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ABSTRACT

In this paper we introduce the concept of a local Hubert space frame and develop theory for the representation
and reconstruction of signals using local frames. The theory of global frames is due to Duffin and Schaeffer. Local
frames are defined with respect to a global frame and a particular element from a Hilbert space 7-1. For any signal
1 E 1I, 7-1 may be decomposed into two signal dependent subspaces: a finite dimensional one which essentially
contains the signal f and one to which the signal is essentially orthogonal. The frame elements associated with
the former subspace constitute the local frame around f.

1 INTRODUCTION

In many signal and image processing applications, a fundamental approach involves the decomposition of
signals into underlying primitives. It seems natural that if we are interested in representing a class of signals,
e.g., audio data, in a concise form that these primitives should adapt to the class of interest. This is one of the
primary factors motivating the development of local frame theory.

Suppose 7-1 is a Hilbert space of interest. On the one hand the global theory of frames allows the reconstruction
of every signal I 7-1 from its frame representation. On the other hand a typical processing goal is to reconstruct
only a particular signal f e fl from its frame representation. Although the global frame representation is a viable
discrete representation which meets our objective, its ability to recover every signal is far more than is required.
Since it is not necessary to reconstruct every signal in the entire Hilbert space 7-1 it is natural to ask if there is
some method in which the global frame representation may be localized about a particular signal. These ideas
lead directly to the notion of a local frame.

Localization can be viewed in terms of a decomposition of the Hilbert space 7-1 into two signal dependent
subspaces. If f 1-1 is the particular signal of interest, localization results in a decomposition of 7-1 as

7-1 = ?-I(f)

where f is (almost) contained in a subspace fl(f) which is finite dimensional.

In Section 2 we present the mathematical notation which is employed in this paper. Section 3 reviews global
frame theory setting the stage for the concept of a local frame in Section 4. Local frames are developed in terms
of truncations of global frame representations.
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2 PRELIMINARIES

R is the set of real numbers and R' is the set of positive real numbers. L2(R) is the space of complex-valued
finite energy signals defined on the real line R. The norm of an element I L2(R) is (f If(t)I2dt) < oo,
where integration is over R, and the inner product of f, g E L2(R) is (1 g) = f f(t)(t)dt. £2 (Z) is the space
of complex-valued finite energy sequences defined on the integers Z. The norm of an element c £2 (Z) is

Ilcit (> Ic 12) < 00, where summation is over Z, and the inner product of c, d L2(R) is (c, d) = > c72i,.
BChi , 1-12) is the space of bounded linear operators which map the Hilbert space 'J-(i to the Hubert space fl2. The
norm of an element K E B(fl1, fl2) is f1 = supXE,l IIiL?:2 < 00. If K 13(?-(i , fl2) then the range of K is

KC1-ui) {Kf : f E 1-(i}. With 7-1' a subspace of a Hilbert space 1-1 the operator P' : fl fl' is the orthogonal
projection operator onto 1-1'. The Fourier transform of f L2(R) is f(y) =f f(t)e_2itdt, for E R( R), where
convergence of the integral to f is in the L2-sense. The dilation operator D3 : L2(R) L2(R) is a unitary

map given by (D5f)(t) sf(st). and the translation operator ia : L2(R) L2(R) is a unitary map given by
(Taf)(t) 1(2 _ a).

3 FRAMES

We review the theory of (global) Hubert space frames in L2(R) and develop some necessary tools. The theory of
frames is due to Duffin and Schaeffer [DS52}, cf., [Dau92], [DGM86}, [HW89}, [You8O]. Let fl be a Hilbert space
contained in L2(R), and with norm . . . fi. . .(Iz induced from L2(R).

As a concept, frames provide an intermediate ground between the two related notions of completeness in a
space and an orthonormal basis for a space. In fact the statements that a set {çb} is (a) complete in 1-1, (b) a frame
for 1-1, and (c) an orthonormal basis for 7-1 are progressively stronger. In other words c == b == a.

Definition 3.1 a. A sequence {q} fl is a frame for fl if there exist frame bounds A, B >0 such that

'c'f fl, A11f112 � : i ci) 2 < Built2, (3.1)

where summation is over Z.

b. The frame operator of the frame {q5} is the function S : 7-1 1-1 defined as Sf = (1 q5) q.

The following result exhibits some fundamental properties of frames, e.g., [DS52J, [Dau9O], [Ben93].

Theorem 3.2 a. If {qS, } ç i-i a frame with frame bounds A, B, then S is a topological isomorphism with inverse S1,
{ S1q } is a frame with frame bounds B1 and A1, and

VIE fl, f =(f,S'qS)c, = (f,qn)S1cn (3.2)

in 7-1.

b. If {ç5,} ç i-i, let L 7-1 £ (Z) be defined as Lf = {(f, q)}, cf, (3.3). If {} is a frame then S = L*L, where
L* is the adjoint of L.

Since the frame operator S may be factored [DGM86, Dau9O] as L* L an immediate consequence is that

(f,Sf) = (f,L*Lf) = (Lf,Lf) = II Lilt2.

Since {} is a frame with frame bounds A and B this implies that A 111112� IlL!112 < B111112. Thus,

SPIE Vol. 2034 Mathematical Imaging (1993)! 311



IILII�B and

where L1 is defined on the range L(fl).

It is clear that if A and B are frame bounds for a frame {q} then any other pair A1 and B1 such that
0 < A1 < A and =: > B1 > B are also valid frame bounds for {}. It is of interest to know the smallest upper
bound and the largest lower bound which serve as frame bounds for a frame. This motivates the notion of the
best frame bounds. Given a frame {q} for a Hilbert space '1-1 with frame operator S, the best bounds A and B are

A= inf (1,51) B=supU'5.
fE1 ffI fEt 11111

Since lILfII2 = (1 Sf) it follows that the best bounds A, B are also A = 11L'1L2 and B = 11L112.

3.1 Frame Representation

Let us introduce the notion of a frame representation operator L. L is a mapping from 7-1 to £2(Z) and is
defined as

L : 17-(— t2(Z) 33
fI-4 {(f,,)}.

Figure 1 depicts the mapping L and its adjoint L*. If {q5,,} is a frame for 1-1 then the mapping defined in (3.3) is
called the frame representation operator. The frame representation operator L plays a central role in Theorem 3.2.
Part a of the theorem describes one method to recover a signal f 7-1 from its frame representation Lf £2 (Z).
In part b, the theorem indicates that the frame operator S has factors L and L* • In addition, Theorem 3.3 below
states that the frame representation operator L has an inverse when considered on the range L(fl). These facts
form the basis for the iterative reconstruction scheme given in Proposition 3.10 and, in turn, the notion of the
fr ame correlation operator discussed in Section 3.2.

Consider the operator L of Theorem 3.2 and its adjoint. The theorem asserts that L and its adjoint L* are
factors of the frame operator S. Explicitly, the operators L : 1-1 —£2 (Z), and L* : £2 (z) 1-i are

Lf = {(f, q5)} and L*C = (3.4)

where f E 71 and c E £2(z) . Hence,
I

Sf=>.:(f,qin)qsn L*Lf.

A characterization of frame representation operators is given in the following theorem.

Theorem 3.3 ([Ben93, Theorem 3.6]) The sequence {çb} is a frame for fl if and only if the mapping L given in (3.3) is
a well defined topological isomorphism onto a closed subspace of £2(Z).

Thus, if L is a frame representation operator then L is injective (one to one) and L* is surjective (onto).

3.2 Frame Correlation

A concept which arises naturally in frame theory is the notion of frame correlation given in Definition 3.4. In
Proposition 3.9 the importance of the frame correlation in the reconstruction process is underscored.
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Definition 3.4 (Frame Correlation) Let {q } be a frame for the Hubert space ?-( with frame representation operator L.
The frame correlation operator is defined as R LL*.

The frame operator S = L*L and the frame correlation R = LL* are similar objects and play similar roles in the
theory of frames. In fact, a reconstruction theory may be developed without ever introducing the frame correlation,
cf.,[FG92]. Hence, we may ask why the frame correlation is an important object to study? To answer this note that

S:7-(i---7-(, while R:L(fl)-L(fl).
In many cases of interest 1-1 will be an infinite dimensional Hilbert space having elements which can not be
direcfly processed by a digital machine while L(fl) will consist of discrete elements, i.e., countable sets, which (if
truncated) may be processed digitally. For example, such an 7-1 is the space of bandlimited functions PWç, and
L(fl) = {f(t) : f E PWQ} for some sequence {i }. Thus the operator S does not admit a digital implementation
while R does.

From Theorem 3.2a a frame {q } has an associated dual frame where S q and S is the frame
operator. As a frame, {b} also has a frame representation operator L, where L f {(f, )} = { (1 S1 q5,) }.
As a matter of notation we may write both L and L to indicate the frame representation with respect to the
frame {' }. With this notation, Equation (3.2) may be written as

VfEfl, f=LLf=LL,,f. (3.5)

Proofs of the following propositions and Theorem 3.7 may be found in [Teo93}.

Proposition 3.5 Suppose { } is a frame for the Hubert space 1-1 with frame representation operator L, correlation R and
bounds A and B.

a. If 7-( is infinite dimensional then L is not compact. In particular, R is not compact.

b. Elements of R must decay away from the diagonal, i.e., — =c implies that Rm,n * 0.

c. If the set {q } is an orthonormal basis for 7-1 then the frame correlation operator is the identity.

d. kerR=L(1-1)-'-.

e. R = PL(n)R = RPL(n)

f. R is a non-negative real self-adjoint operator which maps L('l-l) bijectively to itself
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Proposition 3.6 Given a frame {q5} for the Hubert space '1-C, the frame correlation matrix R has the matrix representation

R = ((5m,4n)). (3.6)

Proposition 3.5e implies that R has an inverse on L(1-(). For this inverse we shall write R1 so that

Vc L(?-() c = R1Rc = RR1c.

To extend the inverse to all of £2(Z) we use the pseudo inverse Rt R1PL(i) where PL(n) is the orthogonal
projection operator onto the image of L. Using Proposition 3.5e we have

Vc £2 (Z) PL()C RtRc =RRtc.

The following theorem shows that the best frame bounds of a frame are directly related to the operator norms of
the frame correlation R and its pseudo inverse Rt.

Theorem 3.7 Let {qn} be a frame for a Hubert Space 1-1 with best frame bounds A and B and frame correlation R. Then
the best frame bounds are A = Rt fi

1 and B = fi R

3.3 Iterative Reconstruction

Assuming a frame {q')n} for '1-1 with frame bounds A,B we have 11 — � < 1, so that by the
Neumann expansion,

S_i
2 2 s •

37A+BA+B ' (.)
j=o

where I is the identity operator, e.g., [Ben92, Algorithm 50], [Ben93, Section 6.6]. For any f ?-I applying (3.7)
to Sf yields

f =E(IS)i(AS)f, (3.8)

where A = 2/(A + B).

An iterative procedure for the recovery of f from Sf could be constructed by (3.8) as a difference equation.
With a view toward digital implementation, we instead wish to construct an iterative algorithm for the recovery
of f from Lf. To do this we will first show that I — AR is a contraction on L(?-i).

Lemma 3.8 Let {} be a frame for 1-( with frame representation operator L, correlation R, and bounds A, B. If 0 < A <
2/B then l — ARIIL(n) < 1 and R1 exists on L('1-. Moreover, Ill — ARIIt2(z) = 1 if ker L* ' {0}. In particular we

may take A = 2/(A + B) to ensure that 11 — ARII,2(z) = 1.

As a consequence of Lemma 3.8 we may write

R1 = A >.(I — AR), (3.9)

where R1 is defined on the range of L(-() and 0 < A <2/B.
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Proposition 3.9 The signal f. may be recovered from its frame representation Lf as

1 =>L*(I_ARyLf*, (3.10)

where L*c = >i: for c = {c}.

Proof: Because of (3.8) and the fact that S = L*L, it is sufficient to prove

o L*(I _ \RYLf = — AL*L)(AL*L)f. (3.11)

The j = 0 terms are clearly the same in (3.11). Assume )iL*(I AR Lf = (I — .\L*L (\L* L)f . Then we compute

AL*(I _ ARY'Lf = )L*(I \RLf — )L*(I_ \RYARLf- )t(I — .\L*LyL*Lf _ W — AL*LyL*L(AL*Lf)
= A(I — )L*Ly(I _ AL*L)L*Lf = A(I — L*LyL*Lf,

and the result follows by induction.

Proposition 3.9 leads directly to Algorithm 3.10 which details an iterative reconstruction procedure for the
recovery of the signal f from its frame representation Lf . Moreover, this iterative procedure will converge at
an exponential rate.

Algorithm 3.10 Let {qf} be a frame for a Hilbert space 7-1 with frame representation L, correlation R and bounds A, B.

Suppose we are given the frame representation c0 Lf of a signal f e fl. Set fo 0. If ) 2/(A +B) and h, c,, and
I n are defined recursively as

* th = \L c,, c1 = c — Lh, f+i = f + h,

then limf = 1* in fl, and IIffI1 < where a flu — )RIIL() < 1.

Proof: An elementary induction argument shows that

Vn, f+i = AL*

(E(I— R)i) CO.

Consequently, by Proposition 3.9, we have lim f = f. To prove the rate of convergence write un — f II = JIhn II =
IIL*(1 — \R)'LfII. Noting that 11(1 — )R)LfII = 11(1 — R)PL)Lf*II � (i — )RIIL(H))' IILfII we have that

IIf - fII � IILII (II' - RIIL(H)) JLfII = A+Bf*t
Since <1 the result is obtained.

Algorithm 3.10 underscores the importance of the correlation frame operator R in the reconstruction process.
Formally we may rewrite (3.10) as

1* = LR'Lf. (3.12)
We note that if R is known apriori the inverse frame correlation R1 can be computed once (off-line) and stored
for future reconstruction computations via (3.12).
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4 LOCAL FRAMES

Let 7-1 be a Hubert space, {c'n} a frame for 1i and f 1-1. Define

fl(f) = span {q' : (f,q) I > } (4.13)

We think of the space 1-I, (f4 as the localized space around the signal f with respect to the frame {4}. To
further develop this idea we introduce the notion of a frame localization operator.

Example 4.11 Consider the following operators defined with respect to a specific f e 7-1 and 6 (0, 1). A family of
truncations { F1, } is given as

I c, I(c)I � 5rf bC)c .* , (% O otherwise,

where c = Lf.

This F has the following properties: F is a linear operator, IIF1I = L F is self adjoint, F = F2, and F is the
orthogonal projection operator onto the subspace 7-((f4.

For all c E L(1-() and 6 > 0, the truncation F1 provides an orthogonal decomposition of c as

C = F1,c + (I — F1,)c and 11c112 = hF1. ,ocII2 + 1(1 — F1 ,)cIJ2.

Such an Ff 5 partitions c into two segments: one for which c has elements larger than 5 and one for which
c* has elements less than or equal to c5. The two following lemmas show that (i) the former segment resides
in a finite dimensional space and (ii) it is always possible to determine a which will ensure that an arbitrary
percentage of the energy from the whole sequence c will be contained in this first finite dimensional segment.

Lemma 4.12 Suppose Fj , is as in Example 4.11 for a fixed f 1-1. For all > 0 dim {F1 ,L(fl)} � < oo.

Proof: We have

IIc*112 � IIFj,cII = ii: I(c)I2 52card{n : I(c)I 62dim{Fj,öL(1-()}

so that dim {Fj. ,6L(71)} � < since c £2 (Z) and 5 > 0.

Lemma 4.13 Suppose Fj , is as in Example 4.11. Given > 0 there is a 6 so that

RI — Fi,)c*II2 < ctIc*112. (4.15)

Proof: Clearly, lim6.+0 IIFj.,c* 112 = IIc* 112 < oo. Therefore, for e arbitrary there is some 5 > 0 so that I IIc II2_ hF1. ,5c1121 <
fhIchl2. Since IIc*112 = hIFj.,c*hI2 + 11(1 — Fj.,5)c*1h2 we may conclude 11(1 — Fj.,)c*hl2 < IhII2

Equation (4.15) quantifies the notion that the operator F1 ,5L extracts the most significant coefficients with
respect to the specific signal f. Here the term "most significant" is quantified by the parameter e E (0, 1). For
example, a value of e 0 indicates that almost every coefficient is significant, and a value of e 1 indicates that
almost every coefficient is insignificant. Via this lemma there is an interplay between the specified value of c and
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c5. In fact, Lemma 4.13 implies the existence of a distribution function v(e) which serves as the boundary between
acceptable and non-acceptable thresholds 5 for a given e. Given a particular f e 1-1 define the distribution
function l1j : (0, 1) i— [0, IIc*1k1 as

'If. () = inf {5 : 11(1 — Fj.,o)c112 < e,,c 2} , (4.16)

where c = Lf . A possible distribution function is shown in Figure 2.

Proposition 4.14 Given a signal f 7-1, a distribution function zi as defined in (4.16) is a monotonically increasing
function which is continuous from the left and limeo ''j. (c) = 0 and lim1 vjr(c) = tICIIx.

Proof: We show ii is monotonically increasing. Let e < 2 and define the sets S1 and S2

cv rc IT 1' 2 21Jj = U . It—rf,5)c <fi C j, 21,
Clearly Si c 52 5° that inf Si � inf 52 and consequently uj (ei) � vj (e2). U

o

IIc4JI00-
v(E)

boundary
Region of

acceptable Os

- \\\\\\\ ____
1

Figure 2: A possible truncation distribution function v(€)

The truncation distribution describes the relation between the necessary value for the truncation threshold 5
and the desired percentage of energy preservation e required after truncation. Typically, a value of e is prescribed
from which a compatible threshold 5 is computed via the truncation distribution ii, i.e., c5 = v(e). Suppose f is a
particular signal in fl, L is the pertinent frame representation and c is chosen as a fixed value between 0 and 1.
With such a prescribed e, if = v(c) it is assured that 11(1 — F1 ,o)Lf* 112 < eIILf* f. To see the ramifications of this
requirement in the signal domain fl let us first introduce the concept of "essential containment".

Definition 4.15 A signal f fl is c-contained in a subspace fl' ç i-i if 11(1— P)fJJ2 < where denotes the
orthogonal projection operator onto the subspace 1-1', and we may write ffl' by c.

By the previous discussion if 5 = v(c) we may say that f is c-contained in F1,5L(1-1). Moreover, the essential
containment property can be related back to the signal domain by Theorem 4.16.

4.1 Local Frame Representation
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Assume that {4)} is a global frame for a Hilbert space 'H c L2(R) with frame representation L and frame
correlation R. Fix > 0 and consider a particular element f 7-1 and the localization associated with the
truncation operator F1 ,o given in Example 4.11. From Lemma 4.12 we see that localization by truncation has the
property that the truncated space '1-I(f) is finite dimensional. Here

fl(f) span{n : (f,q) > } = span{q5n : n Jo(f*)} = F1,L(1-(),
where J5(f) = {n : (f ,q) I > 6} and cardJ(f) < oo.

Because any finite collection of functions is a frame for its span we conclude that {}nEJo(f) 5 a frame for
7-((f). Moreover the associated frame representation operator with respect to the truncated frame is Lj , =

with local frame correlation R1 , = F1,RF1, . A local reconstruction f starting from an arbitrary f 17-1 is

ff5 = LRLf,of (Ff.,oL)*(Ff.,RFf.,)tFj.,oLf = L*Fj.,öR1F1. ,Lf
because F1,5 is an orthogonal projection, viz. Example 4.11. Thus, a local reconstruction may be thought of in
terms of the truncation of the correlation matrix R1, . The L2-error associated with the local reconstruction is

111w — fII = IIL*RLf* _ L*R_1FJ.,oLf*II = IIL*R_l(1 _ Fj,o)LfII
B

� IIL*II 11R111 11(1 — F,.,)LfII � ——II(' — Fj,)LfII.

Thus, if f is e-contained in F1 ,L(fl) then f is if-contained in '1-(s(f4. In fact, Theorem 4.16 improves on this
result with a tighter bound on the essential inclusion of instead of f. The theorem also provides controllable
error bounds on the local frame representation of a signal. More than this, it provides a precise statement of
the notion that a signal can be well represented by the most important (e.g., largest) coefficients in its frame
expansion and implies a natural decomposition of the space 7-1 as fl (f4 fl (f4'.

Theorem 4.16 Given a signal f 7( , suppose { q5 } is a frame for ?-( with operator S. representation operator L, frame
correlation R, and frame bounds A and B. Given > 0, if 5 = v() then

11111;:11112
< e, (4.17)

where
f5 = S_1L*Ff.,6Lf* = L*(Ff.,5R_1F1.,6)Lf*. (4.18)

Proof: First, we establish theformal identity SL*Ff*,Lf* =L*(Ff.,6R_lFf,o)Lf*. We have

S_1L*Ff.,bLf* = S_i(Ff.,L)*(F/.,oL)f* = i: (I— L*L)j(Ff.,L)*(Ff,oL)f*

= >(Ff.,5L)*(I )LL*Y(Ff.,bL)f* = (Fj.,L)*R_l(Fj.,L)f* = L*(Fj.,R_lFf.,o)Lf*.

Now, write
1 — f = S1Sf — S_lL*Ff.5Lf* = s_lL*(I F1,)Lf. (4.19)

Because S is a frame operator we have that Vg ?-(, AIg2 � (Sg, g) In particular

AIIf 15112 � (L*(I_ Ff.,5)Lf*,S_1L*(I_ F1,5)Lf)
= ((I — Fj,5)Lf, LSL* (I —F1.,)Lf)
� 11(1 — Fi.,o)LfII IILS_1L*(I —

� IILS_1L*II 11(1 — Fj,6)LfII2 � 11(1 — Fj,6)LfII2 < eLf � eBIIfII2,
from which the result follows. The manipulations are justified respectively as frame definition, adjoint operator property,
Cauchy-Schwarz (and the fact that (f Sf) is real and positive, i.e., S is a positive real operator), operator norm inequality,
11LS1L* II � 1 (LS1 L* is the orthogonal projection onto the range of L), application of Lemma 4.13, and finally IL112 � B.
U

318 ISPIE Vol. 2034 Mathematical Imaging (1993)



Theorem 4.16 shows that with '1-(5(f) span {q : (f cb) I > 5} = F1 ,5L('h) we have f1-(o(f) by e,
where t5 = i(e). We have decomposed the space 7-1 as 7-1 = 'H5(f) '1-(5(f4- , where f1-((f) and f is
essentially orthogonal to

4.2 Local Frame Correlation

Since local frame correlations are finite dimensional they are compact. This implies the existence of eigenvalues
and allows the incorporation of standard matrix techniques such as singular value decompositions to determine
the eigen-structure of a local frame correlation. From Proposition 3.6 local frame correlations R1 ,= Fj,oRFj,o
are matrices given explicitly as R1 , = (Rm,fl)m,flE J5(f.) where R = (14,) and J(f) {n : (f , &) I > }.

The following theorem relates the frame bounds of a local frame to the eigenvalues of the local frame corre-
lation matrix. In particular it shows that the maximum and minimum eigenvalues associated with eigenvectors
in the range L(1-() are the values of the frame bounds. This theorem may be proven as a corollary to Theorem
3.7.

Theorem 4.17 Let {n}nEJ be a local frame for the finite dimensional Hubert Space H = 1-L(f) with local best frame
bounds A and B and frame correlation R1 , . Then the frame correlation R = R1 ,, is related to the local frame bounds A
and B as A = mm L(R) and B = max oL(R), where oL(•) denotes the spectrum restricted to the range L(H).

5 LOCAL WAVELET FRAME

In this section we present an example of a local wavelet representation and illustrate the frame reconstruction
of Algorithm 3.10.

A discrete wavelet representation of a signal f may be given as Lf = {(f, Dsmg)} where F = {(tm,n , m)}
is a sampling set in the upper half plane R x R and g is the so called analyzing function.

We generate an analyzing function g which has good localization in both time and frequency as follows: let
gldeal ' the real and even ideal bandpass filter specified as ide i[—b,—a] + l[a,b] , for 0 < a < b < . This filter
is clearly well localized in frequency, however its decay in time follows 1/i. To achieve better decay in time we

convolve in frequency the ideal bandpass filter with the Dirichlet kernel d2,(t) sjt) where c > 0 is small
compared to b — a, i.e., c < b — a. This yields the trapezoidal analyzing function trap given as rap l[—c,c] * flldeal
The specific values we have used are a = 0.4, b = 0.5 and c = 0.05 KI-lz. The sampling strategy which we use
is regular with respect to the affine group structure, i.e., F = {(anT, nT)} where a0 and T are discretization
parameters.

For a given sampling structure {sm}1 on the scale axis s where N is a finite integer, the wavelet transform
can be implemented as a bank of N linear filters. To see this note that W0f(t, Sm) (f * D3m)(t) so that the
wavelet transform is the response of a bank of filters with impulse responses

Shown in Figure 3 is the regular discrete wavelet representation and its reconstruction for the signal "packet".
The trapezoidal analyzing function g appears In the top upper right. To its left are the functions G = 1D3J12
and . The middle graph displays the reconstruction of Algorithm 3.10. The lower most graph displays the
sampling set F. At the top of the bottom graph is the input signal and to its lower right the values of the
reconstruction parameters.
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Figure 3: Local wavelet representation of the signal "packet".
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