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ABSTRACT. A frame theoretic technique is introduced that combines Fourier and finite
frames. The technique is based on fundamental theorems by Beurling and Landau in the
theory of Fourier frames, and transitions to the finite frame case, where an algorithm is
constructed. The algorithm exhibits the strengths of frame theory dealing with noise reduc-
tion and stable signal reconstruction. It was designed to resolve problems dealing with fast
spectral data acquisition in magnetic resonance imaging (MRI), and has applicability to a
larger class of signal reconstruction problems.

1. INTRODUCTION

1.1. Background. We introduce a combined Fourier and finite frame technique to resolve
a class of signal reconstruction problems, where efficient noise reduction and stable signal
reconstruction are essential. This class includes the special case of obtaining fast spectral
data acquisition in magnetic resonance imaging (MRI) [32]. Fast data acquisition is impor-
tant for a variety of reasons. For example, human subject motion during the MRI process
should be analyzed by methods that do not blur essential features, and speed of data acqui-
sition lessens the effect of such motion. We shall use the MRI case as a prototype to explain
our idea. Generally, our approach includes the transition from a theoretically conclusive
reconstruction method using Fourier frames to a finite frame algorithm designed for effective
computation.
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To begin, the use of interleaving spirals in the spectral domain, so-called k—space when
dealing with MRI, is one viable setting for attaining fast MRI signal reconstruction in the
spatial domain; and a major method in this regard is spiral-scan echo planar imaging (SEPI),
e.g., see [23]. With this in mind, the Fourier frame component of our technique goes back to
results of Beurling [13] and Henry J. Landau [42], as well as a reformulation of the Beurling—
Landau theory in the late 1990s that was made with Hui-Chuan Wu, see [11], [10], [12].
This reformulation is in terms of quantitative coverings of a spectral domain by translates
of the polar set of the target/subject disk space D in the spatial domain. In this context,
harmonics for Fourier frames can be constructed by means of the Beurling—Landau theory
on interleaving spirals in the spectral domain, allowing for the reconstruction of signals in
D.

The finite frame component of our technique was developed in 2002, when the four co-
authors worked together, see [6].

There has been major progress with regard to MRI and fMRI, and the importance of
effective SEPI has not been diminished.

With regard to the progress, MRI and fMRI are often essentially effected in real-time
[22], and technologies such as wavelet theory [33], compressed sensing [45], and non-uniform
FFTs [25], [26], [30], [37] have also been used to advantage.

Although SEPI is faster than conventional rectilinear sampling, the fastest rectilinear
echo planar imaging (EPI), which can be faster than SEPI, is prone to artifacts from gra-
dient switching which is often ameliorated in SEPI. Further, SEPI is still of potential great
importance with regard to spectroscopic imaging [2] and fMRI, e.g., dynamic imaging of
blood flow [50].

Amidst all of this complexity, a distinct advantage of frame oriented techniques, such
as ours, is the potential for effective noise reduction and stable signal reconstruction in the
MRI process. With regard to frames, noise reduction, and stable reconstruction, we refer
to [8], [5], and see [38], [39] for an authoritative more up to date review. The point is that
noise reduction can be effected by modeling in which information bearing signals can be
moved into a coefficient subspace relatively disjoint from coefficients representing noise in
the system. This idea has a long history in the engineering community, and the theory of
frames provides an excellent model to effect such a transformation. In fact, frames that
are not bases allow one to construct Bessel mappings, see Section 3, that are not surjective,
giving rise to the aforementioned subspaces; and the the overcompleteness inherent in frames
guarantees stable signal representation, e.g., see [20] and [4], Chapter 7.

1.2. Outline. Section 2 describes spiral-scan echo planar imaging (SEPI), beginning with
the imaging equation for MR in which the NMR (nuclear magnetic resonance) signal S(t)
is obtained by integrating the solution of Bloch’s differential equation. The phenomenon of
NMR was discovered independently by Felix Bloch and Edward Purcell, see [18], page 13,
for historical comments (the word nuclear gives the false impression that nuclear material
is used). Section 7 expands on this material by means of a sequence of images with brief
explanations.

Section 3 provides the mathematical background for our theory and algorithm. This
includes the theory of frames and a fundamental condition for the existence of Fourier frames
due to Beurling and Landau. We also have an alternative parallel approach depending on
a multidimensional version of Kadec’s sufficient condition for Riesz bases in the Fourier
frame case. In Section 4, we first describe our algorithm conventionally and, keeping in
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mind our interest in noise reduction and stable reconstruction, we then formulate it in frame
theoretic terms. This allows us to prove a basic theorem on computational stability (Theorem
3) indicating the importance of designing frames that are tight or, at least, almost tight.
Naturally, our algorithm, which is discrete, should also have the theoretical property that, in
the limit, it will be a constructive way of genuinely approximating analogue images, whose
discrete versions are computed by the algorithm. This is the content of Section 5.

Section 6 is devoted to refinements of the formulation in Section 4 in order to effect useful
implementation.

Finally, after Section 7 we close with Section 8, that outlines the paradigm we have used
to manufacture data in which to evaluate our algorithm when MRI generated data is not
available.

2. AN MRI PROBLEM

A standard MRI equation is a consequence of Felix Bloch’s equation for transverse mag-
netization My, in the presence of a linear magnetic field gradient [18] pages 269-270, see
Section 7. In fact, an MR signal S(t) is the integration of Mj.; and the corresponding
imaging equation is

(1) S(t) = S(k(t)) = S(ka(t), ky(t), k(1))

/// x,y, z) exp[—2mi((z,y, 2), (k(t), K, (t),k:z(t)))]e_t/ndx dy dz,

e.g., see [17], [33], [18], pages 269-270, [14], Subsection 16.2, page 344. S(t) is also referred
to as an echo or FID (free induction decay) and can be measured for the sake of imagin-
ing. Equation (1) is a natural physical Fourier transform associated with magnetization,
analagous to the natural physical wavelet transform effected by the behavior of the basilar
membrane within certain frequency ranges, e.g., [7].

The parameters, variable, and inputs in Equation (1) are the following:

) katt) = [ Gl

and G,(u) is an z-directional time varying gradient with similar definitions for the y and z
variables, T5 is the transverse relaxation time, the exponential term e %2 representing the
Ty decay appears as a limiting factor in echo planar imaging [1], v is the gyromagnetic ratio,
and p(r) = p(z,y,z) = p(r,Ts) is the spatial spin density distribution from which the spin
density image is reconstructed.

Since S(t) is a measurable quantity in the MR process and since precise knowledge of
p(x,y, z) is desired, it is natural to compute the inverse Fourier transform of S, properly
adapted to the format in Equation (2). Because of significant issues which arise and goals
which must be addressed, the inversion process has to be treated carefully. In particular,
there is a significant role for the time-varying gradients. First, the gradients are inputs to
the process, and must be designed theoretically in order to be realizable and goal oriented.
Once the gradients have been constructed, the imaging data S(t) at time ¢ is really of the
form S(k(t)) as seen in Equations (1) and (2); and it is usual to refer to the spectral domain
of S as k—space. See Section 7 for more detail for this process.
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Example 1. Let

G.(t) = ncos&t —nétsint
and

Gy(t) = nsinét + nét cos L.
By the definition of k,,k,, see Equation (2), we compute k,(t) = yntcosét and k,(t) =
yntsin{t. Combining k, and k, we obtain the Archimedean spiral,

A, = {(cfcos 278, chsin 276) : 6 > 0} C R,

where 7,7, and £ > 0 are considered as constants, § = 0(t) = (1/2x)&t, and ¢ = 27yn /€.
Clearly, we have 0(t) — oo as t — c0.This idea for formulating time domain gradient pulse
forms is due to Ljunggren [44]. They clearly generate a spiral scan in the k—domain and are
not difficult to realize, see Figure 1.

-5 L ) j
=5 a i

FIGURE 1. Archimedean sampling example with three Archimedean spirals in
the & domain.

Remark 1. a. The echo planar imaging (EPI) method, developed by Mansfield (1977) [18],
page 306, theoretically and usually provides high speed data acquisition within the time
interval of a few hundreths of seconds. The method utilizes multiple echos by fast gradient
alternation. As such, realizable gradient design giving rise to large high speed gradient fields
is essential. A solution to this design problem has to be coupled with controlling spatial
resolution limits imposed by the Ts-decay in Equation (1), e.g., [18] pages 314-315.

A weakness of this technique as originally formulated is that the alternating gradient to
be applied is a series of rectangular pulses which are difficult to generate for high gradient
power and frequency, see [1], pages 2-3, for this and a fuller critique.

b. SEPI ensures rapid scanning for fast data acquisition. Spiral scanning also simplifies
the scanning of data in radial directions once the span is completed. In this regard the
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inherent 75 effect appears as an almost circular blurring which is preferable to the one-
dimensional blurs observed in earlier EPI. Further, there is a reduction in transient and
steady state distortion, since SEPI eliminates the discontinuities of gradient waveforms which
arise in uniform rectilinear scanning that proceeds linearly around corners while transversing
k-space, e.g., [1], [18].

Interleaving spiraling from rapid spiral scans proceeds from dc levels to high frequencies.
That such multiple pulsing can be implemented in SEPT is due to its locally circular symme-
try property in data acquisition, and the resulting interleaving spirals yield high resolution
imaging when accompanied by effective k—space sampling and reconstruction methods, see
[35]. In fact, interleaving spiral scans not only improve k-space sampling strategies, but they
also overcome the gradient requirement and Ts-decay limitations for standard EPI.

c. EPI and SEPI are both fast in terms of image data acquisition, but the off resonance
and flow properties of the two methods differ; and, in fact, total scan time spiral imaging
requires lower gradient power than EPI, e.g., [43]. Further, SEPI has more significantly
reduced artifact intensities than the 2—dimensional FFT since its spiral trajectories collect
low spatial frequencies with every view; and it also seems to be superior vis-a-vis motion
insensitivity, see [29], [28].

3. FOURIER FRAMES AND BEURLING’S THEOREM
3.1. Frames and Beurling’s theorem.

Definition 1. a. Let H be a separable Hilbert space. A sequence {z, : n € Z¢} C H is a
frame for H if there exist constants 0 < A < B < oo such that

Vye H, Alyll> <> [y, za)* < Blyll*.

The optimal constants, viz., the supremum over all such A and infimum over all such B, are
called the lower and upper frame bounds respectively. When we refer to frame bounds A and
B, we shall mean these optimal constants.

b. A frame X for H is a tight frame if A = B. If a tight frame has the further property
that A = B = 1, then the frame is a Parseval frame for H.

c. A frame X for H is equal-norm if each of the elements of X has the same norm.
Further, a frame X for H is a unit norm tight frame (UNTF) if each of the elements of X
has norm 1. If H is finite dimensional and X is an UNTF for H, then X is a finite unit norm
tight frame (FUNTF).

d. A sequence of elements of H satisfying an upper frame bound, such as B ||xH2 in part
a, is a Bessel sequence.

There is an extensive literature on frames, e.g., see [24], [52], [20], 9], [4], [19], [15].

Let X = {x;} be a frame for H. We define the following operators associated with every
frame. They are crucial to frame theory. The analysis operator L : H — (*(Z%) is defined
by

Vee H Lz = {{x,z,)}.
The second inequality of Definition 1, part a, ensures that the analysis operator L is bounded.
If H, and H, are separable Hilbert spaces and if T': H; — Hs is a linear operator, then the
operator norm ||T'||,, of T'is

||T||op = SUP|a||, <1 ||T(35)||H2 :
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Clearly, we have || L], < Vv B. The adjoint of the analysis operator is the synthesis operator
L*: 2(Z%) — H, and it is defined by
Va € (*(2%), L*a= Z p L.
neZd

From Hilbert space theory, we know that any bounded linear operator T : H — H satisfies
17|, = IIT]],, - Therefore, the synthesis operator L* is bounded and [|L*[|,,, < VB.
The frame operator is the mapping S : H — H defined as S = L*L, i.e.,

Vee H, Sx= Z (x, ) Tp.

neZd

We shall describe S more fully. First, we have that
Ve e H, (Sz,z)= Z [, )]
nezd
Thus, S is a positive and self-adjoint operator, and the inequalities of Definition 1, part a,
can be rewritten as
Vee H, Alz||> < (Sz,z) < Bz,

or, more compactly, as

Al < S < BI.

It follows that S is invertible ([20], [4]), S is a multiple of the identity precisely when X is
a tight frame, and

(3) BlI<St<AlL

Hence, S~ is a positive self-adjoint operator and has a square root S~'/? (Theorem 12.33 in
[48]). This square root can be written as a power series in S™!; consequently, it commutes
with every operator that commutes with S—!, and, in particular, with S. Utilizing these
facts we can prove a theorem that tells us that frames share an important property with
orthonormal bases, viz., there is a reconstruction formula [9], Theorem 3.2.

Theorem 1 (Frame reconstruction formula). Let H be a separable Hilbert space, and let
X = {xn} neze be a frame for H with frame operator S. Then,

Vee H x= Z (x,2,) S 2, = Z <9c, S’lxn> T, = Z <x,S’1/2:Un> S12g .
nezZd nezd nezd
Proof. The proof is three computations. From I = S~1S, we have
VeeH, x=85"'Sz=5" Z (T, xn) Ty = Z (x,2,) S~
nezd nezd
from I = SS~!, we have
Vee H, x=285'z= Z <S_1x,xn> Ty = Z <x, S_lxn> T
nezd nezd
and from I = S~1/255-1/2 it follows that
Vee H, x = S1/288712 — §g—1/2 Z <S_1/2:E,xn> T, = Z <x, 5_1/293”> S124 O

nezd nezd
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Let R? be d-dimensional Euclidean space, and let R? denote R? when it is considered as
the domain of the Fourier transforms of signals defined on R?. The Fourier transform of
f:R? — C is formally defined as

o~

p() =) = [ fle)e™ da.
R
The Paley- Wiener space PWp is
PWp = {p € LR : suppy” € D},

where D C R is closed, L2(R?) is the space of finite energy signals ¢ on RY, i.e

1/2
el = ([ lePar) " <oc

¢V is the inverse Fourier transform of ¢ defined as

¢V (z) = /ﬁd e(7)e*™ Vd,

and supp ¢ denotes the support of V.
Notationally, let ey (z) = > where x € R? and A € R%

Definition 2. Let A C R be a sequence, and let D C R? be a closed set having finite
Lebesgue measure. It is elementary to see that E(A) = {e_, : A € A} is a frame for the
Hilbert space L?*(D) if and only if there exist 0 < A < B < oo such that

VSO € PWD: A||¢||L2 Rd) — Z |90 |2 < BHQOHLQ Rd
AEA

In this case, and because of this equivalence, we say that A is a Fourier frame for PWp.
It is elementary to verify the following equivalence.

Proposition 1. £(A) = {e_y : A € A} is a frame for the Hilbert space L?(D) if and only if
the sequence,

{(e-x1p): A€ A} C PWy,
1s a frame for PWp, in which case it is also called a Fourier frame for PWp.
Recall that a set A is uniformly discrete if there is r > 0 such that
VAYEAN [A—q|=>T,

where |\ — 7| is the Euclidean distance between A and +.
Beurling [13] proved the following theorem for the case that D is the closed ball B(0, R) C
R? centered at 0 € R? and with radius R.

Theorem 2. Let A C R? be uniformly discrete, and define
p = p(A) = sup dist(¢, A),

¢eRd

where dist(¢, A) = inf{|¢ =A| : A € A}. If Rp < 1/4, then A is a Fourier frame for PWg r).
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By the definition of Fourier frame the assertion of Beurling’s theorem is that every finite
energy signal f defined on D has the representation,

(4) flz) =Y ax(f)er™,

AEA

in L*norm on D, where Y., |ar(f)|* < oo. Beurling [13] and [42] used the term set of
sampling instead of Fourier frame. In practice, signal representations such as Equation (4)
often undergo an additional quantization step to achieve analog-to-digital conversion of the
signal, e.g., [47].

In theory, for the case D = B(0, R), we can not expect to construct either tight or exact
Fourier frames for the spiral in Subsection 3.2, see [27].

It is possible to make a quantitative comparison between Kadec’s 1/4-theorem and The-
orem 2. For now we provide the following remark which shows that the construction of
Subsection 3.2 can also be achieved by use of Kadec’s theorem.

Remark 2. Kadec (1964) [36] proved that if A = {\, : m € Z} CR and SUP, ez [Am— 35| <
1/4, then A is a Riesz basis for PW_gg. This means that {e*™»/F} is an exact frame
for PW|_g g), which, in turn, means it is a bounded unconditional basis for PW|_g g or,
equivalently, that it is a frame which ceases to be a frame if any of its elements is removed,
see, e.g., [52].

3.2. Fourier frames on interleaving spirals. We can now address the problem of imaging
speed in the data acquisition process of MRI in terms of the imaging equation, Equation
(1), translated into a Fourier frame decomposition. In fact, A € A C R? in Equation (4)
corresponds to (k,(t), ky (), k.(t)) in Equation (1) in the case k,(t) is identically 0.

We use Theorem 2 to give a constructive non-uniform sampling signal reconstruction
method in the setting of spirals and their interleaves. The method is much more general
than the geometry of interleaving spirals.

For the case of spirals there are three cases: given an Archimedean spiral A, to show
there is R > 0, generally small, and a Fourier frame A C A for PWpo r) (the calculation
for this case uses techniques from the following case); given an Archimedean spiral A and
R > 0, to show there are finitely many interleaves of A and a Fourier frame A, contained in
their union, for PWp(o,r) (Example 2); given R > 0, to show there is an Archimedean spiral
A and a Fourier frame A C A for PWp gy (Example 3).

Example 2. a. Given any R > 0 and ¢ > 0. Notationally, we write any given &, € R? as
&0 = 19e?™ € C, where ry > 0 and f; € [0,1). We shall show how to construct a finite
interleaving set B = UkM: 1Ay of spirals,

Ay = {c™ KM g >0} k=0,1,...,M —1,

and a uniformly discrete set Ar C B such that Ag is a Fourier frame for PWp( g). Thus,
all of the elements of L?(B(0, R)) will have a decomposition in terms of the Fourier frame
{ex : A € Agr}, see [11], [10], [12] for the original details.

b. We begin by choosing M such that ¢cR/M < 1/2. Then, either 0 < ry < cfy < ¢ or
there is np € NU {0} for which

c(n0+90) <7y < C(?’Lo—|— 1 —|—90)
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In this latter case, we can find k € {0,..., M — 1} such that

k kE+1
C(no +90 + M) < o < C(no +6(] + 7)
Thus,
i B) < —.
dist (&, B) < oYi
Next, we choose § > 0 such that Rp < 1/4, where p = (¢/2M + 0).
Then, for each £ =0,1,..., M — 1, we choose a uniformly discrete set Ay of points along

the spiral A, having curve distance between consecutive points less than 2§, and beginning
within 20 of the origin. The curve distance, and consequently the ordinary distance, from
any point on the spiral A to Ay is less than §. Finally, we set Ag = Ué\iglAk. Thus, by the
triangle inequality, we have

VEER?,  dist(€, Ap) < dist(€, B) + dist(B, Ag)

< 45-

— 2M — p)
where dist(B,Ag) = inf {|( — A| : ( € Band A € Ag}. Hence, Rp < 1/4 by our choice of M
and 0; and so we invoke Beurling’s theorem, Theorem 2, to conclude that Ay is a Fourier
frame for PWp g).

Example 3. Note that since we are reconstructing signals on a space domain having area
about R?, we require essentially R interleaving spirals. On the other hand, if we are allowed
to choose the spiral(s) after we are given PWp( g), then we can choose Ag contained in a
single spiral A, for ¢ > 0 small enough.

Remark 3. a. There have been refinements and generalizations of Kadec’s theorem (Remark
2), that are relevant to our approach, e.g., Sun and Zhou [51]. In fact, given R > 0, the
Sun and Zhou result gives rise to exact frames for L?([—R, R]?) which become frames for
L2(B(0, R)). For d = 2, the corresponding set A C R? can be chosen on interleaves of a given
spiral A C R2. This allows us to replace the application of Beurling’s theorem in Examples
2 and 3 by a multi-dimensional Kadec theorem.

b. It can be proved that it is not possible to cover a separable lattice by finitely many
interleaves of an Archimedean spiral, see [46]. In particular, sampling for the spiral MRI
problem can not be accomplished by simply overlaying spirals on top of a lattice, and then
appealing to classical sampling theory on lattices. Consequently, it is a theoretical necessity
that non-uniform sampling results, such as the Beurling’s or Kadec’s theorem, are required
in the spiral case.

4. THE TRANSITION TO FINITE FRAMES

4.1. Algorithm. Let D = [0,1)? and let N > 1. The space L%(D) of N-digital images is
the closed subspace of L?*(D) consisting of all piecewise constant functions, f € L?(D), of
the form

f@,y) = fr for(x7y)€{]€ k+1>x[l [+1

R SR < .
NN N N),O_k,l<N
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We use the notation, a = (A, z1) € R? and e(s) = e 2™ s € R. For a given f € L% (D),
we compute

o =g 2 e (5 [ () ] [ () -]

k,1=0
Setting
cun = (S - (3) 1] [ (2) 1)
we have
R R | Nl
(5) fla)=f(\p) = S Z JeaGri(\s ).

k,1=0

Since there are N? unknowns, fj;, if we have N2 or more samples of f(«), say {f ()
with M > N2 where A = {a,,, }M=} is properly chosen in the square [ NN

M-—1
m=0

m=0 -3 5}2, then we
have a necessary condition for being able to reconstruct {fx;}. In fact, we suppose that the
following conditions are satisfied.

(1) M > N2, and, in fact, we may want sufficient over-sampling so we may choose
M > N? e.g., M ~ 4N?.

(2) The periodic extension A + KZ? gives rise to a frame &(A + KZ?) for L3,(D) with
frame constants A, B, see Proposition 1. This can be proved for A constructed in the
square [—%, %)2 In the case of SEPI for MRI imagery, this is achieved by taking
{a,;,} on a few tightly wound spirals.

We shall show that the samples A = {a,, }M-} allow us to reconstruct f in a stable
manner. We begin by writing

(6) a0 p) = — 4721)%@1@1()\7#)-
Hence, by (5), we have
R N-1
(7) FOG ) = fea i\ ).
ke, 1=0
Ordering {(k,1) : 0 < k,l < N} lexicographically as {a, : n =0,..., N> — 1}, we obtain
R N2-1
(8) FOuw) =D o Ha (N ).
n=0
Therefore, we can write
R N2-1
(9) f(am) = Z fanHa, (Oém)'
n=0
We define the vectors,
fao - J?(ao)
F= : and F = :

Jaga_, Fanr 1)
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and the matrix,

(10) H = (Ho, (), -
It is convenient notationally to set H, = H,, . and so H can be written as
Ho(aog) ...  Hpyz_1(ap)
1) H Ho('ozl) HNa_'l(ozl)
HO(OCMA) e HNQ—l(OéMfl)
We obtain
(12) F = HF.

Since (12) is an over-determined system, we find the least-square approximation, yielding
(13) F = (H*H)"'H'F,

where H* = A' and T denotes the transpose operation, i.e., * is the usual Hermitian invo-
lution for matrices. Note that H is an M x N? matrix, and so H* is an N? x M matrix and
H*H is an N? x N? matrix. N

Equation (13) asserts that F is the Moore-Penrose pseudo-inverse of F, and a major goal
is to mold this equation into a viable algorithm and computational tool with regard to noise
reduction and stable reconstruction, see Section 6. It should be pointed out that Moore-
Penrose has played a role in the reconstruction of MR images, going back to Van de Walle et
al. (2000) and Knutsson et al. (2002). However, unprocessed application of Moore-Penrose is
not feasible for typical MR image sizes, as the work of Samsonov et al. and Fessler illustrates.
In fact, our frame theoretic approach is meant to provide a new technique for experts in MRI
to develop.

Equation (13) can be written in frame-theoretic terminology. In fact, H is the analysis
operator L : 1*({0,...N? — 1}) — [?({0,...M — 1}), H* is its adjoint synthesis operator L*,
and the frame operator S = L*L is H*H. Defining the Gramian R = LL*, we have

f=(ST'L)Lf,
and
f=(L"RLS,
where f € [*({0,...N? —1}). Clearly, Equation (13) is f = (S™'L*)Lf in our frame theoretic

notation.

Remark 4. Define the space Fz (D) C L*(D) of continuous N-digital images as

N-1N-1
m=0 n=0

where A(z,y) = A(z)A(y) = AN (2) AN (y), and AV (z) is the triangle function supported by

[0,1/N] whose Fourier transform is the usual Fejér kernel. We introduce F'% (D) in order to

increase the speed of our algorithm, Equation (13). In fact, in forthcoming work we provide
a Fejér kernel reconstruction algorithm with which to refine Equation (13).
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4.2. Computational Stability. We must find out to what extent the reconstruction scheme
of Section 4.1, in which we evaluate the coefficients f;, in Equation (5), is stable. To this
end,we would like to show that the condition number,

. . | Amax (H*H)|
(14) k(H*H) = cond(H*H) o ()]
is not too large, where Apax, Amin denote the mazimum and minimum eigenvalues of H*H.
Thus, the problem is precisely that such a reconstruction scheme is not necessarily stable
because the matrix H*H may have a large condition number. Consequently, if the sampled
values f(a) are noisy, the reconstruction may not be useful. This is where the theory of
frames can be applied to yield a stable reconstruction.

We can check that that H*H is positive definite, and so the absolute values on the right
side of Equation (14) can be omitted. Further, H*H is a normal operator (matrix).

The following theorem underlies a useful algorithmic approach, but must be made more
precise in the sense that the conditions of Subsection 4.1 be made with more specificity.

Theorem 3. Given H as defined in Equation (10), and assume X = A+ N Z? is a Fourier

frame for L*(D) with frame bounds A and B. Then,
™4 B

d(H™H) < (_> =

cond(H*H) < 5) A

Proof. Let «

= (\pu) € A+ NZ2% Then, a = a,, + Nv for some 0 < m < M and v € Z%
Let g € L*([0,1]?)

be an N-digital image, i.e.,

(2,y) = ¢ — () € k k+1 " [ 1+1
g\xr,y) = gk, ora =1,y N7 N Na N .
By (5), we compute

N—1 ktl L4l

N N
G0)=Y [ oueta-ayia
kil=0" N N
Ty
=— G
FECIW I;ng,l ki),

where a = (A, 1) and e(s) = e s € R. Let ay, = (A, i) € A. Then,

1 N-1

(@) = ——+ Z Gy Gri(om),

(15) 5
AT A o

Q)

Am bl ~
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Therefore, with v = (7, 7,), we compute

Y i@ =YY e+ NP

a€EA+NZ2 m=0 yeZ2

M Aot 2 ,
:ZEXA+NMMHWOM%W

0 yez2

It is easy to check that, since (A, pm) = am € (—N/2, N/2)?, we have

1<§:<A+N£%;+Mmy

yeZ2
(o) S ()
Ve €Z Am + N7 Y EZ fm + Ny
o 1
_sinc2(7r)‘Tm) smc2(7”‘T’")7

where we use the identity,

t2
n; (t+Nn)?  sinc?(ZL)’

with sinc (t) = 32 see [34], Equation (10).
We know that

S Gr=Y > R i )r@(amn?

aEA+NZ2 m=0 Am + N%r)(ﬂm + N'Yy

allows us to make the estimate,

el Y @R ()Y e

m=0 aEA+NZ2 m=0

Hence, it follows from the inequalities,

Alglif < Y [g()f* < Byl

aEA+NZ2
that
9 4 M—
(16) (2) Aol < Z (@)l < Bl

Now, replacing f with g in Equation (12), we obtain
G =HG.

13
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Therefore,
o M—
(17) G*(H*H)G :GG:Z

Observe that

N-1
IGI* =D lgral® = N?|lgll--

k=0
Combining (16) and (17) leads to

214
{0 EL 6l <6 e < ol
and so
Amax(H"H) <
and

Hence, we conclude that
cond(H*H) < (g

\_/

5. ASYMPTOTIC PROPERTIES OF THE ALGORITHM

Given the samples {f(a;) Motand N € N, where f € L*(D), M > N?, and {a;}}05" C
[—k/2,k/2] x [—k/2,k/2] C R2 the reconstruction fieen € L% (D), should serve as an
approximation to f, see Equation (13). We quantify that wish in this subsection. We begin

with the following, which is not difficult to verify.

Proposition 2. Given f € L*(D) and N € N. The function g € L3(D), that minimizes

1f —gll2 is
N-1
g(z,y) = Iralpe ko) (@)1 ey (y),
k,l=0
where .
9kl = E k T 1 / f(xa y) dx dy7
%5 < [ )1 s [
i.e., gk, 1S the average of f over [%, %) X [%, HTl)
From the definition of Hj; in Equation (6), we have
(19) Hy (A p) = 1[%,%)()\)1[% ey (1)

and, as in Subsection 4.1, recall that we order {(k,l) : 0 < k,I < N} lexicographically as
{a,}2 5t Also, let DY be the square, [ﬁ w) X [i ”—1) , where a,, is the lexicographic

N’ N N’ N

integer corresponding to the word (k,1). For convenience, we write D,, = D .
The asymptotic behavior of the algorithm is formulated in the following assertion. The
mathematical calculation to verify this behavior follows the assertion, see Remark 5.
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Asymptotic behavior of the algorithm. Let f € L*(D) and fit N. Assume K > 0 and
assume {a; j]\ial is essentially uniformly distributed [40] in the square, [—5, 5] x [-5 K1,

272 172
as M — oco. Then, for M > 0, we obtain the approximation,

— f(z,y)dzdy,
il Jp, [ @Y

where |D,| = 1/N? is the area of D, and where the f,, are the coefficients of frecon fOT @
given element of L3 (D). Thus, comparing Equation (20) with Proposition 2, we see that, as
M — oo, the algorithm reconstruction, frecon, approaches the optimal L% (D) approzimation

of f.

(20) Vn=1,...,N*—1, f, ~

Note that
C0,0 c. Co,N2—1
H*H — . ,
CNQ*LO . o CN271,N271
where ¢, = Zj]\igl H(oj)Hy(ar;). Also, we compute,
~ S Ho(oy) f(oy)
H*F = .
e ~
Z]—OIHNQA(O‘J) (a;)
Consequently, we have
frecon - (H*H)_IH*/F\
- _ — -1
%ZﬁolHO(O‘j)HO(O‘j) MZJ 0 " Hy2_ 1(a) Ho(ay)
o L : -
2 i Hola)Hye (o) o 47 000" Hyeoa (o) Hyz ()
M Z] 0 Ho(%)f(aj)
X

LS Hyve 1 (o) f(ey)
which tends to

Jps s Hy> 1 (A) f(N)dA
as M — oo and for K >> 0. This last matrix product is approximately
(Ho, Ho) ... (Hyo_y,Ho) \ ' [ (f,H)

<H07HN2—1> <HN2—17HN2—1> <]?, HN2_1>
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| Dol 0\ [ (f1p,)
- |D1| <f7 1D1>
0 |DN2—1| <fa 1DN2_1>
DL<f 1p,) |D0| oo £ (@, y)dady
e )\ ey
|[Dpy2_q| V7 Dy2_y [Dy2_q| JDy2 g ?

where we use Equation (19) and Parseval’s theorem for the first equality.
Therefore, for a given f € L% (D), we have

T

~ 1

frecon = (H*H)T'H*F ~ flz,y)dxdy, .. / (x,y)dzdy |
(H°H) 1Dol Jp, (=.9) |DN2 1l Jpys_, )

as asserted.

Remark 5. The above approximation of integrals by sums can be justified using results
from the theory of uniformly distributed sequences, especially Theorem 5.5 (the Koksma-
Hlawka inequality) and Theorem 6.1 and related techniques dealing with the discrepancy of
sequences [40], Chapter 2. These methods are important with regard to exact frames, see
3], [49]. Further, continuity properties of matrix inversion enable the interchange of limits
with matrix inverses in the calculation.

6. COMPUTATIONAL ASPECTS OF THE ALGORITHM

6.1. Computational feasibility. To solve the basic problem of Section 4, i.e., reconstruct-
ing f € L%(D) through

(21) F = HF,

and develop the associated algorithm formula, Equation (13), as we did in Subsection 4.1,
we begin by addressing the system,

(22) (H*H)F = H*F.
The dimensions of the vectors and matrices are:

e Fis N2 x 1

e His M x N?, where M > N?

e A=H"H is N2 x N2

e Fis M x1

e b=H'Fis N? x 1.
Therefore, a direct implementation requires memory for

N'+ (M +1)N*+ M >2(N*+ N?)

scalars. With regard to operation count, we have the following situation. The computations
to solve Equation 22, assuming that H* and H*H are given to us, involve computing H*F and
(H*H)*l(H*ﬁ). The first term requires O(M N?) operations and the second term requires
O((N?)3) operations.
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6.2. Transpose reduction. Set

Ho(ap) ... Hyzq(ao) Vo
H— H()(Oél) N HN2_1(O11) . ‘/1T
Ho(apr—1) .. Hye_q(ap—q) Va1

where each V; is N? x 1, and V; = (Ho(a), ..., Hx2_1(;))". We compute
w0 Ho(ow) Holay), ro Holow) Hyz 1 (o)

k 0 HN2 l@k)HO(Oék) Zk 0 HN2 1(ak)HN2 1(0%)
M-1 Ho(ay) Ho(ay), - ,Ho(ak)HN2—1(Oék)

k=0 \ Hrz_(an) Holag), . ;mﬂm—l(%)

M-1 Holo)
—~ | Hiow)
= . (H()(Oék),Hl(Oék),...7HN2_1(CY]€)),
k=0 :
HN2—1(Oék)
M-1
= A
k=0
Also, we have
M-13 737
N k=0 Holaw) [k M-1
H'F = s =D LW
2461 Hyzy (o) fi h=0
Consequently, our algorithm for calculating H*H and H* f requires the variables A V, F
and b. The algorithm is constructed as follows. Given {ap, -, ap—_1} and F= ( fo, .. fM )T
(1) Let V = [Ho(a), ..., Hy2_1(ap)]" , where a “for loop” of length N2 is required to
compute V;

(2) Define A =VVT;
(3) Define b = ﬁ)v,
(4) For j=1to M —1,
o Let V = [HO(O_zj), - ,HN2—1(04J‘)]T3
o Let A=A+ VVT,
eb=">b+ EV
end

Therefore, the algorithm requires memory for N x N?+2 (M x 1)+ N? x 1+ N? x 1 scalars.
This is better than the direct implementation Equation (21) of Subsection 6.1.
The computational cost requires:

e O(MN?) calculations to compute the V vectors,
e O(MN*) calculations to compute A = H*H, and
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e O(MN?) calculations to compute b = H*F.

Remark 6. The direct implementation uses more memory than the transpose reduction
algorithm by a factor of roughly (M/N?) + 1.

6.3. An alternative. As before, we begin with the system,
H*HF = H'F,
where H*H is of size N? x N?2.

A problem arises from the fact that we have to build an N? x N? matrix, when in fact
we only need a set of N? coefficients to describe the image that we want to reconstruct from
the frequency information contained in F.

Let us review the process:

The unit square D is divided in N? smaller elements, in a grid-like fashion; and, as such,

we deal with the characteristic functions for each of the [%, k—;(,l) X [%, ”Tl) sub-squares.
Thus, an N-digital image f € L3 (D) is defined as

Z szl k k)Lt
N N N’ N
k=0,1=0
When we have M = N? values of f, we are dealing with the exact and unique solution
of H*HF = H*F. When we have more than N? values of f, i.e., when M > N2, then we are
dealing with a minimum squares solution.
It is natural to ask how one can formulate this situation in terms of some energy. Consider

the function,
N2-1

E(V>(>‘>:U’> = Z Ui/ii<)‘7:u>7

2
where v = (vg,...,vy2_1)T € RV and

1 —1[WZ ,L- )X[lﬁi,li+1)7
fOI'OS k’z,ll SN—l
Also, consider the data set {E = f()\j,,uj) D (Aj, ) € RL, 0<j<M-— 1}, where fis
the Fourier transform of f : R — R.
We build the function F : RN — R as follOWS'

FO)= Y| Y o) -

We want to find v, € RY” such that
F(v.) = min F(v).

vERN?2

2_
N-—1 9

Z‘E Notg) = i

We shall take the following course of action. First, the minimization approach will not be
pursued because of the calculation of F(v) is generally too expensive. In fact, we shall take
the conjugate gradient approach to solving the system,

(23) H*HF = H*F.

It makes sense to take this approach for the following reasons.
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(1) Modulo the problem of storing H, we can solve in a finite number of steps equation
(23) perfectly, if perfect arithmetic, as opposed to other iterative methods.

(2) Since the storage of H is prohibitively expensive, we shall have to resort to computing
H*Hp, iteratively, where p, is from the usual conjugate gradient algorithm notation.
Note that H*H is implicitly stored that way.

(3) The storage requirements are reduced to 4 vectors, in our case, of size N2 x 1. In
reality we need an extra vector that grows as M x 1 to be able to compute H*Hpy.

This method makes sense when H*H is positive-definite.

For perspective, the Kaczmarz algorithm is a different approach to signal reconstruction
that can operate with low memory requirements by using simple row-action updates, e.g.,
[16]. The Kaczmarz algorithm has figured prominently in computerized tomography.

7. AN MRI PRIMER

The ideas behind the discovery of magnetic resonance imaging, are due to Paul Lauterbur,
see [21]. We outline and illustrate them.

A magnetic dipole is a spinning charged particle. A magnetic dipole has a magnetic dipole
moment that is characterized by its gyromagnetic ratio v and its spin angular momentum S.
We call this magnetic dipole moment p, and p = ~S, [31]. See Figure 2.

FIGURE 2. A magnetic dipole is a spinning charged particle.

If we place a magnetic dipole in the presence of a static magnetic field By, and its magnetic
dipole moment is not aligned with the magnetic field, we observe that the magnetic dipole
moment precesses about the magnetic field at a frequency wy called the Larmor frequency.
The Larmor frequency is proportional to the strength of the magnetic field. The constant of
proportionality is the gyromagnetic ratio, i.e., wy = 7v||Bol|2, [31], [41]. See Figure 3.

If a macroscopic sample of magnetic dipoles in solid, liquid, or gaseous form (for example,
about 10%* hydrogen nuclei in water per cm?) is placed in the presence of a static magnetic
field By, then the energy in this sample will be minimized when the majority of the magnetic
dipole moments align with By. This minimum energy state gives rise to a local magnetization
M of the sample, and M = yBg, where x is called the nuclear susceptibility of the sample,
[41]. See Figure 4.

Suppose that we place a circular coil centered on a macroscopic sample of magnetic
dipoles that has been magnetized by a static magnetic field By, and suppose that the coil is
embedded in a plane containing By. See Figure 5. We then apply a time varying sinusoidal
voltage v(t) = Asin(wt) at the coil with amplitude A and frequency w. We observe a time
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A WO
-

By S

FiGURE 3. Magnetic dipole precession in the presence of a magnetic field.

M By
o—r r—

F1GURE 4. Magnetization of a macroscopic sample of magnetic dipoles.

varying magnetic field B (¢) perpendicular to By that will grow and shrink, coming in and
out of the plane containing the coil.

FIGURE 5. Magnetization of a sample and coil experiment.

The nuclear magnetic resonance or NMR phenomenon can then be observed at the Lar-
mor voltage frequency wy in the following way: the magnetization in the sample is rotated
and placed in the transversal plane to By, [31], [41]. See Figure 6.

When the voltage pulse that generated the magnetic field B is turned off, we then
observe an induced voltage S(t) in the coil as the magnetization of the sample M precesses
around By eventually aligning with it. This relaxation process is triggered by thermal noise
in the sample, [41]. See Figure 7.

The magnetization M can be decomposed in longitudinal and transversal components,
M., and M,,, respectively. The longitudinal component will be parallel to By and the
transversal component will be in the transversal plane perpendicular to By, [41]. See Figure

8.
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v(t) = Asin(wpt)

FIGURE 6. Nuclear magnetic resonance (NMR) observed at the Larmor frequency.

FiGURrE 8. Transversal and longitudinal magnetizations.

Bloch’s equations predict in a variety of cases that the decay to the steady state of the
magnetization will be exponential, i.e.,

(24) Mion, — xBo ox exp(—t/T}),
(25) | M| o< exp(—t/T3),

where o< denotes proportional to and where the characteristic relaxation times 77 and 75 are
particular to the magnetization sample, [41].
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With this physical setup, we arrive at the imaging equation, Equation (1), of Section 2,
Viz.,

S(t) = S(k(t)) = S(ka(t), ky(1), k-(1))

:///Mtr(:v,y,z)e2”i<(x’y’z)’(kz’ky’kz)>dxdydz
(26) _ / / / o1y, 2)e~T2e2mil@ ) Cods)) gy

where we have introduced the transversal component M;,., where p is a magnetic dipole
density function of space, where r = (z, vy, z), and where ky(t) for s = x,y, z is proportional
to

(27) / & Bo(u

cf. Equation (2) of Section 2. Thus, the induced signal S can be seen as the Fourier
transform of the transversal magnetization M;, in the k-spectral domain. Hence, to recover
the transversal magnetization we take the inverse Fourier transform of the signal S. The
transversal magnetization My = M, (r,t) = p(r)e "' is also a function of time ¢, as seen
in Equation (26). In practice, the values of k, in the k-spectral domain are obtained by
sampling (27) at regular time intervals. For this strategy to work, the magnetic field Bg
must have a non-zero gradient. Hence, the design of magnetic gradients plays an important
role in the sampling strategy of the k-spectral domain from which we recover an image in
the spatial domain of Mj,, and from which we obtain an image of the density p, [41].

8. SYNTHETIC DATA GENERATION

We give the logic for the empirical evaluation of the algorithm in the case when data is
not machine provided automatically, e.g., from an actual MRI.

e Given a high resolution image I (1024 x 1024).

e Downsample I (e.g., by taking averages) to Iy, N x N, where, for example, N could
be 128 or 256.

e Therefore, for comparison purposes, Iy is the optimal, available image at the N x N
level. N N

e Calculate [ = > 1, H,,, i.e., 10° terms for each a,, € R?.

e Choose f(am), m=0,1,...,M —1> N? — 1, appropriately, where the a,, are on a
finite union of sufficiently tightly wound Archimedean spirals, for example, and are
restricted to a [K, K]* square.

e Set LI = f, an M x 1 vector.

e Implementation gives

[=S"'L"T,
that has matrix dimension,
(N? x N*)(N? x M)(M x 1) = N? x 1.

e Quantitatively analyze the difference Iy — I, an N x N matrix.
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