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The intimate relationship between the theory of

integration and harmonic analysis is well-known [5; 6; 7; 8;
103 115 153 163 1935 26]. I shall focus on two aspects of !
their story: Vitali's role in the discovery of the Radon-

Nikodym theorem and some recent developments concerning

(Riemann's) sets of uniqueness (U-sets).

I'11 trace the subject of unique representation of
_trigonoﬁetric series via the evolution of integratién theory
to Lebesgue's theory Qith its correct notion of measure
zero (due to Borel);- and then proceed to the present day

--when we now know that a characterization of ~U-sets depends

heavily on diophantine and spectral synthesis properties of
sets. The main issue here will be to point out the inadequacy
-—oaf sets of measure.zero té'providefany insigﬁt when deéling
with such questions in Fourier analysis.

' For the Radon-Nikodym theorem, I'll begin with

LCarleson's recent (1966) spectacular solution to the (Luzin)

L? convergence problem (and the Hunt extension for the
ip » P > 1 , case); and indicate the manner in which ideas
. gentering around the Radon—Nikodym theorem were crucial for
his result. In fact, a key technique'emanates from proglems'
~ in Fourier series which wgre'false for all the Lebesgue points
of a given function but true except on sets of measure zaroj
‘the positive value (sic) of measure zero is the main point here.
From thiSVStage it is a tiny and tempting step back in time to

- see actually the birth of the Radon-Nikodym theorem (by Vitali



and Lebesgué!)

The concept of measure zero, then, is the theme in
following these two arteries winding through the viscera of

analysis. The broad outline sketched above and elaborated cn

below makes no claim to ahy historical insight. On the other
hand, Vitali's contributions to integrqtion theory and the
afithmetic properties.of .U—sets are fascinating tales. The
paths'which I want to follow leading to these topics are

both crucially illuminated b& the concept of measure zero.
From my point of view the approach is a'convenience; but one

which follows along existing roads; and I hope, at least,

that the reader finds the potpourri of information entertaining

along the way.

0. Measure Zero

i

- The mathematical need for measure zero in tracing the
development of integration theory from Riemann to Lebesgue

is known; for example, Vito Volterra constructed functions

f whose derivative exists everywhefe buf such that f' is
‘not Riemann integrable. MHe did this in his second paper in
1881 when he was Ulisse Dini's student at the gcuola Normale
Superiore (SNS) in Pisa (there will be more about SNS when
we discuss both Riemann and Vitali). In fact, H.J. Smith" A
had solved the same prcblem in 1875; but Lebesgué was
apparently unaware'gf Smith's result in his thesis [9] and
mentions Volterra's example prominently there.

On the other hand, Norbert Wiener has made a case

concerning a physical motivation for creating the notion of



meésure zero in his paber {26, p. 83] on theAhistory of
harmonic analysis, presented in 1938 at the American
Mathematical Society semicentennial commemorétion. Basically
the complete.justification of Maxwell and Gibb's statistical
"mechanics demands a theory of measure zero; and "the ideas
of statistical randomﬁess and phenomena of Zero probability
were current amoﬁg the physicists and mathematicians in

Paris arcound 1900 and it was’in a medium heavily ionized by

these ideas that Borel and Lebesgue solved the mathematical

problem of measure™ [26].

i, Sets of Uniqueness and the Inadequacy of Measure Zero

1.1 B. Riemann

Bérnhard'Riemann's life (September 17, 1826-July 20, 18665,

brilliance, has been documented by his friend Dedekind, ]

RS :
R - . %
so traglc in its briefness and transcendental in its

popularized by several others since then, and, even today,
~provides an exciting scene in the past to fathom (e.g.; a

study of the Betti-Riemann correspondence).(l) Our interest

for the sequei focuses on his Habilitatidnsséhrift [1935
here he ﬁegins with an important historical note on Fourier
serles, defines the Riemann 1ntegral to prov1de a broader
,settlng for an analytlcally precise theory of Fourier serles,
and develops the Riemann localization’ principle which is a
key technique in the study of U-sets. E S [0, 27) = T is.

U if




lim ) ce = 0 off F implies c¢_ =0 for all n.
Neo |n] < N | "

The problem to determine U-sets is important since one
would like to know if the representation of a function by a
trigonometric series is unique or not. The first explicit
results in this direction were given by Cantpr (e.g., g;;g)
although the followiﬁg fundaméntal theorem (for uniqueness
questions), fifst proved by Cantor, was apparently known by

Riemann [19; 11, p. 1101]:

(C-1) IF 1im 7 cneinx = 0 on [a, bl then lim ¢ =
' N+ |n| < N ' N A
X nij v

It is interesting to observe the overlap between Dini

' and Riemann. Riemann convalesced and toured in Italy during

the winter of 188%/5 and then came to Pisa during 1863.

He became quite friendly with Betti and Beltraml (Betti was

‘divector of SNS from 1865-1892). During that time, Dini

was a student at SNS graduafing in 1864 at scarcely 19 years

o0ld; . he then spent a year in Paris with Bertrand, and

returned to SNS where he spent the next 52 years! Dini

became one of the 19th century giants in real variable and

Fourier analysis, and, of course, includes Volterra and Vitali

0.




among his students at SNS. Riemann returned to Germany for

the winter of 1884-65, but then came back again to Pisa. He
died and was buried at Biganzolo in the northern part of
Verbania (the Italian resort town on the western banks of

Lago Maggiore just 15 miles south of the Swiss border).
1.2 G, Cantor

‘Georg Cantor (March 3, 1845-January 6, 1918) wrote

- several important papers con U-sets during the early 1870's

(Crelle's Journal, volumes 72 and 73, and Math. Ann.,

volume 5).  In the first, he proved (C-L) (§1.1) and using
this fact proved (in the second) that ¢ 1is U. The
subsequent papers gave simplifieatinﬁSOf proof and extensions
.0f the basic result, showing finally thaf certain countable
infinite sets are U. The study of special types of infinite
sets in this work certainiy influenced his later research
act1V1ty, and 1t was in 1874 that he gave his famous and

LV’ }i’?}u’f‘h )‘? —:Vg)'{é’ g

controver51al proof o@«only countably many algebraic numbers

(an algebralc number is a root of a polynomial with 1nteger

_coefficients). The remalnder of hls life was devoted to the
study of the 1nf1n1te, not only in a mathematlcal milieu, but
.-often delving into various philoscphical notions of infinity
due to the Greeks,-the séholastic philosophérs, and his
contemporarigs. He cértainly did not dote on all philosophers.
In a letter to Bertraﬁd Russell (who was then at Trinity College,

~ Cambridge), Cantor, in London at the time (1911), writes:
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"...and I am quite an adversary of 01d Kant,.who, in my eyes
has done much harm and mischief to philosophy, éven to
mankind; as you easily see by the moét'perverted develoﬁmént
of metaphysics in Germany in all theat followed him, as iﬁ
Fichte, Schelling, Hegel(z), Herbart, Schopenhauer, Hartman,
~‘Nietzche, etc. etc. on to this very day. I never could
understand Why...reasonable..peoples...éould follow yonder
sophistical philistine, who was so bad a mathematician." It
is intereéting to note that the great Dedekind Joined
Cantor along the-slalom to conquer the powers (sic) that be.
Recently (1968), F.A. Medvedev haé studied Dedekiﬁd's sét
theoretic contributions in the long (27 years) Cantor-Dedekind
correspondence. The marvelous Dedekind, by the way, was a-
_high'school_teacher in Brunéwick for‘fifty jears (from 1862)!.

Céntor's' U-set papers were preceded by H. Heine's
uniqueness theorem~(Cfelle's Journal, volume 71) in 1870
which assumed that the given trigonometric series were uniformly
convérgent off arbitrary neighborhobds of a fixed finite
number of points. Heine was at University of Halle with
"Céntor and attributes this approach to Cantor.

Cantor, of course, tried to prove all countable sets
are U, and this was finally achieved by F. Bernstein (1908)
and W.H. Young'(lgog){ Actually Bernstein proved sdmewhat
imoré, showing that E is_‘U if it does not contain any
non-¢ perfect subsets (every countable set satisfies this

property and closed sets with this property are countable



(in D).

1.3 D. Men'shov

Dmitrii Men'shov (April 18, 1892~ ) proved
a key result on U-sets in 1916 by finding a non-U-set E
with Lebesgue measure. m(E) = 0. He did this just after

graduating from Moscow University, where he wrote his thesis

under N. Luzin. His example has stimulated a great deal of
sfudy about sets of measure zero; and research about specific

sets of measure zero now forms a significant part of modern

" Fourier analysis and potential theory. Actually, on the bésis
6f Men'shov's exam?le, Luzin and Bari definedrthe notﬁon.of
MU-set” as sucﬁ. Earlier, de la Vallée-Pousein had proved
that if a trigonometric series converges to f € L' off a
cduntable set E then the series is the Fourier series of £
and it was generally felf that the same would be true if

m(E) = 0. Consequently, Medshov's example had a certain

amount of shock value, to say the least.
Since we will be discussing Cableson's result a little .

. in §2 it is interesting to note that Merdshov solved the.

analogue'fpr measurable functions in 19#0—#1. :Luzin, in 1915,
‘hadlnoted that if £ is measurable on T and finite a;e.

fhen there is a trigonometric series which converges {o £

by both Riemann and Abel summation. iThe problem was to show

if such a Seriés exists which converges pointwise a.e. to £
Men'shov showed precisely this! Thus with the CérlesonQHunt
theorem and Kolmogorov's example of f & L' with Fourief series

diverging everywhere (1926), "all that remains" (in the broad
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sense) of the Luzin problem is an investigation of the
analogous situation for £ measurable bﬁt taking infinite
values on a set of positive measﬁre. Actualiy Merlshov has an
affirmativé answer on this latter problem for the case of

convergence in measure instead of convergence a.e.

1.4 N. Bari and A. Rajchman

What with Menshov's ekample, Alexander Rajchman (who
died at Dachau in 1940) "seems to have been the first to

realize that for sets of measure zero that occur in the theory

iy el

of trigonometric series it is noﬁfﬁuch the metric as the
4 ) -

el

.~ arithmetic properties that matter" [21 (from Zygmund's

biography of Salem)]. Rajchman [17 (1922)] proved the

existence of perfect (in particular, uncountable and closed)
U-sets. He was motivated by some work of_Hafdy and Littlewood

(Acta Math. 37(1914)), and later (1920) Steinhaus, onldidphantiné

approximation to introduce "H-sets" and proved that such sets

are U. Rajchman, in a letter to Luzin, thought that any U-set

"is contained in a countable union of H-sets, and it was only

. in 1952 that Pyatetskii—Shapirgéproved this conjecture

false. The Cantor set is H and therefore U! By the way,

it is easy to verify that if m(E) > 0 then E is not U.

Actually, Niha Bari had proved the existence of perfect

U-sets in 1921 and presented her results at Luzin's seminar

0, ‘ .
(at University of Moscow); they were unpublished at the time
# .

of Rajchman's paper, although they were communicated to
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Raj chmanﬂiﬁ} [17 (1923)]
T

importance of Rajchman's results since he established a large

This does not minimize the

class of perféct U-sets and illustfated the need for
diophantine properties in constructing such sets.

Nina Bari (November.lg, 1901-July 15, 1961) established
her first results on U-sets as an undergraduate, and
throughout her life,ralthough she engaged in several other
research areas, was an outstanding expoéitop and contributor
on the triﬁky businéss of uniqueness. One of hérlmajor
resultg is that fhe cduntable union éf'élosed U-sets is U —
‘although the problem is open for the finite union of arbitrarvy
U-sets. Another, which was proven in 1936-37 and which has
-an interesting sequel (e.g., §1.6) shows that if a‘_is
rational and E(a) is the Cﬁntor:set with ratio of dissection
.a,l then E(a) is U 'if and.on1y if 1/a is an integer;

her theorem depends heavily on diaphantine considerations.
- . . N B P

1.5 " Number Theoretic and Spectral Synthesis‘Remarks

1.5a. Kronecker Sets

o o : : - . 7
.Kronecker proved: 4if {xl, vee xn,qﬂ C R is linearly s

independent over the rationals, {yl, cer L v }C R, .and

€ > 0, then there is an integer m such that for each 7,

Because of this we say that closed E C. T 1is a Kronecker set

if for each € > 0 and continuous f: E —C, ]f{ =1,

o
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there is an integer m for which

sup | f(x) - 1™ < e,
x € E

1.5b. The Spectral Synthesis Problem

Let A(T) be the absolutely convergent Fourier series
f(x) = J aneinX on 'T “normed ﬁy Hell =3 |an[, and let
its dual be A'(ﬁ?. For each closed set EC T 1let A'(E)
be those elements of A'(T) with suppoft contained in E
and let AL(E) be those T € A'(CE) such that (f,f Yy =0
for all f& A(D vaéishing on ;E} E dis a sEectrél

synthesis set (8) if A'(E) = Aém.

Norbert -Wiener (and Arne Bewling) posed the problem |
+to determiné if a given closed‘Subsef of T is S or not,
angﬁyienéf proﬁed-(in ﬁis Tauberiah theorem) fhaf the empty set
-is -§mz§;M1§€§> rIn 1949;52; Kaplansky, Segal, and Helson
prdved th;; a one-point set is S (in fact, it is what is
;alled a Ditkin set — Ditkin sets are S_~aﬁd it is not
known if thé two notiohs are equiValént5., These two results.,
 “tbgether with a techniquelintroduced by Di%kin in 1939, were
lcombined.by Shilov to get the general form-of Wiener's
. Tauberian theorem (in fact, Shilov's fésult dates ffom the early
forties and his theorem is valid for algebrés which have the
"one-point™ property that Kaplansky; etc. proved for AfT)){'
This general Wiéner theorem tells us,-in particular, that if
E is closed and J8E is countable then E is S; it is
‘basically a result about Ditkin sets. Using a different idea,

s

Carl Her=z pfoved that the Cantor set is S.
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In thé other direction,.Laurent Schwartz (1947) showed
that the sphere's surface is non-S in R?; and Paul
Malliavin (19593} proved that every non-discrete locally
compact abelian group has non-S-sets. |

Since I have_definea S-sets in such cold-blooded
fashion you may wonder from where theylcome. That story is
exciting and complicafed, but an amusing start would be a
visi? to the "Harmonic Anélyzers and Synthesizers" exhibit
at the Smithsonian's Museum of History and Technology.

- Although there was much mathematical stimulation for the
‘S—Sef problem, Wiener convincingly ciéims some physical
motivation. From é pufist's point of view the following
from Lévinson'é biography of Wiene:.is interesting:

"G.H. Hardy,once asked me ﬁhether;Wienef's claims about the
~applied origin of his wbrk was not a 'pose !t . Levinson

argues against this. : . /

1.5c Pisot Numbers

An algebraic integer is an algebraic number (§1.2)

. where the'corresponding'polynomiél'is monic. A Pisot

number is a real algebréic integer o > 1 with the property
. that‘all of the other roots of its minimallpolynomial have

modulus less than 1. Piso%kgggﬁérs come into the picture for
the investigation of badly distributed sequences,:as opposed

to Weyl's uniform distribution (Kronecker's theorem can be

proved using Weyl's results on uniform distribution).
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Independently of each other, Thue (1812 in Norske Vid.

Selsk. Skr.!) and Hardy (1919 in J. of Ind. Math. Soc.)

observed that

o Pisot implies 1im q?(mod 1} =0,
' n->ce ‘

and proved (what is still one of the key properties of Pisot

numbers): if & > 1 is an algebraic integer and 1im a®(mod 1) = @
w . n :

then o is Pisot. The work of both Thue and Hardy does not

seem to have been properly advertised until the early 1960's.

Pisot numbers have been most extensively studied by Pisot
beginning with his thesis in 1938 and a good bibiliography on.
: the subject up‘to 1962 is in Crelle's Journal 2@9(;962).

Note that o, = 1/2(1 + ¥3) is Pisot since
1} i/2(l - V8) | < 1. For quadratic Pisof numbers d, 'witﬁ,
conjugate 'az wé.trivially vefify the .above Thue-Hardy

observation as follows:

1 2 n_Z)

e : Con- -1 n-
(a,® + a3") = (a0 + a," " " )(a; + a,) - aqa,{a,; + o, )

and so [d2 [ < 1 therefore implies

lim uln(mod 1) = 0.
| >0
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1.6 R.‘Salem and the French School

Why Pisot numbers in Fourier analysis? Well, Salem
proved the following briiliant result: let E(a) be a
Cantor set with constant ratio of dissection o € (0, 1/2);
E(e) dis U if and only if 1/u is a Pisot number! Salem
announced this result»in 1943 (while aﬁ instructor at MIT)
and an error in the sufficiency condi{ions was found by
. members of the theory of functions seminar at University of
Moscow in 1545. In 19u8 Sélemlpublished some spécial cases
in which the sufficiency is true, and in 1954 Pyatetskii-
.Shapiré proved that if 8 4is Pisot of degree n and
B >2" then E(u) is ‘U whére, o = 1/B. Finally, in 1855,
Salem andVZygmund,‘usinglthg Pyatetskii—Shapifo méthod, '
proved the full generality of the originéily stated re;ui;;

Raphaél Salem (November 7, 1898-June 20, 1963) .was the
key figuré in the revival of.the nowW flbufishing Paris |
kOrsay) schpdl of Fburier‘analysis led by Jean-Plerre Kahane,
Saleﬁ returned to Paris after.the war ahd—his lectures in

. 1948 on unsolved problems in Fourier series were certainly the

catalyst -for this present activity. Salemiércaree? is warmly
sketched by Zygmund [21] from his birtﬁ in Saloniki, his
‘banking profession‘(manager of the Béﬁqﬁé éé Paris“et désiPagé:ﬂhi
‘Bas by 1938!), to the days on BrattleVStree{ (ah, the banks of
the Cﬁarles in.épriﬁg), and to Paris.

Two of the striking results that have evolved from the




1b
study of U-sets and the notions of §1.5 are:
a. (Malliavin, 1962) If every closed subset of closed
EET is S then E is U.

b. (Varopoulos, 1965) Measures are the only pseudo~
measures supported by Kronecker sets; and so if E
is Kronecker then the hypothesis of a is satisfied
and E is U. '

2. The Radon—Nikodym Theorem and the Importance of Measure Zero

2.1 L. Carleson, and Luzin's Problem

In his dissertation of 1915 (actually he published a

Comptes Rendus Acad. Sci., Paris note in 1913 on the relevant

material), Luzin gave necessary and sufficient conditions that
fe& L?*(TD have a Fourier series convergent‘a e.; and at the
time essentlally posed the problem as to whéther every fe L (T)
has Fourier series converglng a.e. Actually, men such aé

-Fatou (1906) Jerosch and Weyl (1908) Weyl (2909), W.H.'Yoﬁng
(1912), Hobson (1913), Plancherel (1913), qnd Hardy (1913) had
‘wofkéd specificélly on such issues.-Refined "log-estimates"

by Kolmogorov—Séliverstoﬁ (1925), Pleésner.(1926), and Littlewood-
'Péley (1931) kept interest in the pfoblem at a fine pitch.
Finally, in 1966 (Acta ﬁath. 116(1966)f155—157), Carleson proVed
that if f €& L3*(T)  then its Foufier series cbnverges a.e. |
(to f); and in 1968, using the method of Carleson;s proof

and the theory of interpolafion of operators; R.A. Hunt

extended Carleson's result fo'the LP(r), p > 1, dcase

(recall Kolmogorov's example in §1.3).
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Anrimportant lemma for Carleson, and that aspect of
Carleson's proof that allows us to trace back in time +o
Vitali, is (his Lemma 5, p. 140):

Let {Ik}' be a disjoint cover of (0, 1) bf open

intervals where m(Ik) = dk and the centef of T

k
is %,. Define:
k 4. 2
D(x) = ) k2 -5 x € (0, 1),
and '
Uy = fxe(0, 1: d) > M}.

Then there are C, K > 0 such that for all M

m(UM) 53Ceth-

2.2 J. Marcinkiewicz.

Jézéf Marcinkiewicz died in a prison bamp_in.lguo at
the age of 30. | | |

His interest to us rlght now concerns cértaln of his
,technmques which helped him to go deeper than what the Radon-
leodym theorem (or fundamental theorem of calculus (FTC)
e.g., §2.3) seems to allow; these techniques are closely
" tied in with Carleson s lemma of. ggm;, and in fact, u81ng

Mar61nklew1cz s - methods, Zygmund has deduced Carleson s

'lemma [27]. _
| At the risk of being turgld as a substltute for belng
technical in a,disgussion of this sort, let me try to describe
how the FTC comes into the pileture. TIf f E‘Lf(R) then a key

part of TTC is that
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lim

f F(t) dt = £(x), a.e.,
I

m(I)

where I 1is an interval containing x and the 1limit indicates

that we let the m(I)'s tend to 0. Thus

J (£(t) - £(x)) dt = 0, a.e,
.

1
(1)

lim

B

In fact, a lot more can be said:

1
(1)

1im

j [£(t) - £¢x)]dt = 0, a.e.;
I.

=)

and points at which.this is true form the set L, of

Lebesgue points of f " (noting that for each T, m(I N Lf) =
m(I)). _ -

Now there are certain classical theorems in Fourier
‘analysis whose conclusions (C) hold for subspaces X of
L1(T) and by the nature of their proofs (C) is valid
for each x € Lf of the givén f &€ X. During the 1920'5 and
1930's when it was popular to try to extend such results to
all Ef L}(7), the difficulties that arose frequently
culminated in some ingenious counterexample that showed the
"existence of f € Ll(Tj ‘such that (C) failed for some |
= € Lf. This situation did not preclude the possibility that
(C) might hold a.e. for éadh f € L1 and in facf this was
the type of résulf Marcinkiewcz attained with the techniqﬁes
ﬁentionéd above. Consequéntly, measure zero was precisely the

correct notion for such questions. Since wordy descriptions

as above often tend to obfuscate the issue, I refer to [27] for
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some concrete examples on the matter.

2.3 The Vitali-Lebesgue-Radon-Nikodym Theorem

Let us begin by stating FTC and indicating that the
Radon-Nikodym theorem genéralizes FIC to R" and more generai

measure spaces. I: [a, bl —R is absolutely continuous if

for each € > 0 there is & > 0 such that

193 n .
g,(bj - aj) < & implies § ]F(bj? - F(aj)[ < g,

for any disjoint collection {(aj; bj)EZ [a, b]J: J = 1,+++, nl}.

FTC states: F is absolutely cqn{inuous if and only if F-
is the indefinite.integral'of its dérivativeﬁ Once FTC was
established the problem was to generalize it to Rn; and
thus emerged the characterization of méasures'absolutély

continuous with respect to a given bounded measure u  in

terms of Lul. The Radon-Nikodym theorem's basic formula,
to tide you over into the next paragraph, is

(R-—N) v(A) = J fdg-, fé.Lui,

A _
. and £ is the (Radon-Nikodym) "aa;iaatiQG" of Q with -
respect to u. The point,ia that RadQn—Nikoaym is ther
-nataral analogue of.PTC onceﬂwa.depart from the straigﬁt and
‘ﬁarrow (i.e., .R).. |

In [10, 1st edition, p. -84], Lebesgue considered the

following definition:



18

(D-R) A bounded function f is integrable if theve is

a function F with bounded derived numbers such
that F' = f a.e. The integral of f in (a, b)
is F(b) - F(a). ' ‘

Such a definition generalizes the integrals of'Riemann and
Duhamel. Lebesgue introdﬁced (D-R) by saying: "Je ne
m'occuperai pas, pour le moment du moiné, de la suivante."
Ahd, he keeps his word (and reticence) until on the Very lasf
page of text (p. 129), in a footnote no 1es§,'we are dealt
the following-therménuclear device: "Pour qu'uneifénction
soit intégrable indéfinie, il faut dé_ﬁlus que salvariation
totale dans une infinite déxmﬁmable‘d'intérvalles de longueur

totale L tende vers zéro avec L. Si, dans 1'énoncé de la

seulement a la condition précédente, on a une definition de
l‘infégraie équivalente a celle développée dans ce Chapitre
{;t applicable a toutes les foﬁctions sommables, bornées

ou non;". Thus, in an obtuse §résenfation and as a footnote
- and without proof, we are handed thg.fundaméntal théorem of
calculus!

In 1904, Vitali [23] defined absolute continuity
exactly as we have above and went on touStéte and prove FTC.
The idea of absoluté continuity had been used by Axel Harnack
in 18843 and Harnéck, in turn, was definitely influenced at
this point by Dini's work on Fourier series (1880) [8, pp.

77-781.
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Vitali's next step in this business is [24]. He begins
by proving the Vitali covering theovem and uses the covering
theorem to prove an FTC in R?. He also deduces FTC (on R)

with the covering theorem. Because of the importance of set

functions in the development of integration theory we note that

in §5 of [24] Vitali considers families of rectangleé and the
férmula (R-N) for A, a'“rettangolo cocrdinatc.”
Essentially, in-his major work of 19810 [12]- Lebesgue

relles on the Vitali coverlng theorem and "les travaux de
M. Volterra(3), a définir 1a der;vee:de la fonction F(A) en
un point P comme la limite du rapport F(AY/m(A), .A étant
un ensemble contenant P et dont on fait tendre toutes les
dimensions vers zéro" [12, p. 361] _.

- In [12]1, Lebesgue begins by quoting Vltall s PTC in R?,
. and notes that an "1nadvertance" by vitali 1n hls proof is

corrected by considering a regular family of rectangles in Rz

Thls constralnt to deflne Radon-Nikodym derlvatlves by taklng
‘llmlts over regular families is necessary Further, by
__proving FIC in R? in terms of set functlons (not depending
‘on rectangular coordinates as vitali had done), Lebesguerset
tﬁe stage for'thelsynthesis and gengralization of Radon in
1813, where he (Radon) incorporated Stieltjes - -integrals into
the scheme of things, and Nikodym.
Concerning the ‘above mentioned footnote in [1o, ist

editionl, Lebesgue [12, p. 365] writes: "J'avais, dans mes
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ggions, tout 4 fait incidemment et sans démonstration, fait

connaitre” the FTC.

A perusal of [12] indicates the crucial-dependencerbf
Lebesgue on the Vitalili covering theorem ("un théoreme capital"
[12, p. 3901) and Vitali's originairproof fo; Lebesgue's
setting ("La démonstration qu'on lira plus loin est presque

copiee sur celle de M. Vitali" [12, p. 3901). .

2.4 Vitali: Luzin's Theorem and Vitali-Hahn-Saks Theorem

2.4a Luzin's Theorem

In 1912 Luzin proved (what is now known as Luiin's
' fhecrem): if f is Lebesgue measurable on [a, bl and
e‘>.0 there is _g continuous on [a, bl such that
m{x: f(x) # g(x)} < e. Now as eafly as-léos, Borel aﬁd
Lebesgue had studied the topological properties (such as
confinuity) of.measurable-functions. In 1905 (iﬁ Rend.

iStit.rLOmbanO‘38(1905) 599-683) Vitali proved Luzin's

4

theorem (on pp. 601-602)! He then used this "lemma" to
prove what is now known as the Vitali-Carathécdory theorem.
' Wé hote that Bourbaki aefines measurable functions in terms
of the Vitali criterion: f (defined on [a, bl, say) is

Lebesgue measurable if there i1s a set of measure zerc

EC [a, bl and a partition of [a, bI\ E formed by a
sequence (finite or infinite) of compact sets {Kn} such

that- f restricted to Kn is continucus.
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2.4b The Vitali-Hahn-Saks-Nikodym {(~Dieudonné-Grothendieck)

Theorem

'{fn}‘EE Lml[a, bl is uniformly absolutely continuous if

for each e> 0 there is § > 0 such that for all Lebesgue

measurable A satisfying m(A) < § and for all n

IJ_ £(£)dm(t) | < e.
A

Using this. notion Vitali_proved (Rend. Circolo Mat. Pélermo
23(1907)}: let -{fn} E;Lml[a,'b]; f_ converges to
f EﬂLml[a, p] in L'-norm if and bﬁly if f_~——f pointwise
a.e. and Af T s uniformly absolutely continuocus. . An
immediate corollary is"the Debesgue dominated convergence
‘theorem |

This result éf Vitali's has been the source of one of
the deepest results in measure theory, which we ndw describe.
‘ in,1933, after some work of Hahn iﬁ 1922, Saks'proved that if
3 sequénce of bounded measures. {vn} is ;bsdlutely continuous
wit£ respect'to a given méasufe ‘U and rvn(Aj converges for
each A € Cl (given the measure space (X, a, W) %hen
'{Un}t is'unifbrm;y absolutely continuous and éq (by.Vitaii's_
- theorem) v, ~converges on _6l_to a b0uhded meaéufe V.
Earlier in 1933, Nikodym had shown (he announced the results
in 1931) that if {vn} converges on (X then it conergeS
(on D to a bounded measure; and using his (Saks) sufficient

conditions for uniform absolute continuity and a standard
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trick for buying the absolute continuity hypothesis, Saks
derived Nikodym's result. - ' |

It is an important application (in Fourier analysis, !
for example) to extend Nikedym's theorem to read—

If for all BE€ @, 1lim un(B) exists, then there

is a measure v for which 1lim vn(B) = v(B),
where & ¢ (! is as small as possible. If X 1is a compact ' '}
space, Dieudonné (1951) and Grothendieck (1953) have shown

that we can chocse @' as the family of open sets in X.

2.5 Vitali's Life

Giusepﬁe_Vitali (August 26, 1875-February 29, 1932)
Was born,in,Ravenna, fhe oldest of five children. After
graduating from the "liceo" in Ravenna, he studied mathematics
at the University of Bologna in 1895; then he received a
scholarship to SNS (Dini and Bianchi were there at the time).

' He graduated in 1898 with a thesis in which he exteﬁded to
HRiemann surfaceé a theorem of Mittag-Leffler. His_next work
waé devoted to abelian integrals. In 1901 he was an
~assistant to Dini, and then he Degan his career as a high

school teacher! After two brief appointments in Sassari énd

 Voghera he taught at the Liceo "Colombo" in Genova f?om

1905:1922.' This;rof course, does not match Dedekind's record

(e.g., §1.2) but outdoes Welerstrass' 14 year stint as a high

schoollteacher; of course, Weierstrass'! "defenders" would

point out that-hié tWeierstrass) service in‘teaching penmanship

‘and gymnastics (besides mathematics) should count for something
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extra.

In any case, as we have seen in §2.3 and §2.%, Vitalil
was not spending all of his time in PTA and chaperoning
dances. Finally in 1923, Vitaii receiveq é position at {he
University of Mbdena (a weak counterexémple to one of the
fundaméntal theorems of life that "you can keep a good man

down"). In 192 he went to the University of Padova, where at

the end of 1926, he was struck with hemiplegia (a paralysis

resulting from injury to the motor center of the brain).
Fortunately his intellectual powers were unaffected. He left
Padova in 1930 for the University.of Bologna. He died there

suddenly after class one afternoon in the company of his

colleague, Bortolotti.
Footnotés:

(1) -Genérally I shall not discuss well-known facts about
well-known mathematicians which can be found in well-
known biographies.

(2) Hegel of Ceres infamy!

(3) 1889.
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