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Abstract— CAZAC (Constant Amplitude Zero Auto-
Correlation) sequences are important in waveform design
because of their optimal transmission efficiency and tight
time localization properties. Certain classes of CAZAC
sequences have been used in Radar processing for many
years while recently discovered sequences invite further
study. This paper compares several classes of CAZAC
sequences with respect to both the periodic and aperiodic
ambiguity function. Some computational results for differ-
ent CAZAC classes are presented. In particular, we note
the fact that so-called Bjorck CAZACs have sidelobes at
different locations when different shifts are considered. We
take advantage of this fact by using an averaging technique
to lower sidelobe levels.

Background: Let v : Zx — C be a complex-
valued periodic sequence of period K. Then u
is a constant amplitude zero-autocorrelation code
(CAZAC) of length K it

e for all k € Zg, |ulk]] =
amplitude), and

eforallm=1,..., K —1, (ZAC - periodic zero
autocorrelation)

1, (CA - constant

% ulm + k|ulk] = 0,

where it is understood that the summation m + &
is modulo K. The aperiodic autocorrelation of u is
given by AC,[m] = &+ S0 ulk + mjulk].
There are two different discrete ambiguity func-
tions associated with a CAZAC sequence, the peri-
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odic, relevant to CW Radar analysis:

2mink

P,[m,n] = % iu[ker]u[k]e K

and the aperiodic, relevant to pulsed Radar analysis:
K—1-m

Aum,n] = % Z ulk + m|ulk]e

2mink

=

Note that AC,[m| = A,|m,0].

CAZAC sequences are typically used to code a
digital QAM Radar signal, with sequence terms
describing the phase information of the complex
envelope of the signal. If the characteristic function
177 of an interval centered at the origin defines
the extent of each discrete range bin, then the
aperiodic waveform w : R — C based on the
CAZAC sequence u, is of the form,

w(t) =Y ulk]L 77 (t — 2KT).
keS

The summation is over the set S = Z in CW Radar,
and overthe set S = 0,1, ..., K—1 in pulsed Radar.
The connection between AC,, and the (continuous)
autocorrelation of the waveform w, i.e., that the
latter is a complex linear interpolation of the former,
is explained in [1].

Motivation: CAZAC sequences are important in
waveform design because of their defining prop-
erties: CA ensures optimal transmission efficiency
while ZAC provides tight time localization. In the



aperiodic case, of course, ZAC is unattainable, but
sidelobe levels can still be controlled. CAZACs
have also been referred to in the Radar literature
as generalized bent functions [2], perfect root-of-
unity sequences [3], constant amplitude optimal
sequences [4], or generalized chirp-like polyphase
sequences [5]. Numerous well-known coding se-
quences used in Radar can be classified as CAZACs,
such as the Barker sequences of length K = 11, 13,
or the discretized quadratic chirps, an observation
which goes back to the work of N. Wiener. We
can also list Frank—Zadoff codes [6] and generalized
Frank sequences [7], Chu codes [8], and Milewski
sequences [9]. In addition, Bjorck [10] constructed
families of small alphabet CAZACs for any prime
length, which assume no more than three distinct
values. To date, there is no complete classification of
the set of CAZAC sequences, despite an expansive
literature spanning not only Radar, but also coding,
cryptography, and communications.

Examples: Given K odd, a Wiener CAZAC of
length K is defined as u[k] = ¥, k € Zy, where
¢ = ex . For K even, the corresponding Wiener
CAZAC is defined by using ¢ = e27/2K,

A different class of CAZAC is defined based on
quadratic residue sequences. These are also called
small alphabet CAZACs, because they assume at
most three distinct values. Quadratic residue se-
quences of prime length p are defined in terms of
the Legendre symbol:

=< 1 if kis asquare (mod p)
—1 if k is not a square (mod p)

(E) 1 if k=0 (mod p)

Two-valued CAZACs have been classified by
Saffari [11] in terms of Hadamard-Paley and
Hadamard-Menon difference sets. The result of
Saffari states that two-valued CAZACs exist for
lengths K > 3 if and only if K = 3 mod 4
and there exists a Hadamard-Paley difference set
of length K or K = 0 mod 4 and there exists
a Hadamard-Menon difference set of length K. In
either case, explicit formulas are provided for the
construction of the CAZAC sequence. A similar
classification exists for two-level autocorrelation
Legendre sequences [12], with several results relat-
ing to the existence of Hadamard-Paley difference
sets. Existence of Hadamard-Menon sets is rather

more difficult to prove, as it relates to the Hadamard
circulant conjecture.

It follows that two-valued CAZACs cannot exist
for lengths K = 1 mod 4. However, Bjorck [10]
describes the following class of CAZACs, which
are almost two-valued. Let p =1 mod 4 be prime.
Then the sequence u defined by

1
1+ P

ulk] = e%o(%), where 6 = arccos(

),

and (? is the Legendre symbol, is a Bjorck
CAZAC sequence. Note that u takes 3 values.

Results: The set of CAZAC sequences is much
richer than the set of quadratic chirps, with several
nonequivalent families having been identified. In
recent work, Benedetto and Donatelli [13] explore
the intricacies of the effect different construction
methods have on CAZAC sequence behavior in
terms of the discrete periodic ambiguity function;
and prove various ambiguity function properties by
means of elementary number theory. Some com-
putational results for different CAZAC classes are
presented. In particular, we note the fact that Bjorck
CAZAC:s have sidelobes at different locations when
different shifts are considered. We take advantage of
this fact by using an averaging technique to lower
sidelobe levels.

Periodic Ambiguity: The support of the discrete
periodic ambiguity function in the K even case is
concentrated on a ridge along the main diagonal,
providing a well-defined linear chirp comparable
to a discrete LFM pulse. In contrast to that, the
support of the discrete periodic ambiguity function
in the K odd case is proven to be rapidly oscillating
between two parallel ridges of slope equal to 2
(Figure 1(a)). Even though the crosscorrelation of a
Wiener CAZAC sequence of odd length with any of
its frequency shifts remains a Dirac delta function,
this oscillating behavior results in poor frequency
shift resilience.

The Milewski construction provides an example
of a different vulnerability to frequency shift. Let ¢
be a seed CAZAC of length M and fix N € N.
Let ¢ be a primitive M Nth root of unity. For any
fixed positive integer /, there exist integers a and b,
b < N, such that { = aN + b. Define the sequence
ull] = ulaN +b] = cla]¢® for £ =0,..., MN?—1.
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Fig. 1.
been marked with a red square for legibility).

Then the sequence w is a Milewski CAZAC of
length M N2, However, its discrete periodic am-
biguity function is now supported on N different
bands, parallel to the main diagonal. In this case,
the introduction of frequency shifts in the return
results in crosscorelations that are no longer free
of sidelobes.

The Bjorck construction seems particularly well-
suited to simultaneous range and range-rate infor-
mation. Its discrete periodic ambiguity function now
has full support, but is also a perfect “thumbtack”
figure, localized at a single point at the origin. The
“grass skirt” surrounding it fully covers the discrete
time-frequency plane, but is uniformly flat (Figure
1(b)).

Aperiodic autocorrelation:The set of CAZAC
sequences remains invariant under several opera-
tions.

e Shifts: Vn =0,...,N — 1 and m € Z,

u[n] = (tme)[n] = ¢[m + nj.
e Cyclic permutations: for g with ged(g, N) = 1,
uln] = (ogc)[n] = clgn].
e Multiplication by powers of Nth roots of unity:
for ¢ with ¢V =1,

u[n] = ¢[n]¢"™.

In all these cases, u is a CAZAC sequence if ¢ is
also CAZAC. However, the behavior of sidelobes
can differ drastically among the CAZAC families.

Plot of the periodic ambiguity function of two different CAZAC sequences; a) Wiener of odd length and b) Bjorck (the peak has

Figure 2 illustrates the different behavior of
sidelobes with respect to shifts 7,,. In particular,
Wiener CAZACs are not affected at all, whereas
Bjorck sequences exhibit the most variability. This
is analogous to results obtained for Legendre se-
quences [14], [15]. Milewski sequences fall in be-
tween, reflecting their mixed method of construc-
tion. We chose to plot results in terms of Peak
Sidelobe Levels, but similar results arise when one
considers other measures, such as the Merit Factor.

The variability in sidelobe behavior for Bjorck
CAZACs is not limited to their energy levels. As
Figure 3 shows, shifting also affects sidelobe lo-
cation. By averaging the autocorrelation AC,, of
several different shifts m of the same basis sequence
u, we can obtain an overall lowering of the energy
levels off of the main lobe. In this example, we
present the noncoherent average over two selected
shifts, i.e.

ACh gl + |AC,,|

We notice that in the arca near the main lobe we
can improve over the shift that achieves the lowest
PSL globally (shift by 28). The two different shifts
plotted (shifts by 40 and 41) have complementary
sidelobes near the origin, and further improvement
is achieved by averaging them.

The same averaging technique can be used with
the discrete ambiguity functions of shifted se-
quences A, ,[m, n]. Figures 4(a—c) plot the discrete
aperiodic ambiguity functions of shifts of the Bjorck
CAZAC of length 29 (by zero, 7, and 12, respec-
tively), with a threshold of -10dB. The area plotted
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Fig. 2. Effect of cyclic shifts on the aperiodic autocorrelation of different CAZAC sequences; Peak Sidelobe Level (dB) vs. shift length.
Red x: Bjorck of length 101, Blue triangles: Milewski of length 100, Green squares: Wiener of length 101.

Fig. 3. Effect of cyclic shifts on the aperiodic autocorrelation
function of Bjorck CAZAC sequences; Plot of absolute value (dB)
in the area of the main lobe for two different shifts ( by 40 and 41),
and their average. Also plotted for reference is the shift that achieves
the lowest PSL globally.

is centered at the origin. We observe that the peak
locations vary, and by averaging all three we obtain
Figure 4(d).
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