that VneZ% A<|z.|| <B.

c. It is well known that separable Hilbert spaces have orthonormal bases
(ONBs); and it is elementary to see that ONBs are bounded unconditional
bases.

d. A sequence {z, : n € Z%} C H is a frame for H if there exist 4,B > 0
such that

vy e H, Allyll® <Y Ky,z)|” < Bllyll”. (1.24)
A and B are frame bounds, and a frame is tight if A = B. A frame is ezact
if it is no longer a frame whenever any one of its elements is removed.

The frame operator of the frame {z,} is the function S : H — H defined
as Sy = (y,xn)z, for all y € H.

The theory of frames is due to Duffin and Schaeffer [DS52], cf., [You80],
[DGMS6], [Dau92], [BW4].
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e. An exact frame is a bounded unconditional basis and vice-versa, e.g.,
[You80]. In particular, ONBs are exact frames and there are frames which
are not exact frames.

An essential feature of frames {z,} C H is that they provide the har-
monics for signal reconstruction formulas, see (1.25). They may not be
ONBEs, but ONBs are not necessarily an advantage when it comes to noise
reduction and stable decompositions.

Theorem 1.7. [Frame Decomposition Theorem] Let {x, : n € Z9} C H be a
frame for H with frame bounds A and B.

a. The frame operator S is a topological isomorphism with inverse S™' :
H — H. {S7'x,} is a frame with frame bounds B™' and A™', and

VyeH, y= (4,5 'zn)vn =Y (y,2)S 'zy in H. (1.25)

b. If {zn} is a tight frame for H, if ||xn]| = 1 for alln, and if A= B =1,
then {zn} is an orthonormal basis for H.

c. If{xzn} is an ezact frame for H, then {z,} and {S™'2,} are biorthonormal,
i.e.,
0 if m#n,

1 if m=n.

Vm,n, (xm, S™'zn) =d(m,n) = {

{S™'z,} is the unique sequence in H which is biorthonormal to {z,}.

d. If {zn} is an ezact frame for H, then the sequence resulting from the re-
moval of any one element is not complete in H, i.e., the linear span of the
resulting sequence is not dense in H.

We saw in Theorem 1.3 that the Classical Sampling Theorem for uniform
sampling can be considered a special case of a signal decomposition theorem
in terms of Gabor systems; and there are comparable results for wavelet
systems, e.g., [Mey90], [Dau92], [Wal94c], [BL98]. The following example,
stated in terms of general frames, can be considered a quantitative step to
implement Theorem 1.7 in the context of sampling.

Example 1.2. [Frame Sampling Formulas and Implementation] Let {z, : n €
7% C H be a frame for H with frame bounds A and B.

a. The Bessel mapping L : H — (*(Z%) is defined by Ly = {(y,zn)}, and
L* : £*(2% —s H denotes the adjoint of L. Clearly, S = L*L. L can be
viewed as a sampling operator in the following sense. Suppose we are given
a sequence {an(y)} of sampled values of some unknown signal y. The prob-
lem is to design a frame {z, } so that for all such signals y, an(y) = (y, )
for each n. Once the design problem is solved, the basic idea is to use (1.25)
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to reconstruct y from the sampled values {a»(y)}. An example of the effec-
tiveness of this procedure is in wavelet auditory modeling for dealing with
compression problems and signal reconstruction in noisy environments, see
[BT93], [BT95].

. With regard to part a, it is easy to see that
Vy € H, y=(S""L")Ly,

i.e., the unknown signal y can be reconstructed by means of its sequence
of sampled values.

In the same spirit, but perhaps more in the spirit of digital signal process-
ing, we define the Gram operator R = LL* : £*(Z%) — ¢*(Z%), and we
obtain the signal reconstruction formula

Yye H, y=(L"R™")Ly. (1.26)

In fact, an explanation of (1.26) requires the notion of the pseudo-inverse of
R and leads to the following iterative procedure for the reconstruction of y
from its sequence Ly of sampled values, see [Ben98] for a proof and [TB95],
[Har98], and [Strb] for insights about implementation in special cases. The
iteration proceeds as follows. Let y € H and let ¢y = Ly € £*(Z%). Set
yo =0 and A = 2/(A+ B), and assume o = ||[I — AR|| gy < 1, where I is
the identity mapping. Define %, ym € H and ¢,y € L(H), m =0,1,...,
recursively as

Um = )\L*C(m), Cim+1) = C(m) — Lum,

and
Ym+1 = Ym + Um.
Then
m B

vm:1727"'7 ||y—ym||<a Z||y||7
and, in particular, lim,, oo Yym =y in H.
. It is easy to see that

2 B-A
- < .
5ol < <1 (1.27)

Iz A+ B ’

The inequality (1.27) allows us to prove that

2 & 2 k
_1:— I %
s =arpe (1)

which, in turn, can be used to prove Theorem 1.7a.
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We also mention (1.27) because of the notion of visibility V', which is defined

as
V= Ima.x - Imin

 Imax + Imin’
where Imax and Imin are maximum and minimum light intensities, e.g.,
[K1a57]. In the case of full interference of light waves (for the classical two-
slit experiment), one has I'min = 0; and, hence, the visibility is 1, a value
associated with coherent light. In the context of frames, the analogy is that
A =0, so that a frame is not obtained.

d. We shall verify Theorem 1.7b because of a stronger result proved by Vitali
which deserves comment.
Since {z,} is tight and A = 1 we can write

2 4 2
lewl = lenll* + 3 1@, 20,

n#m

thereby obtaining the orthonormality of {z,} since each ||z,|| = 1. Theo-
rem 1.7b then follows by the following well-known result: if {z,} C H is
orthonormal, then it is an orthonormal basis for H if and only if

Vye H, lyl* = [{y.a)l.

In 1921, Vitali proved that an orthonormal sequence {z,} C L’[a,b] is
complete, and so {z,} is an orthonormal basis if and only if

vt € [a,0], Z|/ o (uw)dul’> = ¢ — a. (1.28)

For the case H = L*[a,b], Vitali’s result is stronger than Theorem 1.7b
since (1.28) is tightness with A = 1 for functions y = 1;, ;). Other remark-
able contributions by Vitali are highlighted in [Ben76].

Definition 1.5. [Fourier Frames]

a. Let R > 0, and assume that the sequence {e) : A € A} is a frame for
H = L*[—R, R]. This is clearly equivalent to the assertion that there exist
A, B > 0 such that

VF € PWg, A|F|[;25, <> IFNI? < BlIF|[}2 5, (1.29)
AEA

see [Ben97, page 69] for the proper application of the Fourier inversion
formula. As such we say that {ex : A € A} is a Fourier frame for L*[-R, R],
and by (1.25) we have

Vf € L’ [-R,R], f=) ax(f)ex in L’[-R,R]. (1.30)
AEA



Chapter 1. Introduction 19

Equation (1.30) is a non-harmonic Fourier series, see Chapter VII of Pa-
ley and Wiener [PW34]; and in fact the Fourier frame condition (1.29) is
precisely the inequality (30.56) of Paley and Wiener [PW34, page 115], cf,,
[Kah62] dating from results in 1953, where Kahane uses a condition simi-
lar to (1.29) in order to deal with completeness/density problems described
above.

b. The frame radius Ry(A) of A is

Rs(A) =sup{R > 0: {es} is a Fourier frame for L*[—R,R]}.

The following theorem is a characterization of Fourier frames in terms of
density. Part a is due to Duffin and Schaeffer [DS52] (Theorem 1); part b is
due to Landau [Lan67a], although not using the term “frame”; and part ¢
is due to Jaffard [Jaf91].

Theorem 1.8. [Fundamental Theorem of Fourier Frames]

a. If A has uniform density Dy (A) > 2R, then {ex : A € A} is a Fourier
frame for L[~ R, R].

b. If {ex : X\ € A} is a Fourier frame for L*|—R, R], then D, (A) > 2R.
c. If Ry(A\) € (0,00), then

1
Ry (A) = £ sup{Du(A)),
where A’ C A has finite uniform density.

The following elementary result proved in [BH90], [Ben92] illustrates the
role of Fourier frames in formulating non-uniform sampling formulas. Such
formulas can not generally have sampled values f(¢,) as coefficients in the
case of non-uniformly spaced translates 7, s of a given sampling function
s. (This is a consequence of the ubiquitous “no free lunch” metatheorem.)
However, the coefficients do contain the sampled data in a quantitatively
estimable way, see [Ben92], pages 481-482, and Remark 1.9b.

Theorem 1.9. [Fourier Frame Non-Uniform Sampling Theorem] Suppose >
0 and Q1 > Q, and let the sequence {t, : n € Z} C R have the property that
{e—t,} is a Fourier frame for L*[—Q1, ] with frame bounds A and B and
frame operator S. Further, let s € L*(R) have the properties that 5 € L°°(fR),
supps C [-Q1,Q1], and §=1 on [-Q,Q]. Then

Vf€PWa, f=) au(f)m,s in L*(R), (1.31)
where

an(f) = (571(J?1[791,91))7 6tn>L2[—Ql,Ql]- (1.32)
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Remark 1.9. [On Theorem 1.24 and Theorem 1.25]

a. After almost 50 years, Theorem 1.8a is still difficult to prove; and parts b

and ¢ of Theorem 1.8 are not only deep results, but are special cases of the
authors’ original theorems. Part a, resp., part b, is used to prove the in-
equality Rf(A) > L sup{D.(A")}, resp., Ry(A) < & sup{D.(A')}, in part c.

Part o should be compared with the earlier completeness theorem (1.22)
of Paley and Wiener.

Landau’s work in [Lan67a], [Lan67b] was influenced by Beurling’s ideas,
and some of Beurling’s results can be expressed in terms of Fourier frames.
For example, Beurling proved that if A CR is uniformly discrete and

p =sup dist(y,A)
veR

(dist(y,A) is the Euclidean distance between ~ and A), then the condi-
tion Rp < L implies {ex : X € A} is a Fourier frame for L*[—R, R], see
[Beu60], [Beu66a], [Beu89]. Beurling’s d-dimensional version of this result
has been reformulated as a covering theorem in [BW99], and then used by
the authors as a constructive non-uniform sampling theorem in the spirit
of Theorem 1.9; it has applications in topics such as fast MRI, cf., with the
approach in Chapter 16.

. Equation (1.31) in Theorem 1.9, with coefficients given by (1.32), should

be compared with the uniform sampling formula (1.11) of Theorem 1.3. In
fact, (1.32) gives rise to the expansion

> 2 2 ko
an(f) :ZA—f—B <<I—ms> (fl[—ﬂl,ﬂl)) 7@—tn>

L2[-1,9]

(1.33)

Thus, if we consider the k = 0 term of (1.33) as an approximation of an (f),
we have

an(f) % g ).

In this sense, Equation (1.31) can be considered a non-uniform sampling
formula. An error analysis of (1.33) in terms of sampled values and trun-
cations is not difficult.

. Constructive versions and extensions of Theorem 1.8 are found in [BH90],

[Ben92], and [GO95].

Different “Nyquist hypotheses” and methods for non-uniform sampling sig-
nal reconstruction have also been developed by Feichtinger and Grochenig,
see [FG94], [Gr592], [Gr693], and [Gr699].

. Duffin and Schaeffer’s work [DS52] is not only seminal in defining and

developing the theory of frames, but it also provides a smooth transition
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from the point of view in Paley and Wiener [PW34] of characterizing com-
pleteness to the current interest, greatly motivated by signal processing
problems, of obtaining signal reconstruction formulas.

Fifteen pages of [DS52] are devoted to the proof of Theorem 1.8a, and the
authors also have a version of the iterative procedure in Example 1.2b.

Being masters of [PW34], they understood Paley and Wiener’s inequality
(30.56), referenced in Definition 1.5a, and modestly asserted that “the the-
ory of Paley and Wiener and the theory of exact frames are equivalent”
[DS52, page 362]. It should be noted that Duffin and Schaeffer introduced
the notion of ezact frames in analogy with Paley and Wiener’s notion of
ezact complete sequences [PW34, page 92]; and Duffin and Schaeffer clearly
understood the relevance of non-exact frames, which they designate over-
complete frame.

Finally, in the context of Fourier frames, it is natural to ask the extent to
which Duffin and Schaeffer understood their ideas in terms of non-uniform
sampling. In their last brief section, called pointwise convergence, they pro-
vide a decomposition formula for Fourier frames, in the form (1.30), with
an emphasis on analogy with Fourier series, but never with an analysis of
the coefficients in terms of sampling.

e. There are non-uniform sampling theorems in the engineering and scientific
literature, and there are applications of non-uniform sampling formulas. An
early and celebrated result in the first category is due to Yao and Thomas
[YT67] (1967): if {e—¢, } s an exact frame for L*[—,Q], then

Vf€PWa, f=) f(ts)s. in L*(R),

where

Q .
(D) = / e d,

and where {h,} C L*[—Q,Q] is the unique sequence for which {h,} and
{e—¢,} are biorthonormal. A straightforward proof in terms of frames is
given in [Ben92, page 465]. (Of course, Yao and Thomas did not use the
term “exact frame”, but this formulation is equivalent to theirs.) In the sec-
ond category, the book by Marvasti [Mar87] presents a comprehensive list
of references, and commentary on them, up to 1987. Since then the appli-
cations and references have expanded manyfold. We shall resist presenting
the litany we know, to save space as well as to save the embarrassment of
showing what we don’t know, see [Mar00], [BWa].

1.3 Outline of the Book

Chapter 2 is Victor E. Katsnelson’s translation for this book of the classical
paper by Kotel’nikov. Kotel’nikov’s paper was originally written in Russian.
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We have organized the remaining chapters under three general headings:
1. Sampling, Wavelets, and the Uncertainty Principle

2. Sampling Topics from Mathematical Analysis

3. Sampling Tools and Applications

In fact, the chapters cannot be so easily compartmentalized, but these
headings are not unreasonable.

1.3.1 Sampling, Wavelets, and the Uncertainty Principle

Chapter 3 by Walter is “Wavelets and Sampling”. It explores the theme of
obtaining sampling theorems in the context of Sobolev spaces and other dis-
tribution spaces. Time-limited and other classes of non-bandlimited func-
tions can be treated using the methods developed in this chapter.

Walter also shows that, beginning with any scaling function satisfying
certain properties, there is a sampling function £ in the space Vj such that,
for any f € V%,

Ft) =" f(n)Et —n).

When the samples of both f and its derivative f' are known, one expects
to be able to sample at a less dense set of points. Exploring the connections
with the subject of multiwavelets, and finite element multiwavelets, Walter
considers the problem of constructing multisampling functions in a given
multiresolution analysis. This leads to Hermite interpolation and classes of
interpolating multiwavelets.

In Chapter 4, “Embeddings and Uncertainty Principles for Generalized
Modulation Spaces”, Hogan and Lakey deal with two classical themes:
the interplay between uncertainty principle inequalities, weighted norm in-
equalities for the Fourier transform, and embedding theorems for modula-
tion spaces, on one hand; and their interpretations in terms of localization
of energy in the time-frequency plane, on the other.

Modulation norms measure joint time-frequency localization of a func-
tion f by replacing the Ly norm of the short-time Fourier transform by a
mixed L, norm. The embedding theorems are key to a firm understanding
of how these norms measure smoothness versus decay. The chapter points
out several ways of doing this, and gives the underlying connections with
sampling. The generalizations by Hogan and Lakey of an embedding the-
orem due to Grdchenig are related to the Poisson summation formula and
hence with sampling, and the metaplectic frames are related to the problem
of recovering a signal from samples in phase space.

“Sampling Theory for Certain Hilbert Spaces of Bandlimited Functions”
by Gabardo is Chapter 5. It relates sampling theory to the problem of



Chapter 1. Introduction 23

extending a positive-definite continuous function on an interval (—R, R)
to one defined and positive-definite on the whole real line. The problem is
fundamental in Fourier analysis, e.g., see the important early contribution
by Krein [Kre40].

Gabardo deals with the extension of distributions positive-definite on
(=R, R) in the so-called indeterminate case, where more than one exten-
sion exists, and with the problem of parametrizing all such extensions.
Because of the Paley—Wiener—Schwartz theorem, the distributional Fourier
transform of an extension leads to a tempered measure, which, if discrete,
leads to a sampling formula.

Zayed’s Chapter 6, “Shannon-Type Wavelets and the Convergence of
their Associated Wavelet Series”, studies a class of wavelets that contains
the Shannon wavelet as a special case and that shares its general prop-
erties. The generalization is in the well-known context of obtaining the
Shannon wavelet from the multiresolution analysis constructed with the
sinc sampling function being used as the scaling function.

Features of this chapter are closed form expressions of the author’s
Shannon-type wavelets and his study of the pointwise convergence proper-
ties of the corresponding wavelet series.

1.8.2  Sampling Topics from Mathematical Analysis

Grochenig’s Chapter 7, “Non-Uniform Sampling in Higher Dimensions:
From Trigonometric Polynomials to Bandlimited Functions”, employs in-
terpolation and approximation by trigonometric polynomials for the correct
finite-dimensional discretization of the sampling problem for bandlimited
functions in higher dimensions.

The main result reduces the infinite dimensional problem to a matrix
problem in a finite dimensional space, and it can be also regarded as a
new approximation result for entire functions of exponential type (several
complex variables) from finitely many of its samples.

Torres’ title, “The Analysis of Oscillatory Behavior in Signals Through
Their Samples”, for Chapter 8 aptly describes the material. In practice,
it is desirable to measure oscillations directly from signal samples. This
explains the usefulness of sampling theory for this topic.

Researchers seeking to understand the progress made recently in the field
should be able to deal with mean oscillation spaces and Besov spaces, and
their properties vis a vis sampling. Torres goes from the Plancherel-Pdlya
inequality and sampling in Paley—Wiener spaces to certain other function
spaces, whose sampled versions can be viewed as discrete Besov spaces. The
chapter shows how to quantify oscillations at large scale and deviations of
a signal from its average value at different scales.

Chapter 9 by Casey and Walnut is “Residue and Sampling Techniques
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in Deconvolution”. A guiding principle is that many problems in harmonic
analysis can be translated into interpolation problems in spaces of functions
subject to growth conditions. The authors study the following deconvolu-
tion problem with this point of view.

Consider a collection of m compactly supported distributions {u;}7,,
a function f, and the m data {s;}/*,, obtained from f and the u; by
convolution:

si=fxp, (=1,2,...,m).

It is natural to ask under what conditions it is possible to recover f from
the finite set {s;},. If it is possible, how can it be accomplished?

Translated to a language more familiar to engineers, consider the outputs
of m linear and time-invariant systems, subject to the same input signal
f. Can f be found from the m outputs? One has a bank of finitely many
filters, and the problem is to analyze the extent to which the outputs of
the m filters determine f, and to determine if f can be recovered from the
data.

Some of the ingredients required for the authors’ formulation and solu-
tion are Bezout’s equation, the strongly coprime condition, and properties
concerning rational approximation of irrational numbers. The results in-
clude conditions under which f is determined by finitely many averages,
and, more importantly from the viewpoint of applications, practical decon-
volution procedures are obtained using residue and sampling techniques.

In Chapter 10, “Sampling Theorems from the Iteration of Low Order
Differential Operators”, Higgins suggests a new direction in the procedure
by which a sampling series is derived from differential operators.

Kramer’s lemma is the basic result in this context. The kernel required
by the lemma is usually obtained as a general solution of an eigenvalue
problem. Evaluation of the kernel at each of the eigenvalues leads to a
basis for L2, which in turn leads to a sampling series. Higgins’ chapter
shows that functions of the operator defined by the eigenvalue problem not
only give rise to new sampling expansions but also shed light on already
existing ones.

The method leads to results related to both self-adjoint and non-self-
adjoint operators (including fourth order cases), and also to some new
problems. For example, one would like to know the extent to which one can
determine sampling series associated with an operator 77 from knowledge
of the series associated with operators 7Y, for ¢ < p.

Kivinukk’s Chapter 11, “Approximation of Continuous Functions by
Rogosinsky-Type Sampling Series”, studies the approximation properties
of sampling operators of the form

+oo
(Swh)t):= > fk/W)s(Wt—k).

k=—oc0
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The operator Sy, in which the function s replaces the sinc function found in
the simplest form of the Classical Sampling Theorem, was studied by Butzer
and his school, e.g., see [BSS87]. Kivinukk explores the parallel between
such series and the summation methods for Fourier series, emphasizing the
Rogosinsky means.

1.3.8  Sampling Tools and Applications

Chapter 12 by Potts, Steidl, and Tasche is “Fast Fourier Transforms for
Nonequispaced Data: A Tutorial”. It discusses fast and robust algorithms
for computing discrete Fourier expansions similar to

Flo) = > fue™2m 0 (j € Iy) (1.34)

keln

where

K K

The well-known and large family of FFT algorithms cover one particular
case of this problem, corresponding to regular time-frequency grids. The
list of applications for the more general case is rich and varied, and ranges
from geophysics to antenna theory and scattered data approximation.

The chapter provides the right tool to anyone facing nontrivial computa-
tions of the form (1.34). The approach taken is connected with interpola-
tion methods by translates of a single function, known from approximation
theory, and yields appropriate error estimates.

“Efficient Minimum Rate Sampling of Signals with Frequency Support
over Non-Commensurable Sets” by Herley and Wong is Chapter 13. The
chapter addresses the fact that sampling of narrow band bandpass or multi-
band signals using the Classical Sampling Theorem, at twice the highest
frequency, entails considerable loss of efficiency. The Nyquist-Landau criti-
cal sampling density for a multiband signal can be arbitrarily smaller than
twice the highest frequency, and consequently there is a need for practi-
cal, stable sampling schemes that allow reconstruction at or close to the
minimum sampling rate.

Herley and Wong characterize the signals that can be reconstructed at
the minimum rate, for a given fixed non-uniform sampling pattern, obtained
by periodically discarding samples from an otherwise uniform distribution.
They also show that the class of signals that can be reconstructed in this
way is much larger than previously considered. The chapter draws on the
theory of multichannel filter banks and on methods such as POCS (projec-
tion onto convex sets).

In Chapter 14, “Finite and Infinite-Dimensional Models for Oversam-
pled Filter Banks”, Strohmer discusses the relation between certain finite-
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dimensional models used for numerical procedures and infinite-dimensional
filter bank theory. He establishes the convergence of the synthesis filter
bank, obtained by solving a finite dimensional problem, to the synthesis
filter bank of the original infinite dimensional problem. He is also able to
estimate the rate of approximation. This is a fundamental component in
actually implementing various theoretical results.

Chapter 15, “Statistical Aspects of Sampling for Noisy and Grouped
Data”, is due to Pawlak and Stadtmiiller, and it deals with the the prob-
lem of recovering a bandlimited signal from noisy and grouped samples.
The motivation for this study is easy to understand. Not only are real-
world signals always subject to noise, but the standard data acquisition
and quantization methods round the data to a amplitude versus time grid,
introducing a perturbation that, although deterministic in nature, is usu-
ally called “quantization noise”. It is of course important to assess their
combined effects on signal reconstruction methods.

Data grouping, on the other hand, can be regarded either as a form of
data compression or a way of converting a non-uniform (clustered) sam-
pling problem into a uniform sampling. Understanding its advantages and
disadvantages is also important from the practical viewpoint.

Pawlak and Stadtmiiller give an account of the statistical aspects of
reconstruction algorithms derived from the Classical Sampling Theorem,
examine the problem of recovery from grouped data, and discuss the sta-
tistical accuracy of the proposed algorithms.

In Chapter 16, “Reconstruction of MRI Images from Non-Uniform Sam-
pling, Application to Intrascan Motion Correction in Functional MRI”,
Bourgeois, Wajer, van Ormondt, and Graveron-Demilly deal with an im-
portant tomography modality: Magnetic Resonance Imaging (MRI).

The chapter gives a brief survey of the basic physical principles under-
lying MRI. In MRI, there are several ways of encoding spatial information
including the number of trajectories and their shapes. Both of these can
vary, subject to the crucial constraint that the space must be covered at or
above the Nyquist-Landau sampling density.

Image reconstruction based on regularly sampled data requires a stan-
dard inverse FFT and is straightforward. However, other types of sampling
require more complex reconstruction procedures. The chapter deals with
the reconstruction from non-uniform samples and Bayesian image estima-
tion, cf., the deterministic frame theoretic approach in [BW99]. It also
considers the influence of motion and the correction of intrascan artifacts,
as well as analyzing simulation results.

Chapter 17, “Efficient Sampling of the Rotation Invariant Radon Trans-
form”, by Desbat and Mennessier, is also connected with tomography, and
it extends results on multidimensional sampling to the rotation invariant
Radon transform.
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The work was motivated by the problem of Doppler imaging in astron-
omy, and the authors explain the Doppler imaging technique and establish
the relation with tomography. Then standard results on tomographic recon-
struction are extended to the rotation invariant Radon transform with poly-
nomial weights. A main conclusion is that interlaced sampling in Doppler
imaging of rotating stars is efficient when the star rotation axis is perpen-
dicular to the line of sight, in which case the number of measurements can
be reduced by roughly one half.
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