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Abstract- CAZAC (Constant Amplitude Zero Auto- odic, relevant to CW Radar analysis:
Correlation) sequences are important in waveform design K-1
because of their optimal transmission efficiency and tight 2,rink
time localization properties. Certain classes of CAZAC Pu[m,n] = KZ7Y +± ]u[k]e K
sequences have been used in Radar processing for many k=O
years while recently discovered sequences invite further and the aperiodic, relevant to pulsed Radar analysis:
study. This paper compares several classes of CAZAC
sequences with respect to both the periodic and aperiodic 1 KAm 2,rink
ambiguity function. Some computational results for differ- Au[m, Ln] u[k +- lu[k]e K
ent CAZAC classes are presented. In particular, we note k=O
the fact that so-called Bjorck CAZACs have sidelobes at Note that ACu [m = Au [i, 01.
different locations when different shifts are considered. We
take advantage of this fact by using an averaging technique CAZAC sequences are typically used to code a
to lower sidelobe levels. digital QAM Radar signal, with sequence terms

Background: Let u: ZK C be a complex- describing the phase information of the complex
valued periodic sequence of period K. Then u envelope of the signal. If the characteristic function
is a constant amplitude zero-autocorrelation code 1[-T,T] of an interval centered at the origin defines
(CAZAC) of length K if the extent of each discrete range bin, then the

* for all k e 2K, u[k] 1, (CA - constant aperiodic waveform w: R - > C based on the

amplitude), and CAZAC sequence u, is of the form,
* for all mr 1,.. ,K- 1, (ZAC - periodic zero w(t) [k] 1[T,T] (t - 2kT).

autocorrelation) kcS
The summation is over the set S = Z in CW Radar,

1 K-1 and over the set S = 0, 1,. . .,K-I in pulsed Radar.
C([rn= K u[rn + k]Ti[k] = 0, The connection between ACu and the (continuous)

k=° autocorrelation of the waveform w, i.e., that the
latter is a complex linear interpolation of the former,

where it is understood that the summation m + k is explained in [1].
is modulo K. The aperiodic autocorrelation of U is Motivation: CAZAC sequences are important in
given by AC [m1 = ZK~u=ltl[kC + mn]u[k] . waveform design because of their defining prop-

There are two different discrete ambiguity func- erties: CA ensures optimal transmission efficiency
tions associated with a CAZAC sequence, the peni- while ZAC provides tight time localization. In the
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aperiodic case, of course, ZAC is unattainable, but more difficult to prove, as it relates to the Hadamard
sidelobe levels can still be controlled. CAZACs circulant conjecture.
have also been referred to in the Radar literature It follows that two-valued CAZACs cannot exist
as generalized bent functions [2], perfect root-of- for lengths K =1 rmod 4. However, Bj6rck [10]
unity sequences [3], constant amplitude optimal describes the following class of CAZACs, which
sequences [4], or generalized chirp-like polyphase are almost two-valued. Let p =1 rmod 4 be prime.
sequences [5]. Numerous well-known coding se- Then the sequence u defined by
quences used in Radar can be classified as CAZACs, 1
such as the Barker sequences of length K = 11, 13, u[k] = e2wip), where 0 = arccos(
or the discretized quadratic chirps, an observation 1+ ,p-
which goes back to the work of N. Wiener. We
can also list Frank-Zadoff codes [6] and generalized and iS the Legendre symbol, is a Bj6rck
Frank sequences [7], Chu codes [8], and Milewski CAZAC sequence. Note that u takes 3 values.
sequences [9]. In addition, Bj6rck [10] constructed Results: The set of CAZAC sequences is much
families of small alphabet CAZACs for any prime richer than the set of quadratic chirps, with several
length, which assume no more than three distinct nonequivalent families having been identified. In
values. To date, there is no complete classification of recent work, Benedetto and Donatelli [13] explore
the set of CAZAC sequences, despite an expansive the intricacies of the effect different construction
literature spanning not only Radar, but also coding, methods have on CAZAC sequence behavior in
cryptography, and communications. terms of the discrete periodic ambiguity function;

Examples: Given K odd, a Wiener CAZAC of and prove various ambiguity function properties by
length K is defined as u[k] = (k2, k C 7K, where means of elementary number theory. Some com-

=e K. For K even, the corresponding Wiener putational results for different CAZAC classes are
CAZAC is defined by using ( = e2wi/2K. presented. In particular, we note the fact that Bj6rck
A different class of CAZAC is defined based on CAZACs have sidelobes at different locations when

quadratic residue sequences. These are also called different shifts are considered. We take advantage of
small alphabet CAZACs, because they assume at this fact by using an averaging technique to lower
most three distinct values. Quadratic residue se- sidelobe levels.
quences of prime length p are defined in terms of Periodic Ambiguity: The support of the discrete
the Legendre symbol: periodic ambiguity function in the K even case is

concentrated on a ridge along the main diagonal,
k 1ifXk .a(ur providing a well-defined linear chirp comparable
p -

= 1 if k is a square (mod p) to a discrete LFM pulse. In contrast to that, the

support of the discrete periodic ambiguity function
Two-valued CAZACs have been classified by in the K odd case is proven to be rapidly oscillating

Saffari [11] in terms of Hadamard-Paley and between two parallel ridges of slope equal to 2
Hadamard-Menon difference sets. The result of (Figure l(a)). Even though the crosscorrelation of a
Saffari states that two-valued CAZACs exist for Wiener CAZAC sequence of odd length with any of
lengths K > 3 if and only if K = 3 mod 4 its frequency shifts remains a Dirac delta function,
and there exists a Hadamard-Paley difference set this oscillating behavior results in poor frequency
of length K or K = mmod 4 and there exists shift resilience.
a Hadamard-Menon difference set of length K. In The Milewski construction provides an example
either case, explicit formulas are provided for the of a different vulnerability to frequency shift. Let c
construction of the CAZAC sequence. A similar be a seed CAZAC of length M and fix N C N.
classification exists for two-level autocorrelation LetI be a primitive MNth root of unity. For any
Legendre sequences [12], with several results relat- fixed positive integer £, there exist integers a and b,
ing to the existence of Hadamard-Paley difference b < N, such that £ aN + b. Define the sequence
sets. Existence of Hadamard-Menon sets is rather tt[Ie] =u[aN + b] =c[a]Q(b for £ - O,. .., MN2 - 1.
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Fig. 1. Plot of the periodic ambiguity function of two different CAZAC sequences; a) Wiener of odd length and b) Bjorck (the peak has
been marked with a red square for legibility).

Then the sequence u is a Milewski CAZAC of Figure 2 illustrates the different behavior of
length MN2. However, its discrete periodic am- sidelobes with respect to shifts T'm. In particular,
biguity function is now supported on N different Wiener CAZACs are not affected at all, whereas
bands, parallel to the main diagonal. In this case, Bj6rck sequences exhibit the most variability. This
the introduction of frequency shifts in the return is analogous to results obtained for Legendre se-
results in crosscorelations that are no longer free quences [14], [15]. Milewski sequences fall in be-
of sidelobes. tween, reflecting their mixed method of construc-
The Bj6rck construction seems particularly well- tion. We chose to plot results in terms of Peak

suited to simultaneous range and range-rate infor- Sidelobe Levels, but similar results arise when one
mation. Its discrete periodic ambiguity function now considers other measures, such as the Merit Factor.
has full support, but is also a perfect "thumbtack" The variability in sidelobe behavior for Bj6rck
figure, localized at a single point at the origin. The CAZACs is not limited to their energy levels. As
"grass skirt" surrounding it fully covers the discrete Figure 3 shows, shifting also affects sidelobe lo-
time-frequency plane, but is uniformly flat (Figure cation. By averaging the autocorrelation ACTku of
1(b)). several different shifts m of the same basis sequence
Aperiodic autocorrelation:The set of CAZAC u, we can obtain an overall lowering of the energy

sequences remains invariant under several opera- levels off of the main lobe. In this example, we
tions. present the noncoherent average over two selected
* Shifts: Vn = O, .. .,N- and m Ce, shifts, i.e.

IACT4OU| + IACT4lU
u [n] =(TTnc) [n] = c[m + n].I.CF0l+ A_4

We notice that in the area near the main lobe we
* Cyclic permutations: for g with gcd(g, N) = 1, can improve over the shift that achieves the lowest

PSL globally (shift by 28). The two different shifts
u[in] =(ge)[in] =c[gn]. plotted (shifts by 40 and 41) have complementary

* Multiplication by powers of Nth roots of unity: sidelobes near the origin, and further improvement
for ( with is1 IS achieved by averaging them.

The same averaging technique can be used with
u [n] = c[n]Q the discrete ambiguity functions of shifted se-

quences A [m, n]. Figures 4(a-c) plot the discrete
In all these cases, u is a CAZAC sequence if c is aperiodic ambiguity functions of shifts of the Bjorck
also CAZAC. However, the behavior of sidelobes CAZAC of length 29 (by zero, 71, and 12, respec-
can differ drastically among the CAZAC families. tively), with a threshold of -10dB. The area plotted
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Fig. 4. Plot of the discrete aperiodic ambiguity function of shifts of the Bjorck CAZAC of length 29, thresholded at -10dB; darker color
denotes higher value. a) zero shift, b) shift by 7, c) shift by 12, and d) their average.
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