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PRETACE

This book represents the consolidation of two projects:
first, it contains the substance of a history of mathematics
course for mathematics majors that I've developed and taught
during the past eight years; and, second, it presents the
theme of studying historically the emergence of algebra and
analysis and their interplay in the development of mathematics.
The mode of presentation is mathematical with more a respect
for the historical process than any historical expertise. The
théme certainly wavrents a more thorough, advanced, and schol-
arly presentation; whereas the level of this beok reflects my
own limitations, the background of my audience, and the self-
imposed constraint of introducing such a theme to this audience.

The reader will notice more algebra than analysils in the
text. In fact, it is frequently more convenient to trace the
growth of an algebraic topic than to do the same for an analy-
tic topic, since the latter generally involves extensivertechf
nical machinery for anything beyond a superficial study. As
noted in the previous paragraph, I attempt to indicate analytic
(resp., algebraic) input +o such algebraic (resp., analytic)
topics. Also, the fundamental tTheorems of arithmetic, algebra,
and calculus truly influence the essence of mathematics and 1
emphasize them in the text, fully developing the first two.

‘Chapter 1 considers the importance of formulas in mathema-
tics and examines the logic and language of mathematics. I

use the Pythagorean theorem as the essential topic both as a




"creative formula" and as a means of introducing‘the reader to
the mathematical contributions of the Babylonians and Greeks.
The Pythagorean theorem led +o the problem of incommensurabil-
ity; and this, in turn, led to the analytic problem of
constructing the real numbers and the algebraic problem of
determining which numbers are irrational. In the context of
the Pythagorean theorem I also characterize the Pythagerean
triples, an algebraic result in Diophantine eguations, as well
as showing how the Pythagorean theorem is used to deal with
the analytic result of defining arc length. The mathematical
treatment runs from the fundamental +theorem of arithmetic to
Hilbert space.

In Chapter 2 I concentrate on the mathematics of Archimedes
and Diophantus; and, although Archimedes in particular had
broad mathematical range, I consider their roles in the devel-
opment of analysis and algebra, respectively. The treatment is
in part quite technical, but I hepe that a reasonable histori-
cal perspective of mathematics through.the time of Diophantus
has been presented by the end of Chapter 2.

Chapter 3 begins with the theory of algebraic equations
and its history. Then T give a complete treatment of the
fundamental theorem of algebra stressing its essential analytic
ingredients. Finally, I give the solutions to the classical
construction problems and show their relation to modern alge-
bra. In each topic I distinguish, at least by example, between

aigebralc and analytic concepts and techniques.

Il



Various sections of the text are labelled "Biographical
sketches" of specific mathematicians whom I discuss at those

points in my course. I omit such biographical material in the

book since it provides a source of non-technical reading assign-
ments and since I would only be repeating well-known biogﬁaphies t
that I have read. Section 1.2.6 is the first section of i
"Biographical sketches,” and I give some general references

there; special books for specific mathematicilans are inserted
appropriately. These "Biographical éketches” are also a con-

venient place to mention mathematical topies, appropriate to

the individuals being sketched, which are exposited in other -
books in an excellent way and which I develop at this point, M

e.g., section 1.4.3. L

NOTATION

™ is the set {1,2,*++*} of positive integers; Z 1s the
set {0,#1,+2,-++} of integers; and P = {2,3,5,"++} ¢ N is
the set of prime numbers. @ and R are the fields of rational
and real numbers, respectively; and 7" and R" are the sets
of all n-tuples of integers and real numbers,rrespectively.
[a]l denotes the greatest integer less than or equal to a EﬁR§

and card X denotes the cardinality of the set X.

ITT
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1. The Pythagorean theorem

In this chapter we shall indicate the importance of formulas
in mathematics. In particular, we will discuss the Pythagorean
formula and some of its developments concerning both language

and proof as related to the growth and content of mathematics

itself.

1.1 The irrational introduction to mathematics

1.1.1 The Pythagorean thecrem

Pythagoras of Samos lived during the Gth century B.C. and
died or was murdered about 500 B.C.; he was a contemporary of.
Buddha and Confucius. The Pythagorean theorem was known to the
Babylonians during Hammurabi's veign (c. 1750 B.C.) [Neugebauer,

p. 36]. The Pythagorean theorem is

(1.1) a® + b° = ¢,

where a and b are the lengths of the gides and ¢ 1is the
length of the hypotenuse of a given right triangle.
We'll give two proofs of (1.1). The key fact that we use

ie that the sum of the angles of a triangle is equal to the

sum of two right angles; we refer to [Hilbert] for precise

definitions of angle, equal angles, and the sum of angles.
h

Our first proof is due to the Hindu, Bhaskara (th
century A.D.); a relatively thorough popular treatment of his

work is given in [Scott, pp. 71-7817.

Proof of (1.1). Take a square with gide of length <, and

assume a.= b.




Because of the above vesult on the sum of the angles of a triangle

we can partition the square as in Figure 1, where § is a

Square each of whose sides has length a - b.
¢
b a b
a
c 5 a a
/’//
b
a
b
c

Figure 1

Thus, 02 =4 (%wab) + (a—b)Q; and this yields (1.1).

g.e.d.

Proof of (1.1). Partition a square with side of length a+b

as in Figure 2 and Figure 21,



Figure 2 Figure 2!

Angle Yy 1is a right angle since angles o and B add up to

a right angle.
We obtain (1.1) by discarding the four equivalent right

triangles in each square.

Tn his Elements, Fuclid (365-275) followed the Pythagorean f

theorem by its converse: if a triangle with sides having lengths

a,b, and ¢ satisfies (1.1) then it is a right triangle.

Later in this chapter we shall discuss irrational numbers
and the problem of incommensurability, as well as rendering a
criticism of the Greek geometric method. Thus it is worthwhile
to point out that the Pythagorean theorem is a geometric state-

ment about the equality of areas. Whatever its ultimate faults, ' B

there is a reason for the geometric approach of the Greeks. TIn

fact, if we were able to proceed algebraically, and not



geometrically, in the Pythagorean theorem, then we would need
4 means to express areas in +terms of numbers. To compare areas
in the context of numbers teads to the problem of incommensura-
bility, e.g., the irrationality of 7, which was an explicit
stumbling block to the Greeks and which is the subjeect of a zgood

deal of the material in this chaptenr.

1.1.2 The Babylonians and the Pythagoreans

The Babylonian mathematical contribution is significant
for its algebraic approach to problems. The need for rigorous
proocf became central for the Greek mathematical school, but
the Babylonian numerical and algebraic techniques diminished

in importance at +the hands of the geometrical Greeks, e.g.,

[van der WaerdenP P- 125]. Geometric proof and the axiomatic
method became the means of securing and defining truth fop
Greek mathematicians; in fact, as Zeuthen has pointed out,
geometric construction was regarded as proof of existence for
the Greeks. Unfortunately, the singlemindedness with which

the Greek school sought geometric demonstrations ultimately
served to inhibit development of new mathematical concepts as
well as to block the Babylonian algebraic advances for 3,000
years. We shall see that there were some algebraic and analytic
developments in Greek mathematics, but these tended to suffer
in the long range because of the geometric influence. Concerning
such developments, there was a continuity of sorts with the

Babylonian heritage, and the most spectacular figure in this

transition was Pythagoras.



Pythagoras is a mystery. Herodotus (480-425) writes respect-
Ffully and Heraclitus (537-475) speaks disparagingly of him, e.g.,
[Bochner, 13866, p. 3593 van der Waerden, p. 93]; Plato (u428-348)
says nothing at all about him whereas Aristotle (384-322) wrote
his biography which is lost. It is conjectured that Pythagoras
travelled to Egypt and was taken as a prisoner to Babylon where
he learned the material that later bacame the basis for the
Pythagorean school's philosophy, theology, sociology, and (even)
mathematics of number. The Babylonians had a less catholic role
in mind for their mathematical results.

The Pythagorean school was in southeastern Italy, mainly

in the ancient city of Croton. Supposedly, its motto was

"A11l is number"; and they assigned integers to concepts such as

justice and opportunity. Analogously, but on an entirely different
level and context, Gddel (1906- ), the eminent logician, assigns

integers to formulas in formal systems, e.g., [Nagel and Newman,

Chapter 71. The Pythagoreané did not consider rational numbers as
such, but were very much interested in analyzing pairs of integers.
Their doctrine proclaimed that God had ordered the universe by
means of integevs, that God is unity and the world is plurality,
and that harmony, consisting of ratios of integers, is divine

and restores unity to the contrasting elements of the world [van
der Waerden, ﬁ. 9371. 1In this setting they discovered the role

of ralional numbers in music noting, for example, that whaon a
string is shortened by half, the tone produced by plucking it is

an octave higher.



The step from rational numbers to irraticnal numbers or,
equivalently, the problem of incommensurability is a generally
Greek proposition which we'll discuss in the remainder of section
1.1 and in section 1.2. By taking a = b = 1, we see the relation
of this issue with (1.1). On the other hand, the Babylonians
did give approximate rational values of 7 with an error of
less than 22/(60)u [Neugebauer, p. 35]; naturally, (1.1) must
have been involved in such calculations, although the precise
method is not known and there is no evidence that they had any
awareness at all, contrary to the Greeks, of the significance
of incommensurability.

There is a natural problem related to the above remarks.

In the spirit of the Pythagorean enthusiasm for number, Archytas
(430- B.C.) of Tarentum (present day Taranto, Italy) stated
about 375 B.C. that not geometry but arithmetic alone could
provide satisfactory proofs; and yet, a generation later, the
geometric axiomatic method was born. Besides Croton and Tarentum
the other major ancient Greek city in southern Italy was Elea,
and the axiomatic posture attained by Greek mathematics has its
source in the Eleatic dialectic. In any case, the reason for
this apparent change in emphasis concerns the irrationality of

v?2 which we now discuss.

1.1.3 The origin of irrational numbers

When and how were irrational numbers discovered? The two

questions are closely related since certain procfs would not be



considered possible if they were supposed to have occurred too
early; and there are at least two different modern opinions on
the matter. One group, including O. Becker, E. Frank, 0. Neuge-
bauver, H. Vogt, and H.G. Zeuthen, claim the discovery came about
410 B.C., with some of these contending that the discovery could
not have come before the time of Archytas, say, 375 B.C. The
other view, developed by [von Fritzl, puts the discovéry that
/% is iprprational much earlier. Both views produce the same list

of protagonists in later developments.

By way of definition, we say that two segments are com-

mensurable if the ratio of their lengths is a rational number,

and such segments are incommensurable if the ratio of their

lengths is not rational. Originally, the Greeks discovered

incommensurablie segments when comparing the sides having length

4 = b = 1 of an isosceles right triangle whose .hypotenuse has

length e. The modern statement that "Y/2 is irrational" is
equivalent to the statement that ¢ and a are incommensurable
lengths. This realization‘of incommensurability was the first
instance of a mathematical éituation dealing with the impossibility
of a certain phenomenon, viz., the impossibilify of the comfortable
notion of commensurability; and the conceptual subtlety required

to pose and solve the related problem of incommensurability which

we'll state in section 1.2.1 indicates a great intellectual

advance over previous mathematical results.



One of the problems in pinning down the period of discovery
of incommensurability is the terminology "so-called Pythagoreans”
used by Aristotle. Frank makes a sharp distinction between the
Pythagorean school (of Pythagoras) and these "so-called Pythagoreans"
whom he claims were contemporaries of Plato and deeply influenced
by his philecsophy, e.g., [ven Fritz, p. 249]. This distinction
ultimately forms part of the basis for his guess.

Plato's dialogue Theactetus was written in 368 B.C. after

Theaetetus' death in battle. Theaetetus (414-369) was a friend

of Plato and is the forembst algebraic force in Greek mathematics
[van der Waerden, pp. 168 ff.]. The date of the dialogue is 399
B.C. which was the year of Socrates' death; and in the dialogue
the o0ld mathematician Theodorus of Cyrene (in North Africa)

(4L70- B.C.) is cast in the role of proving the irrationality

of V3,V5,v6,+++,/I7, cf., Proposition 1.1b, to the 17 year old
Theaetetus, working out each case separately. One interpretation

of this data is that Theodorus was establishing his own contribution

to the theory by beginning with /ﬁ_ instead 6f 7 and that
the proof for V2 was well known at the time. Since he was an
©0ld man then, Theodorus' discoveries were probably méde much
earlier than 399 B.C.; but even if this were nét the situation,
the omission of the 2 case indicates that this result was
indeed established significanfly earlier, especially in light of
the fact that mathematical knowledge tréveled so slowly then.

[von Fritz] argues that Hippasus of Metapontum discovered the



irrationality of +Z. Hippasus was of a generation beforé Theo~
dorus and was a Pythagorean philosopher.with an extensive list
of scientific accomplishments. [Szabdl takes von Fritz's position
as far as the time of initial discovery, but argues against any
contributions by Theodorus. Heéth notes that Democritus (460-
350) wrote about irratiocnal lines and solids, and as such it is
difficult to resist the conclusion that the irrationality of V2
was discovered befeore Democritus’ time.

There 1s strong evidence‘developed by Hasse and Scholz in
1928 and van der Waerden in 1940 that the paradoies of Zeno of

Elea (500~ B.C.) and the discovery of incommensurability are

closely related conceptually and chronolcogically, cf. section
1.1.5. Their thesis has three aspects: first, the paradoxes are
not directed against the problem of infinite divisibility of

geometric magnitudes, but their aim is o support the theocry of

the Fleatic metaphysicist Parmenides (540- B.C.) who posits a
single immutable "whole"; second, "infinitesimal" methods were

not part of the existing mathematics at Zeno's time; and third,
it was the problem of incommensurability and not infinite |
divisibility that was responsible for the initiation of the
axiomatic method.

A major problem in pinpointing the "when'! of Qﬁr initial
gquestion in this section is to determine the "how". Aristotle

affirms that the proof we give in Proposition 1.la, and that

is in an appendix of Book 10 of Euclid's Elements, is the
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original; this would seem to endorse the position of Becker,
Frank, et alii since an initial effort requiring such logical
procedures and abstract thinking would be unlikely too early

in Greek mathmatical development. [wven Fritz, pp. 255 ff.]
gives an interésting argument indicating that perhaps the proof
below was not the initial one, and suggests an alternate geo-
metrical procedure which would have been at the disposal of
Hippasus. Zeuthen has éuggested possible geometric proofs that
Theodeorus could have used for the different integers he con-
sidered [Hardy and Wright, Sections h.5 and 4.61; and Zeuthen's
choice of proof for V2 (settled befére Theodorus) 1s consistent
with von Fritz's theory, although Zeuthen generally sides with

the other camp.

l1.1.% Theaetetus and specific irrational numbers

The theory of irrationals began in the Pythagorean school,

and the really sophisticated treatment of irrationals in Book

10 of Euclid's Elements is due to Theaetetus; it seems safe

to say that twentieth century man does not completely under-
stand Bocock 10. Theaetetus was an algebraist, just as Eudoxus

of Cnidus (408-355),who also studied irrationallnumbérs, Was

an analyst [van der Waerden, pp. 189-1901, cof. section 1.2.1.

The distinction is impoftant and exists equally well among modern
mathematicians. The algbfaic flavor of Theaetetus' results is

reflected in Proposition 1.1 b,c; Fudoxus, on the other hand,

developed the irrational numbers as the completion of the rationals.

Chronciogically, the problems discussed in Bock 10 led to Eudoxus'
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work which appears in Book 5.
We now provide some of the mathematics whose proofs and .
origins we have been discussing.

The proof of Proposition 1.1 ig an example of a reductio ad

absurdum argument. This means that we assume the contrary of what
we intend to prove, and obtain a contradiction to a known specified
fact by ﬁeans of a logical argument and this assumption; we then
conclude that the assumption is false and therefore what we wanted.
to prove in the first place is true. This type of argument derives
from the ideas of Parmenides and Zeno, and as such is ancther
Eleatic influence on the structure of systematic and deductive

mathematics. The proof of Proposition 1.1b,c also uses the unique

factorization theorem or Fundamental Theorem of Arithmetic: each

integer n € W can be written in a unique way as a product . Lﬁ

peFcP

where np ¢ W and card F < «, i.e., Theorem 1.1. As we shall

see in section 1.3.1, the Fundamental Theorem of Arithmetic follows
from the Fuclidean algorithm; and the Eucliaean algorithm probably
had its source in the Pythagorean theory of music [Szabd] and in
any event evolved from attempts 1o estimate V2. We'll discuss

the Fuclidean algorithm in sectioen 1.2.3.

Proposition 1.1. a. V2 is an irrational number.

b. If n=>1 and m = 2 are integers and’

n # k" for some k ¢ IN, then nlfm is irrational.



L2

c. If 2z € IR 1is a root (i.e., a zero) of

the equation
X + eee 4 QO = 0,
where each Cj € Z, then either =z € Z or =z 1is irrational.

Proof a. Assume v2 = a/b where (a,b) = 1, i.e., a and

b are relatively prime integers.

We have 2b2 = a2 and so a2 is even which, in turn, implies
that a = 2n, an even integer.
Thus 2b2 = an and so b2 and, hence, b are even.

Since a and b are even we obtain a contradiction to the
hypothesis that (a,b) = 1.

b. Assume nl/m = a/b where (a,b) = 1 and b > 1; we have

Since b > 1 it has a prime factor p; and since b™n and
a™ have the same unique factorization into primes, we
have p|am.

Thus, p|a.

This contradicts the hypothesis that (a,b) = 1.

¢. The proof follows that of part b and we omit the details.

9-.e.d.

It is possible tc prove Proposition 1.1b using the techniqﬁe

of part a and not using the Fundamental Theorem of Arithmetic; in

this case the proof of part b becomes more difficult.

Propesition 1.2 @ 1is an irrational number.
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Proof. We'll prove that ‘e"i = ) (-1)/n! ¢ Q. We set
=0
S n
I Yy (-1)"/n! and so
n=0
(1.2) 0 < et -s . E (-D%/n! < 1/02K)!
. k1 . ! P,
n=2Kk

Multiplying both sides of (1.2) by (2k-1)! we have
(1.3) ¥k =21, 0 < (2k=1)1(e T -8, 1) < 1/(2) = 1/2.

By definition of S,y 1> (Qk—l)ESQk_l-: ny € 7.

Assume eM:L - a/b where (a,b) = 1. In this case we can choose

k large enough so that (2k-1)te™ L = m, € Z.

By (1.3), my - ny ¢ (0,1/2) for such k; and this is the

degsired contradiction.

g.e.d.

1.1.5 Achilles and the tortoise.

Zeno's paradox concernlng Achilles and the tortoise is:

Achilles is faster than the tortoise and there is to be a race

in which the tortoise starts ahead of Achilles; Achilles can
never pass the tortoise because when he reaches the place where
the tortoise began, the tortoise will have moved ahead, etc.

We'll now show that this argument 1s faulty and that the problem

can be resolved in terms of the theory of infinite series.

Suppose that Achilles (A) puns at 10 kilometers. per hour and

that the tortoise (T) manages to average 1 kilometer per hour.

Assume that T starts 1 kilometer ahead of A. A scorecard is

given in Figure 3.
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t
: 1 1 1
Time elapsed G 15 15 + 100
(in hours)
Position of A 0 1 T+ f% oo
i i l l ____l 'nll‘
Position of T 1 1+ 5 1+ 5 + 55

Figure 3

At a given moment t we measure the time for Achilles to g0
from his position to the tortcise's position at +t. Thus, at
t = 1/10 hours, we measure how long it takes A +to reach the
pesition 1 + f% s given that A is then at the positién 1;
the time elapsed is 1/100 hours, and in 1/100 of an hour T

e}
goes 1/100 kilometers. In this way we see that in ) 1/10"  hours
1

T and A are both at the position ) 1/10". Since Y 1/10% =
J 1

(1/10)/(1 - 55) = 1/9 ana J 1/10" = 1/(1 - ) = 10/9, we see
10 0 10

that after 1/9 hours both T and A are at the position

13/9 (even though T started at position 1); and after this,

A  goes ahead.

1.2 The real number system

1.2.1 The problem of incommensurability

Archimedes (287-212) considered Eudoxus of Cnidus to be the
finest mathematician before him. Cnidus was southeast of both

Athens and Samos and north across the Mediterranean from Alexandria.
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Fudoxus was a student of Archytas before studying with Plato.
Unfortunately, none of Eudoxus' original work is extant.

The problem of incommensurability which Eudoxus solved, and

which appears in Book 5 of Huclid's Elements, was to reconcile the
fact of incommensurable segments with the existing Pythagorean
theory of commensurable ones. The Pythagoreans could determine
when two rational numbers were equal, e.g., section 1.2.3; the
problem which Eudoxus solved was to give criteria, compatible with
+he rational case, determining what it should mean for two ratios
of lengths of incommensurable segments to be equal.

Besides any intellectual motivation, the problem of incom-
mensurability was kept in the eye of the erudite by the
prestigious Plato, whose devious rhetoric assured his listener
that not to know about incommensurability was unworthy of a

civilized person and Greek.

1.2.2 Fudoxus and the Axiom of Archimedes

Definition 4 of Book 5 of Euclid's Elements is: magnitudes

are said to have a ratio to one another which are capable, when

multiplied, of exceeding one another, cf., the clearer statement

in Proposition 1.3. Later Archimedes noted that this statement

is really an akiom; and, although he gave credit to Eudoxus for
originally formulating it, it is customarily referred to as the

Axiom of Archimedes. The Axiom of Archimedes is an essential

property of 1IR3 and Eudoxus and Archimedes realized its essential
nature for coping with the problem of incommensurability. To
illustrate the fundamental nature of the Axiom of Archimedes it

is convenient for the moment to use a twentieth century definition
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of IR and then to derive the Axiom of Archimedes: IR 1is the
ordered field for which the least upper bound axiom holds, e.g.,
[Birkhoff and MacLane, Chapter 4]1. Beginning with this definition

we easily prove

Proposition 1.3 (The Axiom of Archimedes). For any x € TR

there is n € 24 such that n > x.

i1

Proof Let X = {k € Z:k = x}. x is an upper bound for X

and so X has a least upper bound y € IR by the least upper bound

is not an upper bound for ¥, and so there

X for which k » - %.

axiom. Thus vy = 5
1s an integer k ¢
Hence k+1 > y-#% >y so that k+1 ¢ X. Consequently,
k+1 =n > % by the definition of ¥X.

g.e.d.

Using Proposition 1.3 it is easy to prove that if x,y € R

and x < y then there is r € Q for which x < r < y.

It turns out that Euclid's axioms for gééhetry are bealiy not
sufficient to avoid some embarrassing questions. For example, in
Euclid's very first result he constructs an equilateral triangle
AABC, given two points A and B, by drawing circles about A,
resp., B, through B, resp., A. As Leibnitz (1646-1718)
pointed out, Euclid failed to prove that the circles intersect!

In fact, the Axiom of Archimedes does not close this gap (sic);
but it did lead the way to the formulation of an axiom such as
the least upper bound axiom. [Hilbertl is basic sequel to Eueclid's

Elements as far as analyzing the proper axiomatization to obtain

Fuclidean geometry, of., [Poincarél.
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There is a relation between Euclid's parallel axiom, the
Axiom of Archimedes, and the statement that the sum of the angles
of a triangle is equal to two right angles. This last statement
is essential in the proofs of the Pythagorean theorem and it can
be proved from the parallel axiom. Conversely, when combined with

the Axiom of Archimedes, it implies the parallel axiom.

1.2.3 The BEuclidean algorithm

Given two segments a and b where a is longer than D.
Then a is an integral number n of b's plus c¢, where
0 = ¢ < b. Suppose wWwe can find one half of any segment b, as

we can with a piece of string by folding it in half. Then

¢ = %13 or %b < ¢ < b. In the former case, a = nb + ¢ where
o can be estimated by a halving of b3 in the latter case, we
have a = {n-P%-)b + @, where 0 < d < %13. Continuing in this

way we have a practical procegs for measuring a in terms of b

since, practically speaking, small enough errors are irrelevant.
At the level of abstraction that geometry. had reached before

Tudoxus, the intellectual reguirement for such a measurement was

much mere rigorous.

If a and b are in W and a » b, then the Euclidean
algorithm, which was known to the Pythagoreans, provides a
gystematic means of measuring a relative to b, cf., the

remark before Proposition 1.1 in section 1.1.4.

We compute

A
p
A

a = qlb toros 0 b,

where aq and r, are non-negative integers. If vy o= 0 we

stop. IT ry > 0, we compute
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where g, and r, are non-negative integers. Again, if r, = 0

we stop; otherwise we compute

ry T agr, + Yoy ¢ = r, < r,.

We continue in this fashion and eventually reach a stop situation,

i.e.,

(1.4 B T PC L B 0 < n % Thoao
and

(1.5) ho1 ° 9p41Tn-

The procedure stops since there are only finitely many positive

integers r 1less than b.

This computation is the Euclidean algorithm to find the

greatest common {(integer) divisor, denoted by (a,b), of a

and b. We have

Proposition 1.4 Given a,b € N where a = b. With the above

notation, we have r = (a,b).

Proof a. Note that rn]rn_l by (1.5) and so rnlrn_2 by (1.u).
We proceed in this way from the last step to the first of the

above computation, and obtain that rn|a and rnlb.

b. Assume c¢|a and ¢|b. We must show c = v and we'll do

this by showing that c[rn

From.the first step of the computation, we have cfrl, and so,



19

by the second step, c|r2.

Proceeding "down the algorithm" we see that cir

o
q.e.d.
Setting a, = a/rn and b1 = b/rn, and taking r~as a
common unit, we measure a as aq rn's and I as bl rn's,
where al’bl € IN; r =~ serves as a unit. alfbl provides the
simplest expression for measuring a in terms of D since
(al,bl) = 1 by the definition of r. .

If a and b are not both integers and we compute as above,
requiring that each SEFE € §, then the procedure needn't be
finite. For example, if a = v¥2 and b = 1 then the procedure

never ends.

1.2.4 The Eudoxus - Dedekind theory of real numbers

Techniques such as the Euclidean algorithm allowed a
satisfactory means of determining when two pairs of commensurable

segments should be equal. We introduce Eudoxus' solution to the

problem of incommensurabulity by the following two observations:

a. Given %.,% € § where a,b,c,d € Z; tThen % = % if
and only if for each pair of integers m,n € Z,
ma = nb = mc = nd.
L. Suppose a and b, respectively, < and d, are the

lengths of incommensurable segments. Then by the definition of

incommensurability, there are no integers m,n ¢ Z\ {0} for which

a C

ma = nb, respectively, mc = nd. On the other hand, if 5 3

and ma > nb then mc > nb.
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The following is FEudoxus' definition which encompasses both
the commensurable and incommensurable cases. % = % if one and
only one of the following conditions holds for each pair of
integers m and n: ma > nb implies mec > nd; ma = nb
implies mc = nd; ma < nb implies me < nd. It is of course
logically unsatisfactory to define what is meant by "equal
incommensurable ratios" without defining an "incommensurable
ratio". Euclid made a less than eloquent statement of Fudoxus'

definition [Eueclid, Book 5, Definition 5]: magnitudes are said

to be in the same ratio, the first to the second and the third

to the fourth, when, if any equimultiples whatever be +taken of
the first and third, and any equimultiples whatever of the second
and fourth, the former equimultiples alike exceed, are alike equal
to, or alike fall short of, the latter equimultiples respectively
taken in corresponding order.

The "real numbers" r defined by Eudoxus in the above
definition have the characteristic feature of partitioning the

rational numbers into three disjoint sets:

S(<,r) = {qg € Q: g is less than r},

S(=,v) {g € Q: q is equal to v},

S(>,r) {g € Q: @ is greater than 7r}.

One problem with Eudoxus' definition of a "real number" p is that
r 1is consideved as a ratio of two segments and so, ultimately, we
depend on the axioms of geometry to determine for us. which ratios
exist. We shall see in Chapter 3 that the constructions in

Euclidean geometry with straightedge and compass do not yield
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all of the real numbers. Nevertheless, this idea of partitioning
Q into three disjoint classes in order to solve the problem of
incommensurability provided a fundamental aspect of formulating
the "proper" definition of 1IR.

In work beginning in the late 1850's and developed systemat-
ically in the 1870's, Dedekind (1831-1816) "cut" the geometrical
umbilical cord and defined a "real number' corresponding to each
partition S(<), S(=), 8(») of @ with the properties that
S(<)y # D, 8(>) # #, 8(=) contains at most one element, S(<),

resp., 3(>), contains no smallest, resp., largest, element, and

¥q € 8(<) and Vp € S(=)UsS(>), g <P

Yyq € 8{>) and Y¥Yp € s(z)us(<), a > p.

Beginning in this way, Dedekind defined finally and properly the
set of real numbers. Thorough technical accounts of Dedekind's
approach are found in [Landau; Rudinl. The foundaticnal problem

of defining properly the set IR and the continuocus real number

line TR was also taken up by Hamilton (1805-1865), Weierstrass
(1815-18397), Méray (1835-1911), Cantor (1845-1818), and Heine

(1821-1881).

1.2.5 The Weierstrass - Cantor theory of real numbers

It was natural by the mid—thh century to define irrational
numbers as limits of rationals; but, as Cantor explicitly observed
in 1883 and as Weierstrass probably stated in his lectures on
iprational numbers in the late 1850's, such a limit doesn't
logically exist until irrationals are defined, cf., the similaf

remark prior to Euclid's statement of Fudoxus' defintion.
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In his paper on Fourier series, where in fact he formulated

the Riemann integral, Riemann (1826-1866) posed the uniqueness

inx

Problem for trigonometric series: given a series ZnEZ c e ;

for what sets F < [0,27) does the condition
Vx € [0,21)\F, 1lim o et - g
N»e |nf=y o

imply that
Yn ez, c, = 02

In 1870, Cantor proved the resul+ first for F = @ and then for
Fa finite set. By late 1871 he had proved the result for certain
infinite sets and his expesition became closely tied in with the
following definition of IR which he developed more thoroughly

in 1883. |

A fundamental sequence {xn tn = l,*s+} & Q is defined by

the property that

(1.6) Ve >0 AN  such that ¥Yn,m > N,

By definition a real number v is a fundamental sequence {xn},

and so IR is the set of all fundamental sequences. It is possible
for two different fundamental sequences {Xn: n=1,-++} and

{yn: n=l,*+*} to define the same real number r if

(1.7) ¥Ye >0 3N such that ¥n >N, |xn - yn| < €.

Algebraic operations and a linear ordering can be well-defined

on IR in terms of the corresponding notions on the rational
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terms of fundamental sequences. Cantor then proved that IR 1is
complete in the sense that if (1.6) is true for {xn: n=l,=+-} &€ IR

then there is {y_: n=l,+++} € @ . for which (1.7) is satisfied.

1.2.6 Biographical sketches ~ Cantor (1845-1918), Dedekind

(1831-1916), and Weierstrass (1815-1837)

The Dictionary of scientific biography, edited by C. Gillispie,

as well as the biographical references in [Mayl] are the major sources
of material for the sections of "Biographical sketches". These
‘sections are meant to include human interest data, mathematical
contributions, and mathematical perspective. In this particular
section the mathematical perspective included a discussion of the
introduction of rigor into‘analysis at the hands of Gauss (1777-
1855), Abel (1802-1829), Bolzano (1781-1848), and Cauchy (1789-
1857) and treated the close mathematical relation between

Cantor and Dedekind, e.g., [Grattan-Guiness]. We alsc discussed
Cantor's continuum hypothesis and the influence of trigonometric
series on his theory of sets, e.g., [G8dell and [Benedetto; Dauben],

respectively.

1.3 ©Some algebraic developments

1.3.1 The fundamental theorem of arithmetic

The Euclidean algorithm leads directly to the Fundamental

Theorem of Arithmetic which we used in Propesition 1.1. The

Fundamental Theorem of Arithmetic was first explicitly recorded
in 1801 in [Gauss, Art. 161. It is an easy consequence of [Euclid,
Book 7, Prop. 301 once the mathematical-notational development of

the late lBth century had been achieved; but with the state of
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mathematics at Euclid's time, the "Fundamental Theorem of Arithmetic"
given in [Fuclid, Book 9, Prop. 14] is only valid for integers

n= TJI p, where card F < « and p,q € F dimplies p # q,
DEFCP ' ,
e.g., LBochner, 1974, pp. 827-828; Hendyl.

Proposition 1.5 (Division lemma) Given a,b € N. If ¢ ¢ W,

cfab, and <(a,c) = 1, then c|b.

Proof By hypothesis, L (a,e) = 1 so that multiplying each

step of the Fuclidean algorithm by b yields

ba = bqlc + brl
be = bq2r1 + br2
= - +
brn—? bann—l b
bro1 F DAnsr -

Starting from the first step of this calculation and using the
hypothesis c|ab we compute that Q|br1, then c|br2, etc.,
down to c|br and cl|br_ _.

n-2 n-1

Thus, from the penultimate step, we obtain c|b.

g.e.d.

If p€P, a € N, and pfa, then (p,a) = 1. Consequently,

as a corcllary of Proposition 1.5 we have Fuclid's first theorem

Proposition 1.6 Given a,b € W and p € P. If plab then pla

or plb.
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It is now easy to prove

Theorem 1.1 (Fundamental Theorem of Arithmetic) FEach integer

n € N can be written in a unique way as a product

pEFCP

where np € IN and card F < =,

Proof  i. We shall first prove that n 1is a product of primes.

This will not require Proposition 1.B.

If n € P we are done. .

Tf n £ P then there is 1 < m < n for which m{n. Let d be
the least such .m. |

Note that if 4 ¢ P then there is 1 < ¢ <d for which c]d.
Since c¢ld and ‘d|n we have c|n, and this contradicts the
definition of d. Consequently, d = pq ¢ P,

Hence, n = where "1 < n, < n. We now proceed with n as

P1% 1 1
we did with n.

Thus to prove that n is a product of primes, it is sufficient
to show that some nj € P; but this follows since

1 < n. < 1n-. < n.
] -1

ii. To prove the uniqueness of representation we shall use

Proposition 1.6 S

Suppose n has the representations

k kj m 1
(1.8) WP' = Trqi ,
1 1
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Take some pj, 1l =3 = k. Since Pj ~divides the left hand side
of (1.8) it also divides the right hand side. The fact that

the qi's are prime tells us that P is some q; -
Thus each P is a qs and vice-versa. In particular, k = m.

We now observe that pj = qj for each 4§ = 1,--°,k. In fact,

if py = q; >qy and g = =¥ z p; we have py > py, @

contradiction.

Finally we must show that kj = mj for each i = 1,+<-,k.
‘ m, : :
If kj > mj then, dividing each side of (1.8) by p; and using

the information we've Jjust deduced, we have
k k., k,-m, k, k m k

1 3-1 97" S k 1 TS B S R
. 9 P asa s e 9 sen
(1.9) py P21 Py Pim Py Py PiZ1 Psn1 Py -

We obtain a contradiction since = divides the left hand side of

(1.9) but not the right hand side. Therefore kj < mj.

We obtain an analogous contradiction by assuming kj < m. . There-

fore k. = m..
J ]

1.3.2 The Pythagorean theorem and Fermat's last theorem

Another algebraic outgrowth of the Pythagorean formula ccncerns
so-called Pythagorean triples. Not only did the Babylonians discover
the Pythagorean formula, but they solved'the harder‘problem of
finding all triples (a,b,c) € ZxZxZ, abc # 0, for which

a2 + b2 = 02; such a. triple of integers is a Pythagorean triple.

0f course, since the Babylonians dealt more or less exclusively
with integers it is not surprising that they should want to find

the integer solutions of (1.1). The fact that they sclved the problem
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around the time of Hammurabi is verified by tablet 322 of
Columbia University's Plimpton cocllection, e.g., [Boyer, Chapter
3.8: Neugebauer; van der Waerden, pp. 78-801. Obviously (a,b,c) =

(3,4,5) is a Pythagoreaﬁ triple, and we shall see in Theorem 1.2

'that t+there are infinitely many Pythagorean tfiples.

Termat's last theorem asserts that the equation

(1.10) ' . a + b"t = ',

where n > 2 1is a given integer; has no solutions (a,b,cj €

™ xIN xI for which abc # 0. Although this statement has been
proved for many integers n > 2, it has not been proven for every
integer n > 2. Fermat (1601-1665) claimed to have proven the
asserfion but did not write down the prcof. It is reasonéble to
expect that he did not have a proof. Attempts to prove Fermat's
last theorenm have led to the development of large portions of
modern algebra. Perhaps the most striking instanée of such devel-
opment concerns Kummer's (1820-1893) theory‘of ideal numbers.
During the mid-1840's Kummer thought that he had proved Fermat's
last theorem. His manuscript was submitted to Dirichlet (1805-
1859) who noted that Kummer's proof would be correct if certain
complex numbers‘:(é.g., Chapter 3) could be decomposed in a
unique way intor”coﬁplex primes"; Dirichlet expfeésed‘his belief
that unfortunately such numbers do not genéral}y_satisfy this
unique factorization property, a fact asse;ted by Jacobi
(1804-1851) not later than the beginning of-1839 [Birkhoff, 1974, .
p. 335]. Kummer's error was based on his feeling and/or

oversight that the uniqueness part of the Fundaméntal Theorem

of Arithmetic for the set I has an analogue for ceftain

sets of "complex integers". This setback led Kummer to his
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theory of ideal numbers whose sole purpose from Kummer's point
of view was to give proofs of Fermat's last theorem and the
general reciprocity law; from this, Dedekind introduced the im-
portant notion of an ideal and the general algebraic theory
associated with it. An interesting discussion ofrthis and other
historical facets of Fermat's last theorem is found in [Dickson],
cf., [Vandiver]. It is Littlewood's (1885- ) feeling [Littlewood,
Pp. 58 £f] that Dedekind's general concept of ideal should have
come before and, in fact, have suggested Dedekind's construction
of IR.

Fermat's last theorem is true for each n = Ym, m é 1

(Exercise 1.1). It has also been verified for each prime n = p =<

4001 as well as many other special cases. It is easy to see that
if Fermat's last theorem is true for each odd prime theﬁ it is

true for every n > 2. Even if (1.10) is satisfied for some fixed
n, the solutions must be few and far between. In fact, Mumford
(1837~ ? has shown that if {(am;bﬁ,cm): m = 1l,+++} is any such

sequence of solutions arranged so that o for each m,

= C
m m+1

then there are constants r > 0 and s guch that

rm+s
¥ m, c, > 10(10 )

1.3.3 The characterizaticn of Pythagorean triples

In order to determine the set ofs Pythagorean triples, note
that we can assume without loss of generality that any solution

(a,b,c) € Zx2Zx%, abc # 0, of (1.1) satisfies

(1.11) a,b,e > 0.
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Also, if dla and d|b then d|c. Hence, if (a,b) = d and
a=da', b= db', ¢ = de' then (a',b',c') ¢ W xIN xIN 1is
a solution of (1.1) with the property that (a',b') = 1. Conse-
quently, we shall assume that the solutions (a,b,c) ¢ N xIN xIN,

abe # 0, =satisfy
(1.12) (a,b) = 1,

and, in particular, a and b are not both even. Even more, we

shall now verify that for such solutions of (1.1) we have
(1.13) a (resp., b) 1is even and b (resp., a) is odd.

To do this, assume the contrary, and suppose 2|(a=1) and 2[|(b-1).

Then since
et -2 = a® +b° -2 = (a-L)(atl) + (b-1)(b+1),

we observe that %|(cz—2) (for if 2]|(a-1) then 2|(a+1)).

Consequently, there is k € IN for which c2 = 2 + Lk, &an even

number. Thus, c¢ = 23 for some Jj € IN; and when we substitute

thisg into 02 = 2 + Uk we find that M(jz—k) = 2, a contradiction.

Theorem 1.2 a. Let (a,b,c) be a Pythagorean triple satisfying

(1.11), (1.12), and (1.13). Then there are iﬁfegars n>m>40,

one even and one odd, for which (m,n) = 1’ and such that
(1.14) a = 2mn , b = n2 - mz, C =,m2 {‘?enz.

b. If n >m > 0 are integers, ohe even and one odd,

for which (m,n) = 1, and if a,b, and ¢ are defined by (1.14),
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then (a,b,c) 1is a Pythagorean triple satisfying (1.11), (1.12),

and (1.13),

Proof b is immediate. In particular, from (1.1Y4)

2 2 2_2

a~ + b = Um™n° + (nz—mz) H ” 2.

n + 2(mn)2 4+ m = ¢

H

a.i. Let a be even so that b and c are ocdd.

Note that (b,c) = 1; for if d|b and d|c then d|a, and so
d=1 by (1.12).

Since b and c¢ are odd, %-(c—b) and %-(c+b) are positive
integers; the positivity follows from (1.1} and (1.11).

Also, ( E%E , 9%2-) = 1 for otherwise we'd contradict the fact
that (b,c) = 1; in fact, if d|((c-b)/2) and d|((a+b)/2)
then d|((c-b)/2 + (c+b)/2). |

a/2 € N since a is even.

From (1.1) we have a2 = (atb)(c-b) and so

a2 _ o+b c-b
(1.15) (7-) = (-—§—)(-77—).

a. 1i. Using the fact that the two factors on the right hand

side of (1.15) are relatively prime we shall prove that

(ctb)/2 = n2 and (c-b)/2 = m2, where m,n ¢ W, n >m > 0,

and (m,n) = 1.

Let p € P divide a/2. From Proposition 1.6, p divides

(e+b)/2 or (e-b)/2, but not both because (E%E-;S%E) = 1.

Thus, if pff(E%E) then p2 [(3%25 since p2](<%)2 .
In this way we compute that (c+b)/2 is a perfect sguare n

A similar calculation works to obtain m2 = (c-b}/2.
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Obviously, n > m > 0 and (ngnz) = 1 by the properties of

{(c+b)/2 and (e-b)/2. Clearly, f(m,n) = 1, for otherwise

we'd have (mz,nz) £ 1.

(1.14) follows from (1.15) and the way we've defined m and n.

It remains to show that n odd (resp., even) implies m even
(resp., odd); this follows if we prove that mtn is odd.
We have b = n’ - m? = (n*m)(n-m) so that since b 1is odd it is

necessary that both n+m and n-m be odd.

The feollowing result yields Fermat's last theorem for the

cases n = Y4m, m € N, e.g., Exercise 1.1.

Theorem 1.3 (Fermat) Let (a,b,c) Dbe a Pythagorean triple

satisfying (1.11), (1.12), and (1.13), and let A be the area of

the right triangle whose sides have length a and b and whose

hypotenuse has length <. Then A # n? for h ¢ N.

Proof i. Using Theorem 1.2 we have

(1.15) A = Zab = m(na’-n®) € W.

We shall assume that A = n®  for some -h € TV +.8nd ohtaiﬁ_a
contradiction. LA

ii. Since (m,n) = 1, we see that m, n,:mﬁn? an&'m;n. are

D doon ‘
. : Lt A ty
Y B o i

pairwise relatively prime.

For example, if ¢|(m*n) and d|(m-n) then ‘d|2m and d|2n.
Consequently, . (m,n) = 1 implies d = 2 or, d = 1; but

d # 2 since mtn and m-n are odd (recalling that if n
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is odd (resp., even) then m is even (resp., odd)).
Because m, n, mtn, and m-n are pairwise relatively prime we

use (1,16), Theocrem 1.1, and our assumption to observe that

each of the four integers m, N, mfn  is a square of an

integer.
iii. Let m = u2, n = v2, n-m-= 52 = u2 - V2, and n + m =
2 Z 2
t7 = u” + v, where s,t,u,v ¢ IN.

Using the fact that MW, N, min are pairwise relatively prime

we check that s,t,u,v are pairwise velatively prime.

We have

(1.17) 2% - 52 + t? and 2v? = t? - g2 - (t+s)(t-s).

L

Since m and n are odd and even (i.e., one is odd and one is
even), we see that g2 and  t? are odd; thus s and t
are odd, and hence +t+s and +t-s are even.

Consequently, from (1.17), v 1is even. Setting v = 2vy for

some vy, € IN, we obtain

ho 2 t+s t-s
(1.18) ZVl = (‘?_')(“3f')
from (1.17).
R B _ +
iv. 3Since (s,t) = 1, we note that (373 s Eii ) = 1; and we

then use (1.18) +o Observe that either {(t-s5)/2 or (t+s)/?2

is even.

Suppese that (t-s)/2 is even.

= l,- and Theorem 1.1,

Using (1.18), the fact that (353 )

wWe can write
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e . i |
(1.1) 2 = 5% ana 5B - 2% wnere vZ = 3%l
~ Adding and subtracting in (1.18) we obtain s = 2k’ - j2 and
t o= 2k? 4 j?; and substituting this into the first equation

of (1.17) yields

oy o wPo= gH?

+ (242,

We would have also comé +o (1.20) if we took (t+s)/2 to be even.

v. With the assumption in part i1 we have derived by (1.20) a new

right triangle with sides having lengths

.2 .
35, 2k2, and u. Its area 1s
o202 2 vy 2
Al = 7 k = Vl = (7) s
the square of an integer.
Noting that v2 = n wWe have Al = % and so Al < A from (1.16).

In this way we obtain a contradiction to the assumption in part

i, for generally we can derive Ai+1 < Ai where each Ai is

the square of an integer.

g.e.d.

The process of "descending" from A, to A in the above

i+l

proof is called Fermat's method of infinite descent.

1.3.4 Factorization and sums of perfect squares

We shall investigate the possibility of wrifing a given odd

integer N € IN in the form

(1.213 N = a’ + bz, for some a,b € IN.
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If N Thas the form (1.21) then, without loss of generality, a

is odd and b is even. Thus, a = 2j+1 and b = 2k so that

2 bm +1; that is, if an odd integer

No= 439 4 u3 o+ 1+ ok

N €¢ N can be written in the form (1.21) *then N = 4m + 1 for

some m € IN. Fermat asserted the following "converse": if

N=p€P can be written as p = 4m+ 1 for some m € W +then

P__has a unique representation in the form (1.21); this result

was proved by Euler (1707-1783) in a letter to Goldbach (1690-1764)
in 1749. The set of primes less than 100 which can be written as

bm + 1 is {5,13,17,29,37,41,53,61,73,89,97} and it is interesting
to check the Fermat-Euler result for these numbers. It is not
difficult to ﬁrove that if N = 4m ~ 1 then N does not have a
representatioh of the form (1.21); and that each positive odd
integer has the form Hﬁ + 1 or 4m -1 for some m € INU{0}.

Theorem 1.2 characterizes a subset of those integers which

can be written as the sum of two perfect squares. Generally,

n € N is a sum of twec sguares if and only if each prime factor of

n_of the form 4m *+ 3 has even exponents (in the standard unique

factorization of mn).

We have Just observed that no odd prime has more than one
representation of the form (1.21). It has been known since the
time of Euler - or before - that if an odd integer N ¢ N can
be written in (at least) two different ways as a sum of squares,
then N can be factored in terms of these two partitions. In fact,

we have

Proposition 1.7 Given N = a2 £ p? s e? s d2 ¢ IN where a and




o are odd and b and d are even. Set X = (a-c,d-b) and

define h,j, and m by the formulas

a-c . d-b d+b
h = —'"k—, ] = —}Z—, and m = T.
Then
(1.22) MPENTE SIS P EE R n?).
. 2 2 .2 2
For example, write 221 = 107 + 1l1- = 5% + 14 so that (1.22)

yields 221 = (17)(13).

T+ turns out that the problem of representing an integer as
a sum of at least two perfect squares ﬁas an extensive history and
‘deals ultimately in some difficult aspects of analysis, €.g.,

[Hardy, Chapter 91.

1.3.5 Biographical sketch - Fermat (1601-1665)

Besides IBell,lBB?; Gillispiel and some of the other refereﬁces
on Termat in [May], we used [Mahoney; Weil, 197371 as far as general
biography was concerned and [(Bell, 1961; Mordelll in our discussion
of Fermat's l;st theorem. The analysis in [Weil, 1874%] notes an
important relation between certain cases of Fermat's last theorem
and elliﬁtic cupves, cf., section 3.2.2. We also discussed Descartes
(1596-~1650), Mersenne (1588-1648), and Pascal (1623-1662) at this
point for theésake of perspective; and presented Fermat's contrib-

utions to the: differential calculus [Coolidge; May; Struikl.

1.4 Some analytic developments

1.4.1 Arc length

Because of the Pythagorean theorem the distance s between
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two points (xl,yl) and (xz,yz) in the plane is

2 L . . ..
8 = ((xl—xz) + (yl—yz)z)z. This notion generalizes perfectly
so that we can define the distance s between two points

)2

+ ees +
1

(XP'°-,Xn),(yl,'°°,yn) ¢ R +to be s = ((xl—y
(x_-y, )2

Let f: [a,bl — IR be a function with the property that
both f and f' are differentiable on an open interval containing
[a,bl. For a given =x € [a,b) choose Ax > 0 for which

x + Ax = b. By the Pythagorean theorem the distance in the plane

between the points (x,f(x)) and (x+Ax,f{x+Ax)) is

2%
Ax (1 N (f(x+Ax) - f(x) )
Ax
Next, for any partition, a = Xg <Ry < xy < omme < x = b, of
[a,b]l, we form the Riemann sum
n-1 f(x.+1) - f{x.) g%
) (X'+1 - x:J)[1 + i —— 1
jso ’ j*r T

Because of our hypotheses on £ - and  f', it is possible to show
that such sumé, which are the lengths of rectilﬁnear_segments
"close™ to the graph of f, tend to a number
b
L = f (1 + (£ D% ax
a

As such we define the arc length of the graph {(x,f(x)): x ¢ [a,b]}

of f +to be L. This formula involves an algebraic argument (the
Pythagorean theorem), an analytic argument (the taking of limits
to form the Riemann integral), and a reasonable definition to

introduce the notion of length for curved lines.
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1.4.2 Hilbert space

An importént ramification of the Pythagorean theorem concerns
the notion of Hilbert space. Thié structure evolved at the hands
of Volterra (1860-1940), Fredholm (1866-1927), Hilbert (1862-19u3),
E. Schmidt (1876-1969), Fréchet (1878- Y, F. Riesz (1880-1956), |
Weyl (1885-1955), and von Neumann (1903-1857) shortly after the
turn of this century (von Neumaﬁn's work was done during the period .
1927-1929). | |

Mathematical physicists studied the motion of a vibrating
string and saw that under special physical constraints the behav-
ior of the string is given by Tourier series. This development

th and early thh centuries, and was responsible

occurred in the 18
for the crystaliization of some of the basic notions of analysis.
The-study of vibrating strings or membranes with fewer or different
constraints led to more complicated equations, and as such some
intermediate problems arose which seemed tractable-for initial study.
Tor example, the motion of certain vibrating strings or membranes
whose mass is not equidistributed can first be analyzed in the
following time independent way. It is conceivable thaf after a
period of time the membrane is in a state of non-trivial equilibrium
in the sense that the membrane is in motion; and the motion is
determined by the inner forces of the body acting upon itself; in
particular, thé motion is no longer considered to be time dependent.
The problem in this case is to determine the motion of the equi-
librium state, and the differential equation characterizing this

motion is time independent. Voltérra and Fredhelm noticed that

certain of these differential systems could be formulated in_térms



38

of integral equations. For example, some equilibria problems
associated with the behaviocr of the vibrating string led to integral
equations of the form

1
(1.23) V¥x ¢ [0,1], f(x) - fo K(x,y)fly)ay = g(x),
where K and g are given and f is to be found, e.g.,
[Petrovskii; Riesz and Nagy, sections 99 and 100].

Using a method due to Liouville (1809-~1882) and C. Neumann
(1832-1925), Volterra solved (1.23) for special kernels K; his
major work appeared in 1897 and is now a standard example in
functional analysis texts. Volterra also explicitly noticed that
integral equations like (1.23) are really limiting cases of n
linear equations in n unknowns where K corresponds to the matrix
of coefficients. In 1900, the Swedish mathematician Fredholm con-
Structed a determinant D(X) corresponding to the kernel MK and
constructed solutions f +to the equation

1
(1.24) f(x) - fO A (x,y) EC(yYdy =  glx)
in terms of D(A) so long as D(A) # 0. The device of introducing
A into the discussion dates from related work by Poincaré (1854-
1912) in 1894 and actually Fredholm does not explicitly introduce
any such parameters [Bellman, 114-1%41; Kline, 1052-1070; Reid, 27u-
279) give expositions of Fredholm's results and Hilbert's subsequent
research which led to Hilbert space theory..
One facet of Hilbert's work was to notice that if g = 0 in

(1.24), then the problem of finding the "eigenvalues™ A and the

"eigenfunctions"” f is the analogue for integrals of the transforma-
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tion of a quadratic form onto the principal axes. The main result

for this latter topic is the principal axes theorem: a symmetric

quadratic form

Zaij Xixj = 0, aij = aji5

in R" can be rewritten by means of an "orthogonal™ transformation

n
as Yoo X‘2 [Courant and Hilbert, volume 1]. The physicist,

. 171

1=1 .
Lord Rayleigh (1842-1918), needed and made use of the analogue of
this result for an infinite number of variables.

Hilbért and some of the others menticned with him at the

beginning of this sectioh verified Lord Rayleigh's act of faith by

introducing the Hilbert space H of sequences x = {xn € IR: n=1,++-1}

for which |} xs < ® in line with their own work on (1.24). They

2
Lox]

y = {yn € R:n=1,°+} € H; and then, because of the finite

L
set |zl = E

and (x,y) = ) x y  for x = {xn € IR:n=1,-*+1},

dimensicnal situation, they defined =x and y to be orthogonal

if (x,y) = 0. The Pythagorean theorem for H followed from .

these definitions: if =x,y € H are orthogonal then

2 2 2
(1.25) Ix+yll" = Q="+ lyil~.
2 _ 2 - ‘ 2
Take 1 = R = RxR, x = (1,0) ¢ R°, and y = (0,1) € R".
Then (x,y) = 0, [xI = [yl = 1, x+y = (1,1) € ’R%, and [x+yl| = /2.

Consequently, we have (1.25) for this special case.

The development of Hilbert space theory and its structural

power in organizing and analyzing large classes of integral equations
received an added boost - H. Weyl refers to it as a "sort of miracle” -

when it was found that Hilbert space theory providedra good mathe-
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matical model for the quantum theory introduced by Heisenberg
(1901~ ) and Schrodinger (1887-1951) in 1925, e.g.,

fvon Neumann].

1.4.3 Biographical :sketches - Fourier (1768-1830) and Newton

(1642 =1727)

Besides [Gillispie; May] we used [Baron; Boyer, 1949;
Struik, pp. 253 ff. and pp. 282 ff.] for our discussion of
Newton and the calculus and [ Benedetto; Grattan-Cuiness, 1972
Riemann; Zygmund] for our discussion of Fourier and Fourier
series.

Our treatment of the calculus emphasized the Fundamental
Theorem of Calculus, cf., secfion 2.3.3, including its role
as a creative formula in real variable, by means of absolute
continuity [Benedettol, and in Schwartz‘é theory of distribu-
tions, by means of integration by parts; we refer to sectionr
'1.5.1 for some remarks about "creative formulas." We note that

Theorem 2.3; in which we prove that « ¢ §, uses the Fundamen-

tal Theorem of Calculus.

We mentioned Fourier series in section 1.L.? with respect
to the vibrating string problem. D'Alembert (1717-1783), Euler
(1707-1783), and Lagrange (1736-1813) each made profound studies
of this problem; but it was Daniel Bernoulli (1709-1782)'who
first saw that a relatively arbitrary graph f (of the string)
might be represented as a sum of trigonometric functions.

Fourier later grasped this idea in a fundamental way and noted
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that the coefficients in this sum are given in terms of
integrals each of whose integrands contains f and a trigono-

metric function. These integrals are the Fourier coefficients

and had actually been used much earlier by Euler.
We observed that the study of Fourier series led finally

to the proper notion of function by Dirichlet (1805-1859).

Dirichlet madé major contributions to Fourier analysis and
number theory, and, in the former tppié, he used Cauchy's
theory of integral for defining Fourier coefficients. Dirichlet
realized that more complicated graphs of the type mentioned
above, could be represented by Fourier series if more refined
theories of the integral were available. It was in this con-
text that Riemann (1826-1866) introduced the Riemann integral
[Riemann] and its corpésponding Fﬁndamenfal Theorem of Calcu-
lus. Riemann's work on trigonometric series led to Cantor's
basic research on set theory, e.g., section 1.2.5.

Finally, we discussed the essential relation between

Hilbert space theory and Tourier series.

1.5 Mathematical language and logic

1.5.1 TYTormulas and mathematical language

We have used the Pythagorean theorem as a "creative" formula.
Such a formula is an expression whose fundamental clarity and

conciseness is an efficacious sign leading inextricably to the

development of new mathematical ideas. In this chapter we have

followed the Pythagorean formula along some algebraic and analytic.

paths.
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The logic and precision in mathematical language is a funda-
mental aspect of mathematicél life, as opposed to its context, cf.
section 1.5.3., With dﬁe respect to the effective attack by the
oddest couple, Rome and Christianity, on Greek intellectual tradi-
tions, a good argument for fhe Greek demise centers about its
basic mathematical masochism, viz., inadequate algebraic notation

and mathematical language, cf.; section 2.3.1.

1.5.2 Jeremy Bentham

Besides being the "language of the sciences" (Galileo (1564~
1643)), mathematics is to some extent the language of other
seemingly totally unrelated pursuits.

An interesting example of this situation is embodied in the
work of Jeremy Bentham (1748-1832), especially in his important
criticism of the law and the notion of natural rights. His "sacred
truth" is "that the greatest happiness of the greatest number ig

the foundation of morals and legislation"; [Bentham] is his major

work on this issue. From our point of view we areriﬁterested in
Bentham's insistance on mathematical language in the discussion
cf law and morals; Bentham coined the terms "makimize" and
"minimize" to‘discuss the "optimal control problem" of maximizing
pleasure while minimizing pain.

He considered the inalienable rights constitutionalized by
various democracies to be "fictitious entitities" (Bentham's
term). For Bentham, rights are not created by asserting their

existence; in reality they are created by a législature prohibiting
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certain acts. Bentham writes: "To know then how to expound a right
carry your eye to the act which, in the circumstances in question,
would be a2 violation of that right; the law creates the right by

prohibiting that act.” A corollary is that "for every right which

the law confers on one party,°*® it thereby imposes on some other

party a duty or obligation.”

His approach was to try to find the reality of a given word
and "to measure the worth of that reality by the standard of
utility" [Bronovski and Mazlish, p- 444]; His radicalism was to
construct a philosophﬁ of law and morals logically with a great
emphasis on the study of language and codification (one of his words)
of material. Bentham as well as Comte (1798-1857) generally share
the honor of influencing Mill's (1806-1873) positivism, and as such
an argument can be developed that Bentham was a precursor of
twentieth century logical positivism, e.g., [Ayer; Papl; and that
perhaps the study of the logical foundations = of mathematics and the
philosophical problems of physics could not have taken place if
the philosophical milieu (along with economic factors) of iogical
positivism did not exist. |

Bentham's predilection with mathematical form is illustrated
by his comment on mischievous acts: "There may be other points of
view, according to which mischief might be divided ++- ; but this
does not prevent the division here given from being an exhaustive
" one. A line may be divided in any one of an infinity of ways, and

yet without leaving 1n any one of those cases any remainder."
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1.5.3 Logic in mathematics

Logical positiviém as a philosophical position on language
and truth leads to out final comment in this section, cf., [Ayer;
Benacerraf and Putnam; Weyl, Chapter 1]. The importance of symbolic
and/or precise language and the necessity of that intellectual
pacifier, a logical foundation, seem distinct from the content of
mathematics itself.

. The Thtuitionist logical position developed by L.E.J. Brouwer
(1882-1966) requires that mathematical proofs be constructive; for
example, reductio ad absurdum arguments are not allowed in Brouwer's
program, e.g., [Brouwerl. In reaction to this stance, Hilbert
commented that "most of the results of modern mathematics would
have to be abandoned (under Brouwer's approach), and to me the most
important thing is not to get fewer vesults but to get more results;”
With regard to Hilbert's remark, Hans Lewy (1904- ) (who was a
Privatdozent at GSttingen at the time of Hilbert before becoming
professcor at University of California at Berkeley) added: "If we
have to go through so much trouble as Brouwer says, then nobody
will want to be a mathematician any more. After all it is a human

activity. Until Brouwer can produce a contradiction in classical

mathematics, nobody is going to listen to him. That is the way,

in my opinion, that logic has developed. One has accepted principles
until such time as one notices that they may lead to contradiction
and then he has modified them. I think this is the way it will
always be. There may be lots of contradictions hidden somewhere: and

as soon as they appear, all mathematicians will wish to have them
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eliminated. But until then we will continue to accept those ﬁrin-
ciples that advance us most speedily.™ A'similar-sentiment is-given
in [Gleason, Prefacel: "there are mathematicians who claim that

there is no difference between mathematics and set theory, but I
believe this claim can be diémissad. No mathematician of my acquaint-
ance would-abandon his field if an apparently insurmountablé contra-
diction were discovered in the general concept of a subset.“

The axiom of choice is: let S be any non-empty collection

of non-empty sets; there is a function f defined on S such

that
¥vS €S, f(S) € S.

It turns out that the rather‘ethereal statement of the axiom yields

a good deal of down to earth mathematics. A discussion of the axiom
of choice is found 1n [Benedettol. The Intuitionists do not allow
themselves the sinful pleasure of the axiom, and are forced into

éome rather awkward situations. For example, in defining the réal
number system IR by means of (1.6), the Intuitionists can't obtain
the usual "intuitive" property that IR is linearlyrordered.'On

the other hand, Brouwer's program has recently achieved some sigﬂifi-
cant.mathématical success in [Bishopl, cf., [Birkhoff, 1875; Stolzen-

bergl.

1.5.4 Biographical sketches - Hilbert (1862-1943) and Poincaré

(1854-1912)

Besides [Bell, 1937; Gillispie] and the reference ih TMay ]

we also used [Reid] in this discussiom.
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Exercises for Chapter 1

1.1 a. Use Theorems 1.2 and 1.3 to prove that al+ - bq = ¢ has

no solution (a,b,c) € W xIN xIN .

b. Use part a to prove Fermat's last theorem for the case

n = Um, m € IN.

1.2 Write (]’;‘) = sz{érﬁ where Kk = 0,+++,n,k! = k(k=1) <+ 2-1,
and 0! = 1. If n € N and we expand the expression (a+b)",
its coefficients are (E), k = D,*++,n; these are the binomial
coefficients of (a+b)”. We now form the following‘matrix.

The _nth lrow consists of the n+l numbers (E), kK = 0,°-+,n,

between the columns 2n and 3n, and zeros elswhere. Prove
that n € IN is a prime if and only if each number in the nth
column is divisible by its corresponding row number. For
example, the noh—zero elements of the l3th column are 10 at
row 5 and 6 .at row 6; and the non-zero elements of,the

1uth column are 5 at row 5, 15 at row 6, and 1 at row 7.

This observation is due to H. Mann and D. Shanks.

1.3 Find the errors in the following false proof of the following
(false) improvement of the Pythagorean theorem: given a

triangle whose sides have lengths a,b, and ¢; then a + b = c.

"Proof." P =a +b + ¢ is the perimeter. As in Figure 4, we
- _ 1 a : . ) .
let al,l = al)2 = xa; and draw the ;;ne of length b1’1

parallel to the line of length b, and set ‘bl o = b - bl 1
2 bl
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Figure Y4
= + +
Then P c (al,l 31,2) + (b1,1+b1,2). We then perform the
same construction on each of the two small triangles in Figure
. - - 1 -
b thgs, to start we set 5112’l = a2,2 = 5 al,l and a213
1 Iy y
az)q = ?Eil,Z' Once again we obtain P = c + § aZ,ﬁ + § bZ,j'
At the nth step we have o™ 1ittle triangles within the

original and the sum of the perimeters of these triangles isg

P, e.g., Figure 5.
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Obviously, the heights of these little triangles tend to

n,3

Zero gince the a,
and so the saw-tooth form "AANrssAA" in Figure 5 approaches

and b . tend to zero for large ﬁ,
’ .
the base line of length ¢ as n +tends to infinity. On the

other hand,

Yn, a+b = : oa. .+ ] b .

and so a + b+ c =P =c+ c. This yields our (false) result.
Fudoxus and Archimedes were able to compute the area of

certain closed curves by means of tiny triangles. As we'll see

in Chapter 2, they proceded much more cleverly than we did in

this exercise.

Let (a,b,c) and (a',b',c') be Pythagorean triples
satisfying (1.11), (1.12), and (1.13). Prove that

ce' - (ab'-a'b) is a perfect square. In fact, this expression
is equal to (n(n'-m') + m(n’+m'))2 where, for ekample,

a = 2mn, b = n2 - m2, and c = n27+-m2.

Consider the formulas d, = P1P, *** P + 1, where Py = 2,

n
P, = 8+ and p; is the j-th prime, and F_ ?'22 1.

Fn is a Feérmat number.

a. Use 4, to prove that there are infinitely many primes.
b. What is the first value of n for which q, ¢ P?

c. Use. Fn to prbve that there are infinitely many primes,

d. Fermat conjectured that F, €¢FP for all n. TIn 1732
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Euler showed that 641fF5. Verify this fact without a

mind-boggiing long division.

t ; .
e. Prove Bertrand's postulate: pn+1_— P, <P

.
: (2)
£, Define 217 = o, 2(2) o 2 .y L) _ 52 = 16,-0.,
2 = 2 s*°*. Prove that there is r ¢ IR such

that for each n, [(QCH))P] ¢ P, where [al is the
integer part of «. <(Hint. From part € we can construct

a sequence {qn: n € W} ¢ P such that for each n

q q +1
n 2

? < qn+1 <

Set r_ o= log, (log2(°°' log, qn)) **+), the n-times
iterated logarithm to the base 2, and define r = lim r_

_ AN
. Mn = 2

are named after the French priest Father Marin Mersenne,

-1, n € N, is a Mersenne number. These numbers

cf., section 1.3.5. In the preface of his book Cogitata

Physica -~ Mathematica (1644) he asserted that Mp €P

for certain primes. Verify that Ml3 € P but MiS ﬁ P.
In 1903, F.N. Cole (1861-1928) observed that Mo =

(193,707,721)(761,838,257,287); in 1876 E. Lucas (1842-
1891) was first able to show that MG% f P. The largest

known prime is the Mersenne number M19937'

Remark It is not known if @ = {p € P: p + 2 € P} is an infinite

set. Related to this problem is the Goldbach conjecture: if n > U4

is even then n = p + ¢ for some p,q € P. Goldbach stated this
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in a letter to Euler in 1742. In 1937, the Russian Vinogradov
(1891- ) ?roved that all odd numbers from some (yet to be
determined) point on are sums of three odd primes. More recently,
Bombieri (19u0- ) has constructed "asymptotic sieves" to close

in on the Goldbach conjecture.

1.6 Johann Bolyai (1802-1860), Gauss, and Lobachevsky (1792-1856)
fbrmulated a non-Euclidean geometry in which Fuclid's parallel
axiom was not valid. Lobachevsky published his work first in
1826 and this geometry is "hyperbolic" in a certain well-
defined way [Hilbert and Cohn-Vossen]. Riemann's geometry was
the next and even more profound step in geometrical research;
in terms of Riemann's theory, hyperbolic geometry is a two-
dimensional Riemannian manifold with constant negative curva-
ture where the Riemannian metric is hyperbolic distance.
Hyperbolic geometry achieved some intuitive appeal with the
so-called Cayley-Klein and Poincaré models. Poincaré used his
model to study certain differential equations and analytic
functions.

We shéll describe the Poincaré model of hyperbolic

geometry. The hyperbolic plane H is the set {(x,y): v > 0} ¢

RxR, and a point of H is defined tc be an element of H.

A straight line in H is a circular arec in {(x,v): v > 0}

which meets the x-axis at right angle(s), e.g., Figure 6.
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R and

The angle at the point of intersection of two rays 1

R, in H 1is the ordinary Fuclidean angle determined by the

tangents, e.g., Figure 7.

- Figure 7

If p,q € H then the hyperbolic length d(p,q) . of the

segment pq is defined in the following way. Let L be the

unique line in H for which p,q € L, let a = b be the
iimit points of L on the x-axis, and let p' = q' Dbe the

projections of p and q onto the x-axis. Set

—p"){b-q"
4p,a) = Flog Ez-g";ﬁa-%';

With these definitions we can prove that, except for Fuclid's
parallel axiom, the axioms of Euclidean geometry as found in
[Euclid; Hilbert] are satisfied. Also, hyperbolic length

can be defined in terms of the "Euclidean" arc length

integrals introduced in section 1.4.1.
Prove that Euclid's parallel axiom is not satisfied in
hyperbolic geometry.

b. Prove that the sum of the angles of. a triangle in
hyperbolic geometry is less that 2w radians, cf.,

with the discussion at the end of section 1.2:2.
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2. An Alexandrian duet - Archimedes and Diophantus

2.1 Archimedes

2.1.1 Biographical sketch ~ Archimedes (287-212)

2.1.2 The method of exhaustion

We know how to define the area of a rectangle or triangle
but it is a more subtle problem to define properly the "area"
of a subset S of a plane enclosed by curves which are not straight

lines. The Budoxus-Archimedes method of exhaustion attacks this

problem by "exhausting" 8§ of as many triangles and sguares
as we can and keeping track of the area of these rectilinear objects.
This method demands ad hoc ingenuity depending on the subset con-
sidered as well as a technique to deal with the obvious limiting
process involved; the limiting process involves the Axiom of
Archimedes.

We shall illustrate the method of exhaustion in Theorem 2.1;

this result is found in [Euclid, Book 12, Proposition 2]. Note
that we are being illogical but reasonable by assuming (to begin
with) that there is a well-defined number A which is the area

within the circle C.

Theorem 2.1 Let Ai be the area within the circle C:.L whose

radius is ., i=1,2. Then
(2.1) i - -
Proof We shall prove that the inequality Al/A2 > (rl/r2)2 leads

te a contradiction. A similar argument works for

2
Al/A2 < (rl/rz) .
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Suppose A]_/A2 > (rlfrz)z. Then there is A < A such that

_ 2
(2.2) = = — :

here we have used the fact that TR  has no "gaps", cf.,
Axiom of Archimedes.

We now inscribe each Ci with a sequence of regular polygons

= ¢ ¢ ° : n+l
Pi,n’ n =1, , where, for each n, Pi,n has 2
sides.
Let A. = A. - A(P. ), where A(P. ) 1is the area of P,
1,0 i 1,n i,n
1 . . .
then Gl Ai,n > Ai,n+l’ a fact which is most easily seen

by a drawing before checking it analytically.

From the Axiom of Archimedes there is n for which

1
Al - A > gﬁ Al,l’ and so
1 1 1
Ay - A > on Ay ? -1 By o 7 07 Ay g ? > Ay ne1
Therefore A, - A > Al,n+l = Ay - A(Pl,n+1) and we have
(2.3) A(Pl,n+l) Al
It is routine to verify that
2
A(Pl,n+l) i ry
(2.4) NGRS o ,
2,ntl 2

so that by combining (2.2) and (2.4) we obtain

AQ A(P2,n+1

Consequently, because of (2.3) we must have A(P, n+1) > Ay

i,n
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and this is the desired contradiction since P2 N+l is
b

insecribed within CZ’

g.e.d.

A detailed analysis of this argument is made by Heath in

[Euclid].

Remark 1 We have talked about the area within a circle in

Theorem 2.1 TIn fact, we must define the notion of such an area,

and the argument in Theorem 2.1 can be properly spruced-up to

yield a well-defined and intuitively reasonable number Ai

corresponding to Ci'

2. The formula (2.1) asserts the existence of the number. .
In fact, if r, = 1 then for any cirele C, we have the formula,
A = WPQ, where T 1is the area A2 (and r and A are the

radius and area corresponding to ). Naturally, it is interesting

to evaluate w. The famous classical problem of squaring the

circle is to find out if a line segment of length ™ can be
determined by a ruler and compass construction. We shall discuss
the evaluation of w7 1in section 2.1.4% and the squaring of the

- circle problem in section 3.3.

2.1.3 Archimedes! 1 :2 :3 theorem

2.1.3.1 Archimedes' mechanical proofs

Before determining the area within parabolic segments, etc.,
geometrically by the method of exhaustion, Archimedes frequently
first solved the problems by means of mechanics [Archimedes,

Chapter 7 section 8 and pp. 241-243; Heath, pp. 288-290].
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Apchimedes' Method (ie., On mechanical theorems, method (addressed)

+o Eratosthenes), discovered in Constantinople by J.L. Heiberg in

1906, contains these mechanical methods. These mechanical proofs

are actually the basis of present-day solutions in terms of
integration theory; although from Archimedes' point of view they
proyided the heuristic basis that led to his "rigorous” géoﬁetric
proofs. Also, some aspects of Archimedes' geometrié solutions

of area problems can be dealt with quite easily in terms of
differentiation techniques. An argument has been made in [Bachmakoval
that Archimedes did use a form of the differential calculus in his

heuristic proofs.

2.1.3.2 Background for the 1 :72 : 3 theoren

Let T be an isosceles triangle whose base 1s twice its
height. We inscribe T in a semi-cirecle € which, in turn, we

inscribe in a rectangle R, e.8., Figure 8.

A
,’/ \
/ .
0
Figure 8

We generate the corresponding cone, hemisphere, and cylinder by
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rotating T, C, and R about the segment AO. The respective
volumes of these three solids are denoted by Vl’ Vz, and V3.

Archimedes' 1 :2 ¢+ 3 +theorem is

Theorem 2.2 ‘V1/V2 = 1/2 and V2/V3 = 2/3.

Archimedes proves this resuit geometrically in‘[Archimedes,
On the sphere and cylinder]. He claims that Democritus discovered
the fact that Vl/V3 = 1/3 but that the part of the proof depending
on the method of exhaustion was due to Eudoxus. This proof is found
in [Euclid, Book 12, Proposition 10]. Archimedes completed the

proof of Theorem 2.2 by proving that Vl/V2 = 1/2. Archimedes

obviously considered this to be a remarkable result since he asked
that his tombstone have the carving of a spere inscribed in a
cylinder. This requesf was followed and Cicero (106- 43), the
Roman orator, found the tombstone when he was quaestor of Sicily.
At that time the tombstone had been neglected, and Cicéro was
responsible for its restoration (the tombstone was again forgotten
and recently rediscovered in 1965). Unfortunately, Cicero more

than balanced this action with the remark: "Among the Greeks
nothing was more glorious than mathematics. But we (the Romans)

have limited the usefulness of this art to measuring and calculating."

2.1.3.3 Mechanical proof that Vlilz = 1/2

Using the notation of section 2.1.3.2, we shall verify that
Vl/V2 = 1/2. We shall give the mechanical proof that is in

Archimedes' Method; this proof uses the Democritus-Eudoxus result

that V3 = 3V1.



63

We begin by describing the law of the lever, viz., (2.5):

the lever in Figure 9 is in equilibrium if
(2.5) aA = bB,

where A and B are weights having distance a and b,

respectively, from the fulcrum,[l.

Figure 9

Figure 10 is the drawing we shall use to prove Vl/V2 = 1/2.

Let S be a sphere of radius r and center 03; we'll work on a

plane P through 0. Take perpendicular diameters AB and CD
of 8§ {(in P).
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Figure 10

When we rotate the triangle AACD about the segment
obtain a cone inscribed in the hemisphere obtained by
the arc CAD about AO. We also form the rectangle
determined by the lines parallel to the circle at A

and by the points F and H which are on the lines

AD we

rotating
EFGH
and B,

AC and
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AD. Let XY be a line intersecting A0 at 4 and parallel to
CD. Also, XY intersects the circle at M and N and the
triangle AACD at U and V. Finally, we extend AB to the
point I so that the lengths |IA| and |IB| satisfy l1a| =
?2r and |IB] = Wr, vrespectively.

Note that
(2.6) |FB| = |BH|] = 2r.

In fact, AAOC and AABF are similar triangles, and so (2.6)

follows since |AB] 20, lA0| = r, and |OC| = r. Next set

|uz] = a and |MZ| = b, and note that |A7| = a since AAUZ
is a right triangle and the angle 3 ZAU is m/Y% radians.

Consequently, the right triangle AAMZ has the property that
(2.7) a2 = a? + %,

Observe that AAMB is a right triangle with right angle at M

since AB 1s a diameter. Thus,

(2.8) 1aMi? = (2?2 - |uB|%.

From the right triangle AZMB we obtain

(2.9) b2 = mB|? - (2r-a)”.

(2.7) and (2.9) yield

(2.10) IAMI2 = &’ ; ]MB|2 - (2% + ura - a2;

so that by adding (2.8) and (2.10) we obtain

(2.11) |aM]? = 2ra.
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Also we combine (2.7) and (2.11), and have

(2.12) 2ra = a’ + bl
we write this as
(2.13) 2r(m(a’+b2)) = an(2p)?.

We now rotate our figure about IB so that the circle generates

S, the triangle AAFTH generates a cone whose base is a circle

of radius |BF| = 2r and whose height is IAB! = 2r, and the
rectangle EFGH generates a cylinder whose base has radius |BF]| =
2r and whose height is [AB| = 2r. 1In this rotation, XY deter-

mines a plane which intersects the cone in a circle CC of radius
a, the sphere in a circle CS of radius b, and the cylinder
in a circle CC of radius 2r. With this notation and the fact

that |AI| = 2r, (2.13) becomes
(2.14) |AI[(A(CC) + ACCL)) = |AZ]A(CL),

where A( ) represents area.

(2.14) should be compared with (2.5); in fact, we suppose
17 is a lever with fulerum at A. Heuristically, then, we con-
sider circular discs with weights proportional to their areas so
that (2.14) expresses the law of the lever. Consequently, if we
consider n such cuts XY equidistributed by the points
O,Zl,--ﬂ,Zn = 0 along A0, then we can think of the sum

of n areas A( ) as approximating the volume V of the

A =17

corresponding solid. Thus, since |AI| = 2r, the left-hand side

of (2.14) becomes
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(2.14 left) Qr(vl + Vz).

For the right-hand side we see from the equidistribution that

I 1 oo n N
) |AzZ.|ACC) = =V, ) [AZ.]
521 7 C n 3 I ] g
: 1wy 1,2,3,....1
(7.14 right) = =V r(orianree D !
_ T 5 ntl) E
273 2 ’ 7
n :
where vg = ﬂ(?r)zr is the volume of the cylinder whose base ;
has radius |AE| = 2r and whose height is |AO|{ = r. Since i
Vg = HPS, we have VS = WV, Therefore, equating (2.14% left) 3
and (2.14 right), we compute {
.
(2.14) Vl + V2 = V3
since 1lim (ntl)/n = 1. We now use the Democritus-Eudoxus result,
n-co
V3 = BVl, to obtain Archimedes' theorem, V, = 2V1.

2.1.3.4 Surface area of spheres

Once Archimedes had proved the 1 :2 :3 theorem, he made the
statement [Archimedes]l: "From this theorem,¢<«+, I conceived the
notion that the surface (area) of any sphere is four times as
great as (the area of)a great circle in it; for, judging from the
fact that (the area of) any circle is equal to (the area of) a
triangle with base equal to the circumference and height equal to
the radius of the circle, I apprehended that, in like manner, (the
volume of) any sphere is equal to (the volume of) a cone with

base equal to the surface (area) of the sphere and height equal
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to the radius." In fact, this result on the surface area of spheres
is true, and is proved rigorously (geometrically) in [Archimedes,
On the sphere and cylinderl, cf., [Meschkowski] for a relatively

easy reading of this procof.

Q.l.h m

2.1.4.1 Archimedes' computation

In light of his interest in figures with circular parts it
is not surprising that Archimedes sought to evaluate the constant

determined by Theorem 2.1 and which Euler baptized "' (from

the Greek "perimetros"). In fact, he proved that

10 10
3ﬂ' < m < 3"7—6

in his work [Archimedes, Measurement of a circlel, ef., Exercise
2.7.

Considerable effort had been made in estimating the value
of T before Archimedes' attempt; an interesting discussion is
found in [Beckmannl.

By means of Archimedes' method, lLudolph van Ceulen (1540~
1610) of Leyden computed w +to 35 decimal places using inscribed
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and circumscribed polygons having 2 sides. A good deal of

his 1life was spent on this project.

2.1.4.2 m in the sky

The following data concerning the decimal expansion of
are amusing [Tietze, p. 1001,
Four decimal places are sufficient to determine the circum-~

ference of a circle to within 1 mm. if the radius is less than
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30 meters. If the radius is as large as the distance from the
earth to the sun then 15 places are sufficient to determine the
circumference to within a meter.

Suppose we have 7 +to 100 places, and consider ther
following situation. Take a spere S with center the earth and radius
the distance d to Sirius; it would take 8 3/4 1light years to

reach the surface of our sphere S from here. Suppose we fill
012

§ with microbes so that each cubilc millimeter contains 1
(a trillion) microbes. Next, put all of these microbes in 5 on
a straight line such that the distance between any two of them

is d; and form a circle whose radius r is the distance from

the first to the last {(of the microbes). If the decimal expansion

of wm *to 100 places is denoted by L then

|21 -~ QWOPI < 1077 mm.

This observation was made in 1889 by Hermann Schubert (1848-1911).

These examples perhaps undermine the clever mnemonics that

have been devised for m, e.g., LEves, pp. 61-62; Tietze, p. 1041].

72.1.4.3 w is irrational

The following result was first proved using continued fractions

by the Swiss J.H. Lambert (1728-1777) in 1761.

Theorem 2.3 ﬂ2 is irrational and therefore 1w 1is irrational.

Proof a. Define

M (1-x)"

fl
~»

¥n = 1 and VY¥x € [0,11, fn(x)

and observe that for each ‘n > 1 we have
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(2.15) Yx ¢ (0,1), G < fn(x) < 1/nt

b. We note that
vi = 0, f;j)(O) € 7;

and so by the symmetric definition of fn we also have
vi = o, £ €.

Further, fn is a polynomial of degree 2n, and therefore

f52n+2) is identically 0.
¢. Assume ﬂz = a/b where a,b € N . Define
Fo(x) = bnfﬁznfn(x) - ﬂ2n~2f£2)(x) + w2n_4féu)(x) - e
£ DI Gy e gy,

From part b and our hypothesis about W2 we see that

Fn(O),Fn(l) € Z.

d. We now compute

d

1 T _
A Fn(>{) sin mx ﬂPn(X) Qo8 ﬂx)

F(2)
n

i

sh}m<( (x)+1£ﬁ5x4

ngnnxbﬁﬁf’@)-wﬁﬁ?é”%x)+---+(4U9%ﬁ“2%x)

F e Go - e D LAY GO DM (5

nﬂ?n+2

b fn(x)-sin X,

where the last equality follows since f;2n+2)(x) = 0.
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Thus,

n

F'(x) sin mx - wF_(x) cos mwx = ﬂza f (%) sin ©wx.
n n n

4a
dx

Integrating, we obtain

2 n Jl
T a

. fn(x) sin mxdx = W(Fn(l) + FD(U)),

and so
. -
(2.16) Ta J fn(x) sin mxdx € 4.
’ 0

On the other hand we have
n . n
Yyn = 1, 0 < Twa f fn(x) sin wxdx < ma /n!;
0

the first inequality follows from the positivity of fﬁ(x)

and sin 7x on (0,1), and the second follows from (2.15).

n
For iarge n, mwa /n! < 13 and so for such n,

1
ra’ f fn(x) sin mxdx € (0,1); this contradicts (2.16).

0
Thus ﬂ2 can't be rational, and hence n itself is irrational.

q.e.,d.

Note the similarity in idea of proof between Theorem 2.3

and Proposition 1.2, where we showed that e ¢ 9. In 1882,

C.L.F. Lindemann (1852-1939) proved that not only is T

irrational, but it is also a tpanscendental number. As we shall

see, this latter fact provides a negative solution to the squaring

of the circle problem.
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2.2 Diophantus

2.2.1 Biographical information

It is not certain exactly when Diophantus of Alexandria
lived, although most historians of mathematics have sufficent
evidence *to place his writings in the interval 150-350 A.D. A
guess is made by Tannery on the following evidence [Diophantus, p.21],
cf., [Neugebauer, pp. 178-179]1 for a refutation of sorts. There is
an admittedly corrupt llth century letter by the Byzantine
Michael Psellus (1018-1080) dealing with Egyptian computational
techniques in which he says: "Diophantus dealt with it more
accurately, but the very learned Anatolius ( ~-283 A.D.) collected
the most essential parts of the doctrine as stated by Diophantus
in a different way and in the most succinct form, dedicating his
work to Dicphantus.” Now, Anatolius wrote this about 278-27% A.D.
and was the (Catholic) Bishop of Laodicea shortly thereafter. If
one could assume that there was a teacher-student relationship
between Diophantus and Anatolius, given the dedication, then we
might guess that Diophantus' research period was about 250 A.D.

Tannery has also suggested that Diophantus was a Christian
although there seem to be good arguments against this [Diophantus,
p. 21.

We have precise information about Diophantus' age, There
is a collection of 45 arithmetical epigram-problems assembled
mostly by the grammarian Metrodorus (o. 500 A.D.) and found in
the Anthologia Palatina; generally, the sclution to each such
problem is equivalent to solving a simple system of simultaneous

linear equations. One of these is the following epigram-problem
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concerning Diophantus' age x: his boyhood lasted 1/6 of his
1life; his beard grew after 1/12 more; after 1/7 more he married,
and his son was born § years later; the son lived to 1/2 his

father's age, and the father died four years after his son. Thus,

1, 1.1 1

. _ 1
which leads to 9 = x(1 - 5= 5" 7T Ii—), and so

g = Xsu-uz-lu-lg_
B 8 >

consequently, x = 84. The 19th century mathematician Augustus
De Morgan (1806-1871) played the same game: "T was x years old
in the year xz” (x = 43).
The Anthologia Palatina contains problems similar to those i
in the Rhind papyrus. The Rhind papyrus was written about 1650 B.C. *
by the scribe Ahmes and was taken from even earlier work. It is
named after the Scottish Egyptologist A. Henry Rhind {(1833-1863)
who bought the text in Luxor in 1858 and then willed it to the

British museum; it was published in 1927.

2.2.2 Arithmetica

Diophantus' major work 1is the Arithmetica [Diophantus, 129-

o461, of., [van der Waerden, pp. 282-286], of which six of the
original books are extant. This treatise introduces a certain
amount of symbolism in the discussion of algebraic problems; the
use of symbolism is, of course, important, and extensive dis-
cussions of Diophantus' syncopated algebra are found in the

literature, e.g., [Diophantus; Heath].
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The Arithmetica contains 189 problems dealing with poly-~

nomial equations P(xl,---,xn) = 0, where P has integer
coefficients and whers X15°7",X  are the variables; it is
desired to find solutions (xl,°--,xn) ¢ 2. Such equations

with these constraints on the polynomial and +he solution space

are Diophantine equations; an interesting modern survey of results

in this field is found in [LeVeque, Pp. 4-24]. Diophantus actually
considered positive rational solutions and his equatiocns did not
go beyond the fourth degree.

Among the particular results given by DRiophantus we mention
the following. There is the characterization of Pythagorean triples

that we gave in Chapter 1 and which was known to the Babylonians.

He was able to solve axi + bxl + o = xg for the cases a or c
equal to 0, a or ¢ a square, and
_ _ 2
b = 0 and a+c¢ = n°, n ¢ 2,

cf., Pell's equation in Theorem 2.6. Finally, we note that he

could soive the simultaneous equations

2 9
alxl + blxl + Cl = X2
2 2
Ag¥y * byx) + oy = xj

(e.g., [Diophantus, Chapter 4; Swift, pp. 166 ff.]).

The German mathematician Hermann Hankel (1839-1873) gave the
following comment on Diophantus in his book on the history of
mathematics. "The reader will now be desirous to become acquainted

with the classes of indeterminate problems which Diophantus treats
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of, and with his methods of solution. As regards the firstrpoint,
we must observe that included in the 130 (or so) indeterminate

problems, of which Diophantus treats in his great work, there are

over 50 different classes of problems, strung together on no
recognisable principle of grouping, except that the solution of
the earlier problems facilitates that of the later. The first
Book is confined to determinate algebraic equations; Books Il to
V contain for the most part indeterminate problems, in which
expressions involving in the first or second degree Two Or more
vapriables are to be made squares or cubes. hLastly, Book VI is
concerned with right-angled triangles regarded purely arithmetic-
ally, in which some linear or quadratic function of the sides 1is
+o be made a square or a cube. That is all that we can pronounce

about this varied series of problems without exhibiting singly

each of the fifty classes. Almost more different in kind than
the problems are their solutions, and we are completely unable
to give an even tolerably exhaustive review of the different
turns which his procedure takes. 0f more general comprehensive
methods there is in our author no trace discoverable: every
question requires a quite special method, which often will not
serve even for the most closely allied problems. It is on that
account. difficult for a modern mathematician even after studying
100 Diophantine solutions to solve the 10lst problem; and if we

have made the attempt, and after some vain endeavours read

Diophantus' own solution, we shall be astonished to see how

suddenly he leaves the broad high-road, dashes into a side-path

and with a quick turn reaches the goal, often enough a goal with
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to climb a toilsome path, but to be rewarded at the end by an
extensive view; instead of which our guide leads by narrow,
strange, but smooth ways to a small eminence; he has Finished!

He lacks the calm and concentrated energy for a deep plunge

into a single important problem; and in thig way the reader also
hurries with inward unrest from Problem to Problem, as in a

game of riddles, without being able to enjoy the individual one.
Diophantus dazzles more than he delights. He is in a wonderful
measure shrewd, clever, quick-sighted, indefatigable, but does not
penetrate thoroughly or deeply into the root of the matter. As

his problems seenm framed in obedience +o no obvious scientific
necessity, but often only for the sake of the solution, the
solution itself also lacks completeness and deepep signification,
He is a brililiant performer in the art of indeterminate analysis
invented by him, but the science has nevertheless been indebted,

at least directly, to this brilliant genius for few methods, because
he was deficient in the speculative thought which sees in the True
more than the Correct. That is the general impression which T have
derived from g thorough and repeated study of Diophantus?
arithmetic,"

For perspective it isg well to juxtapose Euler's remark:
"Diophantus himself, it is true, gives only the most special
solutions of all +he questions which he treats, and he ig generaily
content with indicating numbers which furnish one single solution.

But it must not pe Supposed that his method was restricted to

these very special solutions. In his time the use of letters to
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denote undetermined numbers was not yet established, and conse-
quently the more general solutions which we are now enabled to

give by means of such notation could not be expected from him.
Nevertheless, the actual methods which he uses for solving any

of his problems are as general as those which are in use today;

nay, we are obliged to admlt that there is hardly any method yet
invented in thig kind of analysis of which there are not sufficilently

distinct traces to be discovered in Diophantus."

2.2.3 Hilbert's tenth problem

In 1900, David Hilbert gave his famous list of 23 problems
[Hilbert]. The tenth problem on this list is: given the polynomial
equation
(2.17) P(Xlgii-,xﬁ) = 0
with integer coefficients and variables ERRREE does there
exigt an algorithm A(P) +to determine whether or not (2.17)
has a solution (xl,ﬂ--,xh) ¢ 7. By an algorithm A(P) we

mean a finite set of inetructions which deseribes, in a completely

deterministic way, how to start from (2.17) and to obtain after a

finite number of steps the correct anewer +o the question: does

(2.17) have a esolution Cxl,ii-,xﬁ) e 2", At no step in the
process should the insgtructions eall for either ingenuity or

chance., On the other hand, we do not demand practieality of the

method or place any restrictions on time or space needed to carry
out the process'" [Robinson, p. 801,

In 1970, Y. Matiyasevié proved that there is a Plxp,tse,x,)
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with no corresponding A(P). Fundamental work had previously

been done by M. Davis, H. Putnam, and J. Robinson. Gddel's
profound study (19315 asserting the existence of undecidable
statements in formal systems set the stage for all of the sub-
sequent work in the field. It 1s interesting that Pell's equafion,
e.g., section 2.2.6, and Fibonacci numbers have played a role in
the research culminating in Matiyasevid's result. [Davis] is an
excellent exposition of the problem, its solution, and its history;

and [Chowlal is a study of some interesting related material.

2.2.4 Hypatia and the Arithmetica

Frequently, there are fascinating stories and unanswered
questions attached to a book's journey from ancient to modern

times; we now give a few remarks con the Arithmetica's trip, cf.,

[Diophantus, Chapter 21].

Hypatia (370~415), the daughter of Theon of Alexandria, was
murdered by Christian fanatics. Theon was the author of the
revision of Euclid's Elements from which all subsequent editions
emerged. Hypatia was & neo-Platonist and gave lectures on philoso-
phy. Her students included Synesius of Cyrene who became the
Bishop of Ptolemais. Their close contact is symbolic of the relation
between early Christian spirituality and pagan philosophy. Un-
fortunately, Hypatia was also a victim of the militant Christian
spirit. Hypatia is important to us because of her commentary on the

Arithmetica. Tannery has suggested that the remarks by Psellus that

we menticned earlier might have been taken directly from Hypatia's

recension of the Arithmetica.
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The Arithmetica found its way into Arabian algebra before

1000 A.D.; and it was Regiomontanus (1436-1476) who in 1463,

after seeing Cardinal Bessarion's copy of the Arithmetica

"zecording to Planudes™ (1260-1310), suggested a translation of

it from Greek inte Latin. The tasgk was completed in 1575 by Wilhelm
Holzmann (1532-1576) of Heidelberg; Holzmann was also called
Xylander, the Graecised form of his name. The manuscript that
Xylander translated belonged to Andreas Dudicius. Xylander intended

also to publish the Greek text of the Arithmetica but died before

he was able.

Using vet another Greek manuscript of the Arithmetica as well

as Xylander's work, Bachet de Méziriac (1581-1638) published a

Latin translation of the Arithmetica in 1621 along with the Greek

text and notes. Unfortunately, Bachet not only underestimates
¥ylander's influence on his own work but actually denigrates the
latter's research; luckily, Heath was able to find a copy of
Xylander's work and to advertise correctly Xylander's important
contribution to scheclarship. Bachet also borrowed freely firom
Bombelli's (1526-1573) algebra text (1572) which included all of

the problems from the first four books of the Arithmetica.

It was in the margin of Bachet's book that Fermat wrote his
famous claim, Fermat's last theorem, that we discussed in section
1.3.2. Fermat's son published another editiocn of Bachet's book in
1870; this edition is inferior to Bachet's original edition as

far as the Arithmetica is concerned but it contains Fermat's notes

which his son collected from the margins of his papa's copy.
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2.2.5 Linear Diophantine equations

We shall characterize all solutions (Xl’XQ) € Zx7 of the

equation

(2.18) ax, * bx, = ¢,

where a,b,c € Z. This equation was not explicitly considered in

the Arithmetica, cf., [Diophantus, D. 67]. Since Diophantus

allowed solutions Gﬁ}xz) € 0 x@Q, such equations did not have a
particular significance for him. [Ore, p. 1847 is of the opinion
that Dicphantus was capable of finding the integral solutions of
(2.18).

In any event, the complete characterization of (2.18) for
integer solutions was first given by the Indian Brahmagupta (598-
660); another Indian, Aryabhata (475-550), had previously made a
contribution to the problem. Brahmagupta alsc worked on Pell's
equation which we'll discuss in section 2.2.6.

We'll use the Euclidean algorithm, given in section 1.3.2, to

prove

Proposition 2.1 Let ¢ = 1 in (2.18) and assume that (a,b) = 1.
2

Then there is a solution (xl,xz) € 7 of (2.18).

Prootf. Let a > b so that by Proposition 1.4 and our assumption

on (a,b) we have ro_p T qr ¢ tr, and Thel = 9p417,
where ro=1-= (a,b).

Thus,

(2.19) L= r ,-qr ;-
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n-3  In-1tn-2
substituting this in (2.19) we obtain

+ r by the Fuclidean algorithm; and

We have v a1

1 = - g.~1

n n-3 (qn—lqn * l)rn—Q'

Proceeding backwards in this manner we actually construct a
. ' 2 _
solution (xl,xz) €7 of ax; * bx, = 1.

q.e.d.

The generaiization of this result that completely séttles the

situation for a linear equation 1s

Theorem 2.4% a. The linear equation
+ + oas =
(2.20) a,xXq a,¥, + a_ X c,
. . I .
with ap>t*tadns c ¢ %, has a solution (X1,°'°,xn? € 7 if and
only if the greatest common divisor, d = (al,az,-°=,an), of the

set {a1,°°°,an} divides c.
b. If n = 2 in (2.20) and (tl,t2) € Z2 is a solutiocon
(i.e., (al,a2)|c), then every solution (xl,xz) € Zz of (2.20)

is given by

a a

2 1
= + —— = -
®q tl (a1’a2)11 and X, t2 TEETEETI1

where n ranges through %.

7.2.6 Diophantine equations and Diophantine approximation

Tn Apchimedes!' Cattle Problem, dealing with the colors of

bulls and cows, we have an example of a Diophantine system of

seven linear equations in eight unknowns where four of these

. . 2
unknowns, W,X,V,Z, must satisfy the conditions w + X =1 and
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y + 2z = m(m+l)/2 for some m,n € W, e.g., [Archimedes, pp. 324-

326]1. These equations lead to Pell's equation

(2.21) x° - py2 = 1,

where in Archimedes' case, p = 4,729,494 and there is the side
condition that vy be a multiple of 9304. Bhaskara, whom we
mentioned in section 1.1, solved Pell's equation for some special
cases; and, in fact, the Indian schocl had technigues to deal
with special caseé of (2.21) as early as 600 A.D.

Theorem 2.6, which solves (2.21), was stated without proof

by Fermat in 1657; and the first complete proof was given by
Lagrange (1736-1813) in 1768. The algorithms developed by the
Indian school to generate solutions did not have the capacity
generally to verify if the computed wvalue was in fact a solutionf

Theorem 2.6 can be proved using continued fractions. We shall give

Dirichlet's proof in which he used the so-called pigeon-hole

principle, viz., Theorem 2.5.

As we've indicated, John Pell (1610-1685) did not originate
study in (2.21); he was given the "nominal'" honor in a paper by

Fuler in 1732-1733.

Theorem 2.5 (Dirichlet) a. Given o ¢ IR. For every positive

integer @ > 1 there are D,q € Z, where 1 = q = Q, with the

property that
laa - p| < 1/0Q.

b. Given o € IR\Q. There are an infinite number of relatively

prime pairs (p,q) ¢ ZxZ such that for each pair (p,q) we have
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(2.22) lqga - p| < 1/q.
(there are only a finite number of sclutions when a € Q).

Proof. a. Consider the Q+1 numbers na - [nal € [0,1), where

n = Ojljnno,Q_
Partition [0,1] into Q pieces each having length 1/Q.
Consequently there are non-negative integers n, <n, =Q such

that |(nja - [n,al) - (n,a - [n2u3)1 < 1/Q.

1
Set q =mn, -n; and p = In,al - {njel. Thus, laa - p| = 1/Q

and, in particular,

|oc-E|<quEL2
q
b. Suppose (Pl’ql)"n.’(pk’qk) are relatively prime pairs
which are solutions of (2.22).
Since o 1is irrational, qo - p £ 0 whenever p,q € 4; and so

there is an integer Q > 1 such that

P-
(2.23) Vi o= 1,ee0,k, = o< |22 - al.
| Q a;

For this Q we choose relatively prime integers p and ¢ from

the proof of a for which la - p/ql = 1/(qQ).
Therefore, |u - p/q} < 1/(gQ) = 1/Q; and we see that (p,q)

is not one of the pairs (pj,qj) because of (2.23).

We set (pk+lqu+l) = (P:q)-

Refinements of the above result are found in [Hardy and

Wright; Nivenl.
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Dirichlet's theorem tells us that if & is irrational then
0 is a limit point of. {no - [nal: n ¢ WN}; it is then easy
to check that {no - [nal: n € W} dis dense in [0,1). This
latter result with prescribed rates of approximation is the ocne-
dimensional Kronecker theorém. Kronecker's theorem has a deeper
multi-dimensional form which is important in dealing with questions
about the distribution of primes. |

We now solve Pell's equation.

Theorem 2.6 Assume that p ¢ W is not a perfect square. There

are integers x and vy such that x2 - py2 = 1.
Proof. 1. We prove that there is M > 0 and there are an infinite
number of relatively prime pairs (x,y) € ZxX¥Z, y > 1, such that

for each pair, !Xz - py2|:5 M.
Since p is not a perfect square we know that P is irrational

(Proposition 1.1). By Theorem 2.5b there are an infinite number

of relatively prime pairs (x,y) € ZxZ, vy > 1, such that
|x - vpy| < 1/y; and, in particular, [x/y| < vp + l/y2 <
vp + 1.

Thus, for any such pair,

‘|

Ix? - py = [ {x=vpy) (x+vDpy)]| <

= §+v’§| < 1+ 2/p = M.

ii. Because of part i there is k ¢ Z\ {0} such that

,xz - py2 = k  has an infinite number of solutions (x,y) ¢ Zx Z.

Take two such solutions, (xl,yl) and (XZ’yQ)'



Ko Ka=PV- ¥ B Y
Set x = 1 2]< 172 and y = —E—EE—E—ln We obtain
22, 2272 22, 22
+ - -
& = S22 TPy T EROVY, POy, * X¥y = ZXXVy¥y)
w2 . 12
s L - pyd) -y - pye)) = B G o) =1
2 T BT T ARy TR, Wz T s

Thus, it is sufficient to prove that x,y € Z. This can be done
easily by congruences or in a more complicated way using simple

algebra.

Tt is not & pricri clear why Dicphantine approximations %i
such as Dirichlet's theorem should have anything to do with the -
solution of Diophantine equations. The following calculation
gives a hint as to how these analytic estimates arise in dealing
with discrete algebraic problems. In 1909 the Norweigian mathema-
tician Thue (1863-1922) was responsible for establishing this
approach for dealing with binary (two-variable) Dicphantine equa-
tions. The exposition in [LeVeque, pp. 1-24] provides an interesting
survey of this interplay between Diophantine approximations and
equations (among other topics) prior to Schmidt's (1972) work.

Consider Diophantine equations having the form

(2.24) aoxn + alxn_ly + aLQ:x:n_?’y2 + e anyn = a,

where a, # 0 and dpstttha

some sort of solution, e.g., section 3.2, we factor (2.24) into

n © € Z. Assuming the existence of

ao(x—aly)(x—azy) ©o. (X—any) =,
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and so

Il X pd X
aoy (*}-{_”-Of.l)(i}'—otz)"'(}—/—(ln) = .

If the given Diophantine equation has infinitely many relatively
2

prime solutions (Xj,yj) € Z2°, 13 = 1l,2,°+, +then 1im |v.] = o.
:]—>oo
Consequently,
X. X .
lim |(§%-al)°-° (—;-un)[ = 0.
e ] 73 !

Thus there is an o, say a = K for which

.
lim o - ml| = Q.
] 73

2.3 Interlude while the Dark Ages play

2.3.1 ©Greek mathematical language

Various factors associated with the Roman and Christian
ascents to power are responsible for the Greek intellectual, and
in particular the Alexandrian mathematical, decline. Before
discussing this topic we first ask ourselves if there were any
internal (tc the Alexandrians) intellectqal reasons for this
demise. In section 1.5.1 we indicated that an inadequacy in Greek
mathematical notation and language could have had an effect.
Zeuthen and van der Waerden make the point as follows [van der
Waerden, pp. 265-266]: "Theaetetus and Apcllonius were at bottom
algebraists; they thought algebraically even though they put their
reasoning in a gecmetric dress. Greek algebra was a geometric
algebra, a theory of line segments and of areas, not of numbers.

And this was unavoidable as long as the requirements of strict
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logic were maintained. For '"numbers" were integral or, at most,

fractional, but at any rate rational numbers, while the ratio

of two incommensurable line segments can not be represented by

rational numbers. It does honor to Greek mathematics that it

adhered inexorably to such logical consistency. But, at the same
time, this set bounds for Hellenic algebra. Equations of the
first or second degree can be expressed clearly in the language

of geometric algebra and, if necessary, also those of the third

degree. But to get beyond this point, one has to have recourse

to the bothersome tool of proportions. ¢+« But one can not get
any farther; besides, one has to be a mathematician of genius,
thoroughly versed in transforming proporticns with the aid of
geometric figures, to obtain results by this extremely cumbersome
method. Anyone can use our'algebréic notation, but only a gifted
mathematician can deal with the Greek theory of proportions and
with geometric algebra.'.

Tt is possible that over a long period of time this communica-
tion problem, with its growing dependence on the "written roll”
(of parchment), took its toll. In the short range, the oral
tradition of transmitting results seems to argue against this
argument, although obvious problems could arise when stringing

together several such brief intervals.

9.3.2 Astronomy, astrology, and mathematical communication

During this period of Greek mathematical decline, say,
47 B.C. - 646 A.D., there was real progress made in Greek astron-

omy [van der Waerden, p. 2651, It is interesting to note the
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importance of astrology during this period and its close relation
to astronomy. It is probébly true that astrology nurtured astron-
omy in much the same way as alchemy later influenced chemistry.
Alexandrian astrology made predictions using data involving the
positions of the sun and moon as well as the five planets in the
zodiac. Ptolemy (85-165) wrote the Almagest ("the greatest") which
remained a fundamental work for astronomers for a thousand years;
in it he uses the approximate value 377/120 = 3.1418 for m,
although this may in fact have been used by Apollonius (260-190).

He was also the author of Tetrabiblos ("work in four parts"), a

major work on astrology which again made him a man to be read

for the next thousand years. For example, medieval medical schools
gave courses on mathematical astrology; mercury ruled the liver,
venus the genitals, etc. How will present day mathematical sociology
be viewed in 800 years? (There was a medical school at Bologna in
the twelfth century).

A possible weakness of the Zeuthen-van der Waerden position
is the fact that the mathematical language in the astronomical
treatises seems to have been sufficiently understood to allow for
the asserted progress in astronomy.

If the Zeuthen-van der Waerden conjecture is true then it
has an analogue in the eighteenth century when English reluctance
to adopt Leibnitz's notation for the calculus, because of the
Newton (16L42-1727)~Leibnitsz controversy, played a role in
the subsequent weak mathematical showing by FEngland. 0f course
the whole issue of mathematical communication in previous times

is quite difficult for us to measure; general communication was
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more restrictive, there were only a handful of mathematicians,
eto.

In any case, the issue of internal, i.e., neither Roman
nor Christian, influences on the Alexandrian mathematical decline
is interesting. Less speculative is the effect of the Romans and
Christians on the Greek mathematical tradition; we shall discuss

this in sections 2.3.4% and 2.3.5.

2.3.3 Biographical sketches - Leibnitz (1646-1716) and Wiener

(1884-1964)

The work of Leibnitz and Wiener in language and communication
is emphasized in these classroom sessions. The calculus was treated
in terms of effective mathematical language in our discussion of
Leibnitz. Cybernetics waé the chief non-biographical topic in the
discussion of Wiener; his deep work in mathematical analysis was |
beyond the range oif the course. ﬁesides our usual references we
used [Hofmann; Weill for studying Leibnitz. Wiener's autobiography
[Wiener, 1953, 19561, obituary [Wiener, 19661, and book [Wiener,

1950] were used for studying Wiener.

2.3.4 The gray flannel toga

Recall that Archimedes was killed.in 212 B.C. during the
Roman conquest of Syracuse; this was parf of the Punic (i.e.,
relating to Carthage) pulverization program which saw Carthage
essentially destroyed. |

In 47 B.C. Julius Caesar (100~ 44) set fire to the Egyptian
fleet anchored at the Alexandrian harbor. The fire spread to the

city and burned the library; an estimated half-million books were




90

destroyed. The loss was irreparable. Mark Anthony (82-30)
partially repaid the city by giving a large book collection to
Cleopatra (6%-30). At the time of Cleopatra's death the Romans
came to Alexandria to staj. Augustus (63 B.C.-14 A.D.), the
adopted son of Julius Caesar, ruled the Roman Empire during the
period 30 B.C. - 14 A.D. The administrative machine developed
during his reign produced an organizaticn of and a stability in
the provinces.

ThereIWere, of course, uprisings thoughout the empire,
including Alexandria, from time to time, and these were dealt with
sternly and decisively. One of therprobable reasons that Christian-
ity grew during this periocd was that it offered the helpless
suffering masses a gloriocus afterlife; and in some sense the
suffering during one's lifetime could be used to optimize this
pursuit. Needless to say the Roman Empire déveIOped an impressive
IRS and Department of Defense - an unbeatable combination to
stifle intellectual pursuits. [(Russell, pp. 276 £f.] has analyzed
the cultural relation between the Romansg and .conquered Greeks.

When the Roman Empire fell in 476 Alexandria could still not
rest. In 646 the Moslems conquered Egypt and all of the manuscripts
in the library at Alexandria were destroyed under the guiding words
of the Arab leader, Omar: "Either the books contain what is in
the Koran, in which case we do not have to reéd them, or they
contain the opposite of what is in the Koran, in which case we

must not read them."

2.3.5 The gray flannel chasuble

In the same spirif as the above gucte by Omar, we have Saint
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Augustine's (354-430) sensitive perception: "Whatever knoWledgé
man-has acquired outside Holy Writ, if it be harmful it is

there condemned; if it be wholesome, it is there contained." The
mathematical community more or less got even with Augustine by
Georg Cantor's remark to the effect that Augustine, in accepting
the sequence of integers as an actual infinity, had made an
important mathematical observation, e.g., see [Struik, p. 1061
for references; of course, Cantor had serious problems on this
point of the mathematical iﬁfiﬂite with some of his 19th century
. mathematical colleagues.

The Roman emperor Constantine, who reigned from 3;2 to 337,
adopted Christianity as tThe state religion. The powerful spiritual
motives sometimes accorded Constantine on this ruling are put
in proper perspecfive when one notes that a large percentage of
his soldiers were Christians. Once the Church assumed'a position
of power it was possible to battle paganism, and consequently,
Hellenic mathematics, quite effecti&ely, for over 1000 years, €.8.,
see [Beckmann, Chapter 8] for a few poignant examples. Of course,
one must also try to appreciate the Church's position in this
time. Byzantium was a condescending and cultural cousin to lowly
Rome for long periods;‘the barone of Rome chose popes capriciously
and often, suggesting that the papal lineage required divine
intervention to assure bounded variationj andrintervention from
the same source and of the same magnitude was ap?arently neces-

sary to prevent a complete Moslem takeover of Europe.
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Exercises for Chapter 2

2.1 Prove that x and vy, as defined in part ii of the proof

of Theorem 2.6, are integers.

n

2.2 Let IR be Euclidean n-space and let Mn be the maximum

n that can touch a fixed one of the

number of spheres in R
same size without overlapping. The fact that M2 = b <can be
verified using seven pennies. Can you convince yourself of

Newton's assertion in 1694% that ‘M3 = 127

2.3 Prove Theorem 2.4,

2.4 Consider the lists of squares and of cubes of positive integers:

1 b4 9 16 25 ase

1 8 27 ou 125 L

It ie natural tb ask how often a sguare and cube can differ

by 1, by 2, ete. It turns that the sqﬁare 9 and the cube
8 constitutes the only case when the difference is 1, and
that the square 25 and the cube 27 constitutes the only
case when the difference is 2. Verify the latter assertion.
The solution generaily involves the Diophantine equation

x3~y2 = 2 which can be éettled using a unique factorization

property similar to the one for N +that we discussed in

Chapter 1.

2.5 A polyhedron P 1is a solid figure in E&g whose boundary

consists of a finite number of portions of planes, where the
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boundary of each portion is a polygon; these planar portions
are the faces of P. TFor each P, 1let V,T, and E = denote
the number of its vertices, faces, and edges, respectively.

P is a regular polyhedron if each of its faces has the same

number of sides and if the same number of faces come together
s+ each vertex (of P). Euclid's definition of a regular
polyhedron seems more specialized (but is not), e.g., [Hilbert

and Cohn-Vossen, pp. 290-2931.

a. Prove the Descartes-EBuler formula for a polyhedron P:
v+ F=E+ 2.

b. Use part a to prove +that there are precisely five regular
polyhedrons and that these polyhedrons are characterized
by the information in Figure 11, where f denotes the

polygonal shape of a face.

Name v T E f

Tetrahedron 4 4 B equilateral triangle

Octahedron 6 >x< 8 12 equilateral triangle

Hexahedron (cubej 8 6 12 square

ICOsahedron. - 12 20 30 equilateral triangle

Dodecahedron 20 12 30 regular pentagon
Figure 11

Part b appears in Fuclid's Elements and is due 1O
Theaetetus. These solids were known from the time of Plato

and assumed an important role in Platonic philosophy, e.g.,

[Boyer, pp. 94-96; FPlato; van der Waerden, p. 1003 Waterhouse]. The
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dodecahedron was a symbol of the universe for Plato: "God
used it for the whole"; it existed long ago in natural form
(in Italy) as crystals of pyrite, being used both for dice
and religious purposes; cf., [Steinhaus; von Fritz, p. 2561,

and it plays a major role in Dali's (1904- ) Last Supper.

In 1596, Kepler (1571-1630) introduced his model of the solar
system using spherical shells and the five regular polyhedroné.
The model was both spectacularly unusual and false. In 1604, -
overcoming tremendous historical and mathematical prejudices,
he discovered the true elliptical nature of planetary orbits;
but always considered the earlier model with great pride, e.g.,
[Dyson; Gillispie, Xlein; Sternberg, pp. 94-997.

We shall briefly review the main geometrical feature of
his polyhedron model. The six planets mercury, venus, earth,
mars, jupiter, and saturn were known at Kepler's time; and
beginning with saturn, each was farther from the sun than the
previous one. Kepler associated the octahedron with venus and
mercury, the icosahedron with earth and venus, the dodecahedron-
with mars and earth, the tetrahedron with jupiter and mars,
and the cube with saturn and jupiter. We indicate this associa-
tion for the case of earth and venus.rKepler let Se resp.,

S be the spherical shell formed using the maximm and minimum

V,
distance of earth, resp., venus, from the sun; then, letting
the inner spherical surface of Se circumscribe an icosa-

hedron P, he claimed that the outer spherical surface of

Sv inscribed P. Kepler's verification for this model involved
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an occaslonally blasé use of some of Copernicus' (1473-1543)
observational data.

It turns out that certain rotations of a sphere circum-
scribed (and glued) to an icosahedron play a fundamental role
in characterizing solutions of quintic equations. F. Klein
(1849-1925) was the first to understand this relation; although,
carlier, Galois (1811-1823) studied rotations of the icosa-
hedron with regard to his theory of solvability for algebraic
equations (Galois theory). We shall return to quinfic equations
in Chapter 3. As background material we now discuss rotations
of the icosahedron.

Let P ¢ IR3 be an icosahedron, and let L be a line
through P. Below, in i, ii, and iii, we list all of the ways
of choosing L so that it is possible to turn P about L,
and to ensure that P occupies the same exact portion of ZR3
at the beginning and end of the turn. Such a motion is a

congruence motion,

i. Let L 1intersect opposite vertices of P;
ii. - let L intersect the centers of opposite faces of P;

iii. let L intersect the midpoints of opposite edges of P.

a. Verify that, including the identity rotation of leaving
P  fixed, there are 60 congruence motions of the icosa-

hedron,

b. Let X_ = {1,2,--+,n} and let S_ be the set of all
surjective functions f: Xn-f+ Xn' S, is a stmetPic

group. Prove that card S = n!.
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c. Show that the "group" of 60 congruence motions of
the icosahedron can be identified with a subset

A5 9_85 where A5 has the property thét

Vf,g € A, fog € A5.' o

AS is an alternating subgroup and, as we've indicated,

card A5 = 60. It turns out that the dodecahedron can be

analyzed in a similar way and can also be identified with

A This claim can be comfortably digested after an

5-
examination of the data in Figure 11.

Let us look at Archimedes' technique *to compute w. We shall

aim at obtaining the inequality 3.24 > 7 usihg a- 12 sided

- circumscribed polygon and the inequality 1.74 > v3. Archimedes

obtained the result we gquoted in section 2.1.4.1 by employing

the technique we now indicate on 96 sided circumscribed and

inscribed polygons.

Consider the triangles ADAO and ABAO, where 3IDAO
and 9JBAO are right angles and B 1is a point on the segment
AD. '

a. If the segment OB bisects the angle 3JAOD pfové that
|poj/|ac] = |BD|/|AB].

b. Use part a to prove (|D0}| + |A0|)/|AD| = |AO|/|AB|
when OB bisects the angle JAOQD.

c. Let IAD| be half the length of the side of a regular

hexagon. Verify that this hexagon circumscribes a circle

C having radius r = |A0].
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Let |AD| = 1 and consider the situation of part c, SO
that |AO| = /3. Torm a 12 sided circumscribed polygon
about C and verify that 3.24 > m by means of part b

and by comparing the perimeter of the polygon with .
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3. Three mathematical Jjourneys

3.1 The theory of algebraic equations

3.1.1 Complex numbers

The set € of complex numbers is the set of points (x,v)

comprising the plane R x R, and we shall use the notation
(x,y) = x + iy = z € €, where x,y € R,

If =z. = Xj + iyj e ¢, for Jj = 1,2, we define addition

(3.1) z. t+ z = (X1+X2) + i(yl+y2) € C

and multiplication in C as

(3.2) ZiZ, = (xl

X2_y1y2) + 1(x2yl+xly2) € C.

The formula for multiplication is technically meaningful if one
thinks of the letter "i" as the symbol "/=1", which in turn
one blesses with the "property" that “(‘/—l)2 = -1". 1In any case,
¢ with the algebraic properties (3.1) and (3.2) is a field with

multiplicative unit 1. The set of real numbers R is a sub-

field of @ wunder the map x +— (x,0) = x + 10. (Abel was the

fipat to define the notion of a field.) Diviéigg in € takes the form

1 - 1 .x—%y _ pe . A
_x+1y x+ly x-1¥y X2+y2 x2+y2

for a given z = x + iy € C.

Tf z = x + iy € € then x = Rez 1is the real part of =z
and y = Imz 1s the imaginary part of =z. The absolute value
|z|] of =z =x+ iy € € is

|z| = (x2+y2)l/2.
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It is not difficult to prove that lzl+22| < |zl| + !zzi for

21>2, € ¢
If z = x + iy € € then
.z = 7r(cos ¢ + i sin ¢),
where 1 = [Z], cos ¢ = x/r, and sin ¢ = y/r; we write
¢ = arg z, where "arg" stands for "argument". For a given
z = r{cos ¢ + 1 sin ¢) € € it is easy to verify de Moivre's
formula:

n n ..
Z = r (ces nd + 1 sin n¢).

Similarly, it is easy to check that

7z, rlrz(cos(¢1+¢2) + 1 sin(¢l+¢2)),

where Zj = rj(cos ¢j + 1 sin ¢j) € €; and de Moivre's formula

obviocusly follows from this result.

De Moivre's formula was developed by Abraham de Moivre

(1667-1754) and Leonard Euler in the first half of the lSth

century. The crigins of complex numbers stem from the baffling
appearance of things like V-2 1in the honest work of finding

zeros (e.g., section 3.1.2) of polynomials DP(x) with positive

coefficients, in this case P(x) = x2 + 2. Euler was aware that

complex numbers were points in the plane since, in trying to

solve x''-1 = 0, he considered the solutions, W, =

Z S 1 sin E%E for k = 0,¢++,n-1, as the vertices of a

cos

regular polygon in the plane. Each Wy is an n-th root of

unity. Setting w = wy it is clear that



and o = W |

€, with its untidy imaginary past and its mystérious sign
/=1, was legitimatized once and for all by Gauss in the first
part of the lgth century; the Norwegian C. Wessel (1747-1818)
and Swiss J.R. Argand (1768-1822) also made fundamental insights
into € during this period, but, from a public relations
standpoint, their work had very little impact at the time. We
shall come- back to Gauss and Argand when we discuss the funda-

mental theorem of algebra.

3.1.2 Quadratic eguations

As we indicated in our discussion of Pythagorean triples,

the Babylonians are responsible for the solution of quadratic

equations [Neugebauer , Chapter 2; van der Waerden, 1954, Chapter 3].
The quadratic problems that they solved used specific numbers as

coefficients, a phenomenon which lasted to the time of vyiate

(1540-1603); and it seems that they probably accomplished their
calculations by means of complefing the square.

The Babylonians frequently posed their "gquadratic problems"

in terms of a pair of simultaneous equations. For example, the
following is adapted from the ancient Babylonian text BM (for
British Museum) 13901 via [van der Waerden, 1954, P. 691: I have
added the areas of my two squares to obtain A; the side of the

second 1is % that of the first plus 5. Thus we  have
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Substituting vy = %ﬁ{ t 5 into the first equation gives the

quadratic equation

(l-l-%-)x2 + %goc + (25-A) = 0,

and the solution is then correctly determined.
Working with the luxury of € at our disposal, we say

that x = z € € 1is a zero or root of the polynomial

(3.3) P(x) = ax* + a e ey a. ., . € €,.
n 0 J

if P(z) = 0. If a, # 0 in (3.3) then the degree of P,

denoted by deg P, 1is n. We now state and Prove the Babylonian

theorem

Proposition 3.1 Given the polynomial P(x) = ax2 + bx + c,

where a,b,c € R and a # 0. Then

- b 1 2
(3.4%) X =z - fg’i ?Ellb —Yac

dre the two zeros of the equation P(x) = 0.
Proof P(x) = 0 is x° + §1< = —-%, and so
2 pa
X2+‘]2X +-—b2 = —9+ b2
2 ba a La
b 2 _ b’ ¢
Thus, (x + EE') = =y - o3 and we obtain (3.4),.

Lha
g.e.d.

The fact that there are two solutions to quadratic equations,
three to cubic equations, etc., is easy to prbve once we know
that such an algebraic equation has at least ocne zero: we'll

prove this fact in section 3.2.3.
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3.1.3 Thus spake Algoritmi

There is a general and still open historical problem of
determining the influence of Babylonian algebra on Greek
mathematics or on Arabic algebra. Whereas there is reasonable
evidence that Pythagoras was aware of scme Babylonian mathemati-
cal contributions, the problem of determining direct Babylonian
influence on Diophantus or the Arabic algebraists is difficult,
although it certainly seems likely that such influence existed,
cf., [van der Waerden, 1954, D. 280]. The Pythagoreans transmuted
Babylonian algebra into a geometrical form out of a feeling of
logical necessity [van der Waerden, 1954, DPp. 125-1281; and the
Creeks were cuite successful in solving quadratic equaticns by
geometrical means [Heath, pp. 100 ff.; van der Waerden, 1954,
pp. 118-1241.

In the early part of the ch century, Muhammad ibn Musa
Al-Khwarizml (Mohammed the son of Moses from Khorezm, part of
present-day Russia) (775-845) wrote a systematic treatise,

Hisab al-jabr w'al-mugabala, on the solution of algebraic equa-

+ions. Robert of Chester (c. 1140) made a Latin translation of

this work and "al-jabr" became "algebrae". The Arabic "al-jabr"

means "restoration"; and, in fact, a medieval barber called
himself an "algebrista not because he restored.hair for the
baliding but because a standard sideline included setting bones
(prestoring or reuniting them). (The fact that the barber alsor
did dental work and so had to dig the "calculus" from around
teetn is further indication of the nobility of barbering.)

Al-¥Khwarizmi also wrote a book (which is lost) on Hindu numerals
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whose Latin translation, found in 1857, begins with: "Spoken

has Algoritmi-«+-"; thus, "Al-Khwarizmi" led to the word
"algorithm". The Al-jabr gave gecometrical proofs of its algebraic
recipes, showing the Greek influence in civilization's intellec-
tual nervousness in optimizing verifiability. These geometric
apron-strings on algebra were finally dispensed with by the time
of Viete. oOf course Newton later used geometric arguments in

his work on mathematical physics and the calculus.

3.1.4 The Italian school

The leading Italian mathematics book at the beginning of
the thh century was the treatise published in 1494 that was
written by the Franciscan Luca Pacicli (1uL5-1510). The algebraic
sections contain material on linear and quadratic equatidns,
as well as the opinion that general methods tc solve higher
order equations, do not exist. Tt 1s interesting that the unknown
quantity in algebraic equations was called "cosa" (the Itaiian
word for "thing") and this is the origin of the term "cossiclk
art" which became the European name that the theory of equations
assumed in subsequent yvears; actually, the late Latin writers
used "res" for the unknown and "cosa! is its translation into
Italian.

Gerolamo Cardano's (1501-1576) Ars Magna was printed at
Nuremberg in 1545, and, centrary to Fra Luca's expectations, he
published general methods for solving both cubic and quartic
equations. Actually, the Soviet historian Depman is of the
opinion that in 1486 the Grand Inquisitor Torquemada sentenced

the Spanish mathematician Valmes to be burned at-the'stake
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because the latter claimed to have found a solution to the
quartic; Torquemanda had decided that such a solution must be
beyond human understanding, a quality which was not one of his

dominant tTraits.

The Babylonians had actually dealt with cubics and solved

some special cases. The Greeks also dealt with cubic equations in
their geometric algebra, but in all probability did not make sig-
nificant forward progress; although [Archimedes] indicates that i
Archimedes had some expertise on the matter. A major study of
cubic equations was made by Omar Khayyam whom tradition buries in
1123. His non-mathematical Ruba'iyyat is, of course, well-known
to the general public. He solved many cubic equations with posi-
tive zeros by means of geometrical arguments involving tﬁe'inter—
section of two conic sections, e.g., [Coolidge, pp. 27-29; Eves;

Struik, 1948, pp. 88~%4]. These equations arose because of prob-

lems similar to that of trisecting the angle (e.g., section 3.3.7)
as well as those concerned with constructing regular polygons.
Although Omar Khayyam avoided negativé zeros in his algebra, these
were being confronted to some extent at the time. All of which
brings us back to Cardano.

Sometime after 1500, Scipio del Ferro (1465-1526), a
professor of mathematics at the University of Bblogna, solved the
cubic X3 + ax = b for a and b positive. (COf course, Vidte
had rot yet been born, and del Ferro's coefficients were specific
numbers.) In 1535, del Ferrc's student, Antonio Maria Fleorido
(1505~ ), challenged the then well-known mathematician Niccold
Tartaglia (1499-1557) to a problem-solving contest. In faet,

Florido had become the heir to del Ferro's solution of the cubilc,
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and problem-sclving contests were an important means of attaining
or losing academic positions and intellectual prestige ; printing,
invented about 1450, was still & néw means of communication and
it was standard to keep surreptitiously research vresults until
the preper moment when +these vesults could be used in a problem-
solving contest with the purpose of gaining purse, position, or
prestige. Tartaglia, who lived in Venice and was born in Brescia,
had been quite successful in such challenges.

The battle between Florido and Tartaglia focused on Florido's
questlions about the cubic (details are previded in [Ore, 1953,
Tietze, pp. 213-215]). Spectacularly, Tartaglia was able to
answer the cubic challenge, and, being a much stronger mathemati-
¢lan than Florido, actually went beyond del Ferro's results - and
emerged the victor. This is where Cardano enters the picture. In
1539, Cardano pérsuaded Tartaglia to tell him the solution of the
cubic, but Tartaglia did this only after Cardano had taken a solemn
cath not to disclose the information; in fact, Tartaglia was
planning to conquer the hearts of the intellectual world by using
his receﬁt research on the cubic as the ultimate result of his
projected treatise on algebra. In the Ars Magna Cardano proves
results about the cubic and gives proper credit to del Ferro and
Tartaglia, although Tartaglia doesn't seem to have been impressed
by this business of proper credit. A vicious argument followed
since Tartaglia claimed that Cardano had broken his words; although
Tartaglia did have ten years to publish his results., In any case,
Cardano also made significant further gains concerning the cubic

[Ore, 1953; Smith, 19257.
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The solution tce the quartic is due to Lodovico Ferrari

(1522-1565), the run-of-the-mill tempestucus (for example, at 17

during a brawl he lost all the fingers on his right hand)
Renaissance genius. Ferrari was the amanuensis of Cardano, eventu-
ally became a very rich man, always remained extremely loyal to
Cardanc, and supposedly was poisoned to death by his sister.
During the controversy between Cardano and Tartaglia,lPerrari

actually won a debate against Tartaglia.

3.1.5 The cubic and quartic equations

We'll now solve the cubic and quartic equations. The Italian

solution of the cubic yielded cne zero, and it was Euler (1732)

who first completed the calculation by showing how to obtain all

three zeros. This latter part is of course easy technically, but

required a deeper understanding of the nature of polynomial

equations than existed in the first half of the lBth century.

Proposition 3.2 a. The solution of the cubic equation

3 2 -
(3.5) xT Fayxt +tayx ta; = 0, a. € C,

can be reduced to the solution of the cubic equation
3
(3.6) vy +ay + b = 0,

where a = a(ao,al,aQ), b = b(ao,al,azl‘é C.

b. The three solutions of (3.6) are given by

]

(3.7) yl u t+ v,

2
wu t+ owov,

i

Yo
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and
Yy = wzu + wv,
where
(3.8) u :(_E+Ei+£?mr“ . LE_@E+£TmFB
‘ Z L 27 2 \ 5 \4 =7

and ® is the cube root of unity (-1 + iv3)/2 (the cube roots

u and v must have the property that uv ¢ R).

a
Proof a. Set x = y - 75' and substitute this into (3.5).

We obtain

ani3 any2 a
2 2 ?
(y - TT) YAy -3 Ty - TT} T g
? 2a2y a%z 2a2 alaz
] ( R TT}(Y H T B R A B B

and so the y2 terms cancel.

b. 1. Let y = u + v 1in (3.6), so that the problem is changed

into one with two unknowns. (3.6) becomes

(u2+2uv+v2)(u+v) + a(u+v) + b

(3.9) = 4o + v3 + 3u2v + 3v2u + a(u+v) + b

= u3 + v3 + b + (u+tv)(3uv+a) = 0.

ii. Let vy = s be a solution to (3.6). We shall prove later

in the Fundamental Theorem of Algebra that this is not a
vacuous assumption; and, naturally, we can just check that
(3.7) and (3.8) provide a solution.

By solving a quadratic equation we can choose u .and v so
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that yq = 4 + v and

(3.10) uv -a/3

(that is, substitute u = yi =V into (3.10) to form

v - ¥V o % = 0, and then solve this quadratic equation).

Thus, u and v are determined, and we'll now describe how to
write them in terms of a and b.

The constant -a/3 in the constraint (3.10) was chosen in light
of the non-cubic part of (3.9).

From what we've done we see that u and v must satisfy

the system

(3.11)

3uv + a = 0.

iii. Using (3.11) we'll form the quadratic equation whose zeros

are u° and ve. In fact, the second equation in (3.11)
becomes
(3.12) WSV = —adseny

so that sclving for u3 (resp.., va) in the first

equation of (3.11) and substituting in (3.12) we see that

u3 and v3 are the solutions of

P a3
(3-13) X +bX"ﬁ = 0.

Thus, solving (3.13) as in Proposition 3.1 we obtain

1 2 Ua 3 _ b
7yt vV T 73
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Taking cube roots and using the definition of y, we obtain

(3.7) and (3.8),

iv. It is easy to check that Yo ‘and Yy, as defined in
the statement of this result, provide other solutions to

(3.6).

g.e.d.

(3.7) (and (3.8)) is Cardano's solution of the cubic

equation (3.6).

We shall now give Viéte's proof (1591) of Proposition 3.2

which provides a valuable insight in finding explicit solutions
te polynomial equations of deg n, n = 5. We begin with the

trigonometric relation

' 3
Lemma cos 300 = 4 cos'a - 3 cos o.
Proof By de Moivre's formula
cos 3o + 1 gin 30 = (cos o + i sin a)3
B 3 . D : . 2 .3
= o8 O - 3 cos a sin‘a + 1(3 sin o cos“a ~ sin”a).

We obtain the result by equating real and imaginary parts and

using the faet that cosza + sinzu = 1.

g.e.d.

We shall use the Lemma in section 3.3.7 to prove the

impossibility of trisecting certain angles by means of a ruler

and compass construction. We now use it in

Trigonometric proof of Proposition 3.2b. We'll solve (3.6).
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From the Lemma we have

3 3 1
(3.14) x" - px - jocos 3o = 0,
where we'lve set X = cos d.
Write v = wx, where vy comes from (3.6), where x comes from

(3.14), and where w 1s at our dispcsal.

Substituting vy = wWx into (3.6) we obtain

x3+~§-2—x+

W

b
— = O;
W

and, with (3.14) in mind, we choose w = ¥Y-lLa/3.

Note that we still have o at our disposal.
Choose o so that ——% cos 3o = E% (here we are usgsing scme
0
elementary facts about complex variables that we shall not

verify).
Thus, using our chosen value of w, we have

-b

(2.15) cos 3o =
2(~ad/2m)t/?

We solve (3.15) for o = ala,b) and so compute x = x(a,b) =
cos a.
Since w = w(a) and v = wx we have found y = y(a,b) which

satisfies (3.6).

Before going on to the quartic, let us expand on our state-
ment about the importance of the above trigonometric solution
of the Cubic-equation. Trigonometric functions have a single
pericd p, e.g., sin z = sin{z+np) where p = 2m is the

periocd, 2z € C, and n € Z. As such, trigonometrié functions
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are the degenerate forms of so-called elliptic functions,‘which
are a class of functions f defined on ¢ and having two

periods, Py and P
vz ¢ C and VYn, m € 7, f(z) = f(z+mp1+np2).

It turns out that quintic equations cah not in general be

solved by methods depending on the extraction of roots (as we
did in (3.8)), but they can be solved by meaﬁs of elliptic
modular functions. This was accomplished by Hermite (1822-1%05)
in 1858, and is analogous to the solution of the cubic by trigo-
nometric functions.

We now give Ferrari's solution of the quartic.

Proposition 3.3 The four solutions of the quartic equation

2
X + a,x + ao =

X + a
1

(3.16) x + a ?

are given by the four solutions of the two quadfatic equations

3 1
x 4+ TX + 7}71 = i(aX'!'b),

where a and b are well defined numbers determined in the
proof and where Yy is Cardano's sclution of the cubic

equation

3 2 22
(2.17)y y°~ - a,y” + (asal—uao)y - (a0<a3‘4a2) *aj) = 0.

Proof 1. We write (3.18) as xu + a3x3 = -(a2x2+aix+a0),

and then complete the square on the left hand side by adding

agxz/u to both sides. We obtain
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o a,X z ag 5

(3.18) X + 5 T a,x" - arx - ag- |
i

" ag% y

To give ourselves some necessary freedom we add (x° + —§—-hy Al

to both sides of (3.18), where vy 18 a new variable.
Note that as such the left hand side of (3.18) remains a perfect

square:

a,x\?2 a,.x 2 ' a,x 2
2 3 2 3 v _ 2 3 Y
x+——-2 +x+—m2y+—-4 = X+2+—2—
Thusg,
2
2 a3 v
+ =+ L}
(3.19) X = 5
2
a any 7
_ 3 2 3 Ay ,
SRR 4 L e S R [ T %ol

ii. We shall now show that we can choose 'y sc that the right

hand side of (3.19) can be written as the square, (ax+b)2.

Generally, the equation, sz + Bx + C = a2x2 + 2abx + b2 will
be valid if B - 4AC = 0.
2
In fact, if AC = 5- then
(VAx + /ﬁ)z = Ax? + 2x/AC + C = Ax’ + Bx + C.

Thus, we set a = YA and b = .VC where we have

A =

a2
_3
i

- 4, + y|, B

from (3.19).

It remains to verify if vy can be taken with the property that

‘BZ ~ LAC = 0, 4d.e., if there is vy for which
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a2y2 a2
3 2 3
(3.20) BT T

(3.20) is (3.17) and we saw how *to find the required vy = Y

in Proposition 3.2.

iii. Consequently, form (3.17) and part ii, there are numbers
a,b,y, € €, each depending on aU,-°-,a3; such that
2, %3% Y42

w4 - + =2 = (ax+b)2.

This yields the result.
g.e.d.

Proposition 3.2 and Proposition 3.3 constituted the firet

clear-cut significant new mathematics that modern Western
civilization had produced. The immediate course was now well-

defined: solve the gquintic equation.

3.1.8 The quixotic quintic

In 1683, the German Ehrenfried Walter von Tschirnhausen
(1651-1708), a friend of Leibnitz, showed *that for cubic poly-
nomials P(x) there are quadratic polynomials Q(y) = x such
that P(Q(y)) = y3 + a, where a is a well-defined constant.

_a1/3’ hwal/B’ _w2al/8 are the three solutions of

Then vy

]

PC(Q(y))
X = Q(mal/g), Q(~wa

0, where w # 1 is a cube root of unity; and, hence,

1/3), Q(—wQal/B) are the three solutions

of P(x) = 0,
Tschirnhausen had comparable success with the quartie, and

for a long time thought he had‘transformed a general quintic
5

polynomial P(x) to one having the form P(Q(y)) = y" + a, cof.

]
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the opinion of [Tietze, p. 224]. It was Leibnitz who found the
error in this latter calculation; and it was subsequently shown,
in fact, that the original quintic was transformed intoe one of
the 251 degree. In 1786, the Swedish mathematician E.S. Bring
(1736-1798) was able to use a Tschirnhausen transformation to
reduce the general quintic equation P(x) = 0 to the form
P(Q(y)) = y5 + ay + b = 0. When Hermite solved the general
gquintic polynomial equation in 1858 by means of elliptic modular
functions, he begins with this reduced Bring form but attributes
it to the Englishman Jerrard ( -1863) who published such a
reduction in 1834, cf., [Harley; Klein, 1884, pp. 157-1581.
Jerrard insisted that his technique reduced the general guintic
P(x) = 0 to P(Q(y)) = ys + a 1in spite of irrefutable objections
to the contrary. For further remarks on Tschirnhausen transforma-
tions we refer to [Cajori, 1804, pp. 102-103; 1894, pp. 328-379;
Dickson, Chapter 121.

We noted that Hermite solved the general quintic polynomial
equation be means of elliptic modular functions. In fact, it
can not generally be solved by the "algebraic" operations of
addition, multiplication, and taking roots, but requires "tran-
scandental" deﬁices, of ., section 3.3.3. When solutions of a poliy-
nomial equation can be found by means addition, multiplication,
and taking roots, we say that the equation can be solved by
radicals.

Tn 1771, Joseph~Louls Lagrange of Torino (many of his . country-
men from present-day northern Italy still say "lLagrangia' instead

of "Lagrange") whom we mentioned in sectiocn ?.2.6 published a
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profound study on the theory of equations entitled "Ré&flexions
sur la résolution algébrique des équations”. The importance of
this work in setting the stage for the theory of groups 1is
analyzed in [Pierpont, 1895]. For deg P = 4, his method reduced
the problem of solving the polynomial equation P(x) = 0 +o that
of considering polynomials of lower degree - the same effect as
the Tschirnhausen transformation; for deg P = 5 his technique
provided a pclynimial @ with deg Q0 = 8§,

Paolo Ruffini (1765-1822) of Modena was an enthusiastic
disciple of Lagrange; and in his major mathematical works of
1789 and 1813 (he was also a medical doctor and politician) he
used group theoretic notions while trying to show that.not every
quintic can be solved by radicals. His proof is not conclusive
but was patched up in the latter half of the 19th century.

E. Bortolotti has written extensively on Ruffini's work, e.g.,
Ruffini's collected works and the 1928 International Congress of
Mathematicians. There is a critical study of Ruffini's theorem
due to fBurkhardt]; cf., [Ore, 1957]. In 1824, Abel conclusively
proved the impossibility of solving an arbitrary quintic by
radicals, e.g., [Smith, 1929, pp, 261-266]. Abel's result is
complicated and was done without knowledge of Ruffini's work.
Ruffini's group thecoretic arguments can be used in conjunction
with Abel's idea to produce a palatable and elementary proof of
the insolubility by radicals of the general quintic [Pierpont,
1896]. Abel had sent Gauss a copy of this result, and the great
and.grating Gauss had paid no attention.

Hilbert went on to prove that for each n = 5§ there are an



121

infinite number of polynomials P(x), with deg P = n and

having integer coefficients, for which the equation P(x) = 0

can't be solved by radicals; P(x) = x5 - 6x + 3 provides such

an example.

3.1.7 Biographical sketches - Abel (1802-1829), Galois (1811~

1832), and Lagrange (1736-1813)

Besides [Gillispiel and the references in [Mayl we also
used [Galois; Kiernan]. [Infeld; Ore, 1957; Sarton] provided

particularly interesting reading.

3.2 The fundamental theorem of algebra

3.2.1 The number of zeros of a polynomial

The calculations in section 3.1.5 were based on the
assumption that solutions to the given cubic and quartic equa-
tions did in faet exist; then the formulas we derived exhibited

explicit solutions. We shall prove the Fundamental Theorem of

Algebra: if P(x) 1is a polynomial with deg P = n =z 1 ‘and

with complex coefficients then
(3.21) 3a € € such that P(a) = 0.

~As we shall see; the Fundamental Theorem 5f Algebra is more of
é result in.anaiysis or topology (in particular, the geometry
of curves) than algebra. The term "Fundamental Theorem cof Algebra"
is due to Gauss.

Cardanc realized to séme extent that if deg P = n Then
P(x) must have n zeros. In this regard, there is a basic

relationship between the coefficients of P(x) and its zeros.
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Viete was one of the first to have some insight into the matter,
and shortly afterward the issue was clarified by the Englishman
Thomas Harriot (1560~1621)7and the Flemish Albert Girard (1590-
1633). Cirard actually allowed for negative and imaginary zeros,
as opposed to Vidte and Harriot. He also explicitly asserted
that "every algébraic equation has as many solutions as the
exponent of the highest term indicates", but he really had some
qualifications to this general statement in mind,re.g., [Smith,
1929, p. 292]1. A comparison of the contributions of Girard,
Harriot, and Viéte is made in [Boyer, pp. 334-338; Cajori,18947,
df., [Bosmans; Struik, 1969, pp. 81-87]. Their contribution on

this point can be summed up as

Proposition 3.4 let P(x) = x" + %%an—l4_.__+ ay be a poly-

nomial with deg P = n > 1 and coefficients in €. Assume

(3.21) (which we'll prove later).

a. P(x) has the unique representation
(3.22) P(x) = (x—ul)(x—a2)°"(x—un),
where f{a.,°*+,a )} ¢ € is the set of zeros of P(x) = 0 ((by
1 o
uniqueness we mean that if P(x) = (X—Bl)"'(X—Bm) then m = n

and that the B's can be'arranged so that ay = Bl""’an = Bn).

b. The zeros and coefficients of P(x) satisfy the follow-

ing relaticns:

4]
1
]
Q
=



123

(e.g., g0y = a0, SO that if n = 3 then g o9 © 0q 0, +

o, O

1085 toogeg).

Proof b follows from a when we multiply out the -expression

for P(x) in (3.22) and compare with the given expression.

a. By (3.21) we let x = 0, be a zevo of P(x). Dividing,

(x—al)|P(x), it is clear that we obtain
(3.23) P(x) = (x—al)Pl(x) + ey,

where Pl(x) is a polynomial with deg P, = n-1 and

a. £ C.

[}

Letting x = 0oy in (3.23) we have P(al) c so that

= 0 since P(ul) = 0. Thus

n-1.

1

Px) = (x~a1)Pl(x), deg Pq

We now prodeed in the saﬁe way with Py and obtain
P(x} = (X—ul)(x-uz)Pz(x), where deg P, = n-2.

In this way we compute (3.22). We omit the proof of uniqueness.

q.e.d.
It is possible that G, = ¢t F Op in (3.22). In this
case, if oy ¢ {um+l,-'-,un} then  aq ig a multiple zero of

multiplicity m. Cardano and, later, Newton had observed that

if P(x) has real coefficients and if P(oa+tiB) = 0, a,B € R

and 8-# 0, then P(o-ig) = 0. It was also popular sport to
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see how many positive (resp., negative, complex) zeros P might

have; for example, Descartes proved that if P is a polynomial

with real coefficients then +he maximum number of positive zeros

of P(x) is the numbey of changes in sign of the coefficients,

e.g., [Uspensky, pp. 121-1247. we illustrate what we mean by

the number of changes in sign. Let ag = 1, a, = -1, a, = -3,

= -5, a; = 6, ag = 5; the éign changes between ag  to a,
and between a, to a, - In this case the number of changes in
sign of the coefficients is 2. If aj = 0 then there can not

be a change of sign counted for either aj+1 to aj or aj to

aj—l' Results such as Descartes' led To a general problem of
determining the distribution of zeros of polynomials in C; and
this has led to certain aspects of modern algebraic geometry. A
léth century high point on this general problem is due *to C. Sturm
(1803-1855); Sturm's theorem (1829) allows one to find the exact
number of real zeros contained between two given real numbers

for equations without multiple zeros, e.g., [Alexandrov, Chapter

.4%; Uspensky, Chapter 77.

The formulas in Proposition 3.4 b led to the study of

symmetric polynomials, which along with the theory of permutation
groups and the use of so-called resoivents, formed the basis of

Lagrange's study of poiynomials.

3.2.2 Integration theory and the fundamental theorem of algebra
In 1748, Jean Le Rond D'Alembert (1717-1783) formulated
and attempted to prove (3.21). Interest at this time to prove

(3.21), and thus obtain the representation (3.22), received an
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impetus from the problem of using partial fractions as a
technique of integration. In 1702, the Swiss Johann Bernoulli
(1667-1748), who was an outspoken critic of the English in

the Leibnitz-Newton controversy, claimed that the integral

(3.24) f P(x)

Q=) dax,
where P and Q are polynomials, is solved by means of trigo-
nometric and logarithmic functions {(and no other "transcendental!

functions ) as well as quotients of polynomials.

A rational function is a quotient of polynemials, and

during the 17th century and early part of the 18th century many

attempts were made to integrate both rational and "irrational"
functioﬁs. In the latter category we include integrals which
are used to calculate the arc length of an ellipse and which
arose from pfoblems in astronomy. It was natural *to approximate
the ”irrational” functions by rational ones; Without being
specific we note that the study of "elliptic integrals" leé to
a very sizable theory by.the mid—Ich.century, cf., [Dieudonné,
Pp. 833 ff.l}; and it was Hermite's expertise on such matters
that led to his solution of the general quintic in terms of
elliptic modular functions.

Bernoulli's claim on the evaluation of (3.24) was not
universally accepted, and the dispute reduced to the problem
of whether or not a polynomial P with real coefficients could
be written as a finite product of linear and quadratic polynomialsg
with real coefficients; this representatiocn is of course valid

because of (3.21) and Proposition 3.4 a. Thus, if we are given
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the rational function P/Q, with deg P < deg ¢, Johann

Bernoulli ang we have

P{x) - _ P(x) \
Q(x) Ll(x) "o Lm(x)Ql(x) s Qn(x) ?

where Lj(x) = ajx-+bj, Qj(x) = ij2 + djx + ej, and

aj,*-~,ej € IR. Assuming that the Lj and Qj are all distinct,

the method of partial fractions yvields

P(x) _ m Aj n Bjx+Cj
(3.25) QTQT_ = % E§T§7 1 % ng?j_’

where the Aj,Bj,Cj € R can be computed by Writing the denomina-
tor of the right hand side of (3.25) as Qx), Performing the
calculation, angd identifying cocefficients of this new numerator

with those of P(x). The integrals of the terms in the right

f 2ax+b dx ,
x teox+d

then we ler y = x2 tex + 3, set

ax+h - A du + B
————._ = A du =,
x tox+d b dx 4

and solve for A and B obtaining A = 4/9 and B = ZDEaC;

therefore, the desired integral ig

%~1og ]x2+cx+d{ + EE%EE f - ax_
X tox+d
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3.2.3 Proof of the Fundamental Theorem of Algebra

Before giving proofs of (3.21) let us recall two properties
of continuous real-valued functions. If K ¢ € is compact and
f: € — R is continuous then the least upper bound axiom for

R yields the existence of o € K such that
fla) = inf {f(z): z € K}.

Similarly, we have the intermediate value thecrem for continuous

functions f: R — TR: if f(a) < 0, £f(b) > 0, and a < b
then there is o € (a,b) such that f(a) = 0.

The following is due to Euler.

Proposition 3.5 Given P(x) = x + an*lxnhl * +ec + a, where

n>1 1is odd and apgs*tesa

-1 € I]R. Then there is a € IR such

that P(a) = O.

Proof S5et M = 1 + Z Iajl and note that
0
n n3 i
(3.26) |P(x)-x"] = 7§ |aj||xlj.
0

Using the facts that n is odd, the a. are real, and M = 1,

]
we obtain (for x = =-M)
' n n-1 n o1 Bl
P(-M) = =M+ T Ja, M) s M+ u” EN
0 ¥ g J
S LI TV B B VU

Thus, P(-M) < 0.

Similarly, we compute (for x = M)
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P(M) = M~ ] |aj]Mj > M - M f la. |
: | 0

Thus, P(M) > 0.
The result follows from the intermediate value theorem.

g.e.d.

Theorem 3.1 (Fundamental Theorem of Algebra) Given a polynomial

P(x) = "+ an_lxn_l + eee 4 ag with complex coefficients and
n = 1. Then
(3.21) - 3a € € such that P(a) = 0.

Proof i. We shall first verify that

(3.27) Ja € € such that [P(a)| = inf {[P(z)|: z € C}.
Define w = inf {|P(z)|: =z € C}.
If |z| = R note that
-1 -
[PCz)| 2 R - (Ja, _(|R7T + «ee 4 Jag[RT™;
and so lim  [P(z2)] = o,

2]
Thus we can choose R > 0 with the property that |P(z)| > w
when lz| > R.
Set K = {z: |z| = R}.
Consequently, since K 1is compact there is a € K for which
|P(a)| = inf {|P(z)] : =z € K}.
By the way we've chosen K we see that
inf {|P(z)| : z € K} = inf {|P(z)]: =z € C}.

Thus, we obtain (3.27).
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ii. We shall assume w # 0 and then find B8 € € for which

(3.28) IP(RY] < [PC(a)] = w.

(3.28) contradicts (3.27) and so w must be 0. This is (3.21).

iii. Since w # 0 we can define Q(z) = P(z+a)/P(a). Because
n =1 we see that @ is not a constant function. Also,

Q€0) = 1, and [Q(z)| = 1 by the definition of a.
The facts that @ is a polynomial and Q(0) = 1 allow us to

write

_ k k+1 ces n
(3.29) Q(z) = 1 + bkz + bk+1z + + bnz

for some 1 = kX < n, where bk £ 0.

iv. By the properties of €, we can choose 6 ¢ IR for which
_ iké
—|bk] = bee .

From (3.28) we see that

Q(rele)
_ ky ik k+1 1(k+1)6 .. n, _in®
= 1 + v bke + bk+1e + + bne
- 1 - Tk|bk| + rk(rbk+lel(k+l)e b oeee + rn—kbnelne)

is valid for all » > 0.
Take v > 0 small encugh so that 1 = rk|bk|, and without loss

of generality assume X < n. For such r the triangle
inequality yields

16 Kk k -k
lo(re™ )| 1 -r b | +r (P|bk+l| $oeee 4 pl |bn|)

1A

"

(3.30) ok
R A LN

1

1 - (b | - o]

!
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Clearly (lbkl - P[bk+1[ - ees o Pn“klbn]) > 0 for small » > 0
since bk £ 0,
Consequently, when r > 0 is small we cbtain (3.28) from (3.30).

g.e.d.

We refer to [Stein] for an easy tepological proof of the
Fundamental Theorem of Algebra.‘In fact, by elementary homology -
theory it can be shown that for each n ¢ Z {0} lthere is no
continuous function f: {z ¢ C: lz| =1} — {z € ¢: |z] = 1} =
Sl whose restriction to S1 is defined by f(z) = zn; assuming

the negative of (3.21) yields a contradiction to this result.

3.2.4% History of the Fundamental Theorem of Algebra

The first precise statements of (3.21) (although not in the

context of €) and Proposition 3.4a (in terms of real coeffi-

cients and linear and quadratic factors) seem to be due to Euler
in a letter he wrote to Johann Bernoulli's nephew Nicholas
Bernoulli (1687-1759) in 17u42. A little later, in 1746, D'Alembert
attempted a proof of (3.21); we shall have more to say about

D'Alembert's idea in a moment.

In 1743 Euler published his proof of Proposition 3.5, and
then proceeded to solve (3.21) for deg P = n by a éeries of_
solutions for special even integers, e.g., [Struik, 1969, p. 102].
There were gaps in this latter stage of the proof which Lagrange
attempted unsuccessfully to £ill, and of which Gauss gave a
critique in his Helmstddt doctoral dissertation of 1799.

It was in this dissertation that (3.21) was fipst proved

correctly, e.g., [Struik, 1969, pp. 115~122], although some
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statementé concerning the structure ofrthe real numbers and
properties of continuous functions were not propérly Formulated E
until later; according to his journal, Gauss discovered this
proof in October 1737. The idea of this first proof was the

basis for the proof of (3.21) that Gauss published in 1849, butr
this time using the propertieé of € more directly, &.g.,
[Uspensky, PP- 293-297]. In 1814 and 1816 Gauss published two
other different proofs of (3.21). Besides the importance of
settling (3.21), such proofs dealt with the very important-issue
of mathematical existence. Both Greek mathematics and algebra
fpom the Babylonians to the lBth century Ttalians generally
viewed mathematical existence in terms of construction; for
example, the solution of é quadratic equation was actually ex-
hibited. Gauss was able to verify the validity of (3.21) but was
not able to provide a procedure for constructing such a zero.

This existential and non-constructive aspect is contained in the

proofs of both Proposition 3.5 and Theorem 3.1; in the former
it is peflected in the use of the intermediate value theorem and
in the latter by the property that continuous functions achieve
their minima @n compact sets.

Gauss' first proof of (3.21) wasrgeometrical. He wrote the
given polyriomial P as. P(x+iy) = u(x,y) + ivix,y) where u
and v are real-valued functions of two real variables. Then a
zero of P 1s a point of intersection of the curves u({x,y) = 0
and v{x,y) = 0. Thus, Gauss verified (3.21) by showing thaf the

curves u = 0 and v = 0 intersect. He also proved Proposition

3.4 a 1in his aigsertation.
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His second proof is algebraic except for the use of

Proposition 3.5 at the very end of his paper {Smith, 1929, pp.

232~306]. This second proof indicates the esgentially analytic
side of the fundamental theorem of élgebra; for try as he did to
solve (3.21) completely algebraically, Gauss had to use the inter-
mediate value theorem to clinch his proof. This second proof also
invites a comparison between it and Artin's (1898-1962) proof of

(3.21) which uses Galois theory and Proposition 3.5 [van depr

Waerden, 1931, Section 70] (ie., how close did GCauss come to
Galois theory?).

Gauss' third proof of (3.21) is entirely analytic in nature
and the techniques anticipate the theory of complex variable.
This proof is given in [Meschkowski, pp. 64-69], and an inter-
secting study of it is found in [B&cher]. The third proof is
closely related to the Argand-D'Alembert proof on which we'll
soon comment, to those proofs of (3.21) that involve Liouvilie's
or Rouché's (1832-1910) theorems, e.g., LAhlfors, p. 122; Hille,
volume 1, p. 2547, respectively, and to. some ostensibly ad hoc
proofs, e.g., LBuck, p. 493]. One fact that connects all of these
seemingly diverse approaches is the Cauchy integral formula.

After Gauss' first proof the next serious proof seems due
‘to Argand (1806). In order to discuss Argand's contribution it
is necessary to give D'Alembert's idea that we mentioned at the
beginning of this section and which turns out +o be quite sound.
D'Alembert's attempted proof of (3.21), properly modernized,
consists of two steps. The first step asserts (3.27), and the

second, which is called D'Alembert's lemma states that
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Ya ¢ € for which P(a) # 0, 3B € € such that

(3.31)
|P(BY| < |P(a)].

Obviously, (3.31) is (3.28), and these two steps are precisely

the way we proved Theorem 3.1. D'Alembert's lemma is a form of

maximum modulus principle that is studied in the theory of

‘complex variable. We aiso note that Gauss' geometrical proof

in 1799 actually comes around fo the use of (3.27) [Petrova, p.
2581. D'Alembert's attempted proof was not valid, or at the very
least it contained gaps, even if we cohsider the subtle founda-
tional step contained in (3.27) to be more of an axiom than as
something to be verified. It has even been suggested that his
actual argument depended on (3.21), although [Petrova? p. 2571
argues against this. In any case, Argand gave the first valid
proof of (3.31). Tt turns out that Cauchy and Legendre (1752-
1833) gave similar, less accurate, aﬁd more widely distributed

proofs of Theorem 3.1 after Argand's proof; and there is suspicion

to the possibility that Legendre knew of Argand's work and did

not reference it [Petrova, p. 260].

3.2.5 A constructive fundamental theorem of algebra

‘ We have discussed the existential nature of the proofs of
(3.21). For such a basic result it is natural to ask for more
in the way of determining a solution.

- Galois' theory characterizes those polynomials whose zeros
can be found by radicals; and as we mentioned there are fifth
degree polyncmial equations which are not sclvable by radicals.

We then noted that quintic¢ eguations can be solved by certain
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transcendental functions (elliptic modular functions). Such a
procedufe is aesthetically satisfying and proyides insight into
the structure of such polynomials.

On the other hand, it is also important to see if a well-
defined (denumerable) procedure exists which azliows us To construct
zeros for a given polynomial equation in a computable way. H. Weyl
was able to do this using an intuitionist procf based on a residue
argument; whereas in 1940 H. Kneser succeeded in producing a
cqnstructive proof based on Argand's procf and an earlier attempt
to use Argand's proof by R. Lipschitz (1832-1903). Many facets
of compléx variable, including the complex variable proof of
(3.21), vyield to constructive methods, and as we mentioned in
section 1.5.3 a systematic treatment is found in [Bishopl]. A-
constructive proof of (3.21) based on arguments of a purely alge-
braic nature énd on assumptions about R  that were stated in
purely algebraic terms (although the proof of these assumptions
would require analytic methods) was first given by 0. Perron

(1880- ), e.g., [Zassenhaus].

3.2.6 Biographical sketches - Euler (1707-1783) and Gauss

(1777-1855)

Besides [Gillispiel and the references in [Mayl we used
[Halll in our discussion of Gauss; [Scottl has a good description
of Gauss' work in number theory. Although noted in [Mayl, T
mention for emphasis the definitive account by [Dunningtonl] and
the personal memorial by [von Waltershausenl. Euler's collected
worke should be mandatory viewing for the course along with

selected readings from Truesdell's (1919- ) elequent and
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profound analysis of Fuler, e.g., [Euler, series secunda,
velume II, part 2; Truesdell]. We also mention [Gillings] since
it argues convincingly against the dramatic nature of the

confrontation between Euler and Diderot (1713-1784).

3.3 Sguaring the circle

3.3.1 Statement and origin of the problem

Take a straightedge énd compass. With the stréightedge we
only allow curselves to draw a straight line between two given
points. With the compass we only allow ocurselves to draw a circlé

with & given radius and a given center. Each of these two opera-

tions is called a fundamental construction. Any segment constructed

by a finite number of fundamental constructions will be called

a ruler and compass construction. No other operation is allowed.

For example, we do not allow markings on the straightedge to be
used in the construction. Consider a cirecle € with radius
having unit length so that the area AC bounded by C is .

The squaring of the circle problem is to determine if a segment

having length V7 can be constructed by a ruler and compass
construction. The termiﬁology, squaring of the cirecle, is used
since Ac is the area of the square with side having length /7.
The Rhind papyrus states the problem of transforming the
unit circle into a square of equal area; the fundamental ruler
and compass constraint is not made there. The writer of the
papyrus gives the following solution: cut off 1/9 of the dia-

meter and construct a square upon the remainder; the area of

this square is the desired answer. Thus,
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- - 2,2
T AC = ( 2-§ ) = (=)
not bad. Estimating the value of ® and the above mentioned

problem from the Rhind papyrus are practically equivalent

endeavors; and the squaring of the circle can be viewed as

- a refinement of this problem.

Anaxagoras of Clazomenae (500-428), who is responsible for
the correct theory of eclipses (but who still thought the earth
was flat), is reported by Plutarch (46 -120) in De exilio to
have worked on estimating 7 while in prison. Anaxagoras was
one of the first resident Athenian philosophers [Bochner, pp.
305-306; Russell; van der Waerden, 1954]. Antiphon, a contempo~
rary of Socrates, used the method of inscribing polygons in C
to compute = '[Heath, pPp.- 140-1411; and as such it can be
argued that he had a basic insight concerning the method of
exhaustion. It is to his mathemati¢a1 credit that he was criti-
cized by Aristotle about this work. None of these Greeks, in-

cluding Archimedes, Hippocrates of Chios, (460-357) and

Apollonius, squared the circle in the pre01se way that we have
.demandeé bﬁt several of them obtalned good 1nformatlon about
T ras we mentioned in Archimedes' case. [Beckmann; Heath, PpP-
143 ff.; Hobson; Klein, 1885, pp. 55 ff.; Tietze, Chapter 5;
van der Waerden, 1954, pp. 130 ff.] survey the work of those
who have "squared the circle", including those who knew -they

were not obeying the ruler and compass ‘guidelines as well as

those who didn't know.
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3.3.2 Constructible numbers

Suppose we are given the complex plane marked only with
the points (0,0) and (0,1). A complex number c¢ = a + ib € C

is constructible if segments of lengths |a] and |b] can be

made from ruler and compaés constructions. In this case we can
find the point (a,b) ¢ € in the plane by means of a ruler and
compéss construction. Let € ¢ € be the set of all conétructible
numbers. By our assumption, 1 ¢ C; and we note that Q@ is the

field generated by 1.

Proposition 3.6 0 ¢ C and ¢ is a field.

Proof 1 € QN C by hypothesis and so it is sufficient to
prove that € is a field. Given a,B € C; and, without losgs of

generality, let «a,B = C.

i. We shall construct u.+ B.

Draw a straight line and on it use the compass to mark off the
lengths |0A| = o and |AB| = B (where A 1is between
0 and B); then [0B]| = o + 8.

ii. We shall construct aB.

Mark off the iéngths |oA] = o and |0B| = B where 0 < JAOB <
n/2 radians; and mark off the length |OU| = 1 on the

line determined by OA.

A
-~
U
0
B L
V

Figure 17
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Draw the segment UB and construct the segment AV parallel
to UB, where V is on the line determined by OB, e.g.,
Figure 12. 7

By the fundamental property of similar triangles,

%. = _lﬂl_ i_e_’ IOV, = (18_

iii. Assuming B > 0 we shall construct o/B.

Figure 13

Take OA and OB as in part ii and mark off the length [OU| = 1
on the line determined by 0B.

Draw the segment AB and construct the segment UV where uv
is parallel to AB and V 1is on the line determined by
0A, e.g., Figure 13.

By the fundamental property of similar triangles,

Bra B e, jov] = %.

It is conceivable that @ = C.

Proposition 3.7 If o € € is non-negative then va € C. 1In

particular €\Q # # since we know that V2 ¢ 9.
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Proof On a straight line, mark off lengths |0A] = a . and

|AB| = 1 as in Figure 1u4.

Figure 14,

Bisect OB and draw the circle C having diameter |OB].

Let AD be the perpendicular te 0B, where D is a point
of C. ' |
The angle 4J0DB is a right angle since the triangle AODB is

inscribed in a semi-circle.

Consequently, J0DA JOBD, i.e., 6 = B. This is clear from
. Figure 14, since we have 1 = g—+ ( %-—6 ) + 8 in the

triangle AADB.

Therefore AOAD and ADAB are similar; and so we compute

[ggl = +§%+-, i.en, |ap] = va.

q.e.d.

Let S ¢ € be the smallest field with the property that
if o €8 and o = 0 then Yo € S. We've just proven that

§ ¢ C. The following result shows that "V " is the-only non-

rational operation possible by means of a ruler and compass

construction.
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Proposition 3.8 A'S = C.

EEQEE‘fWé must'ﬁrove.that C ¢ S. The proof is byrihduction.
For thg case n = 0, we assert that the given poihts (0,0),
61,0) € € are each formed by 0 fundamental constructions.
The iﬁﬁuction hypothesis is that if a € € ig ermed by at
ﬁ@st 1 -fundémental consffuctions then «o E'S.
Givenifhisrhypothesis welll now'prdQe that if o € C ris formed
by af most ‘n+ 1 fundamental constructions then a € 5.
The construction of a ﬁrocéeds in the following way. At the
completion of nth step'é finife set {ql,‘-°,am} c C has
Qeén forﬁed by fundamental construdtions, and because of
the induction hypothesis ﬁe have {ul;"gam} c s
At this point there are tﬁree possibilities in which to form
a € € at the (h+1)st step from a fundamental construction
givgn the set {al,---,um}. N
We shall illustrate each of these three possibilities and show

that'in each case we obtain o € S,
i. Without loss of generality draw the line Li through - ai
and 'uz, and draw the line L2 through 0y and. a,. Let
.o € Ll N L2._

We can write Lj as
.32) A.x + B.y + C. = 0, 3§ = 1,2,

where Aj,Bj,Cj € S Dby the induction hypothesis.

Clearly, ¢ is the solution of the system (3}32); and.so o € 8§

.'n e A.,B..C. ¢ 8,
since 52855C5
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ii. Let a €1, N C, where Ll is as in part 1 and where

C 1s a circle with center o, and with a, € C. The equation‘

for C is

(3.33) <%+ y2 + 2Dx + 2By + F = O,

where D,E,E.E S by the induction hypothesis.
Solvé for y in the Jj = 1 equation of (8.32),‘and substitute
this value of vy in (3.33). -
The solution of the resulting quadratic equation in x yields
the x-coordinatés of points of intersection of L1 and

C.

Similarly, solve for x in the j =1 equétion of (3.32) and
substitute this =x in (3.33). |

The solution of thé resulting quadratic equation in y yields
the y-coordinates of points of intersection of Ll and C.

These solutions involve square roots and rationél operations on

numbers in S, and so o € S.

iii. ‘Supposé finally that o 1s an intersection point of two

circles Cy and CQ (whose equations are wpitten in the form
of (3.33)).

Subtract the second equation from the first to obtain a linear
equatioﬁ which we use with Cl in a way.analogous to the
computation in part ii. | |

Consequenfly, as in part ii, we see that € S.

g.e.d.

We now consider Proposition 3.8 in the following framework.
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1
be the field of numbers generated by va and 0, where Fl

Set PO.= Q and take o € @ such that va ¢ 0. Let F- ¢ ¢
depends on da. For any such Fl and any o ¢ Fl for which

Vo ¢ Fl, let F2 be the field generated by vo and Fi, where
F2 ‘depends on o. Thus, for each n 2‘1 we form a countable
family of fields Pn, where each such ‘Fn depends on an Fﬁnl
and an o € T for which vo ¢ F | Fn is an extensibn |

n-1 n-1°
depending on a. Consequently, o € C 1if and

-1

only if o is in some such Fq; and B ¢ Fv_1 if and only if

s

field of F
—_— T n

~1 n-1>l

B = a + b/a, where a,a,b ¢ Fv1 and Vo ¢ F

3.3.3 Algebraic and transcendental numbers

a € € 1is algebraic if it is the root of some polynomial

1 pruy . = n n_l s o 9
equat}on P(x) = 0, "where P(x) = a x + a._qx + ta;x ¢ a,

and each aj € Q. If o €€ 1is not algebraic then it is tran-

scendental. Let A ¢ € be the set of algebraic numbers. Clearly,

Q ¢ A; and V2 ¢ A since o = ¥7 is a zero of the equation

x2 - 2 = 0. It turns out that A is a field of numbers [Pollard,

p. 37].

Liouville constructed the first transcendental numbers in
18443 his main article on the subject appeared in 1851. In 1873,
Georg Caﬁtor proved that A 1is é countable set and that the set
of transcéndental numbers is an uncountable set,-e.g., section

3.3.5.

Propogiticon 3.9 C < A,

Proof Take a ¢ €. By our remark at the end of section 3.3;2



143

on extension fields, we see that o is an element of some-
F .

n

We shall prove the result using induction on the. Fn's.

Suppose o = a + bVB € F where a,b,B € § = FO and VB ¢ 0.

12
We have o € C.
Thus, (o-a)/b = /B so that o - (2a)a + (a’-b°B) = 0.
Consequently, o 1is a zero of a polynomial with rational
coefficients and hence a ¢ A.
From this procedure we see that if o € Fn c C then it satisfies
a quadratic equation whose éoefficients are 1in Fn—l' |
By induction it is straightforward to check that a Jsafisfies
- a polynomial equation of degree 2j whose coefficients
are in Fn-j’ where 0 < j = n.
The result o € A therefore follows when j = n.

q.e.d. ?

Because of Proposition 3.9 the squaring of the circle

problem will be settled in the negative if we show that vmw 1is

transcendentall Indeed, this is the case as we mentioned in

section 2.1.4%.3 because of Lindemann's result that ﬁ e CTNA,
a fact assefted long before by James Gregory (1658—l675), cf.,
[Baker,‘fp. 3-61; in fact, if /m E.A then m ¢ A since A.
is a field. At the University of Munich there is a bust of
Fefdinand Lindemann, and beneafh t+he engraved ﬂame there is the
letter 7 framed in a circie and a square.

Lindemann's proof is not easy and was strongly influenced

by Hermite's proof that e is transcendental.”Kronecker's remark

on Lindemann's work actually runs deeper than it apﬁéars but
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certainly not less caustic: "Of what use is your beaqtiful
investigation regapding m? Why study such problems since
irrational numbers do not exist?ﬁ The major vesult on the general
problem of finding specific transcendental numbers is due to

C.L. Siegel (1896- ) Gelfond, (1906- ) and Schneider in
1934, and Baker in 1966. A special case of Siegel's result is:

if B . is dirrational then at least ocne of 28,38, or 58 is

transcendental. The Gelfond-Schneider theorem is: let' B Dbe an

irrational algebraic number and assume that o is an algebraic

B

number not equal toc 0 or 1; then o is transcendental.

Baker's theorem is a far reaching generalization of this result. -

1
Example 3.1 a. e" is transcendental since e" = (e")1 - (-1)"" .
b. It is not known if the following numbers are
irrational: 7 + e, -, w/ﬁ, Z: J?, 2e, Euler's constant
n

Yy = lim (Zizl % - log n). On the other hand er 1is irrational.

-+

Cambridge folklore has it that G.H. Hardy (1877-1947) would have

resigned his position in favor of anyocne who proved the irrational-~

ity of .

Remark With regard to Theorem 2.5b we now quote the Thue, Siegel,

-Roth (1925~ } theorem (1955): let o be a real algebfaic

number and let & » 0; +then the ihequality

p |
0 < - £ < 1/
L1 q

has only a finite number of solutions (p,g) € Z x I,
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3.3.4 The Delian problem

In light of Proposition 3.9 lt is natural to.ask if A = C.

The question is answered in the negative since ;/—'E A (/_ is

a solution of 3 - 2 = 0), while some elementary propértieé of

cube roots and our characterization of C show thatl,yi £ C, e g.,

[Courant and Robbins, pp. 134-1351. This example deals a setback
to prayer-oriented splutions of medical problems. In fact,‘in the

face of a devastating plague, the Athenians asked for help at the

opacle at Delos. They were advised to double the size of the
cubical altar of Apollo. Plato suggested to the Delians that perhaps
the oracle was not responding directly to the plague problem but
wag trying to shame them because of their contémpt for geometry.
‘We refer to [Heath, pD. 154-170; van der WaerdEn,'195u, pp. 159
£f.] for a survey of ancient Greek work on this Delian problem
44 well as for other possibilities as to its origin._When one
decides to use a ruler and compasé congtruction instead of an
hammer and saw, the-Delian problem is equivalent to finding out
whether or not ¥  is constructible. This follows since the
ovacle askéd a solution to the equation | :

x3 = 2a3,

where a is the length of a side of Apollo’s altar and .x 1is

t+he desgired side; consequently, X = avz.

3.3.5 The Cantor diagonal process and transaendentai numbers

Georg Cantor's work concerning uniqueness questions in
trigonometrlc serles led him to guestions about sets and numbers

which have affected the mathematical world in a moat. profound
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way, cf., sections 1.2.5 and 1.2.6.

The following remarks and Proposition 3.5 are due to Cantor.

A set 8 ¢ € is countably infinite if there is a bijection (i.e.,

a one-to-one onto function) f: N —» S; in this case we write
card § = ¥ ("card" designates Y"cardinality"). A finite or
countably infinite set 8 ¢ € 1is countable. If 8 ¢ € is not -

countable then it 1s uncountable.

Example 3.2 a. We'll show that card Q = 8- Without loss of

generality consider the set of positive fationals,‘and identity
this set with the points (m,n) having integer coefficients in
the first quadrant of the plane. We can draw a path through'all

of these points as in Figure 15.

Figure 15

The bijection f is defined by the rule that f(n) is the

nth point on the path.

" b. We'll show that R and f are uncountable. Without

loss of generality we'll prove that the set S of points in the
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interval (0,1) 4is uncountable. If c¢ard S = 8, then § =
{f(n): n € W} where f: I — S .is a bijection. We designate
the decimal expansion of £(n) by a; @ «=+:; and we shall
,t 2,1 _
obtain a contradiction to our countability hypothesis by writing
down a decimal .byb,-c-, b. € {0,1,=+°,9} whieh is not equal

]
to any f(n). 1In fact, we define bj as

1 for a. . 21

] 2 for - a. . = 1.

Let 1 be the collection of all polynomials P(x) =
anxn +,an_lxn—1 + ee» + a,, deg P z 1, with the property that
each a. 1s an integer and {a0,°*-,an} is a pairwise relatively

prime set.

Proposition 3.10 Card A = &D’ and the set of real transéendental‘

numbers is uncountable.

Proof For P € T we define h(P) = n + Zg Iaj[; thus, h(P) = 2.

For N 2.2 we let IN comprise those polynomials P € I for

which h(F) = N.

7 Clearly, each IN is a finite set, and I = U IN.
Corresponding to P(x) = anxn ¥ oeee +oag € I, there is a "word"

aoal-v-an; and we list the words (corresponding to a given

‘N) 1in dictionary order.

Each P ¢ I has a finite number of zeros.

Take N = 2. List the finite number'cf zeroeg of the first

element of 12, then those of the second, ete., passing

over those which had been proviously listed, until the zeros



148

of the last element of 12 have been recorded.

Then proceed to 13, “ete.
A 1is the collection of all such zeros, and so card A = ®,-

The result is completed since IR is uncountable. -

3.3.6 Liouville numbers

It is_interésting to hote that Proposition 3.10 coupled
with a slightly fancier proof that IR  is uncountable (in fact,
one which is the essential part‘of the proof of the Baire category
theorem for TR} pfovide a direct means of computing transcen-
dental numbers. It is not as efficient as Liocuville's example
that we shall now give, but nonetheless it is diréct, thus refuting
some of the strong criticism against Cantor at the time that he

published Proposition 3.10.

We observed earlier that @ ¢ A. The degree d(a) of o € A
is the smallest positive integer n for which P(a) = 0, where
deg P = n and P € I. Thus, @\ {0} is precisely the subset

X of A such that

Yo € X, d(a) = 1.

The following should be compared with Theorem Z.5.

Proposition 3.11 Let o € A be real with d(a) = n > 1. Then

there is a positive integer @ such that

¥(p,q) € Z2xIN, |a - %i > 1/(Qq™).

Proof Take P € 1 - for which P(a) = 0 and deg P = n.



149

Let Q be a positive integer with the property that P (x)] = Q
if  Jo-x] = 1.
By the mean value theorem and the fact that P(a) = 0 we

have
(3.34) o 1P| = Qla-x|

- for |o-x| = 1.
If we take integers p and g, q > 0, for which [u-—%| > 1

then we are done since 1 = l/(Qqn).

A

Choose p,q € %, q > 0, with the property that |a-—%[ 1.

We have IP(p/q)I = Q|u-L| from (3.34%), and so
Dpe P < n P
3.35 P < A
(3.35) : la PC£)] Qg |a ql

Note that P does not have rational roots. Iin fact, if P(r) = 0
for some T € @, then Q(x) = P(x)/(x-r) is a polynomial

with rational coefficients of degree .n-13 clearly, Q(a)-—
since a 1s irrationai, and so we obtain a contradiction to
the definition of d(a).
Since P does not have rational roots and because deg P = n,
Nne P
we see that q P(af) e ZN{0}.
Thus the left hand side of (3.35) 1is at least 1.
This yields our result noting that the strict inequality follows

'from t+he fact that o is irrational.

g.e.d,

g € IR is a Liouville number if it is irrational and has

the property that

vn = 1, 3p,»q, € % such that o - T
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where q, ? 1. In light of Proposition 3.11 and our desire

to find transcendental numbers it is interesting to exhibit a

Liouville number.

. N - . r
Example 3.3 We'll prove that o = ZT (-1)1/29°  is a Liouville
number. ' '

i. The fact that o is irrational follows by the same
argument that we used to prove that e is dirrational. Suppose

a = p/q where p,q € W, and let n € N be odd. Clearly, then,

) n . . o0 . .
(3.36) v, = MR- Jndndh - Mg § it e w.
| 4 1 : n+l

Choose such an n  so that 1 > q/2n+l. We compute

< 1,

r < =

_ 2n!q/z(n+l)1

Cl/21'1+1
which contradicts (3.35).

3 11
ii. Tor each n let pn/qn = Z; (—1)3/2]',

nl!

so that q, * 2 Then
lo - TR = pm(ntL)I L —(ne2)t e < om(n¥l)
9, '
L | -
= (- (ntl) 2"HT = /g0

n

Proposition 3.12 Every Liouville number is transcendental.

Proof Tet a be a Liouville number and assume that o € A with
d{a) = n. Since o is irrational we have n > 1.

By Proposition 3.11 there is a positive integer Q such that .

(3.37) lo = 81 > 1/(a™

for all (p,q) € Z xW.
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Choose a positive integer k such that Zk = Q2n.
Since « is a Liouville number there are integérs P> 9y

with 9y > 1 such that
(3.38) oo = =] < 1/q§.

Combining (3.37) for p = Py,d = 9y and (3.38) we obtain

Xk n
lq.k < qu'
i - k-n _ ,k=-n ' ¢t
Thus, Q > Q. = 2 > , a contradiction.
| g.e.d.
o 11! ) o
Example 3.4 a. o = ) 1/109° is a Liouville number.

1
b. Given a Liouville number o it is possible

to generate an uncountable family of transcendental numbers.

B . . - w - -1 .
For example take a as in part a. Then each § = Xl aj/loj' is

 transcendental, where a; takes the value 1 or 2.

3.3.7 Trisecting an angle'

We now prove that it is impossible to trisect some angles

by means of a ruler and compass construction.

Recall from Proposition 3.4 and the fundamental theorem

of algebra that we can write the polynomial - P(x) = x3 + a2x2 +

alx + aO

zeros of P(x); and‘we easily compute that

as (Xgui)(x—azl(xfug)s where 0q,0,,0, € -€ are the

(3.39) ‘ : ' -4, = oy + o, + qa.

Proposition 3.13 Given P(x) = x3 + a2x2 tayx +ag =

(x~ql)(x—a2)(x—a3) where a,,a;,a, e ¢ and Gy 50y s0g g Q.

Then Oy 505,05 g C.
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Proof Suppose P(a) = 0 and a € C.
Then o« 1s in some Pk where Fk is an extension field of
some Fk—l’ Fk—l 1s an extension field of some _Fk—Q’

etc,
Without loss of generality, let k be the smallest integer
J for which a zero of P(x) belongs to some Fj'
By hypothesis, o ¢ FO = @, and we have assumed that a ¢ Fk-l'
We have a = Bl + 82/3 where B,Bi ¢ Fk—l and /B ﬁ_Fk_l.
It is a routine (or, perhaps, rootine) calculation with cubics
to check that a' = Bl - BZ/E' is alsc a root of P(x) = 0.

If 82 = 0 then a ¢ Fk—l’ a contradiction. Thus, o # a'.
Because of (3.39), the remaining zero vy of P(x) 1is
- - - - |':_ - b
Y = -a, a o &, 281 € Pk—l since a, € 0 and
By € Fyq: |
This contradicts our definition of kX, and so ‘ul,a2,u3 ¢ C.

qg.e.d.

We now show that it is impossible to trisect the angle

having n/3 vradians by means of a ruler and compass construction.

Proposition 3.14 cos (m/9) ¢ C.

Proof 1.  From the Lemma in section 3.1.5 we have
(3.40) cos ¢ = 4 cosg(¢/3) - 3 cos (¢/3).

Letting ¢ = w/3 in (3.40), the problem reduces to Droving

that

8X3 - bx -1 = 0
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has no constructible solutions.

Setting vy = 2x, +the problem is equivalent to proviﬂg that

(3.41) yo 3y =1 = 0

has no constructible solutions; and in light of Proposition

©3.13 it is sufficient to show that (3.41) has no rational

solutions.

ii. Assume y = p/q, (P,q) = 1, is a solution of (3.41). Then

- 3q2) = q3 so that p[q3 and hence bplq; this contradicts

the condition (p,q) = 1 wunless . P = %l. Also, p3 =

p(p

q2(3p + q) so that alp; and this is a contradiction unless
q::t]_.'
Consequently, the only possible rational solutions of (3.41) are

y = %1, and these obviously fail.

g.e.d.

The above result does not preclude the possibility that one
can trisect every angle by a ruler and compass construction plus
some seemingly trivial extra help. For example, Descartes was
dble to effect such a trisection with the additional aid of a
fixed parabola.

[Tietze, p. 55] records the ruler and compass "approximate
trisections" of the GCerman tailor, E. Kopf. One of Kopf's con-
structions never produces an error éf mofe than m/(43,200)
radians. The following Kopf construction in Figure 16, although

relatively simple, has a maximum error of m/(1080) radians.
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b ¢ 1is the given'angle.
0
P
/ \\\\\\ : AB  is a diameter of a circle
/ ¢ . Cl with éenter 0.
A 0 B
P D
- T\\\\ 0D is the bperpendicular bisector
\
N of AB; and - B is the centep

. of the circle 02 with radius of

A 0 B length [BD].

D is the center of the ciprcle
C, with radius of length [AB[;

E is a point on C3 which-

intersects AB,

Figure 16

F is the point of intersection of the segment PR with the circle

C2;

3.3.8 Squaring in Solitude

E.J. Goodwin, M.D. (not ”mathematical doctor™), of Solitude,

and the angle 30rr is the desired dpproximation of ¢/ 3.

Posey County, Indiana, wrote House Bill No. 246 forp enactment
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by the Indiana State Legislature in 1897. In the first section

he seems to set w7 = 16/v3 [Beckmann, p. 1701, and the final

section of the proposed bill states:
In fufther proct of the value of the author's proposed
contribution to education, and offered as a gift to the
State of Indiana, dis the fact of his solutions of the
trisection of an angle, duplication of the cube (Delian
problem), and quadrature of the circle (squaring of the
ciréle) having been already accepted as contributions to

science by the American Mathematical Monthly, the leading

exponent of‘mathematical thought in this country. And be
it remembered that these noted problems had been long since
given up by scientific bodies as unsolvable mysteries and
above man's ability to comprehend.

The state house of representatives passed thé bill by a vote of

87-0. Despite the backing of the State Superintendent of Public

Instruction, the state senate postponed action on the bill because
of some of the adverse publicity the bill was receiving as well as
some eleventh hour mathematical cocaching to the senate by Purdue

mathematics professor, C.A. Waldo.
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Exercises for Chapter 3
= =o2e5 Tor Chapt

1. Reconeile the calculation:
o= o7 - JT A )
3 = -1 - ::j_- = 7:-]-:- = ‘jT 50 that 1 = -1.
2. Let {e_ > q-: n = l,ess} he g Sequence which tends +o d.

Is it true that fopr each n  there is 5 ruler and compass
trisection procedure fop every angle that pProduces g

maximum error of £, radians (independent of the angle)?

3. Show that any (finite) segment can be trisected by a ruler

and compass construction.

b, a- A group G {s g pair (G,0) with 4 uniquely defined

product fog ¢ @ for each f,g € 6 for which
i. 137 € G such that Vi € G, fgq 7 = Jof = f;
ii. Yf €@, Bgf € 6 such that ft>gf S g8p0f = 5,

iii. ¥ f,g,h ¢ G, (fog)loh = f£q (g oh).

A bijective funetion f: ¥ -— f(X), for some ¥ ¢ ®?

is homeomorphism if f ang r~1 are continuous. When
—=Eorpnism

1 2

X =8 ¢ R is the unit-circie we say that f(Sl) = C

is a Jordan curve if f.st f(Sl) = C is an homeo-
t=-tall curve
morphism. The Joprdan curve theorem asseprts that if
——— ZUr'Ve theorem

c ¢ R? is a Jordan curve then there are two disjoint
connected open sets De and Di such that ¢ is the
: . 2 _

boundary of both De and Di’ R¥=C U De U Di’ cu Di

is bounded, and De is unbounded.
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Verify that the Jordan curve theorem allows us to
well-define the direction of a Jordan curve in either

the clockwise or counterclockwise sense. An homeomorphism
2

£ R — f(ﬂRz) = R is orientation preserving if f

preserves the direction of every Jordan curve in IR

Let & Dbe the set of such orientation preserving homeo-
morphisms and prove that & 1s a group where the product

"o" 1s defined as ordinary composition of functions.

Let G be the group of orientation preserving homeo-
morphisms of Rr? onto itself and let H ¢ G be a

subgroup (i.e., H is a subset of G and fog € H

when f,g € H). A pair (x?y) EIRQX R2 is congruent
under H to a pair (x',y') € R? XJR2 if there is f ¢ H
for which f(x) = x' and f(y) = y'. Tf B(z) ¢ R’

designates a disc with center =z, we say that a pair

2XiR2 is semicongruent under H +to a pair

(x',y') ¢ E? XIR2 if for any dises B(x), B(y), B(x'),

(2,y) € R

B(y') there are congruent pairs (under H) (a,b) ¢

B(x} xB(y) and (a',b') € B(x')xB(y'). A metric space

X is a pair (X,d), where ¥ is a nonempty set and

d: X*x¥X -+ IR satisfies:

¥x,yv € X, 7 dlx,v) = 0,

Vx,y € X, d(x,vy) = 0 if and only if x = vy,
Vx,y € ¥, , alx,y) = d(y,x), |

Ve, y,2 € X, dlx,z) = d(x,y) + d(y,i);—

d is a metric. Verify that ordinary FEuclidean length
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and hyperbolic length are examples of metrics on IRQ;
in Exercise 1.6 we defined hyperbolic length for
Poincaré's Euclidean model (in the upper half-plane) of
hyperbolic geometry. If sz,d) 1s a metric space then

f € G is an isometry if
¥ x,y G.RE, d(x,y) = d(f(x),f(y))

Using the Jordan curve theorem, Hilbert and Lie (1847-
1899) proved the following result, e.g., [Hilbert, 1802,

Appendix; 1968, Anhang 4; Faryl. Let H be a subgroup

of G with the following properties:

2 x RQ is semicongruent under H

to (x',y"') ¢ IR2X1R2 then (x,y) 1is congruent

i. if (x,y) € IR

under H to  (x',y');

ii. there is % ¢ IR2 such +hat HX = {f ¢ H: f(x) = x}

is neither H nor the identity map (i.e., Hx is

a proper subgroup of H), and

Hﬁ(y) = {z EIRz: Jf ¢ HX such that f(y) =z 2z}

is infinite for all x # Y, X,y € BRQ.

Then H is the group of all orientation Dreserving

isometries on CRz,d), where d is either Tuclidean

or hyperbolic length.

Remark The Hilbert-Lie theorem allows for an axiomatic development
of geometry in terms of groups; and, in particular, the parallel

axiom of Euclidean geometry is characterized by the existence of
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normal subgroups of H. The result is in the spirit of the
fundamental geometrical research of Riemann and Helmholtz (1821-

1894); and can be viewed as a contribution to Hilbert's fifth

problem [Hilbert 1801; Montgomery and Zippin, pp. 67-71].

3.5 The Fundamental Theorem of Algebra asserts the existence of
zeros for any polynomial P(x) with complex coefficients,
and Abel showed that if deg P = 5 then the algebraic
equation P{(x) = 0 can't necessarily be sclved by radicals.
Next, Galois characterized those algebraic equations which
can be solved by radicals in terms of certain groups, a

term which Galois introduced. In 1858 Hermite used the

analytic theory of elliptic functions to obtain scolutions of

any quintic by means of "modular equations'. Abel and Jacobl
had developed this theory for a different purpose. Solutions
were also given during this pericd by Brioschi (1824-1897)

and Kronecker. [Klein, 18841 reviewed and unified this work

on the gquintic in terms of the icosabedral group Ag (intro-
duced in Exercise 2.6). TFor thié exercise, compare Hermite's
and Klein's solutions of the quintic. This is a reasocnable
group (sic) project, and, besides [Klein, 18841 and the
references therein, we recommend [Bell, pp. 231-239; Cole;
Dickson: Lehner, pp. 8-11]. Hilbert maae méjor analogous
progress for polynomial equations P{(x} = 0, deg P > 5, e.g.,

[Bell, pp. 236-239; Cole; Segrel.

3.6 On March 30, 1796, Gauss made his first first-rate discovery:

it is possible to make a ruler and compass construction of
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a regular polygon with 17 sides, e.g. [Tietze, Chapter 9].

This result led to his characterization of polygonal

constructions: a regular polygon of n sides can be made

by a ruler and compass construction 5.f and only if n = 2%

or

m
iet joved 2 ql-nnqj

where each q; €P, m=20, and qllg?,ouﬂ,qj are different

Fermat numbers (defined in Exercise 1.5).

a. Verify that

2T 1 1 - ., 1 T =
COSI'.:/.* = —Te—’i"j‘:gl/i? 1—1—6\/3—4—21/?

+ 2 V17 + 8/17 - Bhoa/T7 - 2y34+2/17,

b. Use Gauss' results to verify that the trisection of an
angle is not necessarily possible by means of a wrulenr

and compass construction.

Prove that if a,b ¢ R are positive then

22 - /&m,

and there is equality if and only if a = b.

Causs proved an important relation between the
arithmetic/geometric means of this simple but important
inequality and the elliptic integrals that are fundamental
in astronomy as well as in the study of the quintic. Let

a >b > 0 and define



161 ]

s
a + b
_ n-1 n-1 -
fn 7 7 ’ bn - \ian—lbn—l

where n = 1,2,°°°, a, = a, and bO = b. Gauss proved

that there is a number M(a,b) for which
lim a = 1im b = M(a,b).
n n

He related M with '"complete elliptic integrals" by showing

that

1
M(1l-x,1+x)

3+

s
c lmxzcoszy

3.8 Fill in the details of the following heuristic proof due

to Euler. Note that Proposition 3.% is used in an intui-

tive way. The problem is to prove that

2 3 .1_

for y = xz. We obtain the result by supposing that this

last series has the properties of polynomials listed in

Proposition 3.U4.
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