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AB STRACT

A new Riesz product is formulated in terms of waveletpacket pyramidal tree structures. A path within such
a structure is determined by a lacunarity criterion and a sequence {H3 } of filters, where each H3 is one or
the other element of a prescribed subband coding pair {H0, H1) of FIR filters. The Riesz product associated
with a given path is a continuous Radon measure. Path based criteria are given to determine singular and
absolutely continuous pairs of such measures. The measures have full support, and their approximants exhibit
fractal behavior. These properties can be used to design a secure transmission scheme in communications theory.
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1 Introduction

In 1918 F. Riesz introduced the infinite product fl1(1 + cos 43t) and proved that it is a continuous measure
whose Fourier coefficients do not tend to zero at This product is an example of a so-called Classical Riesz
Produci, and such products provide examples of singular measures and have been a useful device in analysis since
their inception.'3'6

Quadraiure mirror fillers (QMFs) originated as a speech processing tool in the 1970s and are intimately related
to multiresolution analyses (MRAs) in wavelet theory.9 In fact, wavelet orthonormal bases which arise from MRAs
are constructed in terms of QMFs. QMFs are filters H0,H1 defined on T = It/Z for which

1110(7)12 + Hi(y)(2 = 2 a.e.,
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where Ho(7) = >m ho[m}e_2m, H1(-y) = >I:m hi[m}e_2m7, and hi[m] = (_1)mj[1 The concept of
waveleipackels is due to Coifman, Meyer, and Wickerhauser. In the Fourier domain, waveletpackets W are
defined in terms of QMFs H0 , H1 as

7) =flHf(),
where e is 0 or 1 , n = >1::i i2 — ' and " " designates is the Fourier transform.7 The choice of either H0 or
H1 at each step in this product can be viewed as a path down a binary tree.

In this paper the notion of a Pyramidal Riesz Product is formulated in terms of waveletpacket pyramidal tree
structures. The underlying filters are not QMFs, but must satisfy related properties. New singular measures are
constructed, and selfsimilarity arises in an unexpected way.

Specifically, we define Pyramidal Riesz Products Pk in Section 2, as well as proving some of their elementary
properties. In Section 3, we prove that limk+ Pk is often a continuous measure, and then exhibit new singular
measures. The main result of Seciion allows us to construct mutually singular Pyramidal Reisz Product
measures along fixed paths of our pyramidal tree. The theory for the multipath case, both singular and absolutely
continuous, is due to Bernstein.3 Finally in Seclion 5, we illustrate our selfsimilarity results, which are based on
our observations relating primitives of full support Pyramidal Riesz Product measures and primitives of measure
zero support Cantor measures. Details for this material and applications to secure transmission are developed
elsewhere.2 Our notation is standard, and can be found in basic texts.14

2 Pyramidal Riesz Products

Let H be an FIR (finite impulse response) filter, written as the trigonometric polynomial,

H('y) = E
mEEK

where

EH={rnEN:1<m1<m2<...<mL} (1)

and {h[m}} ç R. EH is the speclrum of H. A filler paih H is a sequence

H={H3 :jENande e{O,1}}
of FIR filters H0, H1 having a common spectrum EH.

DEFINITIoN 2.1. a. A sequence {n : j E N} C N is \-lacunary if

YjEN, '>2.\+1
ni

b. LeL Hf be a flier path, each of whose elements has spectrum E. If {n3} is rnL-lacunary, and if {a,} II., then
the corresponding Pyramidal Riesz Products Pk, k E N, are defined as

= ft(i + aReH(n7)) = ft(i + aRe hf[m}e2imn31),
j=1 j=1 mEE

PROPOSITION 2.2. Let H be a filter path, let {n,} be m - lacunary, and let {a,} C R.
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a. For each j E N,

n+1—mL(n1++nj)>mL(n1+"+nj).
b. Pk has the cosine series expansion,

4
Pk(y) = 1+c{jJcos(2irj7), (2)

j=1

where

dk=mL(nl+...+nk).
Furthermore, noiing thai Pk+1 = Pk + (Pk+1 — Pk), we have in he case ak+1 0 Iha all the terms of the cosine
series expansion ofPk+1 —P are of degree greaier than dk.

c. Ifjm11n1±m2n2±..., ihenc[jJ=O. If

j = m21n31 m12n2 flfl'. rfl2fl2 (3)

then the sums in (3) are ideniical, i.e., no Iwo ierms of the expansion (2) of he produci Pk are of the same
degree.

Proof a. We proceed by induction. Since � 2mL + 1 we have n2 (2mL + 1)ni > 2rnLnl. Assuming
ni > 2ZTZL(fli + . . . + ni_i), we obtain

nj+1 � (2mL + 1)n > 2mLT1 +2TflL(fll + . . .+n_i) : 2mL(nl + . . .+n),

and so part a is valid.

b. We expand the product Pk to obtain (2) by the cosine formula cos x cos y = (cos(x + y) + cos(x — y)).
In the formal expansion of Pk as a sum of cosines, the degree is bounded above by the degree of the cosine term
with highest degree in the expansion of the product

k

ahf [mL] cos27rmLnj7. (4)

Without loss of generality we shall assume that a 0. Using the cosine formula, we see that the highest term of
Pk 5

Hajhf[mL}cos2nL(n1 + . . .+ flk)7. (5)

Thus the degree of the highest term is dk . By definition,

Pk+1(-y) —Pk(7) = Pk(-y)ak1ReHf1(nk1'y) (6)

= Pk(-y)ak+1(hfl[m1]cos2irm1nk+17+ ...

+hfk+l [mU cos 2lrmLnk+1-y).

Using the degree property proved before (5) and the cosine formula, we se that the degree of the lowest (first)
term of P+i — Pk is m n1 — dk . Thus part b is verified once we show that mi k+1 — dk > dk . However, this
inequality is clear from the mL-lacunarily and parta.

c. In the expansion of Pk in the form (2), we see from the cosine formula that if c[j} is not 0 then j must
be of the form j = m1n1 m2n2 a finite sum. This is the first claim of partc.

For the second part we proceed by induction and assume the result for Pk. The highest (last) term in P1
which involves m3 k+1 is of degree (bounded above by) rn3 k+1 + dk This is a consequence of expanding the
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right side of (6). The lowest term (first) term in P+i which involves j+ini+i is of degree (bounded below
by) mnk+1 dk. In fact, by the cosine formula, dk 5 the largest amount we subtract. Thus the uniqueness is
obtained once we show that

mi+lnk+1 _ dk > ik+1+ dk.

Recalling that dk mL(nl+. . .+nk), this inequality is a consequence ofparta and the fact the (m,+1—m)nk+l �
flk+1• 0

REMARK 2.3. a. F. Riesz'9 introduced Riesz products in 1918 for the filter path H, where each H3 = e_2ni,
for the -lacunarj sequence {n3 : j E N) defined by n3 Q , and for the sequence {a3 }, where each a 1.
The Classical Riesz produc1s, which generalize Riesz's example, are defined as

Pk(7) =(l+acos2n7), (7)

where—1<a3 <1and{n}is1-lacunary,i.e.,±.>3.

b. Besides our present development, there is a recent interesting generalization of Riesz products due to Brown
and Dooley.5 Their generalization includes products of the form

(1+acos2nin2...n7),

where—1<a3 <1andn3Z.4

C. The specirum of Pk is the subset S of {1, . . . , dk} for which c[j} 0 for all j E S.

EXAMPLE 2.4. Let ) N and let n1 = 1. We say that {n} is a minimal ) - lacnnary sequence if

Vj > 1, n+i = (2\+ 1)n,.

For any such A, flj = (2A + l)i—1 Hence, if A 1 then n3 = if )t = 2 then n3 = 5.1k, etc.

Suppose that {a3} ç R \ {O},A N, and H is a filter path where each filter H3 has the spectrum E =
{1, 2, . . . , A}. Then the union of the spectra of the Pk is N U {O}.

Further, for the Classical Riesz products, the example n2 = Y' is the only case where it is possible for the
union of the spectra of the Pk to be N U {O}.

For the Classical Riesz products defined in (7) it is well known that

lim Pk [t � 0, o(M(T), C(T)),
k—*oo

where JL is a continuous measure. Also if > = oo then j is a singular measure. Early contributions to this
subject include those made by Riesz19 and Zygmund.2° There have been many other contributions.5'46'11'1315'16'18
The ideas of Peyrière are explicitly used in Seciion 4.

We shall address the problem of computing lim Pk = p for the Pyramidal Riesz Products defined above. In
particular, we shall think of a filter path H as a "path through a tree." Thus at the kih step we view the
Pyramidal Riesz Product Pk as information at a node on the k th level of the tree. The information in Pk+1 will
depend on which filter H0 or H1 is used as Hfk+l. We shall investigate properties of p, as well as ultimately
comparing p and for different filter paths H and H.
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3 Continuous Pyramidal Riesz Product Measures

If H6 is a filter path, we shall suppose that the impulse responses h0 and h1 of H0 and H1 satisfy the conditions

i: Iho[mJI = >: Ihi[mJI = C1

: Iho[m112 � C2, E hi[m]12 � C2.

THEOREM 3.1. Le H be a flier path, le {n} be m — lacunary, and let {P1} be the corresponding sequence
of Pyramidal Riesz Producis. If aj I � 1/C1 then there exisis a subsequence {Plk } That converges to a continuous
measure /-a u(M(T), C(T)).

Proof. The existence of Pa follows from the fact that

Vl, IIPdIi = IT IP1(7)I d7 = IT P1(7) d7 =1,

and from Alaoglu's theorem.

The continuity of /ta 5 established using Wiener's condition':

Ia{X}I2 2N+ 1 fa[flhI2. (8)

If the limit on the right hand side equals zero then ,ua is continuous. Thus, we need to estimate >, IIaHl2. We
let dN degree of PN(-y). A counting argument shows

(2rnL + i)N 1dN� 2

and that

N < ,(:) ()fl
— (C2+2C?

Thus,

2dN+ 1 N a[fl]I2 <
(2mL+ 1)N (C2)N . (9)

Since JY2 C? and TflL � 1, J2 + 2C? < (2mL + 1)2C?; hence, the right side of (9) goes to 0 as N —* oo,
and this establishes the continuity of /1a. 0

EXAMPLE 3.2. We just proved that lim Pk = p is a continuous measure for Pyramidal Riesz Products as long
as IIaj is sufficiently small. If the condition of A- lacunarity is weakened then we can lose the continuity of p.
For perspective recall that the minimal 1-lacunary sequence is nj = 1, = 1, 2 In the — lacunary case,
which does not allow a spectrum of the form EH in (1), we have'7

Pk(7) =
k

+ cos 2(2i-17))
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and
urn Pk 5, cr(M(T), C(T)). (10)

k—+oo

To verify (10) we first note that

Pk(7)
sin(27r2k_17)

(11)2 sin 1I7
which follows from an induction argument. Since the right side of (1 1) is the Fejér kernel, which is an approximate
identity for L'(T), we obtain (10) by a standard calculation.'

EXAMPLE 3.3. Let H(7) = +e22 so that EH = {1, 2}, and let Hf be the filter path each of whose
elements is H. Consider the (minimal) 2-lacunavy sequence {5j1} and the associated Pyramidal Riesz Products
Pk for the constant sequence a3 = for each j. It is easy to see that the spectrum of each Pk is {1 , . . . , dk } . This
observation, combined with Theorem 3.1 and the remark in Example 2.4 about the Classical Riesz products for
ni = 32_i, gives a measure z = limk Pk which is not a Classical Riesz product.

4 Singular Pyramidal Riesz Product Measures

The proof of Theorem .2 that follows is based on a proof by Peyrière.'8 Our proof requires the following
orthogonality lemma.

LEMMA 4.1. Lel H be a filler path for which > ho[mJ = >1m Ihi[712]t Cl and

E lho{m112 = : h,[m}12 = C2.

Then {He3(n37) _ C2'} and {H(n7) — C22} form orthogonal sets of functions in L(T) and Lb(T),
respectively.

THEOREM 4.2. Lel H be a filler path, salisfying the additional conditions of the orthogonality lemma, let
{n3} be mL lacunary, and let {a3} and {b3} be Iwo sequences such that (IaII � j- and IIbII � -. If,aa and
Pb are the measures associated with the Pyramidal Riesz Products for the path Hf and the sequences {a,} and
{b,}, respectively, and if> b — a3J2 = oo, then Pa /1b.

Proof. Since > Ib — a3
2 ç, the uniform boundedness principle can be used to show there exists a sequence

{i} £2 such that >aj(bj —a) = oo and a3(b — a) � 0. Now, letting

SN(7) = a(Hf(n7) — C2a3)

and

TN(7) = —

it can be shown, using the orthogonality lemma, and the existence of {ci } £, that subsequences {Smk }and

{T,n,, } converge Pa a.e. and p, a.e., respectively. If we assume Pa ,L Pb, then there exists such that

C2alim Smk(7) = lim a(H3(n7) —
k—*oo k—oo 2

1<j<T12k

and
C2blim Tmk(7) = lim a(H3(n7) —

k—+oo k—oo 2
1<j<mk
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Subracting these terms, we obtain

a contradiction. U

o < — a,) <00,
j�1

REMARK 4.3. Let H6 and H be filter paths where all but finitely many "coordinates" are different, and let
I a,

2 = With the additional restriction,

it can be shown that ji

Eho[m}hi[in]I =

5 Selfsimilarity and Riesz products

This section motivates the relationship between Pyramidal Riesz Products and the modern analysis of selfsim-
ilarity in certain signals. Such signals arise in topics such as turbulence, DNA studies, and dynamical systems.
Jaffard's theory of selfsimilar functions'° is the mathematical model compatible with the Riesz product data we
have found. There are analytic results establishing the relationship between Jaffard's selfsimilarity and Classical
and Pyramidal Riesz Products.2

In order to formulate our idea, let us first recall that if4uc is the Cantor measure supported by the i-Cantor set,
then the Lebesgue measure of supp ,uc is 0. On the other hand, if p is the Classical Riesz Product corresponding
to nj = 33 1 then the Lebesgue measure of supp p is 1. (We have a new proof of this result, which is well known,
as well as a proof of the corresoponding result for Pyramidal Riesz Products.2) We would no be surprised if
Figure 1 represented a normalized primitive of /c. What is interesting, however, is that Figure 1 represents the
function

where limPk = p in o(M(T), C(T)).
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Figure 1: F4(7)



This means that the flat regions of the graph of F4 (as well as of the other Fk) not only give rise to a measure
with full support, but, in fact, are locally not flat and are inherently selfsimilar, e.g., Figures 2 and 3. We should
point out that our observations on this matter have recently led to a related connection between /c and j•12

Figure 2: behavior of F4(-y) around ir
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Figure 4 represents the function

— 1
JP(\)d;\ on [O,2ir].F5(7) 2ir 2ir

In Figures 5-7 we examine the Pyramidal Riesz Product ii defined in Example 3.3 by

= , H() =e2 + e22(2), and i = 5j1
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If the Pyramidal Riesz Products Qk are approximants of ii, then Figure 5 represents the function

and Figure 6 represents the function

1
G2(-y) =

Jo
Q2(--) d\ on [0, 2ir]2ir

G3(7) = — j Q(-) d\ on [0, 2ir}. (12)

These graphs are compatible with the fact that ii has full support, as opposed to Figures 1 and 4. The
selfsimilar nature of these graphs is apparent from Figure 7, which is a local version of (12).
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