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ABSTRACT

Exact integration of the equations of motion of a secondary body in the equa-
torial plane of a rotationally symmetric central body is obtained by means of
Weierstrass elliptic functions.

In this solution, if some simplifications are made, the analytical expreséion

for the radius vector as a function of the true anomaly resembles that of a re-

‘volving conic. The validity of such simplifications is thoroughly discussed.

The solution of the inverse problem, the true anomaly as a function of the
radius vector, has also been found and presented in terms of Legendre's elliptic
integral of the first kind.

The results obtained are used to evaluate the shift of the orbital apsidal line
at each revolution of the secondary body.

The amount of this shift is in agreement with that observed in artificial earth

satellites, ag well as in the oi‘bits of some natural satellites close to their re-
spective planets. Particular cases are the fifth satellite of Jupiter and the satel-
lites Phobos and Deimos of Mars.

In the case of the planet Mercury, a difference of one second of arc between
equatorial and polar radius of the sun has been assumed; then a shift of about
14 seconds per century can be derived, which is 34 perceant of the observed value.
The question of the real value of the sun's flattening is yet open and awaits experi-
mental confirmation. It is believed, however, that a part of the observed perihelion

shift of Mercury is due to the oblateness of the sun.

NOTE

In this paper, for the Weierstrass P-function,

the Greek letter 'y (gamma) is used throughout,
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Secrion |

INTRODUCTION

1.1 OBJECTIVE

The main objective of this task is the exact integration of the equations of

} motion of a secondary body of negligible mass around a rotationally symmetric
central body, such as an oblate spheroid. This motion takes jlplace in the equa-
torial plane of the central body, whose external potential in this plane is approx-

imated by

i o
V=" —, (>1), (1)
r

where the equatorial radius of the central body has been taken as the unit of length,

2

po =k"M, (2)
_1 :
where
! kz = the Gaussian gravitational constant,
M = the total mass of the central body,
: d = a constant depending on the flattening of the surface delimiting

the central body.
It will be shown that this integration can be periormed rigorously, using
Weierstrassian elliptic functions. The results obtained are then used to evaluate

the apsidal line shift of the secondary body orbit. They are also applied to the

cases of equatorial artificial earth satellites and to the natural satellites of Mars
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and Jupiter. In particular, assuming that the external surface of the sun is that

of an oblate spheroid, the results are also applied to the case of the planet Mercury.
Tt is well known that the observed perihelion shift of this planet, which amounts

to about 42 seconds of arc per century, cannot be explained by a pure Newtonian
forrhulation. On the contrary, the relativistic theory claims to explain this shift
quite accurately. Note, however, that in the relativistic theory, the oblateness

of the sun is completely disregarded.

At present there is scanty experimental information about the difference be-
tween equatorial and polar radius of the sun. It is believed that this difference
is definitely under a second of arc. R. H. Dickel* of Princefon has initiated
experiments to reveal the exact value of this difference.

This study is directed at developing a rigorous formulation which would gwe
the Newtonian effect of the solar bulge on the perihelion of Mercury, once the

difference between equatorial and polar radius of the sun is known.

1.2 BACKGROUND

The evaluation of the apsidal line shift in the secondary body orbit due to the

Burgatt13 (1927) elaborated Tissefand’s formulation after Armellini's pro-
pos.aﬁ4 (1923) to investigate the shift of the apsidal line in the orbit of the fifth
satellite of Jupiter. Sconz05 (1937) also evaluated the flattening of the sun re-
quired to produce the observed perihelion shift of Mercury; he confirmed that it
would be necessary to have a difference of one second of arc or larger between
'equatorial’rand polar radius of the sun in order to explain the observed phenom-
enon in the orbit of Mercury.

Later, Brouwer6 (1946) rigorously integrated the equations of motion, using
Delaunay's canonical variables under the assumption of a potential more general
than that expressed by equation (1). He added, in fact, another term of the form
ﬁ/r5 to the right hand side of equation (1). After the integration, he explainéd
the motion of the fifth satellite of Jupiter.

* - .
Superscript numbers within the text refer to references in the Bibliography.
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In the recent past, several papers have been devoted to the study of equa-
torial orbits of artificial earth satellites. Anthony and Perk07 (1961) presented
an approximate analytical solution derived from the Poincaré method. Brenner8
(1962) described the motion by means of a rapidly converging series of ordinary

trigonometric functions‘. The argument of these functions, however, depends on

" the Jacobian elliptic function sn-1 . Vinti9 (1962) treated the equatorial orbit as

a particular case of his general solution known as the intermediary orbit for
satellite astronomy. Beletskilo (1963) used the method of osculating elements,
replacing the time by the true anomaly. Anderson and Lorellll (1963} added
relativistic perturbation terms to the Newtonian equations and found the vari-
ations in the classical orbital elements from which, in turn, the perihelion shift

‘can be evaluated.

1.3 OUTLINE OF THE TECHNICAL APPROACH

The scope of the present task, according to the objective described above in
Subsection 1.1, is to establish analytical relationships between the orbital radius
vector and true anomaly and the time.
tions. In the first two
sections (Sections 2 and 3) the motion of the secondary body in the gravitational
field described by equation (1) is discussed. In Section 2, certain mathematical
and physical assumptions which facilitate the integration are made. This approach
is similar to that used by many authors who have dealt with the two-body problem
in the theory or relativity. (Refer to, for example, Chazy12 and Droste13_) This
particular case is referred to as the Approximate Solution. This approach leads
to the "revolving conic' concept first conceived by Newton. The apsidal line shift
and the period of the orbit are also evaluated.

The analytical solution is presented in Sectio'n 3. The radius vector and the

time are expressed in terms of the true anomaly by means of Weierstrass elliptic

- functions.

Section 4 is designated as The Inverse Problem. In it, the true anomaly is
expressed as a function of the radius vector by means of Legendre's elliptic in-

tegral of the first kind. Gaussian hypergeometric series and Legendre's functions




with fractionary index are also used for the evaluation of the periods of the

Weierstrass ¥ - function. As a by-product, a new set of formulas has been de-

4
3
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rived, one of which expresses the incomplete elliptic integral F in terms of
Legendre's polynomials. _

Finally, in Section 5, the results obtained in the analytical solution and in
the inverse problem are used to evaluate the shift of the orbital apsidal line at
each revolution of the secondary body. The amount of this shift is in agreement

with that observed in close earth-satellite orbits, as well as in the orbits of the

3 fifth satellite of Jupiter and of the two Martian satellites Phobos and Deimos.

In the case of Mercury, the perihelion shift of this planet can be explained,

partially, with an assumed flattening of the Sun.

G
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SecTion 2

APPROXIMATE SOLUTION

2.1 BASIC EQUATIONS
According to the force function expressed by equation (1), the motion of the
secondary body is subject to the central acceleration

f(r) =___g_1_f_ (4)

The center of the primary body is taken as the origin of a polar coordinate
system. Letr and v, respectively, be the radius vector and the true anomaly.

Then, the Newton-Binet formula provides the differential equation of the orbit

1
2 2 {=
h 1 ,.4d (r)
f(r) = =5 |=+—— ) (5)
r2 r de

where h is twice the areal velocity.
Now, combining {4) and {5) by means of (1), and using the law of areas with

respect to the origin; one obtains

2
d—‘;+p=A+sz, | (6)
dv

1 dv _

;?Zﬁ“h’ | (7)
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where

1
£y,
h h2

©
i
=
o3
1
|‘:
(wa)
I
po| o

(8)

Equations (6) and (7) are the basic equations of the problem.

2.2 THE REVOLVING CONIC AS AN APPROXIMATION SOLUTION

Given a conic

= P
r 1+ecosv (9)

where p is the semi-latus rectum and e the eccentricity, any other orbit of the

form .

rz______p—v , (10)
1+ecos;

where v is a positive constant, is called a conic transformed by a proportional
true anomaly.

Under certain assumptions, the orbit defined by (6) resembles the curve
represented by equation (10). In fact, consider p varying in a neighborhood of
a fixed p - Thus; ‘

2 2

p? = P2 2(p-p) e, t(P-R) (1)

and disregarding terms of the order (p - po)z, make the following approximation

2 2 '
p? =p2 + 200, | (12)



Substituting (12) into (6) yields

2. B
d _ 2 -
5 - -u-mpge B a9

If the restriction is made that

1-2Bp,> 0 (14)
and define
~ 1 - ZBpO : s :

p= 2, (15)

A - Bpo
1

s —— (16)

P - Bo)

equation (13) becomes

2
dp _ _ L ( ,1) - (17
de »2 p | ‘

Integrating (17), one obtains

v - VO
pp = 1+ecos—-~—v---—- ' (18)

where vy and e are two arbitrary constants. By a convenient choice of polar
axis, let v, = 0, and (18) takes the form of (10). Thus, in the neighborhood of
any p satisfying (14), the trajectory characterized by (6) is a conic transformed

by a proportional true anomaly.




]
T
S
N

E‘_E..: -
; dv 0 (19)
K arev=0,vw,2vw, ... ;further,
2
dp _ __e_ v
5 = - 5 008 .
dv pv

The curve (10) first conceived by Newton is sometimes called a revolving
conic, Newton14 demonstrated that the result expressed by equation (18) is valid
without restrictions when the acceleration f (r) contains two terms, one inversely

proportional to the square and the other to the cube of the radius vector.

2.3 THE APSIDAL ANGLE

The apsidal angle, or angle between the minimum and maximum values of
is equal to w for the conic (9).
Tt shall now be shown, that for a revolving conic, the apsidal angle is

T

v . Infact, the roots of

Since Py = -I—_-L should be less than unity, and J is a small quantity such that
8}

% J < 1, one obtains

A—Bpg>{).

Thus, because of (14), p > 0, and it is easy to check that e > 0. Hence, the only

2
roots of (19) for which d_ﬁ; < Qarev=0,2v7,...;and the roots of (19) for
dz dv :
which———% >0arev=v7,3¥7T,.... Therefore, a minimum r is at v = 0 and
dv

a maximum is at v = v, and the apsidal angle is vw.



Define
§ = (v~-11 (20}

and call 2 § the apsidal line shift during a revolution,

Equation {10) can now be rewritten as

r = b : (21)
I +ecos (,n. +(3V)

Next, evaluate 2§, using the first integral of equation (6) and making certain
assumptions. It will be observed that this value of 2 § conforms to the definition
(20) and to the value of v given by equation (16)}.

The first integral of (6} is

A
d _ 2 3 2
: (ﬁQM§Bp—p+zw+c, (22)

where C is an arbitrary constant.

;
b

identical with the eguation of motion encountered in the relativistic theory of the

17 koptt®, and

two-body problem hy Schwarzschild15, Eddingt0n16, DeSitter
many others.
Noting that %

iz a low-eccentricity ellipse locally.

B is a small quantity, the major assumption is that the orbit

Denoting by P(S) {p), the third degree polynomial in the right-hand member
of equation (22)

P (p) = 28p% -p? 1240+ C, (23)

on the basis of this assumption, equation

P () = 0
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1
i
)
B
%

pE RN

has two almost equal positive roots p, and p,. Since e is close to zero, for a

. _ 1
given p == , set
0

1 1
P, = —=r= s Py = — oy
2 ro(l+e) 3 ro(l—e)

The third real root py of P(S) (p) = 0 is also positive and much greater than

Py and Py because

_ 3
Py * Py TPy =358

e and
_ 2
P27 P 7 7 (1-¢e%)
0
(3) _ 2 ) .
Note also that P'*/ (p) = 3 B(p - pz) (pg -# )(Pl'“ P) is always positive for
PP <P

Then, equation (22) may be written as

- ) () (24)

. This equation is often encountered in mathematical analysis and in mechan-~

Q-lQa
<

ical problems. It was first investigated by Weierstrasslg. The solution of (24)

is a real periodic function p (v) with period

P
3

P =2 —__dp (25)

5;2 ¥ 2 ()




In order to compute P, change the integration variable by putting

p = 1+ecosze (26)
r, (L -e7)
and obtain
T
p =2 § dg (27)
0 1. 2B - - %B € COS 82
r (1-e”) r (1-¢7)
0 o]

Now, since B is a small quantity, retaining only the first power of B, equation
(27) yields

-
P = S 1+ B + 4 5 —&.cos g do
''''' (1 - ez) r (1 ez)
0 %o
which is easily integrated to give
P=ZWEL+—]3—~§:] . (28)
r (1-e")
o
Therefore,
"‘ T
25 = —2 "B (29)

r (1- e?)
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On the other hand, from (16), first deduce

v-1 = Bpo
and taking into account the definition (20), it is obtained that

26 = 27 Bp_

which coincides with (29), when e = 0.

24 ANOMALISTIC PERIOD

Even though this analysis has been local, one can define that the time for
a complete revolution (anomalistic period) T as the time elapsed between two
consecutive points of the trajectory for which p and %‘3" are equal in absolute
value and signs.

In order to determine this period T, obtain from equations {7) and (22)

gt = 1 dp

\ 2

Hence, with the same approximation as in Subsection 2.3

2
2 27
ro(l-e’) d
T = 2 - S 1+ B . B_ecosé?2 0 - . (30)
0 ro(l-e) 3ro(1-e) (1 +ecosg)

The integration of (30} yields

_ 3/2 2 . 2
T—ro (Pw-gﬁe)
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SecTion 3

ANALYTIC SOLUTION

3.1 RADIUS VECTOR r AS A FUNCTION OF TRUE ANOMALY v.

The integral of equation (22}, (which is the first integral of (6) ), can be found

directly.
After changing the variables as follows

v =426 %Bp=s+%, | (31)

eguation (22) becomes

’g’t_f:_\z = pBligy (32)
\do )
where
(3) = 4% -
) P (s) 48 -~ gzs g3
1
. L) =3 (1 -44AB)
} 1 2 2
g = 5= (1 - 6AB) - 7 BC.

Again assume, adjusting the value of the integration constant C conveniently,

that the roots s, 8g, 8q of P(.g)(s) = 0 are real and satisfy

S2< 83< S1



Since

s, +s8, +s8, =0,

it is deduced that s, is negative and s, positive. Write

2

PPls) = 4(s-8)) (s -8,) (s -55) (33)

and obtain

and s, < S <8

(3)
P*/(s) <0 for - 0 <8 <8, 3 1

P(S)(s)>0 for 5,<8 <8

2 3 and sl< §< e,

As is well known, the general solution of (32) is the doubly-periodic Weierstrass

v - function (more usually known as the P-function)

s = y(8+ L, w,w,),

where L is an arbitrary constant and the two periods Zwl and 2w g are

2w

3
ds .
. zg — (34)

89 'JP(S)(S)

Il

zw, S‘ . (35)
S, ’9(3)(5)

The constant 1. can be determined with the condition that

82 = '}’(0+L!w1!w2)
which yields
L = @y ‘ {36)



The evaluation of the two periods 20.)1 and sz will be made later, in Sub-
section 3.3. For the time being, consider them as well-determined constants,
the first of which is real and the second purely imaginary. In conclusion, the

solution of (32) may be written simply
s = YO+ wy) | (37)

Taking into account the relationships (31) and the first of (8}, the radius

vector r is found as a function of the true anomaly v

T = 2B . (38)

1+6y(f_£+w2)

The result of (38) can be expressed in terms of the Jacobi elliptic function to

give

r = 2B . (39)

2
1+ 652 + 6(53 - sz)sn Ma

where

(40)

In fact, it is well lmown20 that

M

snz(Me + 522)

v(0 +w2) = 8y *

?

where



but, if it is noted that

Snz(M6+ Qz) = 2—%‘"‘— ,
kK™ sn™ M@
where
8, — 8
1{2 _ 3 : SZ (41)
®1
then, one obtains
B 2
v(0+ wz) = 5 + (s3 - sz)sn Mo (42)

and (39) follows immediately.

3.2 TIME t AS A FUNCTION OF TRUE ANOMALY v.

With the substitution v = Y20 , the integration of equation (7) provides

r— g
t-t = -2-5 rde . . (43)
o h 0

In order to perform this integration, use the following two results

' dz _ g(z - u) (44)
¥ v § @ - - P ey
-1 .2 dz _ 1
E'V (u)S‘(.},(Z) _ .y(u))z - —2[?;(1.1'** z) ~L(u- z)] - ¢{w)
1ol —dz
- ny(u) - 2'}’ (u)S‘Y(Z) _ '}’(u) s (45)



where as usual

2
o) = ~Ste) - -yl

and { and o are Welersirass functions.

The derivation of equations (44) and (45) is given in Appendix A. In the

same appendix, the proof is also given that a zg exists for which

A
g
]

y(z,) = g (46)

V() £ 0 (7).

Now, because of (38), (43) becomes

45325‘9 do

t-t = —
© B Jom+ 670 + wy)l’

and by letting

e - Bzﬁyf’*wz dy

wy v+l




Using (46) and then {(44) and (45), a straightforward calculation yields

2
t-t = —2-5—2—4—2— -%E;(z 0+ wy) ~L(a +w‘2ﬂ
0 gh'y' (Zo) 0 [0
+1E(z ~6—w2)-c.(z0—w2]-ée (48)

" 6+ w, - olw, +
%Y(Z)[ZBL(Z)JrnU( 2 Zo)“m 2t %) J .

"z U(wz - zo) T (m2 + 0+ z,

3.3 THE PERIODS Zwl AND sz

Referring to (34), put

. 2
8 = 8 +(s3—sz)sm @ {49)

2

then, obtained is

T S N e WU Ty (50)
481— 041-kzsin2'g0 ]

where k has been defined by (41) and F(k g) is Legenﬁre's complete elliptic

integral of the first kind. For this integral, the following series expansion may

be used
a1 1)z, (13,2\2 [1.3.5,3\2
Fk,3) = 2[1+(2k) +<2_4k) +(_-"2-3-6k) +] (51)
Similarly, using the same transformation (49), the following is obtained from (35)
iF(k', 3) ‘
Wy, = ————
2 ’ (52)
517 %



where

Kk =1-K = —4=

(23)




SecTion 4

THE INVERSE PROBLEM

4.1 TRUE ANOMALY v AS A FUNCTION OF RADIUS VECTOR r

Although the formulation given in the previous section is analytically
rigorous, it is not practical for numerical computations. A more suitable
expression for the equation of the trajectory can be derived from (39) if use
is made of Legendre's elliptic integra121.

Comparing (42) with (49), it is first deduced that

snM8 = sin ¢ (54)

and inverting

R
Ll

0 = 39 (55)

where F is the symbol for Legendre's elliptic integral of the first kind.
More explicitly, equations (55) may be written as follows

5.3 - 55) 1/2 s - s, 1/2
, arc gin | ———
{SI - sz_j [53 - sj

f(s) = ———F
N8y ~ By

or, by virtue of (39) and the first of (31)

- s.11/2 2B - r{(l+ 6 1/2
d2_ F<F3 — 2] , arc sinf = - Szﬂ ) (56)
s, - 5, 5~ 5, L 6r(s; - s,)

vir) =
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4.2 USE OF LEGENDRE'S FUNCTIONS AND
GAUSSIAN HYPERGEOMETRIC SERIES

Legendre's functions with fractionary index or Gaussian hypergeometric

series can be used for the computation of W, and Wy, a8 well as for the com-

putation of the associated quantities ua and My defined by

" :'3§%T£$;= , 57)
1 5 P(S)(S)

ny - - § LSl (58)
2" " {p0

and satisfying Legendre's relationship

_ir
%% "M% =9 (59

- Halphenzz, in treating the Gaussian problem23 of the attraction of an elliptic
" ring, stated that the computation of Wy does not require the actual solution of the
' : (3 iy =
equation PY /{s) = 0.

i This statement is first confirmed by expressing W in terms of Legendre's

function with index - % .

Putting

e
s 3By cos x

_f1 )3/2
gs = (3g2 cos 30,

it is easily found that

1 \3/2

385 (cos 3x - cos 30)

POl = tx) =




The roots of f(x) = 0 are given by

3x = * 3¢+ 2jr, (j is zero or an integer).

The three roots of £(x) = 0, which correspond to 8, Sy and Sq, are

S
X1 7 3’
_ o1
X =3t ,
2

X3 = 73

Then, it follows from (34) that

{1 N\-1/4(%3 sin x dx
“r © ‘(3g2) S
%

VY cos 3x - cos 30

(60)

ST 3

A remarkable relationship found by Dirichlet24 and modified by Mehler25

is recalled, by means of which the Legendre function X ({cos 30) can be expressed

in a definite integral form

AW
1 +30 e(v+§ 1o
Xp(cos 3g) = —=— d¢
7V2Y-30 veos ¢ - cos 30

Putting
¢ = 3x - 27

the following is obtained

‘ (V+ -l-)i (3:{—2 TI‘)
3 XZ e 2
X (cos 30) = d
TV Xq vcos 3x - cos 30

X

(61)




from which it is deduced

1\,
BG + -)1}{
x3 e 2

XZ ‘Vcos 3x - cos 30

'szr o2Vt m-X (cos 30 = dx . (62)

Equating coefficients of imaginary pai'ts in (62),

x sm3(v+ )

V2g

—=gin 2y + 1)7eX (cos 30)= -S‘ ' {63)
3 %2 “Jcos 3X - cos 30'
: 1
and making v = - =,
t ( ) 7X l(cos 30) = S‘ 3 sin X dx . (64)
3 X A cos 3x - cos 3¢
% By virtue of (60), it is concluded that
1 \M/4
w = (ﬁ@g) TX ,(cos 30) , (65)

"6

which has the advantage over equation (50) of not requiring knowledge of the roots

811 89> and Sq

Similarly, one may also find

1 1/4 :
T Ew(lZgz) / Xl(cos 30) (66)
6
and analogous expressions for W, and uPe




On the other hand, X;()\) can be expressed in general by means of a Gaussian

hypergeometric seriesza

_ 1-2
XV(A) = F(—v, v+1,1, 3 ) . | (67)
Putting again, v = ,—-(15 and A = cos 3¢, one obtains
_pft 5, 280 - .
X_ l(cos dg) = F(S » =, 1, sin 2) , . (68)

6

which inserted in (65) provides another expression for W,

Similarly, putting v = % one obtains

' 1 7 .23
Xl(cos 3g) = F<~§, G 1, sin '§q> ; (69)
6

which can be inserted in (66) to provide the expression for nl in terms of a

Gaussian hypergeometric series.

et

o g
Lot inided

By conirast, the expression for Ul in terms of Legendre's complete elliptic
integrals of first and second kind, F(k, g) and E(k, T), which may be obtained

from (57) by using the transformation (49), is

s
~ T 1 T
n = qllsl - s, EQ{ -2—>- ————F(k -2—> , | (70)
V'sy -8y

where F(k’; -ZE) has already been defined by (51}, and

2 2 2
7\ - m|7_(L.\ _1(1-3.2\" 1/1.3.5 3\"
EQ{ 2) = I (zk) 3(@41«:) = 204.61:) R (71)




4.3 DIGRESSION ON LEGENDRE'S FUNCTIONS WITH FRACTIONARY INDEX

It has been shown in the previous section how w, and ‘r;l can be expressed in

1
terms of Legendre's functions with index —-é- and =, respectively. These fraction-
ary indices can, however, be avoided if XV(A) is expanded into a power series of
X,(A), where n is now an integer.

Fortunately, this expression exists already in the mathematical 1i1:erzatture26

X0 = §%V1f. Z(_l)n[v f - i+ 1]Xn(7‘) . (72)

For v = ——é— and A = cos 30, obtained is

[ e}
. _ 18 n 2n+1 A
Xﬂln(cos 30) = pm Z(—l) (6n+ 1)(6n + 5}Xn(cos 30 (73)
6 n=0
hile f =L
while forv=""
_ 18 _\ntl 2n+ 1
Xl(oos 30) = = Z( 1) 60~ 1)(6n + 7)Xn(cos 3o) . {74)

6 n=0

It will be shown that the incomplete elliptic integral F(k, ¢) which appears
in equation (65), can also be expanded info a series of Legendre polynomials. In
fact, if ' 7

i
vy

tan 3¢ (75)

then

N

F(k, ¢) (76)

2y£ dg
CJo 1o gt




where A is now defined by
; 2
A = 1-2k0 . {(77)
On the other hand, one can write

el

arangs V2 2 ) cytx et (78)
: =0

which is uniformly convergent if |h| < a, Iél < band a and b are two positive
[
constants satisfying the condition 2ab2 + b4 <1,
Substituting (78) into (76), integrating term by term, and replacing the

variable ¢ defined by (75),

I}

F(k, ¢) ‘52n+lxn(x)t 2’“*1(2(,9) - (79)

In particular for ¢ =

waa

the expression for Legendre's complete elliptic integral
‘is obtained

) - 2 Zzn+ P50 @)

Other interesting formulas may be deduced from (72), for instance, the

following

- }_6_ (‘1)
X 0+ x00 = Bn-1)@n+ 1)@n+ 3)n
) n“O

X, (81)
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Since, as it may be shown that

E(k, g) = ;I-[X_l(A) X1, (82)
2 2

by using (81) it follows

(“1)n+1

Ty o
EQ‘ 2) =4 (2n - 1)(2n + 1)(2n + 3)
n=0

X (83)

which is the analog of (80).

The formulas derived in this section are believed to be new in the mathe-

matical literature,
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SecTion 5

NUMERICAL. EVALUATIONS

In this section, it will be shown that the trajectory found analytically in
Section 3 and defined by '

_ 2B
T = T+ 6y~ w,) (84}

has the character of a revolving conic. To this end, some assumptions must be
made in order to find approximate formulas for the evaluation of y(6 + wz), the
three roots 81 By> Sg of P3(s) = (), and the quantities W and M involved in the
computation of the apsidal shift per revolution 2 6.

b
i
L

5.1 EVALUATION OF y(6+ wz)

The following series e)«;pansionz7 will be used

y(0+ wz)' -2()2 . > — cos n;’;e : (85)

where

a4 =exp\in=/ . (86)
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[

In particular, for ¢ = 0,
o0
, 7?1 T 2 Z mgm
Sz = 'y(wz) = -"c';’-——-Z('a)—') om ' (87)
1 1 1 1-2q
Now, noting that
s3 = 'y(w1+ wz) )
it is deduced from equation (84),
_ _ _2B
for 8 =0, r0) = 77 s
2
B _ 2B
for 0= wp @) =13 65,

=
-
i

i

r(0) is evidently the maximum of r in the interval (0, wl) and r(cul) the minimum,

comparable to Toax a(l + e) and Lo a(l - e) in an elliptic orbit,
Putting
L 652 1-e

1+653:1+e (88)

where e is assumed to be a small quantity, the determination of 8y» 8y and s 3

depends on the solution of the following system of equations

Sl+52_+s3:0
1-e
1+ 8s, = 751+ 6sg)
- - s, -
83~ 8y 7 Ki(s) - 8y)
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In terms of k2 (assumed to be also a small quantity) and of € defined as

_3-e ,
€ = 55 (89)

the solution of the above system is

12- k2 11+ K 12K -1
17 & o 8y T T2 83 " 6. . .2 (99)
1+ke 1+Kke 1+ke

Tt is also deduced that

1
S, =8, = et ey
L2 a1+ k%)

Next, if it is observed that the difference between the true anomalies at the

two radii r{0) and r(wl) is very close to m, it can then be written that

V2w = m+3, (92)

i
.

where 6 is a small quantity,

Now, using equation (50), the expression (51), and the expression of

(sl - 8 ‘\/— 2(1+k €)1/2, with k2€ <1, from (92) it is deduced successively
_ 2 T .
{20, -4 - SZF(k, 2) , (93)

. ) 2
S Her sl e (TS RS o

and k can be evaluated. In fact, mvertmg (94) and neglecting powerg 6f & higher

than the second

2 26

K = —=2
1
11'(6"“ 2)

(95)
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In this order of approximation it is deduced

from (92) wy d_%(l + %) = -\l“% 1+ %(e + %)kzil (96)
- n

s, = %[1 - (e + %)kz e
[1 _(E i 1)13 (98)

from (90)< 8, = %

_ 1

sy = 6[1 (€+2>kd (99)

\

1 2
from (91) 81 =8y = 5(1 - ek) , {100)
from (70)  m, = LE_—%‘—(@{-%)}{Z] (101)
6Nz [

("
L ] .
@ 251 (102)

from (101)
and (96) <

2
Q"ll) = 68, (103)
.

Equation (87) can now be written as follows

M

m S * W, 2
= m 2} - 4gs : (104)

1-2q ) ( g3 ) 1

“y
from which one obtains
K 2\ 2 |
q = —2( )+4( ) - (105)
48s, 485, 48s
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Assuming k2 << 8y» the first term only in the right~hand member of (105)

can be retained

2

_ K
17 %8s (106)

1
and consequently, the series expansion (85) becomes
2
L O+ w,) = —%sl - %cos %}—Q : ' (107)
1

5.2 REVOLVING CONIC CHARACTER OF THE ANALYTICAL SOLUTION

Inserting the approximate expression (107) into equation (84), one obtains

2B

r:
3,2 T
1 —3s1 —2k cos wl

and taking into account (92) and (98),

i

Folos

r = . (108)
(+5)-5 con 55 9

On the other hand, from (95) is obtained

1 | '
‘.'T(E+ ==
A _____2,) : (109)

e+%=i , (110)
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[ i-“?“ EIRT >

]

and it is also
v = 420 (111)
Substituting (109) through (111) into (108), one concludes that

Br
0

T 1—ecos( u v) -

T+ o

which is a revolving conic of type (21). In (112), the change in the sign of the
cosine function is explained by the fact that #, hence v also, is reckoned from
the radius vector maximuin, r(0), which corresponds to ¢ = 0.

Note that the validity of (112) is subject to the following conditions: e is a
small quantity (implying that 8, and = gre nearly equal); k2 <<8y (implying
that 6 is a small quantity), and finally k™ € < 1.

5.3 SOME EXAMPLES

The semi-latus rectum p of the revolving conic (112) is

Recalling the definition of B (see the third formula of (8)), if is deduced for

the apéidal line shift per revolution
26 = T (113)
h™p
Following are some applications of (113) to some concrete cases:

a. Artificial Satellite—For a hypothetical satellite of low eccentricity orbit
in the earth's equatorial plane and with a perigee distance of r,= 1.21 (earth radii),
assuming J = 1082 x 10_6, and putting p = T the numerical evaluation of (113) pro-

vides

26 = 5.14 degrees per day.
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‘For comparison, applying the DOCET formulation28 for the secular perturbation

in the argument of perigee

1
w = 3—3/24.98—% degrees/day
' p

where 14 =3 cos2 i~1=2 (for i = 0), making againp = a = ro, one would obtain

@ = 5.13 degrees/day.

b. Satellites of Mars—Assumed value of J for Marszg: J = 21x 1074,

r | 26 Degrees/Year
Satellite {Mars' Radii) Eccentricity Computed Observed30
].shobos 2.8 0.021 159.5 158.5
Deimos 6.9 0.003 6.7 6.5

31 -
¢. 5th Satellite of Jupiter—Assumed value of J for Jupiter :dJd= 1.49 x 10 2.

r, 20 Degrees/Year
{Jupiter's Radii) Eccentricity Computed Ob.r-:.erved6
2.54 0.003 90775 9174

d. Planet Mercury—Assumed value of J for the Sun: J = 0.001, corre-

sponding to a difference of one second of arc between equatorial and polar radius.

r, . 26 Sec. of Are/Century
(In Solar Unit) Eccentricity Computed Observed39
0.387 0.21 i4.3 42 .2
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In conclusion, it can be said that, except for Mercury, formula (113) provides
values of the apsidal line shift which are in agreement with observation.

For the planet Mercury, the 26 computed represents only 34 percent of the
obServed value. Even if the flattening of the Sun is smaller than that assumed in
this computation, we still believe that the oblateness of the Sun could account for

part of the revolving conic character of the orbit of Mercury.

-
i
k!
£l
CH
i
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ArppreEnDIX A
INTEGRAL FORMULAS FOR THE Y-FUNCTION
Begin with the following well-known identity:

-o{z - Wa(z + u}
o?(z)0” ()

y(z) - y(u) =

Proposition 1:

dz

v'(u) D) - Y0 = 2zf{u) + no(z - u) -0 o(z + v)

(1)

Proof: Taking the logarithmic derivative of (1) with respect to u, the left-hand

side becomes

(u

7 - v ®)
and the right hand side is
] 21( ) a%(%(z Bkl uﬂo_z(u)) %(uy. do(w)
0% (z g {u - o(u
_O(z-w (z+u) = oz - wo(z+ u)EZG(z - wolz Fwe (W gy
Uz(z)az(u)
+ 072 () a%-{c(z - wa(z + u)}] (3)
_ 2 do(u) . 1 do(z +u) N do(z - 1)
o(u) du " o(z+u du o(z - u)

A-1




Using the definition of £ and o, (2) and (3) are equated to get

{u

Hz) - y () = 2¢(w) - Lz + ) + L{z - u} . (4)

Integrating (4) and again utilizing the definition of { and o, the proposition follows ged

Proposition 2:

1 2 du 1 1 ‘
> (¥'(2)) S‘ = -5tz + u) + 50(z ~ u) - L(z) - uy(z)
2 ['V(u) _ ’)/(Z)] 2 2 2

1, du
Y ‘z)g AW - 7(2)

Proof: Taking the logarithmic derivative of (1) with respect to z, one obtains

ayi

(z) —
@) - T Lz +u) + Lz - u) - 24(z) (5)

since

1 af, -2
T u)o(zwﬂg (Z))

a (z)

= ) (—Zo(z - o (z + u)o~3(z)§1_g_gz_z)

oz - ujo(z +u

+ U_Z(Z)iEf(z - u)o(z + uﬂ )

-2 do(z) N 1 do(z + u) + 1 do{z - u)
o(z) dz gz + u) dz o(z - u) dz )

_o(z - wo(z + u)
o'z(z)az(u)




Using the definitions of ¢ and ¢, (5) is obtained immediately. Subtracting (4)

from (5), one gets

(2 = V) gy L - w) - 25(2) - 250 + Lz ) - bz - ),

Y(z) - vv)
implying
@)=y W= ry ) - t(z) - L) (6)

2[v(z) - Y]

Differentiating (6) with respect to z yields

) 1diy'(z) - YW
viz+w = Az) -3 dz['}’(z) - 7(“)]

Thus,

— 1 vy yey(E) -y )]
Y(z +u) = Y(z) ZK'V(Z) - Y(u) lv(z) - '}’(u)]z

iid

Rearranging yields

2
3 .]_‘ _(11@).)_._ = _.]_‘ _._’L'.L(g).—_.. 4 ')/(Z + u) _ ’Y(Z) + }.. ._KI_(.Z_MEL_ . (7)
b 2y -y 2w Y@ 2 Inz) - vl

Taking the antiderivative of (7), with respect to u, one obtains

;, 1, o2 du _ 1, - du ) )
% '2wwgmwmﬁ_2“%mrm>ww)wm
3 _
- %V'(Z)S'_V_L wda - )
' [Uz) - yw)]

;



Letting v = y(z) - y(u) implies

S‘ y‘(u)du _ _S'_chr_ _ 1
[y(z) - VZ y{z) - y{u)

Hence, because of (5),

QLY'(Z)S.—M—‘E Lya w2tz - - L) ©
Ir(z) - y(w]

Substituting (9) into (8), gives the desired result. qged

Proposition 3:

(a) Given any complex number c¢, there exists a complex number z,, 80O that

z,) =
®) IfP(3) (¢) # 0, then ¥'(zo) # O.

Proof:

:
T
3

(a) For any elliptic function, the number of roots in an arbitrary period-
parallelogram is equal to the number of its poles in this parallelogram. ¥ is,
of course, elliptic with double poles at the period points. Also, ¥(z) - ¢ is clearly
elliptic with double poles. Thus, ¥(z) ~ ¢ = 0 has two roots.

(b) Clear, for if 'y‘(zo) = 0, then 4'V3(z0) - gz'}’(zo) -8y " 0 implying that ¢

is a zero of P(3)(z). ged
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