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Uncertainty principles and weighted norm inequalities

John J. Benedetto and Matthew Dellatorre

This paper is dedicated to the memory of Björn Jawerth

Abstract. The focus of this paper is weighted uncertainty principle inequali-
ties in harmonic analysis. We start by reviewing the classical uncertainty prin-
ciple inequality, and then proceed to extensions and refinements by modifying
two major results necessary to prove the classical case. These are integration
by parts and the Plancherel theorem. The modifications are made by means
of generalizations of Hardy’s inequality and weighted Fourier transform norm
inequalities, respectively. Finally, the traditional Hilbert space formulation is
given in order to construct new examples.

1. Introduction

1.1. Background and theme. Uncertainty principle inequalities abound in
harmonic analysis, e.g., see [62], [25], [28], [30], [29], [18], [27], [66], [8], [26],
[9], [42], [20], [32], [38], [56]. Having been developed in the context of quantum
mechanics, the classical Heisenberg uncertainty principle is deeply rooted in physics,
see [45], [72], [71], [34]. The classical mathematical uncertainty principle inequality
was first stated and proved in the setting of L2pRq, the space of Lebesgue measurable
square-integrable functions on the real line R, in 1924 by Norbert Wiener at a
Göttingen seminar [3], also see [49]. This is Theorem 1.1. The proof of the basic
inequality, (1.1) below, invokes integration by parts, Hölder’s inequality, and the
Plancherel theorem, see (1.3). For more complete proofs, see, for example, [72],
[9], [32], [38].

Theorem 1.1. (The classical uncertainty principle inequality) If f P L2pRq

and x0, γ0 P R, then

(1.1) ||f ||
2
2 ď 4π||px ´ x0qfpxq||2 ||pγ ´ γ0q pfpγq||2,
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and there is equality if and only if

(1.2) fpxq “ Ce2πixγ0e´spx´x0q
2

,

for C P C and s ą 0. p|| ¨ ||2 designates the L2 norm, and the Fourier transform pf
of f is formally defined as

pfpγq “

ż

R

fpxqe´2πixγdx.q

The uncertainty principle inequality (1.1) is a consequence of the following
calculation for the case px0, γ0q “ p0, 0q and for f P S pRq, the Schwartz class of
infinitely differentiable rapidly decreasing functions defined on R.

(1.3)

||f ||
4
2 “

ˆ
ż

R

x|fpxq
2
|
1dx

˙2

ď

ˆ
ż

R

|x||fpxq
2
|
1dx

˙2

ď 4

ˆ
ż

R

|xĘfpxqf 1
pxq|dx

˙2

ď 4||xfpxq||
2
2||f 1

pxq||
2
2 “ 16π2

||xfpxq||
2
2||γ pfpγq||

2
2.

Integration by parts gives the first equality and the Plancherel theorem gives the
second equality. The third inequality is a consequence of Hölder’s inequality.

There is a result analogous to Theorem 1.1 for the case d ą 1. This is Theorem
2.3, that is given in Section 2. The main difficulty in the d ą 1 case is that the
square integrability of the distributional derivatives of f in the inequality, arising

from the analogue on pR of γ pfpγq, does not afford easy technical manipulation, e.g.,
being able to deduce absolute continuity, see [33], [48].

One way to remedy this is to introduce the notion of a bi-Sobolev space. In this
context, the argument is reduced to proving the uncertainty principle for smooth
compactly supported functions on R

d, and extending to L2pRdq by means of a
density argument. This was originally done in [8]. Using more abstract ideas,
Folland and Sitarum also gave a proof of the result for L2pRdq as a special case, see
[32], pages 210-213.

The approach in Section 2, following [8], has the advantage of using the same
method of integration by parts, Hölder’s inequality, and the Plancherel theorem, as
in the one-dimensional case, in order to obtain versions of the classical uncertainty
principle inequality on L2pRdq. It thereby serves as a stepping stone to proving more
difficult classical cases involving weighted spaces as well as extending its theoretical
tentacles far beyond Theorems 1.1 and 2.3.

Remark 1.2 (The additive uncertainty principle). Cowling and Price [23]
proved the following strong additive version of the classical uncertainty principle
inequality on R for arbitrary p, q P r1,8s and a, b ą 0, and for the class of tempered

functions f , i.e., essentially polynomial growth, for which pf is a function. There is
C ą 0 such that

(1.4) @f, ||f ||
2
2 ď C

´

|||x|
afpxq||p ` |||γ|

b
pfpγq||q

¯

if and only if

a ą
1

2
´

1

p
and b ą

1

2
´

1

q
.

(|| ¨ ||p and || ¨ ||q designate the Lp and Lq-norms.)
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Remark 1.3. The relevance of Theorem 1.1 for quantum mechanics can be
illustrated by considering a freely moving mass point with varying location l P R.
The term ||xfpxq||22 represents the average distance of l from its expected value
x0 “ 0. In fact, the position l is interpreted as a random variable depending on the
state function f ; more precisely, the probability that x is in a given region A Ď R

is defined as
ż

A

|fpxq|
2dx,

and ||xfpxq||22 is the variance of x.

Our theme is as follows. We shall extend and refine Theorems 1.1 and 2.3
in several ways. The main ingredients of our proofs, however, will remain the
same: integration by parts will give way to conceptually similar ideas such as
generalizations of Hardy’s inequality, and the Plancherel theorem will be generalized
to weighted Fourier transform norm inequalities.

1.2. Outline. In Section 2, we give a detailed proof of the classical uncertainty
principle on Rd.

Because of our theme for generalizing the classical uncertainty principle in-
equality, Sections 3 and 4 are devoted to Hardy’s inequality and weighted Fourier
transform norm inequalities, respectively. Then, in Section 5, the results in Sections
3 and 4 are used to obtain a variety of uncertainty principle inequalities.

In Section 6 we provide a proof of the traditional uncertainty principle inequal-
ity for general Hilbert spaces in order to exhibit several elementary and some new
examples. We conclude with a brief Epilogue.

Remark 1.4. Most of these topics have a long history with contributions by
some of the most profound harmonic analysts. Our presentation has to be viewed
in that context, notwithstanding the considerable number of references to the first
named author. It was his intention to put together various uncertainty principle
inequalities in which he was involved and that had a common point of view.

1.3. Notation. Generally, our notation is standard from modern analysis
texts, e.g., [68], [63], [31], [24], [10], [11].

The Fourier transform pf of a complex-valued Lebesgue measurable function
f : Rd Ñ C on Euclidean space R

d is formally defined as

pfpγq “

ż

Rd

fpxqe´2πix¨γdx,

where γ P pRd “ Rd and pR denotes a frequency or spectral domain.
In particular, we use the d-dimensional multi-index notation, where if α is a

d-tuple of natural numbers, α “ pα1, α2, . . . , αdq, then α ď β means αi ď βi for
each i P t1, . . . , du. Also, we write

xα
“ xα1

1 xα2
2 . . . xαd

d and B
α

“ B
α1
1 B

α2
2 . . . B

αd

d ,

where B
αi

i “ Bαi{Bxαi

i , and |α| “ α1 ` ¨ ¨ ¨ ` αd.
Further, we use the following notation. If p ě 1, then p1 is defined by 1

p `
1
p1 “ 1.

Let R` “ r0,8q. If x P Rd and r ą 0, then Bpx, rq Ď Rd is the open ball of
radius r centered at x. Let v ě 0 on Rd and let p ě 1. Lp

vpRdq is the weighted
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space of Borel measurable functions f : Rd Ñ C for which

||f ||p,v “

ˆ
ż

Rd

|fpxq|
pvpxqdx

˙
1
p

ă 8.

We shall usually omit the domain of integration in integrals when the setting is
clear.

Finally, if X and Y are topological vector spaces, then L pX,Y q is the space
of continuous linear mappings X Ñ Y .

2. The classical uncertainty principle inequality for L2pRd)

In this section we describe the classical uncertainty principle inequality on Rd.

Definition 2.1. Given integers m,n ě 0, and let 1 ď p ď 8. The Sobolev
space Wm,ppRdq is the Banach space of functions f P LppRdq with norm,

||f ||m,p “

ÿ

|α|ďm

||B
αf ||p ă 8.

The weighted space Lp
0,npRdq is the Banach space of functions f P LppRdq with

norm,

||f ||p,n “

ÿ

|β|ďn

||tβfptq||p ă 8.

The bi-Sobolev space Lp
m,npRdq is the Banach space of functions f P Wm,ppRdq X

Lp
0,npRdq with norm,

||f ||m,n,p “ ||f ||m,p ` ||f ||p,n ă 8.

The following result is a variant of a theorem of Meyers-Serrin [55] (1964).
It is to be expected by a natural approximate identity strategy combined with
truncations on larger and larger domains. We provide full details to show that the
strategy works and because of the expository nature of a chapter such as this.

Theorem 2.2. Given integers m,n ě 0. C8
c pRdq is dense in the Hilbert space

`

L2
m,npRdq, ||...||m,2,n

˘

, with inner product,

xxf, gyy “

ÿ

|α|ďm

xB
αf, B

αgy `

ÿ

|β|ďn

x tβf, tβgy,

where x¨ , ¨y is the usual inner product on L2pRdq.

Proof. i. Although it is well-known, we first show that C8
c pRdq is dense in

Wm,ppRdq, 1 ď p ă 8. Let f P Wm,ppRdq, and let thju Ď C8
c pRdq be an L1-

approximate identity [10], Section 1.6. Assume without loss of generality that each
suppphjq Ď Bp0, 1q. Choose u P C8

c pRdq such that 0 ď u ď 1 and u “ 1 on Bp0, 1q,
and define ujptq “ upt{jq.

Now fix α with the property |α| ď m. Not only does Bαpf ˚ hjq “ f ˚ Bαhj ,
but, by integration by parts,

B
α

pf ˚ hjq “ B
αf ˚ hj .

Thus, by Young’s inequality,

||B
α

pf ˚ hjq||p ď ||B
αf ||p||hj ||1,

and so each f ˚ hj is an element of Wm,ppRdq, as is each ujpf ˚ hjq.
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The desired density will follow from the triangle inequality once we prove that

(2.1) @α satisfying |α| ď m, lim
jÑ8

||B
α

rpf ˚ hjqpuj ´ 1qs ||p “ 0.

To this end, note that Leibniz’ formula gives

||B
α

rpf ˚ hjqpuj ´ 1qs ||p ď ||puj ´ 1qB
α

pf ˚ hjq||p

`
ÿ

βďα,|β|ě1

|Cαβ |j´|β|
||B

α´β
pf ˚ hjqptqB

βupt{jq||p.(2.2)

The dominated convergence theorem and Young’s inequality allow us to show that
the first term on the right side of (2.2) tends to 0 as j Ñ 8. Again, Young’s
inequality and the fact that

lim
jÑ8

j´|β|
||B

βu||8 “ 0

for |β| ě 1 show that the remaining terms on the right side of (2.2) tend to 0 as
j Ñ 8.

Thus, (2.1) is proved. This density in Wm,ppRdq can also be proved by an
equicontinuity argument, much like the one we now give in part ii.

ii. It is sufficient to prove that

(2.3) @f P L2
0,mpR

d
q, lim

jÑ8
||Fβjpfq||2 “ 0

for each β for which |β| ď n, where Fβjpfq “ Fjpfq “ tβpujpf ˚ hjq ´ fq. To this
end we first show that

(2.4) sup
j

||Fjpfq||2 “ Cpfq ă 8.

This is accomplished by the estimate,

||Fjpfq||2 ´ ||tβfptq||2 ď Cpβq||B
β

p pfphjq||2

ď

ÿ

γďβ

|Cβγ |||B
β´γ

pfB
γ
phj ||2 ď

ÿ

γďβ

|Cβγ |||B
β´γ

pf ||2 sup
γďβ

||B
γ
phj ||8,

and the fact, in the case hj is the dilation jdhpjtq, that

|B
γ
phjpλq| “

ˇ

ˇ

ˇ

ˇ

Cpγq

ż

hpuquγj´|γ|e´2πipu{jq¨λdu

ˇ

ˇ

ˇ

ˇ

ď Kpγqj´|γ|

since suppphq is compact. This last estimate used the Plancherel theorem so we

note the fact that the distribution Bβp pfphjq is an element of L2pRdq.
It is straightforward to check that the elements of L2

0,npRdq having compact

support are dense in L2
0,npRdq and that

@β satisfying |β| ď n, tFβju Ď LpL2
0,npR

d
q, L2

pR
d
qq.

Because of p2.4q we can invoke the uniform boundedness principle and obtain
sup ||Fj ||2 “ C ă 8. Thus, tFju is equicontinuous. On the other hand, it is routine
to check that limjÑ8 ||Fjpfq||2 “ 0 for compactly supported functions f P L2

0,npRdq.

This convergence on a dense subset of L2
0,npRdq combined with the equicontinuity

yield convergence on L2
0,npRdq, and the resulting limit F pfq for f P L2

0,npRdq deter-

mines an element F P LpL2
0,npRdq, L2pRdqq. Thus, p2.3q is obtained. �
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Because of the caveat mentioned after Remark 1.2, Theorem 2.2 or a similar
result is needed to prove the following Rd uncertainty principle inequalities in The-
orem 2.3. The remainder of the proof of Theorem 2.3 is an adaptation of the basic
calculation (1.3) on R given after the statement of Theorem 1.1.

Theorem 2.3 (The classical uncertainty principle inequality). If f P L2pRdq

and px0, γ0q P Rd ˆ pRd, then

(2.5) @j “ 1, . . . , d, ||f ||
2
2 ď 4π||pxj ´ x0,jqfpxq||2 ||pγj ´ γ0,jq pfpγq||2

and

(2.6) ||f ||
2
2 ď

4π

d
|||x ´ x0|fpxq||2 |||γ ´ γ0| pfpγq||2,

where, for example, x0 “ px0,1, . . . , x0,dq and

|x ´ x0| “

˜

d
ÿ

j“1

pxj ´ x0,jq
2

¸1{2

.

The constant 4π{d is optimal since equality is obtained in (2.6) for fpxq “

expp´π|x|2q, x0 “ γ0 “ 0.

3. Hardy type inequalities

3.1. Hardy’s classical inequality. In this subsection we state Hardy’s in-
equality, Theorem 3.2. This is background for Section 3.2, where we shall discuss
a Hardy type inequality on R`d due to Hernandez [46]. These inequalities can be
viewed in a certain sense as generalizations of integration by parts.

Definition 3.1. The Hardy operator is the positive linear operator Pd defined
as

Pdpfqpxq “

ż xd

0

. . .

ż x1

0

fpt1, . . . , tdqdt1 . . . dtd “

ż

x0,xy

fptqdt

for Borel measurable functions f on R`d. The region x0, xy Ď Rd is tt “ pt1, . . . , tdq :
xj ą 0 and 0 ă tj ă xj for each j “ 1, . . . , du. The dual Hardy operator P 1

d is de-
fined as

P 1
dpfqpxq “

ż 8

xd

. . .

ż 8

x1

fpt1, . . . tdqdt1 . . . dtd “

ż

xx,8y

fptqdt.

The unbounded region xx,8y Ď Rd is defined analagously to x0, xy.

Theorem 3.2 (Hardy’s inequality (1920) [40]). Let f ě 0 (f ‰ 0) be Borel
measurable and p ą 1. Then,

(3.1)

ż 8

0

P1pfqptqpt´pdt ă

ˆ

p

p ´ 1

˙p ż 8

0

fptqpdt.

G.H. Hardy, along with E. Landau, G. Pólya, I. Schur, M. Riesz, proved this
inequality as well as the following discrete version between 1920 and 1925 [39].

Theorem 3.3 (Hardy’s discrete inequality). Let p ą 1 and let taku8
k“1 be a

sequence of non-negative real numbers. Then,

(3.2)
8
ÿ

n“1

˜

1

n

n
ÿ

k“1

ak

¸p

ď

ˆ

p

p ´ 1

˙p 8
ÿ

n“1

apn.
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Since the constant
´

p
p´1

¯p

is sharp, Theorems 3.2 and 3.3 not only express the

fact that the Hardy operators are bounded mappings from Lp into Lp and lp into
lp, respectively, for p ą 1, but that each has norm p1 “

p
p´1 .

Remark 3.4. a. It is not difficult to see that restricting to step functions in the
integral inequality (3.1) gives the discrete version. However, historically, a weaker
form of the integral version was proved first, followed by the discrete version (as
stated), and then finally the integral version (as stated) was proved.

b. Hardy’s original motivation in studying these types of inequalities was to
find a simpler proof for Hilbert’s inequality [47] for double series. In fact, it can
be shown that Hilbert’s inequality follows from the discrete version. See [50] for a
history of Hardy’s inequality.

c. Hardy’s inequality is striking in that it is an Lp inequality with an explicit
optimal constant and that the only function for which equality is satisfied is the
zero function.

Remark 3.5. a. For the sake of context, we mention here that Hardy’s in-
equality is a fundamental inequality in analysis that demonstrates two very useful
principles. Using notation from the fractional calculus, the first principle is that an
inverse power weight such as 1{|x|α may be dominated in an Lp sense, by the cor-
responding derivative |∇|α. Certain higher dimensional generalizations of Hardy’s
inequality on Rd take the form,

||fpxq{|x|
α

||p ď Cα,p,d|||∇|
αf ||p,

where α, p, d, and f satisfy certain conditions. These inequalities are fundamental
in the study of partial differential equations that involve singular potentials or
weights such as 1{|x|α, e.g., [43], [61], [54], also see Section 4.4.

b. The second principle exemplified by Hardy’s inequality is that a maximal
average of a function is in many cases dominated in an Lp sense by the function
itself. This can be seen by a different type of generalization, namely, the Hardy-
Littlewood maximal function inequality, and its variants, in terms of the Hardy-
Littlewood maximal function M defined in the following way. Given a locally
integrable function f P L1

locpRdq, Mf : Rd Ñ R is a function that at each point
x P R

d gives the maximum average value that f can take on balls centered at that
point. More precisely, letting Bpx, rq Ď Rd denote the open ball of radius r centered
at x and letting |Bpx, rq| be its d-dimensional Lebesgue measure, Mfpxq is defined
as

Mfpxq “ sup
rą0

1

|Bpx, rq|

ż

Bpx,rq

|fpyq|dy.

Theorem 3.6. (Hardy-Littlewood maximal function inequality) Let d ě 1.
There is a constant Cd ą 0 such that

@f P L1
pR

d
q and @λ ą 0 |tMf ą λu| ă

Cd

λ
||f ||1,

where |tMf ą λu| is the Lebesgue measure of the set tx P Rd : Mfpxq ą λu.

This inequality is fundamental in harmonic analysis, ranging from the study of
singular integral operators, for example the Hilbert transform, to the convergence
of Fourier series, e.g., see [58], [57], [68], [67]. Both the discrete and continuous
Hardy inequalities have been generalized and applied to problems in analysis and
differential equations, e.g., see [41], [59], [51], [50].
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3.2. Hernandez’ weighted Hardy inequality. Hernandez [46] proved a
far-reaching classical extension of Hardy’s inequality that we now state in Theorem
3.8. The following result is needed for its proof. The proof of Lemma 3.7 is based
on Hölder’s inequality for positive linear operators. It should be compared with the
Schur test for positive integral operators, see [37], Appendix A.

Lemma 3.7 ([46], Theorem 3.1). Given 1 ă p ď q ă 8 and non-negative Borel
measurable functions u and v on X Ď Rd. Suppose P : Lp

vpXq Ñ Lq
upXq is a

positive linear operator with canonical dual operator P 1 : Lq1

u´q1{q pXq Ñ Lq1

v´p1{ppXq,
defined by the duality

ż

X

P pfqpxqgpxqdx “

ż

X

fpxqP 1
pgqpxqdx.

Assume there exist K1,K2 ą 0 such that

@g P Lpq{pq
1
pXq, for which g ě 0 and ||g||pq{pq1 ď 1,

there are non-negative functions,

f1 P Lp
vpXq, h1 P Lp

up{qg
pXq, f2 P Lp1

u´p1{qg
pXq, h2 P Lp1

v´p1{ppXq,

with the properties,

(3.3) P pf1q ď K1h1 and P 1
pf2gq ď K2h2

and
v “ f

´p{p1

1 h2 and u “ h
´q{p1

1 f
q{p
2 .

Then P P L pLp
vpXq, Lq

upXqq, P 1 P L
´

Lq1

u´q1{qpXq, Lp1

v´p1{ppXq

¯

, and

||P ||, ||P 1
|| ď K

1{p1

1 K
1{p
2 .

Notice that if we set

f1 “ v´p1
{pPdpv´p1

{p
q

´1{p and h1 “ Pdpv´p1
{p

q
´1{p1

,

f2 “ up{qP 1
dpuq

´p{pqp1
q and h2 “ Pdpv´p1

{p
q

´1{p1
,

then (3.3) is valid for any non-negative g P Lpq{pq
1
pR`dq, for which ||g||pq{pq1 ď 1,

as long as (3.4), (3.5), and (3.6) are assumed. As a result, Hernandez obtained the
following version of Hardy’s inequality on R`d.

Theorem 3.8 ([46], Section 4.2). Given 1 ă p ď q ă 8 and non-negative
Borel measurable functions u and v on R`d. Assume there exist positive K, C1ppq,
and C2ppq such that

(3.4) sup
są0

˜

ż

xs,8y

upxqdx

¸1{q ˜

ż

x0,sy

vpxq
´p1

{pdx

¸1{p1

“ K,

(3.5) @x P R
`d, Pd

´

v´p1
{p

pPdpv´p1
{p

q
´1{p

¯

pxq ď C1ppqPdpv´p1
{p

q
´1{p1

,

and

(3.6) @x P R
`d, P 1

d

´

upP 1
dpuqq

´1{p1
¯

pxq ď C2ppq
q{p

pP 1
duq

1{p.

Then, Pd P L
`

Lp
vpR`dq, Lq

upR`dq
˘

, P 1
d P L

´

Lq1

u´q1{qpR`dq, Lp1

v´p1{ppR`dq

¯

, and ||Pd||,

||P 1
d|| ď KC1ppq1{p1

C2ppq1{p.
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Remark 3.9. Condition (3.4) is necessary and sufficient for weighted Hardy
inequalities on R and necessary on Rd, d ą 1. Conditions (3.5) and (3.6) are
automatically satisfied on R. Conditions (3.4), (3.5), and (3.6), are sufficient but
not necessary on Rd, d ą 1.

A different but important direction for establishing Hardy inequalities is found
in [13].

3.3. The regrouping lemma. The following lemma will allow us to use the
results from Subsection 3.2 to derive an uncertainty principle inequality in Sub-
section 5.3. Let Ω be the subgroup of the orthogonal group whose corresponding
matrices with respect to the standard basis are diagonal with ˘1 entries. Each
element ω P Ω can be identified with an element pω1, . . . , ωdq P t´1, 1ud, and
ωγ “ pω1γ1, . . . ωdγdq. Thus, formally,

ż

pRd

F pγqdγ “

ÿ

ωPΩ

ż

pR`d

F pωγqdγ.

Since

ÿ

ωPΩ

a1{r
ω b1{r1

ω ď

˜

ÿ

ωPΩ

aω

¸1{r ˜

ÿ

ωPΩ

bω

¸1{r1

,

for 1 ă r ă 8 and aω, bω ě 0, we have the following regrouping inequality.

Proposition 3.10. Given 1 ă r ă 8 and suppose F P LrppRdq, G P Lr1
ppRdq.

Then,

ÿ

ωPΩ

ˆ
ż

pR`d

|F pωγq|
rdγ

˙1{r ˆ
ż

pR`d

|Gpωγq|
r1
dγ

˙1{r1

ď ||F ||r||G||r1 .

4. Weighted Fourier transform norm inequalities

4.1. Generalizations of Plancherel’s theorem. The uncertainty principle
inequalities on L2pRdq, stated in Theorem 2.3, were statements about minimizing
variance. However, in many applications, such as signal and image processing, as
well as quantum mechanics itself, there are other optimization criteria that are of
interest. Weighted uncertainty principle inequalities are one way of addressing this
issue. For example, in linear system theory weights correspond to various filters in
energy concentration problems, and in prediction theory weighted Lp- spaces arise
for weights corresponding to power spectra of stationary stochastic processes [9].

Once a weighted uncertainty principle inequality is obtained, the goal is to
determine a minimizer for this inequality, just as the Gaussian is a minimizer for
the classical uncertainty principle inequality of Theorem 1.1.

Plancherel’s theorem can be viewed as a specific example of a weighted norm
inequality for the Fourier transform for the case of energy equivalence between
space and spectral domains. Thus, an inequality of the form

(4.1) || pf ||q,u ď C||f ||p,v,

where u, v ě 0 are Borel measurable functions on Rd, can be viewed as a gener-
alization of the Plancherel theorem with an eye towards applications, where the
value of p is a relevant parameter and the weights u and v are relevant “filters” or
impulse responses.
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The main problems concerning p4.1q are characterizing the relationship between
the weights u and v to ensure its validity, and in this case finding the smallest
possible constant C so that (4.1) is true for all f P Lp

vpRdq.

Theorem 4.1 (Hausdorff-Young inequality). For all f P SpRdq,

(4.2) || pf ||p1 ď Bdppq||f ||p,

where 1 ă p ď 2 and

(4.3) Bdppq “

´

p1{p
pp1

q
´1{p1

¯d{2

.

Remark 4.2. a. Theorem 4.1 can be extended to LppRdq since SpRdq is dense
in LppRdq. In particular, the Fourier transform is well-defined for each f P LppRdq,
1 ă p ď 2.

b. The optimal constants, Bdppq, are due to Babenko [2](1961) and Beckner
[5](1975), and represent an analytical tour de force. The extension of the Hausdorff-
Young inequality for Fourier series to the case of Fourier transforms is due to
Titchmarsh [70] in 1924.

4.2. Ap - weights.

Definition 4.3 (Ap - weights). Let 1 ă p ă 8, and let w ě 0 be a Borel
measurable function on Rd. We call w an Ap-weight, written w P Ap, if

sup
Q

ˆ

1

|Q|

ż

Q

wpxqdx

˙ ˆ

1

|Q|

ż

Q

wpxq
´p1

{pdx

˙p{p1

“ K ă 8,

where Q is a compact cube with sides parallel to the axes and having non-empty
interior, see [35] for a definitive treatise.

Ap stands for Muckenhoupt weight classes. They are essential in characteriz-
ing the continuity of maximal functions and singular integral operators defined on
weighted Lebesgue spaces, e.g., see [35], pages 411 ff., as well as the special case,
Theorem 4.8, ahead, for the Riesz transform.

More surprising is the role of Ap in establishing the continuity of the Fourier
transform considered as an operator defined on weighted Lebesgue spaces. The
basic relationship between the Fourier transform and Ap is found in [15], cf. [16].
The authors began their theory with the following result.

Theorem 4.4. [15] Let w ě 0 be an even Borel measurable function on R, that
is non-increasing on p0,8q; and let 1 ă p ď 2. Then, there exists C ą 0 such that

@f P C8
c pRq,

ż

pR

| pfpγq|
p
|γ|

p´2wp1{γqdγ ď C||f ||
p
p,w

if and only if w P Ap.

Such inequalities naturally lead to subtle problems dealing with the proper
definition of the Fourier transform on weighted Lebesgue spaces, see [17].

The extension of Theorem 4.4 to Rd is due to Heinig and Smith [44].

Theorem 4.5 ([44]). Let 1 ă p ď q ď p1 ă 8, and let w ě 0 be a Borel
measurable function on Rd. Assume wp|t|q is increasing on p0,8q. Then, there
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exists C ą 0 such that

(4.4) @f P C8
c pR

d
q,

˜

ż

pRd

| pfpγq|
q
|γ|

dpq{p1
´1qw

ˆ

1

|γ|

˙q{p

dγ

¸1{q

ď C||f ||p,w

if and only if w P Ap.

Example 4.6. Theorems 4.4 and 4.5 are generalizations of classical results.
Consider the case over R , where p “ q and w “ 1. Then p4.4q is the Hardy-
Littlewood-Paley theorem (1931):

ˆ
ż

| pfpγq|
p
|γ|

p´2dγ

˙1{p

ď C||f ||p.

On the other hand, when q “ p1 and w “ 1, (4.4) is the Hausdorff-Young theorem;
and if wptq “ |t|α, 0 ď α ă p ´ 1, then (4.4) becomes Pitt’s theorem (1937):

ˆ
ż

| pfpγq|
q
|γ|

´βdγ

˙1{q

ď C

ˆ
ż

|fptq|
p
|t|αdt

˙1{p

,

where β “
q
p pα ` 1q ` 1 ´ q, cf. [4].

Definition 4.7. (Riesz transform) The d-dimensional Riesz transforms are
the d singular integral operators R1, . . . , Rd defined by the odd kernels kjpxq “

Ωjpxq{|x|d, j “ 1, . . . , d, where Ωjpxq “ cdxj{|xj | and cd “ Γ ppd ` 1q{2q {πpd`1q{2.
In fact,

pRjfqpxq “ lim
T´1,εÑ0

ż

εď|t|ďT

fpx ´ tqkjptqdt

exists a.e. for each f P LppRdq, 1 ă p ă 8, and there is C “ Cppq such that

@f P Lp
pR

d
q, ||Rjf ||p ď C||f ||p,

j “ 1, . . . , d. C “ Cppq does not depend on d. Also, we compute

pkjpγq “ ´i
γj
|γ|

, j “ 1, . . . , d.

Theorem 4.8 (Hunt, Muckenhoupt, and Wheeden, 1973). Let 1 ă p ă 8, and
suppose w P Ap. Then,

Rj : L
p
wpR

d
q ÝÑ Lp

wpR
d
q

is a continuous linear mapping for j “ 1, . . . , d.

4.3. Weighted Fourier transform norm inequalities. It is convenient to
begin with the following definition.

Definition 4.9. If 1 ă p, q ă 8 and if there is a constant K ą 0 such that

(4.5) sup
są0

˜

ż 1{s

0

upγqdγ

¸1{q
ˆ

ż s

0

vptq´p1
{pdt

˙1{p1

“ K,

then we write pu, vq P F pp, qq.

The following theorem, proved in 1982, is a weighted Hausdorff-Young-
Titchmarsh inequality.
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Theorem 4.10. [12] Let 1 ă p ď q ă 8, and let u, v ě 0 be even Borel

measurable functions defined on pR, R, respectively, for which pu, vq P F pp, qq with
constant K. Assume 1{u and v are increasing on p0,8q. Then, there is a constant
CpKq such that

(4.6) @f P SpRq X Lp
vpRq, || pf ||Lq

u
ď CpKq||f ||Lp

v
.

Remark 4.11. If p “ 1 and q ą 1 then Theorem 4.10 is true for any positive
Borel measurable function u. In this case the proof is routine and the constant CpKq

is explicit [12], pages 272-273. If p ą 1, then the constant CpKq is less explicit, but
it can be estimated by examining the proof of Calderón’s rearrangement inequality
[21], that the authors also used in their proof of Theorem 4.10.

The authors of [12] continued this program of understanding weighted Fourier
transform norm inequalities in a series of papers through to [14] in 2003. We state
two of more of their results.

For the first inequality, u˚ : r0,8q Ñ r0,8q designates the decreasing re-
arrangement of any measurable function defined on a measure space.

Theorem 4.12 ([14]). Let u, v ě 0 be Borel measurable functions on Rd, and
suppose 1 ă p, q ă 8. There is a constant C ą 0 such that for all f P Lp

vpRdq, the
inequality,

(4.7) || pf ||Lq
u

ď C||f ||Lp
v
,

holds in the following ranges and with the following hypotheses on u and v:
(i) 1 ă p ď q ă 8 and

sup
są0

˜

ż 1{s

0

u˚
ptqdt

¸1{q
ˆ

ż s

0

p1{vq
˚

ptqp
1
´1dt

˙1{p1

“ B1 ă 8;

(ii) for 1 ă q ă p ă 8,
¨

˝

ż 8

0

˜

ż 1{s

0

u˚

¸r{q
ˆ

ż s

0

p1{vq
˚pp1

´1q

˙r{q1

p1{vq
˚

psq
p1

´1ds

˛

‚

1{r

“ B2 ă 8,

where 1
r “

1
q ´

1
p .

Moreover, the best constant C in ( 4.7) satisfies

C ď

$

’

&

’

%

B1pq1q1{p1
q1{q, if 1 ă p ď q, q ě 2,

B1pp1q1{p1
p1{q, if 1 ă p ď q ă 2,

B2pp1q1{q1
q1{q, if 1 ă p ă q ă 8.

Take d ą 1. SOpdq is the non-commutative special orthogonal group of proper
rotations. S P SOpdq is a real dˆd matrix whose transpose St is also its inverse S´1

and whose determinant detpSq is 1. A function φ on pRd is a radial if φpSγq “ φpγq

for all S P SOpdq.
Radial measures are defined in the following way.

Definition 4.13. μ P MppR
dq, d ą 1, is radial if Sμ “ μ for all S P SOpdq,

where Sμ is defined as

@φ P CcppR
d
q, xSμ, φy “ xμpγq, φpSγqy.
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If dμpγq “ upγqdγ, i.e., μ is identified with u P L1
locppRdq, then pSuqpγq “

upS´1γq for S P SOpdq; in fact,
ż

pSuqpγqφpγqdγ “

ż

upγqφpSγqdγ “

ż

upS´1γqφpγqdγ,

where the second equality follows since the Jacobian of any rotation is 1.

Proposition 4.14. [13] Given μ P MppRdq and assume μpt0uq “ 0. If μ is
radial, then there is a unique measure ν P Mp0,8q such that for all radial functions

φ P CcppRdq,

(4.8) xμ, φy “ ωd´1

ż

p0,8q

ρd´1φpρqdνpρq,

where ωd´1 “ 2πd{2{Γpd{2q is the surface area of the unit sphere Σd´1 of pRd.

Formula ( 4.8) extends to the radial elements of L1
μppRdq by Lebesgue’s theorem.

Define

M0pdq “ tf P L1
pR

d
q : suppf is compact and pfp0q “ 0u,

see Section 5 for more on moment spaces.

Theorem 4.15. [13] Given radial ν P L1
locpRdq, ν ą 0 a.e., and radial μ P

M`ppRdq, μpt0uq “ 0. Let v P M`pp0,8qq denote the measure on p0,8q corre-

sponding to μ (as in Proposition 4.14). Assume 1 ă p ď q ă 8 and ν1´p1
P

L1
locpRdzBp0, yqq for each y ą 0. If

(4.9) B1 “ sup
yą0

˜

ż

p0,yq

ρd´1`qdν
´ ρ

π

¯

¸1{q ˜

ż 1{y

0

rd´1`p1
vprq

1´p1
dr

¸1{p1

ă 8

and

(4.10) B2 “ sup
yą0

˜

ż

py,8q

ρd´1dν
´ ρ

π

¯

¸1{q ˜

ż 8

1{y

rd´1vprq
1´p1

dr

¸1{p1

ă 8,

then there is C ą 0 such that, for all f P M0pdq X Lp
νpRdq,

(4.11) || pf ||q,μ ď C||f ||p,ν .

Furthermore, C can be chosen as

C “ 2ω
1{q`1{p1

d´1 π´pd´1q{q
ppq

1{q
pp1

q
1{p1

pB1 ` B2q.

The notation dνpρ{πq signifies p1{πqηpρ{πqdρ in the case dνpρq “ ηpρqdρ.

4.4. Weighted gradient inequalities.

Theorem 4.16 ([65], Theorem 4.1). Let 1 ă q ă 8, and let u, v ě 0 be Borel
measurable functions on Rd.
(a) Then,

(4.12) D C ą 0, @g P C8
c pR

d
q, ||g||q,u ď C||t∇gptq||q,v

if and only if

sup
sPRd

ˆ
ż 1

0

upxsqxd´1dx

˙1{q ˆ
ż 8

1

pvpxsqxd
q

´q1
{qx´1dx

˙1{q1

“ K ă 8.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

68 JOHN J. BENEDETTO AND MATTHEW DELLATORRE

The constants C and K satisfy the inequalities, K ď C ď Kq1{qpq1q1{q1
.

(b) Furthermore,

D C ą 0, @g P C8
c pR

d
q for which gp0q “ 0, ||g||q,u ď C||t∇gptq||q,v

if and only if

sup
sPRd

ˆ
ż 8

1

upxsqxd´1dx

˙1{q ˆ
ż 1

0

pvpxsqxd
q

´q1
{qx´1dx

˙1{q1

“ K ă 8.

5. Uncertainty principle inequalities

5.1. Moment spaces. In this section we provide extensions and refinements
of the classical uncertainty principle inequality by using the inequalities obtained
in Sections 3 and 4.

We introduced the moment space M0pdq before Theorem 4.15 in Section 4. For
all practical purposes, M0pdq can be replaced by the following subspaces of the
Schwartz space S pRdq:

S0pR
d
q “ tf P S pR

d
q : pfp0q “ 0u

and

S0,apR
d
q “ tf P S pR

d
q : pfpγ1, . . . , γdq “ 0 if some γj “ 0u.

In particular, f P S pRdq is an element of S0,apRdq if pf “ 0 on the coordinate
axes.

Theorem 5.1. [13] Let v P Lr
locpRdq for some r ą 1, where v ą 0 a.e., and

choose p P p0,8q. a. If h P Lp
vpRdq1 annihilates S0pRdq

Ş

Lp
vpRdq, then h is a

constant function.

b. S0pRdq
Ş

Lp
vpRdq “ Lp

vpRdq or Lp
vpRdq Ď L1pRdq.

c. If v1´p1
R L1pRdq, then S0pRdq

Ş

Lp
vpRdq “ Lp

vpRdq.

Remark 5.2. a. The condition p ą 1 is necessary in Theorem 5.1. In fact, if
p “ 1 and v “ 1, then by a standard spectral synthesis result [6], the L1-closure of

S0pRdq is the closed maximal ideal tf P L1pRdq : pfp0q “ 0u.
b. Subsequent work dealing with S0pRdq and weighted Lebesgue spaces is due

to Carton-LeBrun [19].

Now consider S0pRdq as a subspace of L2
1,1pRdq. The following is not difficult

to verify.

Proposition 5.3. a. S0pRdqK as a subspace of L2
1,1pRdq1 is the set of constant

functions on Rd.

b. The closure of S0pRdq in L2
1,1pRdq is tf P L2

1,1pRdq : pfp0q “ 0u.

Proposition 5.3a and the inclusion L2
1,1pRdq Ď L1pRdq give Proposition 5.3b.

5.2. Weighted uncertainty principle inequalities on R. We begin with
the following.

Theorem 5.4 ([8], Proposition 2.1.2). Given 1 ă p ď 2. Then,

(5.1) @f P S pRq, ||f ||
2
2 ď 4πB1ppq||xfpxq||p||γ pfpγq||p,

where B1ppq was defined in ( 4.3).
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The proof is similar to the proof of Theorem 1.1: the LppRq - version of Hölder’s
inequality is used instead of the L2pRq - version, and the Hausdorff - Young inequal-
ity replaces the Plancherel theorem.

Heinig and Smith strengthened Theorem 5.4:

Theorem 5.5 ([44], Theorem 1.1). Given 1 ă p ď 2. Then,

(5.2) @f P S0pRq, ||f ||
2
2 ď 2πpB1ppq||xfpxq||p||γ pfpγq||p.

The constant in (5.2) is sharper than that in (5.1) for 1 ă p ă 2. The proof of
(5.2) is also similar to the proof of Theorem 1.1 but depends on Hardy’s inequality
in the following way:

ż 8

0

ˇ

ˇ

ˇ

pfpγq

ˇ

ˇ

ˇ

2

dγ ď

ˆ
ż 8

0

ˇ

ˇ

ˇ
γ pfpγq

ˇ

ˇ

ˇ

p

dγ

˙1{p
˜

ż 8

0

ˇ

ˇ

ˇ

ˇ

1

γ
pfpγq

ˇ

ˇ

ˇ

ˇ

p1

dγ

¸1{p1

“

ˆ
ż 8

0

ˇ

ˇ

ˇ
γ pfpγq

ˇ

ˇ

ˇ

p

dγ

˙1{p
˜

ż 8

0

ˇ

ˇ

ˇ

ˇ

1

γ
P1pp pfq

1
qpγq

ˇ

ˇ

ˇ

ˇ

p1

dγ

¸1{p1

ďp

ˆ
ż 8

0

ˇ

ˇ

ˇ
γ pfpγq

ˇ

ˇ

ˇ

p

dγ

˙1{p ˆ
ż 8

0

ˇ

ˇ

ˇ
p pfq

1
pγq

ˇ

ˇ

ˇ

p1

dγ

˙1{p1

.

We can then prove the following weighted uncertainty principle inequality,
see [7], page 408.

Theorem 5.6. [7] Given 1 ă p ď q ă 8 and even Borel measurable functions
v, w ě 0, that are increasing on p0,8q. Assume p1{w, vq P F pp, qq with constant
K (as in ( 4.5)). Then, there is a C “ CpKq ą 0 such that

(5.3) @f P S pRq, ||f ||
2
2 ď 4πCpKq||xfpxq||p,v||γ pfpγq||q1,wq1{q .

Proof. The proof is a consequence of the estimate,

||f ||
2
2 “ || pf ||

2
2 ď 2

ż

ˇ

ˇ

ˇ
γ pfpγqp pfq

1
pγq

ˇ

ˇ

ˇ
dγ

“ 2

ż

ˇ

ˇ

ˇ
γ pfpγqwpγq

1{q
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
p pfq

1
pγqwpγq

´1{q
ˇ

ˇ

ˇ
dγ

ď 2

ˆ
ż

ˇ

ˇ

ˇ
γ pfpγq

ˇ

ˇ

ˇ

q1

wpγq
q1

{qdγ

˙1{q1
ˆ

ż

ˇ

ˇ

ˇ
p pfq

1
pγq

ˇ

ˇ

ˇ

q

wpγq
´1dγ

˙1{q

ď 2C
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´

p pfq
1
¯_

pxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p,v

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
γ pfpγq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

q1,wq1{q
,

and the fact that pp pfq1q_pxq “ 2πixfpxq. �

5.3. Weighted uncertainty principle inequalities on Rd. Combining
Theorem 3.8 and the regrouping lemma (Proposition 3.10), we obtain the following.

Theorem 5.7. Given 1 ă r ă 8 and Borel measurable functions v, w ě 0.
Suppose u “ w´r1

{r. Assume that for all ω P Ω, the weights upωγq and vpωγq

satisfy conditions ( 3.4), ( 3.5), ( 3.6) on pR`d for p “ q “ r1 and constants Kpωq,

C1pp, ωq, C2pp, ωq. If C “ supωPΩ KpωqC1pp, ωq1{p1
C2pp, ωq1{p, then

(5.4) @f P S0,apR
d
q, ||f ||

2
2 ď C|| pf ||r,w||∇ pf ||r1,v.
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Remark 5.8. At this point, generalizations of Theorems 5.5 and 5.6 can
be obtained by applying d´dimensional versions of Theorem 4.10 to the factor

||B1, . . . Bd
pf ||r1,v on the right side of (5.4). We shall not look at all forms of rear-

rangements, but confine ourselves to the following.

If v “ 1 and p “ q “ r1, then the supremum in Theorem 3.8 has the form,

(5.5) sup
są0

ps1 . . . sdq
1{r

˜

ż

xs,8y

upyqdy

¸1{r1

“ K

and (3.5) is satisfied for C1pr1q “ rd. For this setting we have the following uncer-
tainty principle inequality.

Theorem 5.9. Given 1 ă r ď 2 and let the non-negative Borel measurable
weight w be invariant under the action of Ω. Assume K ă 8 (in ( 5.5)) for u “

w´r1
{r and that

(5.6) P 1
dpw´r1

{r
pP 1

dpw´r1
{r

q
´1{r

q ď C2pr1
qpP 1

dpw´r1
{r

q
1{r1

.

Then, for all f P S0,apRdq,

||f ||
2
2 ďp2πq

drd{rKC2pr1
q
1{r1

Bdprq||t1 . . . tdfptq||r|| pf ||r,w

ďp2πq
drd{rd´d{2KC2pr1

q
1{r1

Bdprq|||t|dfptq||r|| pf ||r,w.

The weight wpγq “ |γ1 . . . γd|r, 1 ă r ď 2, is Ω-invariant, K “ pr1 ´ 1q´d{r1
in

(5.5), and (5.6) is satisfied for C2pr1q “ prpr1 ´ 1qqd. Thus, we obtain the following
d-dimensional generalization of Theorem 5.5.

Theorem 5.10 ([8], Section 2.1.11). Given 1 ă r ď 2. Then, for all f P

S0,apRdq,

||f ||
2
2 ď p2πrq

dBdprq||t1 . . . tdfptq||r||γ1 . . . γd pfpγq||r.

Using Theorem 4.16, Theorem 4.8, and Minkowski’s inequality we obtain the
following inequality.

Theorem 5.11 ([8], [9], Theorem 7.62). Given 1 ă r ď 2 and a nonnegative
radial weight w P Ar on Rd for which wp|t|q is increasing on p0,8q. Assume
(5.7)

sup
sPRd

˜

ż 1

0

wpxsq´r1
{r

|xs|r
1 xd´1dx

¸1{r1
˜

ż 8

1

w

ˆ

1

|xs|

˙´1

|xs|
rx´1´pdr{r1

qdx

¸1{r

“ K ă 8.

Then, there is a constant C “ CpKq ą 0 such that

@f P C8
c pR

d
q, ||f ||

2
2 ď C|||t|fptq||r,w|||γ| pfpγq||r,w.

Proof. For 1 ă r ă 8 we have

(5.8) ||f ||
2
2 ď || |t|fptq||r,w||f ||r1,u,

where
uptq “ |t|´r1

wptq´r1
{r.

The second factor on the right side of (5.8) is estimated by means of Theorem
4.16a, where q and v in (4.12) are q “ r1 and

vptq “ |t|´r1
w

ˆ

1

|t|

˙r1
{r

,
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respectively. Thus,

(5.9) ||f ||r1,u ď C1||t∇fptq||r1,v

if and only if (5.7) holds.
By Minkowski’s inequality the right side of (5.9) is bounded by

(5.10) C1

d
ÿ

j“1

˜

ż

|pRjGjq
_

ptq|
r1
w

ˆ

1

|t|

˙r1
{r

dt

¸1{r1

,

where G_
j ptq “ Bjfptq. Combining (5.9) and (5.10), and applying Theorem 4.5 for

the case p “ r and q “ p1 (so that 1 ă r ď 2), we obtain

(5.11) ||f ||r1,u ď C1C2

d
ÿ

j“1

||RjGj ||r,w.

Finally, combining (5.8) and (5.11) and applying Theorem 4.8 to the right side
of (5.11), we have the estimate

||f ||
2
2 ď C1C2C3|||t|fptq||r,w

d
ÿ

j“1

||pBjfq
_

pγq||r,w

ď 2πd1{r1
C1C2C3|||t|fptq||r,w

˜

ż

| pfpγq|
r

˜

d
ÿ

j“1

|γj |
r

¸

wpγqdγ

¸1{r

ď 2πd1{2C1C2C3|||t|fptq||r,w|||γ| pfpγq||r,w.

�

Corollary 5.12. Given 1 ă r ď 2 and d ą r1, there is C ą 0 such that

(5.12) @f P SpR
d
q, ||f ||

2
2 ď C|||t|fptq||r|||γ| pfpγq||r.

Remark 5.13. a. The constant C in Corollary 5.12 is of the form

C “ 2πd1{2C1pr, dqBdprqC3prq.

Since it is of interest to measure the growth of C as d increases, we note that
C1pr, dq can be estimated in terms of K in (5.7) for any w.

b. Theorem 4.16b gives rise to an analogue of Theorem 5.11 which, for w “ 1,
yields (5.12) for d ă r1.

See [14] for a summary of these and further results.

6. An uncertainty principle inequality for Hilbert spaces

6.1. An uncertainty principle inequality. We shall prove a well-known
uncertainty principle inequality for Hilbert spaces [71], [8], [9], [32]. This result is
also referred to as the Robertson uncertainty relation [62].

Definition 6.1. Let A, B be self-adjoint operators on a complex Hilbert space
H. (A and B need not be continuous.) Define the commutator rA,Bs “ AB ´BA,
the expectation or expected value ExpAq “ xAx, xy of A at x P DpAq, where DpAq

denotes the domain of A, and the variance Δ2
xpAq “ ExpA2q ´ tExpAqu2 of A at

x P DpA2q.
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Theorem 6.2 ([9], Theorem 7.2). Let A, B be self-adjoint operators on a
complex Hilbert space H (A and B need not be continuous). If

x P DpA2
q XDpB2

q X DpirA,Bsq

and ||x|| ď 1, then

(6.1) tExpirA,Bsqu
2

ď 4Δ2
xpAqΔ2

xpBq.

Proof. By self-adjointness, we first compute

(6.2)
ExpirA,Bsq “i pxBx,Axy ´ xAx,Bxyq

“2ImxAx,Bxy.

Also note that DpA2q Ď DpAq.
Since ||x|| ď 1 and xAx, xy, xBx, xy P R by self-adjointness, we have

||pB ` iAqx||
2

´ |xpB ` iAqx, xy|
2

ě 0(6.3)

and

|xpB ` iAqx, xy|
2

“ xBx, xy
2

` xAx, xy
2.(6.4)

By the definition of || ¨ ||, we compute

||pB ` iAqx||
2

“ ||Bx||
2

` ||Ax||
2

´ 2Im xAx,Bxy.(6.5)

Substituting (6.4) and (6.5) into (6.3) yields the inequality,

(6.6)
||Ax||

2
´ xAx, xy

2
` ||Bx||

2
´ xBx, xy

2

ě 2Im xAx,Bxy.

Letting r, s P R, so that rA and sB are also self-adjoint, (6.6) becomes

(6.7)
r2

`

||Ax||
2

´ xAx, xy
2
˘

` s2
`

||Bx||
2

´ xBx, xy
2
˘

ě 2rsIm xAx,Bxy.

Setting r2 “ ||Bx||2 ´ xBx, xy2 and s2 “ ||Ax||2 ´ xAx, xy2, substituting into (6.7),
squaring both sides and dividing, we obtain

`

||Ax||
2

´ xAx, xy
2
˘ `

||Bx||
2

´ xBx, xy
2
˘

ě pImxAx,Bxyq
2 .

From this inequality and (6.2) the uncertainty principle inequality (6.1) follows. �

6.2. Examples.

Example 6.3. (The classical uncertainty inequality) The classical uncertainty
principle inequality, Theorem 1.1, is a corollary of Theorem 6.2 for the case H “

L2pRq, where the operators A and B are defined as

Apfqptq “ pt ´ t0qfptq

and

Bpfqptq “ i
´

2πipγ ´ γ0q pfpγq

¯_

ptq.

Straightforward calculations show that A and B are self-adjoint, and that

Ef pAq “

ż

pt ´ t0q|fptq|
2dt,

Ef pBq “ ´2π

ż

pγ ´ γ0q| pfpγq|
2dγ,
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Δ2
f pAq “

ż

|t ´ t0|
2
|fptq|

2dt ´

ˆ
ż

pt ´ t0q|fptq|
2dt

˙2

,

Δ2
f pBq “ 4π2

˜

ż

|γ ´ γ0|
2
| pfpγq|

2dγ ´

ˆ
ż

pγ ´ γ0q| pfpγq|
2dγ

˙2
¸

,

tEf pirA,Bsqu
2

“ ||f ||
4
2.

Example 6.4 (Pauli and generalized Gell-Mann matrices). The following ma-
trices, referred to as the Pauli matrices, are important in quantum mechanics, where
they occur in the Pauli equation which models the interaction of a particle’s spin
with external electromagnetic fields [64]:

A “

ˆ

0 1
1 0

˙

B “

ˆ

0 ´i
i 0

˙

C “

ˆ

1 0
0 ´1

˙

Note that each Pauli matrix is Hermitian, and together with the identity matrix,
the Pauli matrices span the vector space of 2 ˆ 2 Hermitian matrices. From a
quantum mechanical point of view, Hermitian matrices are observables, and thus
the Pauli matrices span the space of observables of the 2-dimensional complex
Hilbert space.

The Pauli matrices may be generalized to the Gell-Mann matrices in dimension
3, and then these to the so-called generalized Gell-Mann matrices in any dimension
d [36]. In dimension d, this is the following family of matrices. Let Ej,k denote the
d ˆ d matrix with 1 in the jk´th entry. Define the following matrices:

Ad
k,j “

#

Ek,j ` Ej,k, for k ă j,

´ipEj,k ´ Ek,jq, for k ą j,

and

hd
k “

$

’

’

&

’

’

%

Id, for k “ 1,

hd´1
k ‘ 0, for 1 ă k ą d,

b

2
dpd´1q

`

hd´1
1 ‘ p1 ´ dq

˘

, for k “ d.

Thus, for any dimension d, Theorem 6.2 can be applied to any pair of gen-
eralized Gell-Mann matrices, to obtain inequalities regarding the the components
of vectors in the unit disc in Cd. For example, when d “ 2 and H “ C2, we
apply Theorem 6.2 to the operators A and B (as defined above). Straightforward
calculations give the following inequality.

Corollary 6.5. Let z “ pz1, z2q P C
2, |z| ď 1. Then,

`

|z1|
2

´ |z2|
2
˘2

ď
`

|z|
2

` pz1z̄2 ´ z̄1z2q
2
˘ `

|z|
2

´ pz̄1z2 ´ z1z̄2q
2
˘

.

Similarly, using the pair B and C we obtain the following inequality.

Corollary 6.6. Let z “ pz1, z2q P C2, |z| ď 1. Then,

pz̄1z2 ` z1z̄2q
2

ď
`

|z|
2

` pz1z̄2 ´ z̄1z2q
2
˘ `

|z|
2

´ p|z1|
2

´ |z2|
2
q
2
˘

.

Example 6.7 (Ornstein-Uhlenbeck operator). Let L2
μpRdq denote L2pRdq with

respect to the Gaussian measure dμ, where

dμpxq “
1

πd{2
e|x|

2

dx.
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The Ornstein-Uhlenbeck operator, L, is the self-adjoint second-order differential
operator defined as

Lfpxq “ Δfpxq ´ x∇fpxq.

Let Q be the position operator

Qfpxq “ xfpxq.

Taking d “ 1 and working on L2
μpRdq, we compute

rL,Qsfpxq “ 2f 1
pxq ´ xfpxq,

Ef prL,Qsq “
1

?
π

ż

R

`

2f 1
pxqfpxq ´ xfpxq

2
˘

e´x2

dx,

Ef pLq “
1

?
π

ż

R

pf2
pxq ´ xf 1

pxqqfpxqe´x2

dx, Ef pQq “
1

?
π

ż

R

xfpxq
2e´x2

dx,

Ef pL2
q “

1
?
π

ż

R

fpxq
`

f4
pxq ´ 2xf3

pxq ` xf2
pxq ´ 2f2

pxq ` xf 1
pxq

˘

e´x2

dx,

and

Ef pQ2
q “

1
?
π

ż

R

x2fpxq
2e´x2

dx.

Then, applying Theorem 6.2 and assuming sufficient differentiability, we have
the following inequality.

Corollary 6.8.
ˇ

ˇ

ˇ

ˇ

ż

R

`

2f 1f ´ xf2
˘

dμ

ˇ

ˇ

ˇ

ˇ

ď 2

ˆ

1
?
π

ż

R

pf2
´ xf 1

qfdμ

˙1{2 ˆ
ż

R

f
`

f4
´ 2xf3

` xf2
´ 2f2

` xf 1
˘

dμ

˙1{2

.

Remark 6.9. a. The theory that developed around the Ornstein-Uhlenbeck
operator can be viewed as a model of harmonic analysis in which Lebesgue measure
is replaced by a Gaussian measure. This theory has applications to quantum physics
and probability. In an infinite dimensional setting, the theory leads to the Malliavin
calculus [1], [53].

b. The Hermite polynomials form an orthogonal system with respect to the
Gaussian measure in Euclidean space, and they are the eigenfunctions of the
Ornstein-Uhlenbeck operator.

7. Epilogue

In 1982, when the first named author began to travel (literally, driving from
Toronto to Ottawa) with Hans Heinig on the path of weighted Fourier transform
norm inequalities and uncertainty principle inequalities, he also had the great good
fortune to begin a correspondence with John F. Price. This, combined with Fritz
Carlson’s inequality (1934) and the Bell Labs inequalities of Henry J. Landau, David
Slepian, and Henry Pollack [52], led to the exposition [8] in 1989 featuring local
uncertainty principle inequalities, spearheaded by Faris [28], Cowling and Price
[22], [23], and Price [60], and in the context of more classical work inspired by
Carlson’s work.

Subsequently, others have exposited the local theory, but there is an argument
to update the current state of affairs, especially in light of the uncertainty principle
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inequalities of Donoho and Stark [27] and Tao [69], and the advent of thinking in
terms of sparsity, compressive sensing, and dimension reduction, as well as quantum
inequalities emanating from the role of G̊arding’s inequality, see, e.g., [30].
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R. Acad. Sci. Paris Sér. A-B 263 (1966), A899–A901. MR0215088

[34] Gabor, D., Theory of communication, J. Inst. Elec. Engr., 93, 129-206, (1946).
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