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ABSTRACT

A new Riesz product is formulated in terms of waveletpacket pyramidal tree structures. A path within such
a structure is determined by a lacunarity criterion and a sequence {H,;} of filters, where each H; is one or
the other element of a prescribed subband coding pair {Hg, H;} of FIR filters. The Riesz product associated
with a given path is a continuous Radon measure. Path based criteria are given to determine singular and
absolutely continuous pairs of such measures. The measures have full support, and their approximants exhibit
fractal behavior. These properties can be used to design a secure transmission scheme in communications theory.
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1 Introduction

In 1918 F. Riesz introduced the infinite product H;";l(l + cos47t) and proved that it is a continuous measure
whose Fourier coefficients do not tend to zero at +00.1° This product is an example of a so-called Classical Riesz

Product, and such products provide examples of singular measures and have been a useful device in analysis since
their inception.13-16

Quadrature mirror filters (QMFs) originated as a speech processing tool in the 1970s and are intimately related
to multiresolution analyses (MRAs) in wavelet theory.® In fact, wavelet orthonormal bases which arise from MRAs

are constructed in terms of QMFs. QMFs are filters Hy,H; defined on T = R/Z for which

[Ho()P? + [ Hi(M?P =2 ae.,
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where Ho(y) = 3, ho[m]e=2™™7, Hi(y) = ¥, h1[m]e=2"™7 and hi[m] = (—=1)™ho[l — m]. The concept of
waveletpackets is due to Coifman, Meyer, and Wickerhauser. In the Fourier domain, waveletpackets W, are
defined in terms of QMFs Hy, H; as

ﬁ/':(‘7) = H HG,’(%)’
j=1

where ¢j isQor 1, n = Z;x;l €j27~1, and ” ~ ” designates is the Fourier transform.” The choice of either Ho or

H, at each step in this product can be viewed as a path down a binary tree.

In this paper the notion of a Pyramidal Riesz Product is formulated in terms of waveletpacket pyramidal tree
structures. The underlying filters are not QMFs, but must satisfy related properties. New singular measures are
constructed, and selfsimilarity arises in an unexpected way.

Specifically, we define Pyramidal Riesz Products P; in Section 2, as well as proving some of their elementary
properties. In Section 3, we prove that limy_.o, Pj is often a continuous measure, and then exhibit new singular
measures. The main result of Section 4 allows us to construct mutually singular Pyramidal Reisz Product
measures along fixed paths of our pyramidal tree. The theory for the multipath case, both singular and absolutely
continuous, is due to Bernstein.? Finally in Section 5, we illustrate our selfsimilarity results, which are based on
our observations relating primitives of full support Pyramidal Riesz Product measures and primitives of measure
zero support Cantor measures. Details for this material and applications to secure transmission are developed
elsewhere.2 Qur notation is standard, and can be found in basic texts.!?

2 Pyramidal Riesz Products

Let H be an FIR (finite impulse response) filter, written as the trigonometric polynomial,

HM = Y hfmle?im,

mEEy

where
EH={ijN:1§m1<m2<-~<mL} (1)

and {h[m]} C R. Ey is the spectrum of H. A filter path H, is a sequence
H.={H:j€Nande¢; € {0,1}}
of FIR filters Hy, H; having a common spectrum Epy.
DEFINITION 2.1. a. A sequence {n; : j € N} C N is A-lacunary if
VieN, Hf>ong1
nj

b. Let Hc be a filter path, each of whose elements has spectrum E. If {n;} is mp-lacunary, and if {a;} C R, then
the corresponding Pyramidal Riesz Products Py, k € N, are defined as

k k
Pi(7) = [J(1 + ajReH;(nj7)) = [[(1 + ajRe 3 he;[mle2mimnav),
i=1 j=1 meE

PROPOSITION 2.2. Let H, be a filter path, let {n;} be mp - lacunary, and let {a;} C R.
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a. For each j € N,
njp1 —mp(ny+---+nj) >mp(n + -+ nj).
b. Py has the cosine series ezpansion,
di
Pi(y) = 1+ ) clj] cos(2747), (2)
j=1

where
di = mL(nl + -4 nk).

Furthermore, noting that Pyy1 = P + (P41 — Pi), we have in the case agy1 # 0 that all the terms of the cosine
series expansion of Pyi1 — Py are of degree greater than dy.

c. If j #mi nj, £mynj, £ ---, then c[j]=0. If
j=min;, £mn;, £ =mn; + mizn}2 +... 3)

then the sums in (8) are identical, i.e., no two terms of the ezpansion (2) of the product Py are of the same
degree.

Proof. a. We proceed by induction. Since %f > 2mp +1 we have ny > (2mg + 1)n; > 2mgn,. Assuming
n; >2mg(ny1 + ...+ nj_1), we obtain

njy1 > (2mp + )nj > 2mpn; +2mp(ny + ...+ nj_1) = 2mp(n1 + ...+ nj),

and so part a is valid.

b. We expand the product P; to obtain (2) by the cosine formula coszcosy = 3(cos(z + y) + cos(z — y)).
In the formal expansion of P, as a sum of cosines, the degree is bounded above by the degree of the cosine term
with highest degree in the expansion of the product

k

H ajhe;[mp] cos 2rmpn;y. 4)

j=1
Without loss of generality we shall assume that a; # 0. Using the cosine formula, we see that the highest term of
Pk is

1k
o1 H ajhe;[mp]cos2mmp(ny + ...+ ni)y. (5)
j=1

Thus the degree of the highest term is di. By definition,

Pet1(7) = Pe(y) = Pe(v)ars1ReHey, (Re417) (6)
Pr(7)ak+1(hepy, [ma1] cos2mmyng iy + ...
+he,y,[mr] cos2rmpng17).

Using the degree property proved before (5) and the cosine formula, we se that the degree of the lowest (first)
term of Pry1 — Pi is myngyy — dg. Thus part b is verified once we show that ming4, — dp > di. However, this
inequality is clear from the my -lacunarity and parta.

c. In the expansion of P; in the form (2), we see from the cosine formula that if ¢[j] is not 0 then j must
be of the form j = my, nj, £ my,n;, ..., a finite sum. This is the first claim of partc.

For the second part we proceed by induction and assume the result for Pj. The highest (last) term in Py
which involves mjni41 is of degree (bounded above by) mjniy; + di This is a consequence of expanding the
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right side of (6). The lowest term (first) term in Pg4q which involves mj1ng4; is of degree (bounded below
by) mjng4+1 — di. In fact, by the cosine formula, dj is the largest amount we subtract. Thus the uniqueness is
obtained once we show that

Mmjp1ng4r — dg > Mming4r + di.

Recalling that di, = mp(ni+...+n), this inequality is a consequence of parta and the fact the (m; 41 —m;)ng+1 >
Nk41. ]

REMARK 2.3. a. F. Riesz!? introduced Riesz products in 1918 for the filter path He, where each H; = e~2",
for the g-lacunary sequence {n; : j € N} defined by nj = 4/~1, and for the sequence {a;}, where each a; = 1.
The Classical Riesz products, which generalize Riesz’s example, are defined as

k
Pi(y) = H(l + aj cos 2wn;7y), (7
j=1
where —1 < a; <1 and {n;} is I- lacunary, ie., ﬁﬁ > 3.
b. Besides our present development, there is a recent interesting generalization of Riesz products due to Brown
and Dooley.® Their generalization includes products of the form
k
H(l + aj cos2wning - - - n;7y),
j=1
where —1 < a; <1and n; € Z4

c. The spectrum of Py is the subset S of {1,---,dx} for which ¢[j] # 0 for all j € S.

EXAMPLE 2.4. Let A € N and let n; = 1. We say that {n;} is a minimal X - lacunary sequence if
Vj>1, njy1 = (2/\-|- l)n]’.
For any such A, nj = (2A + 1)~!. Hence, if A = 1 then nj = 3=, if A = 2 then n; = 5/~ etc.

Suppose that {a;} C R\ {0},A € N, and H. is a filter path where each filter H,; has the spectrum E =
{1,2,---,A}. Then the union of the spectra of the P is N U {0}.

Further, for the Classical Riesz products, the example n; = 37—1 is the only case where it is possible for the
union of the spectra of the P, to be N U {0}.

For the Classical Riesz products defined in (7) it is well known that

klim Py =p >0, o(M(T), C(T)),

where g is a continuous measure. Also if Zaf = oo then p is a singular measure. Early contributions to this

subject include those made by Riesz!® and Zygmund.?® There have been many other contributions.546.11,13,15,16,18
The ideas of Peyriére are explicitly used in Section 4.

We shall address the problem of computing lim P, = p for the Pyramidal Riesz Products defined above. In
particular, we shall think of a filter path H as a “ path through a tree.” Thus at the kth step we view the
Pyramidal Riesz Product P; as information at a node on the kth level of the tree. The information in Pry; will
depend on which filter Ho or H; is used as H,,,. We shall investigate properties of u, as well as ultimately
comparing p and fi for different filter paths H, and He.
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3 Continuous Pyramidal Riesz Product Measures

If H is afilter path, we shall suppose that the impulse responses hg and h; of Hyp and H; satisfy the conditions

Y lholm]l =Y |ha[m]| = C
> lholm][? < €2, D ha[m][? < Ca.

THEOREM 3.1. Let H, be a filter path, let {n;} be my — lacunary, and let { P} be the corresponding sequence
of Pyramidal Riesz Products. If |aj| < 1/C) then there ezxists a subsequence {P;, } that converges to a continuous
measure p, in o(M(T), C(T)).

Proof. The existence of u, follows from the fact that
Pl = / P, dy = / P(y)dy =1,
I1Pill1 TI 1(7)]dy - 1(7) dy
and from Alaoglu’s theorem.

The continuity of y, is established using Wiener’s condition®:

> b} = Jim ST Z [alr]l. ®)
TE

If the limit on the right hand side equals zero then p, is continuous. Thus, we need to estimate 3 |ia[n]|. We
let dy = degree of Pn(y). A counting argument shows

(2mL + l)N -1
dn > —
and that
dn N n
- 2
St < 3 () (202)
—dn =1
_ Cz + 201
- 2C%
Thus,
dn N
1 2 1 Cy +2C3
2dy +1 _;N lialn]l” < (2mz + )N < 202 : ©)

Since C2 < C% and mp > 1, C3 + 2C? < (2my, + 1)2C%; hence, the right side of (9) goes to 0 as N — oo,
and this establishes the continuity of u,. O

EXAMPLE 3.2. We just proved that lim P, = p is a continuous measure for Pyramidal Riesz Products as long
as ||a;||co is sufficiently small. If the condition of A- lacunarity is weakened then we can lose the continuity of p.
For perspective recall that the minimal I-lacunary sequence is n; = 3/~1,j =1,2,.... In the -;— — lacunary case,
which does not allow a spectrum of the form Ef in (1), we have!”

k

Pr(y) = H(l + cos 2m(27 1))
j=1
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and
klir{:o P; =6, o(M(T), C(T)). (10)

To verify (10) we first note that
=— (11)

which follows from an induction argument. Since the right side of (11) is the Fejér kernel, which is an approximate
identity for L!(T), we obtain (10) by a standard calculation.!

EXAMPLE 3.3. Let H(y) = e~ 2™ 4 e~272Y 50 that Ey = {1,2}, and let H, be the filter path each of whose
elements is H. Consider the (minimal) 2-lacunary sequence {5/ "'} and the associated Pyramidal Riesz Products
P, for the constant sequence a; = — for each j. It is easy to see that the spectrum of each Py is {1,---,di}. This
observatlon combined with Theorem 3.1 and the remark in Ezample 2.4 about the Classical Riesz products for
nj = 31, gives a measure p = lim_ o P which is not a Classical Riesz product.

4 Singular Pyramidal Riesz Product Measures

The proof of Theorem 4.2 that follows is based on a proof by Peyriére.!® Our proof requires the following
orthogonality lemma.

LEMMA 4.1. Let H, be a filter path for which 3", |ho[m] =5, |h1[m]| = C; and
> lho[m)? =Y |ha[m]]? = Co.

Then {He,(nj7) — C2%} and {H,,(nj7) — C2%} form orthogonal sets of functions in L2 (T) and L2, (T),
respectively.

THEOREM 4.2. Let H, be a filter path, satisfying the additional conditions of the orthogonahty lemma, let
{n;} be mp — lacunary, and let {a;} and {b;} be two sequences such that ||al|o < —C—- and ||b]|eo < c . If pg and
py are the measures associated with the Pyramidal Riesz Products for the path H, ‘and the sequences {a;} and

{b;}, respectively, and zfz b — a;j|? = oo, then pg L py.

Proof. Since Zj |bj — a;|? = 0o, the uniform boundedness principle can be used to show there exists a sequence
{a;} € €2 such that 3~ a;(b; — a;) = co and ;(b; — a;) > 0. Now, letting

Czaj

N
Sn(y) =Y aj(He(njy) -

j=1

)

and

In(y) = ZQJ(He,(nJ'Y) CZb

j=1

=)

it can be shown, using the orthogonality lemma, and the existence of {a;} € £, that subsequences {Sp,, } and
{T, } converge u, a.e. and pp a.e., respectively. If we assume pq L pp, then there exists v such that

CzaJ )

3 Jim Sy (7) = lim 3> aj(He(nj7) -
1<j<ms

and

. . Cab;
3 lim T, (7) = Jim - a(He(nj7) — —22).

1<5 <mi
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Subracting these terms, we obtain
0< Zaj(bj —aj) < 0o,
j21

a contradiction. O

REMARK 4.3. Let H, and H; be filter paths where all but finitely many “coordinates” are different, and let
> la;j|? = co. With the additional restriction,

> ho[m]hy[m]| = 0,

it can be shown that p L ji.3

5 Selfsimilarity and Riesz products

This section motivates the relationship between Pyramidal Riesz Products and the modern analysis of selfsim-
ilarity in certain signals. Such signals arise in topics such as turbulence, DNA studies, and dynamical systems.
Jaffard’s theory of selfsimilar functions!® is the mathematical model compatible with the Riesz product data we
have found. There are analytic results establishing the relationship between Jaffard’s selfsimilarity and Classical
and Pyramidal Riesz Products.?

In order to formulate our idea, let us first recall that if s¢ is the Cantor measure supported by the %-Cantor set,
then the Lebesgue measure of supp pc is 0. On the other hand, if p is the Classical Riesz Product corresponding
to nj = 3'~! then the Lebesgue measure of supp  is 1. ( We have a new proof of this result, which is well known,
as well as a proof of the corresoponding result for Pyramidal Riesz Products.?) We would not be surprised if
Figure 1 represented a normalized primitive of uc. What is interesting, however, is that Figure 1 represents the
function

1 [ A
F4(7)=2—7; A P4('2—7r)d/\ on [0,27!’]

where lim Py = p in o(M(T), C(T)).

1 2 3 z 5 6
Figure 1: Fy4(v)
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This means that the flat regions of the graph of Fy (as well as of the other F}) not only give rise to a measure
with full support, but, in fact, are locally not flat and are inherently selfsimilar, e.g., Figures 2 and 3. We should
point out that our observations on this matter have recently led to a related connection between pc and p.!?
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[ .

2.6 2.8 3.2 3.4 3.6
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3.136

3.1 3.2 3.3 3.4

Figure 2: behavior of Fy(y) around « Figure 3: behavior of F4(y) around «

Figure 4 represents the function

1 [ A
F5(7)=2—7r A Ps(gr)d)\ on [0,27!']

1 2 3 4 5 3

Figure 4: Fs(v)

In Figures 5-7 we examine the Pyramidal Riesz Product v defined in Ezample 3.3 by

=1

3 H(y)= e~2mY 4 e‘z”‘(27), and n; = 5i-1,

a;j
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If the Pyramidal Riesz Products Q; are approximants of v, then Figure 5 represents the function
Ga(y) = ! /'YQ(/\)d/\ on [0, 2]
2(7) = o 0 2 o )
and Figure 6 represents the function

G3(—y)=§17—r /0 ! Qa(%)d,\ on [0,27]. (12)

These graphs are compatible with the fact that v has full support, as opposed to Figures 1 and 4. The
selfsimilar nature of these graphs is apparent from Figure 7, which is a local version of (12).

1 2 3 4 5 6 1 2 3 4 5 6

Figure 5: Ga(v) Figure 6: Gs(y)

Figure 7: behavior of G3(y) around =
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