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ABSTRACT

A wavelet-based technique WISP is used to discriminate normal brain activity from brain activity during
epileptic seizures. The WISP technique is used to exploit the noted difference in frequency content during
the normal brain state and the seizure brain state so that detection and localization decisions can be made.
An AR-Pole statistic technique is used as a comparative measure to base-line the WISP performance.
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1. INTRODUCTION

This paper deals with the analysis of electrical potential time series derived from brain activity of patients
with epilepsy.1'2 The goal is to develop analytical methods and algorithms which detect the presence of a
seizure (the detection problem) and which identify the regions of the brain which cause the seizure (the
localization problem). It has not been established that there is always a well-defined cortical focus which is
responsible for the initiation of a seizure. Nevertheless, current surgical treatment for certain forms of
epilepsy seeks to remove a minimal amount of brain tissue responsible for the onset of seizures. The most
common signals derived from brain potentials are electroencephalograms (EEGs). Since these signals are
measured on the scalp and potentials are on the order of microvolts, these signals are subject to many
complicated influences such as head geometry, propagation through holes in the skull, muscle movement,
etc. These effects are often regarded as "noise" and, consequently, the signal-to-noise ratio of EEG time
series is low. Time series which have a much higher signal-to-noise ratio are obtained by measuring
potentials directly on the surface of the brain. These are called electrocorticograms (ECoGs) and can only
be obtained by much more invasive procedures. Figure 1 shows EEG and ECoG recordings from the same
individual during different time epochs.
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Figure 1: Comparison of BEG (a) and ECoG (b) recordings from the same patient
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Figure 3: Examples of ECoG Non-Seizure (a) and Seizure Data (b) Segments

Localization of a seizure focus is often accomplished by multi-channel processing of a matrix ECoG time
series derived from surface electrodes (see Figure 2). The work described in this paper is based on the
analysis of ECoG time series data consisting of 64 channels recorded by an 8x8 block of electrodes spaced
approximately 1 cm apart. Figure 3 shows typical recorded waveforms during non-seizure activity and
seizure activity, respectively.

A standard method for seizure localization is a manual time-difference-of-arrival analysis. Here one
(visually) identifies regions of early onset and propagation of seizure activity across the grid. As shown in
Figure 4, onset of seizure activity is first apparent in channel 9. Next, the seizure activity spreads to
neighboring channels 10 and 1 1 and in the end appears in most, if not all, of the recorded waveforms. In
this paper we examine two signal analysis techniques and their efficacy for analyzing ECoG data. The first
technique, which we call wavelet integer scale processing (WISP), gives a time-scale representation of the
signal. The second technique produces a time series-based statistic which measures the pole configuration
of a local autoregressive (AR) model of the data. We will show how both of these techniques find a certain
feature of the data which is useful for both the detection and localization problems.

The paper is organized as follows. In Section 2 we review the nature of the data and some of its important
features. In Section 3 we describe the WISP technique and show some typical results of ECoG data
analysis using this technique. In Section 4 we describe the AR-pole statistic and the results produced by
this type of analysis. In Section 5 we summarize processing results and in Section 6 we draw some
conclusions concerning these and other techniques for the analysis of ECoG data.
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Figure 2: Illustration depicting an electrode grid on the brain surface
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Figure 4: 15 ECoG channels showing the difference in seizure arrival times
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Figure 5: FFT Spectrums of ECoG Non-Seizure (a) and Seizure (b) Data Segments

2. ECoG RECORDINGS

The two plots in Figure 3 show clear structural differences in the two classes of data, non-seizure and
seizure, sampled at 200 Hz. The signal in Figure 3(a), which corresponds to normal brain activity, is
clearly of lower energy than the signal in Figure 3(b), which corresponds to a seizure in progress. In terms
of spectral structure there is also a fairly clear distinction. The spectrum of the signal during normal
activity tends to have a fractal (1/f-like) spectrum, while during a seizure there are harmonic peaks which
suggest that a fairly simple dynamical system is in resonance (see Figure 5).

Further spectral analysis of the signal during seizure shows that the harmonic peaks drift toward lower
frequencies as the seizure progresses and finally collapse as the seizure ends. It is not unreasonable to
speculate that some chemical, perhaps a neurotransmitter, is being depleted as the seizure progresses until
finally there is not enough to sustain the resonance of the dynamical system.

It should also be observed that during the transition period between normal brain activity and the seizure
the ECoG potential signal drops significantly. In the neurophysiology literature this epoch of reduced
amplitude activity is referred to as the electrodecremental period. An illustration of the electrodecremental
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Electrodecremental Period in an ECoG Data Segment
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Figure 6: Example of the Electrodecremental Period in ECoG Recordings.

period is indicated by the horizontal bar marking for the time series shown in Figure 6. During this period
there is also an increase in high frequency activity, although the harmonic peaks are not as yet well defined.
The two methods discussed in this paper, WISP and a low-order autoregressive model, attempt to exploit
this spectral difference between non-seizure and seizure data by looking for particular harmonic structures.

3. WISP PROCESSING

The wavelet integer scale processing algorithm is derived from the continuous wavelet transform in that it
redundantly samples a continuous wavelet transform of a signal in both scale and time. For our purposes
here we consider the "square" wavelet

,o <t <

— ,—<t<O

where for any f E L2(R) the wavelet transform is given by

Wf(a,b) =

with a > 0 and b E R . In the application of WISP to a sampled time series, the resulting output is
essentially a sampled continuous wavelet transform where now a, b assume discrete values. We are
primarily concerned with sampled ECoG and EEG data. Although we present the WISP processing
methodology in the continuous setting for simplicity, modifications for the processing of sampled data are
left to the reader.

Since our data suggests the existence of spectral peaks, let us examine the (continuous) wavelet transform

of a pure frequency component. Supposef(t) = sin(+ 0) for a fixed y and 0. Then
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This shows that at scales a which are odd multiples of 1/ y , the wavelet transform of f varies in time
variable b like a pure sinusoid of frequency 7 I 2ir. An examination of the scaleograms in Figure 7 reveals
sinusoidal behavior at certain scales for seizure data and the marked absence of these sinusoidal
components for non-seizure data. The scaleogram in Figure 7(b) indicates the presence of sinusoids at five
or six different scales that appear linearly related. The linearity relative to scale is consistent with the fact
that the sampling of the continuous wavelet transform is linear. Translating the scales into frequencies, we
find that the scalogram in Figure 7(b) indicates sinusoidal components at frequencies roughly equal to 15,
30, 45, 60, 75, and 90 Hz (keep in mind that the Nyquist frequency is 100 Hz). Althought this paper does
not address the possible models that would give rise to output as in Figure 7(b), the sinusoidal output
associated with this seizure activity is consistent with a relatively simple dynamical system that has been
outlined in an earlier paper.3
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Figure 7: WISP output for a Non-Seizure Data Segment (a) and a Seizure Data Segment (b)
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4. THE AR-POLE STATISTIC

Given discrete time series data x, we now consider a standard autoregressive model

xn = akxfl_k (1)

of order p. For a particular window of data Xm Xm+i Xm+n_i consisting of n contiguous samples, we
seek the a which give the best least-squares fit of our model to the data in the processing window.4 That
is, if F = {m, . . . , m+n-1 }, we seek the ak ' which minimize

p 2

nEFh2 —akxfl_k

Since this expression is quadratic in the ak ', it is minimized by solving a symmetric system of linear
equations. Since Equation (1) is satisfied exactly if and only if the data x,, is a linear combination of
exponentials (or exponentials multiplied by polynomials), for real time series data the "prediction error"

eflxflakxk (2)

will not be zero on all of F. Taking the z-transform of Equation (2) gives

E(z) = P(z1)X(z) , (3)

where E and X are the z-transforms of e and x,, , respectively, and P is the polynomial

P(z)=l_akzk.

It therefore follows from Equation (3) that the z-transform of x,, is

X(z) =
P(1 )

E(z)

and the Fourier transform of x, is

X(eiw) =
p(iw) E(eiw). (4)

The model (1) is reasonable if the prediction error e is "noise like," which means that it should have a
relatively flat spectrum. Equation (4) therefore shows that sharp spectral peaks of x,, are closely related to
the existence of zeros of P near the unit circle in the complex plane. This is illustrated in Figure 8, which
shows the spectrum of a frame of seizure data and the zeros of P for a 12th order autoregressive fit to this
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Figure 8: ECoG Seizure Data Segment FFT Spectrum (a) and Corresponding AR Pole Plot (b)

Figure 9: ECoG Non-Seizure Data Segment FF1' Spectrum (a) and Corresponding AR Pole Plot (b)

data. Figure 8(b) illustrates how the spectral peaks in the AR model are related to the zeros in close
proximity to the unit circle. Ignoring the delta and theta wave activity (0-8 Hz), three strong spectral peaks
can be found roughly at frequencies 12 Hz, 30 Hz, and 50 Hz in the seizure data of Figure 8. Given the fact
that the AR model provides an approximation to the spectral characteristics of the data, these frequencies
are consistent with frequencies identified earlier through WISP processing. For comparison, Figure 9 gives
corresponding plots for a frame of non-seizure data, where the spectral peaks are noticeably absent.

For both seizure and non-seizure data, P has a single real zero near z =1. This is due to the low frequency
peak inherent to the spectrum of both the seizure and non-seizure data. Neglecting this zero, we find for
the remaining zeros that:

(a) for seizure data, some zeros (usually three) are close to the unit circle;

(b) for non-seizure data, all zeros are well within the unit circle.
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Figure 10: ECoG Data Segment (a) and Corresponding AR-Pole Statistic (b)

Based on these observations, we define the AR Pole Statistic A of a frame of data as follows. Suppose S is
a family of subsets of the set of zeros of P. Define A by

A=max
CaS rEC r

For our data, we find it useful to let S be the following family of subsets of zeros. C is a set in S if C has
three zeros, each with argument 9 satisfying irl 20 < 9 < r . The normalized frequency r I 20
corresponds to roughly 10 Hz as a minimal frequency and was selected after manual inspection of the
ECoG data. Since the spectral content of the data x, is dynamic, we generate a time series for the statistic
A by letting A denote the statistic obtained from the autoregressive model derived from a frame of data

;, , referenced to index n. Figure 10 shows plots for x,, and A,, , where the ECoG data x,, contains both
non-seizure and seizure intervals.

By smoothing the time series statistic A,, we obtain a reliable indicator for the presence of a seizure. It is
interesting to note that the AR pole statistic begins to rise above its value for non-seizure areas during the
electrodecremental period, as shown in Figure 10(a). Comparing the amplitude of the AR pole statistic in
Figure 10(b) to the actual time series data in Figure 10(a), it is apparent that the statistic amplitude can be
thresholded to indicate the first detection of spectral peaks (and hence seizure activity). If all available
channels are processed with the AR pole statistic, localization can be performed by identifying that channel
in which the AR pole statistic first exceeds a pre-set threshold.
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5. SUMMARY OF RESULTS

Data from several patients have been analyzed using the techniques described in this paper. In each case,
over 60 channels were examined (a few channels had unusable data), and each technique was able to
provide a indication of dominant lines in the spectral characteristics of the data. In particular, the
techniques appeared to be robust across different channels within a data segment (i.e., time epoch),
different data segments for the same patient, and also different patients. Although the success of the
individual techniques did vary from patient to patient, each methodology was able to identify seizure
activity in channels where visual inspection of the waveforms was either nonexistent or weak.

6. CONCLUSIONS

In this paper, we showed that differences exist in the frequency spectrum structure of non-seizure and
seizure ECoG data segments. The two processing techniques introduced here use this structural difference
to distinguish between non-seizure and seizure states of ECoG data.

The wavelet based WISP technique uses a graphical scalogram representation to help identify the presence
of narrowband frequency components. Thus far, it has been able to enhance the presence of weak line
components that remain masked upon visual inspection of the time series or the frequency spectrum alone.
The AR Pole statistic methodology computes a single statistic for each processing block that relates to
change in frequency content between non-seizure and seizure data segments. Although the method can be
used to identify particular frequencies, the statistic does not. Instead, this technique has been applied to
identify general trends in dominant frequency activity, and in particular those that are related to changes in
spectral shape relative to non-seizure and seizure activity.

Both methods are able to acurately detect the changes in the frequency spectrum as the seizure onset
arrives. In most cases, the processing outputs depict the structural change before visual detection can be
made. We feel that both of these techniquies can be used to help detect and localize seizure activity in
ECoG recordings collected from epileptic patients.
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