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ABSTRACT

There is a natural formulation of the Classical Uniform Sampling Theorem in the setting of Euclidean space, and in
the context of lattices, as sampling sets, and unit cells F, e.g., the Voronoi cell. For sampling at the Nyquist rate,
the sampling function corresponds to the sinc function, and it is an integral over F. The set F is a tile for Euclidean
space under translation by elements of the reciprocal lattice.

We have a constructive, implementable non-uniform sampling theorem in the context of uniformly discrete sam-
pling sets and sets F, corresponding to the unit cells of the uniform sampling result. The set E has the property
that the translates by the sampling set of the polar set of E is a covering of Euclidean space. The theorem depends
on the theory of frames, and can be viewed as a modest generalization of a theorem of Beurling.

The application herein is to fast magnetic resonance imaging (MRI) by direct signal reconstruction from spectral
data on spirals.
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1. INTRODUCTION
1.1. Background and Outline

Let R? be d-dimensional Euclidean space, and let R4 denote RY when it is considered as the domain the Fourier
transforms of signals defined on R?. The Paley- Wiener space PWp is

PWg = {go € Lz(ﬁd) :suppp’ C E},

where E C R? is closed, L? (ﬁd) is the space of finite energy signals ¢ on ]/%d, ie.,
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" is the inverse Fourier transform of ¢ defined as

Y (z) = /ﬁ ()™= dy,

and supp ¢V denotes the support of ¢V.

Beurling! proved the following theorem for the case that E is the closed ball B(0, R) C R? centered at 0 € R?
and with radius R.

THEOREM 1.1 (BEURLING’S THEOREM). Let A C R4 be uniformly discrete, and define

p = p(A) = sup dist(¢,A),
¢eRd

where dist(¢, A) is the Euclidean distance between the point ¢ and the set A. If Rp < 1/4, then A is a Fourier frame

fO?” PWm

Recall that a set A is uniformly discrete if there is r > 0 such that
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where |A—~| is the Euclidean distance between A and . Fourier frames will be defined in Section 3, but a consequence
of their definition in the assertion of Beurling’s Theorem is that every finite energy signal f defined on E has the
representation

flx) =Y ax(f)e*m=rr> (1)

XEA
in L2-norm on E, where >, |ax(f)|* < co. Beurling used the term “set of sampling” instead of “Fourier frame”.

We shall reformulate Beurling’s Theorem in Theorem 7.2, in terms of a covering condition; and we shall refer
to Theorem 7.2 as the Beurling Covering Theorem. Beurling’s Theorem stated above becomes an obvious corollary.
Our interest in this topic goes back to a problem about fast magnetic resonance imaging (MRI) posed to us by Dennis
Healy. Besides the present approach to non-uniform sampling using the power of Beurling’s results, there are other
approaches?.3

In Section 2, we shall discuss the Classical Uniform Sampling Theorem for perspective with the result in Section 7
and for ultimately comparing lattice and tiling ideas with analogous notions from non-uniform sampling. Fourier
frames are introduced Section 3 in order to have a convenient structure in which to develop non-uniform sampling
formulas. Section 4 is devoted to a discussion of density criteria in the setting of completeness results, and such
criteria are essential for understanding effective signal reconstruction from non-uniformly spaced sampled values. We
state the fundamental characterization of Fourier frames in terms of density in Section 5.

The notion of balayage is defined in Section 6; and Beurling’s theorem (1959),* describing the fundamental
relationship between balayage and Fourier frames, is stated. This relationship is an essential component of the
Beurling Covering Theorem in Section 7. We also take the opportunity to make some preliminary comments about
related on-going work relating dimensionality, tilings, lattices, and coverings.

In Section 8 we shall use the Beurling Covering Theorem to solve a mathematical version of the aforementioned
problem concerning fast MRIL.®> Basically, spectral (Fourier transform) data of an unknown signal f is given on a

discrete subset of finitely many interleaving spirals contained in §2; and the problem is to extract the original signal
f € L?(R?) from this data whenever possible. Our solution is contained in Examples 2 and 3. In these examples, we
shall provide a proof and algorithm for characterizing and constructing a uniformly discrete spectral subset A C R?
on given interleaving spirals with the property that A is a Fourier frame in the sense of (1).

Complete proofs of the aforementioned results, along with an analysis and history of the various relevant concepts
of density, will appear in a forthcoming research tutorial,® which also contains a complete bibliography.

1.2. Notation
We shall use standard notation from harmonic analysis”’.

Further, M (Rd) is the convolution algebra of bounded Radon measures on éd; and, if A C R is closed, then

~

M (A) denotes the closed subspace of M (R)? consisting of those elements supported by A. Integration over Euclidean

8

space will be denoted by “ f ”; and the Fourier transform fof f defined on R? is formally given by
o) = F0) = [ e 2mieo> da,

where v € R4 A(R?) is the space of absolutely convergent inverse Fourier transforms on R?, and A’(R?), its dual
space when A(R?) is normed by

HSOVHA(Rd) = H‘)OHLl(Rd)v
is the space of pseudo-measures on R%. By(E) is the space of bounded continuous functions ¢ on R? for which

supp ¢” C E, where E is closed and ¢V is the distributional inverse Fourier transform of ¢. Clearly, B,(E)" C A’'(R%).
Finally, we write ey (x) = e2™<#7> for x € R? and vy € R%.



2. CLASSICAL UNIFORM SAMPLING THEOREM
We begin by stating the Classical Uniform Sampling Theorem on R.
THEOREM 2.1 (CLASSICAL UNIFORM SAMPLING THEOREM).

Let T,Q > 0 satisfy the condition that 0 < 2TQ < 1, and let s € PWy,ar) satisfy the condition that 5 is a
bounded function on R which equals 1 on [—,Q]. Then

Vfe PWo, f=TY f(nT)rurs, (2)

where the convergence of the sum is in L?-norm and uniformly on R, and where (1,75)(t) designates the translation
s(t —nT).

It should be emphasized that there are non-bandlimited versions of Theorem 2.1, which can be interpreted as
modeling aliasing, including such decompositions in terms of Gabor and wavelet systems.?

7

The proof of Theorem 2.1 is elementary, and it depends essentially on periodization.” The extension to R?

requires the following definition.
DEFINITION 2.2 (LATTICES).

A lattice H C R? is the image of Z¢ under some nonsingular linear transformation, i.e., H is a discrete subgroup
of Euclidean space R? consisting of _integral linear combinations of elements v1,va,...,vq4 € R?, which form a basis
for RY. The reciprocal lattice A C R4 of H is the lattice consisting of all v € R4 Wlth the property that the inner
product {x,v) is an integer n,, for each x € H.

A unit cell or fundamental region of a lattice A C Rl is aset U C }ABd, not necessarily connected, such that
T ={y+ U :v € A} is a tiling or partition of R?, i.e., the elements of 7 are pairwise disjoint and

Ut o) =R (3)

yEA
There are many possible choices for the unit cell of a given lattice. For example, the Voronoi cell or Brillouin zone
is the unit cell of A defined as the set of all points in R? closer to the origin than to any other lattice point.

THEOREM 2.3 (A d-DIMENSIONAL UNIFORM SAMPLING THEOREM).

Let H C R% be a lattice and let U C R be a unit cell of the reciprocal lattice A. Define the sampling function
d 1 2mi(z,7)
Ve € RY, sy(z)=—= [ e N dry,
Ul Ju

where |U| is the Lebesgue measure of U, and let f € L>(R?) have the property that f: 0 a.e. off of U.

a. There is a continuous function f. on R? such that f = f. a.e.

b. If f is continuous on R?, then
F=Y" fwmysu,

yeH
where the convergence of the sum is in L?-norm and uniformly on R?.

Note that Theorem 2.3, as a d-dimensional version of Theorem 2.1, is only stated for the sampling function sy
corresponding to the sinc function.

REMARK 1 (EARLY APPLICATIONS MOTIVATING d-DIMENSIONAL UNIFORM SAMPLING).

a. In the mid-1950s, Brillouin (1956) discussed 3-dimensional uniform sampling with regard to some crystallo-
graphic problems (see the terminology ” Brillouin zone” before Theorem 2.3), and Bracewell (1956) used 2-dimensional
uniform sampling with regard to issues in radio astronomy. Miyakawa’s basic formulation (1959), in terms of
the “Nyquist relationships” between lattice and unit cell, was in the context of multivariate stochastic processes,
and Sasakawa (1960-61) provided applications of Miyakawa’s Theorem. Petersen and Middleton (1962) completed
Miyakawa’s approach, both theoretically and with many important examples. There is also Prosser’s sampling the-
orem and analysis of truncation error (1966). Although not “early” relative to the 1950s, we also mention Dubois’



application (1985) to video systems and Mersereau’s work (1979) on hexagonal sampling. In this discussion as well
in other parts of this paper, we have not provided specific references due to space considerations. We more than
compensate for these omissions in our research tutorial.®

b. Motivating-applications from mathematics go back to J.M. Whittaker’s uniform sampling theorem (1935) for
entire functions f of order less than two. The sampled values in Whittaker’s formula are f(m + in), m,n € Z; and,
as noted by Pdlya, the formula yielded a positive solution to Littlewood’s conjecture that if {f(m + in)} is bounded
then f is a constant. There are many other papers on d-dimensional uniform sampling, and Higgins’ exposition
(1985) is a reasonable place to start (but not to finish!).

c. The proofs of Theorem 2.3 are conceptually similar to those of Theorem 2.1. They depend essentially on
periodization in the guise of the proper Poisson Summation Formula (PSF) or of the canonical Fourier expansions
associated with R? and its discrete subgroups. The Nyquist hypothesis 27 < 1 and bandlimited hypothesis
f € PWgq of Theorem 2.1 are replaced in Theorem 2.3 by the pairing H, A (where A is essential for choosing some
unit cell U C Ed) and the hypothesis that f: 0 off of U, respectively.

d. In 1965 Igor Kluvének proved Theorem 2.3 in the general setting of locally compact abelian groups. There
are applications of this result to saving bandwidth (even on R) and relations to the construction of single dyadic
orthonormal wavelets on R%.

3. FOURIER FRAMES

DEFINITION 3.1 (FRAMES).
Let H be a separable Hilbert space with inner product (x,y) and norm ||z| = (z,z)'/?

74} C H is a frame for H if there exist A, B > 0 such that

. a. A sequence {z, :n €

vye H, Alyl> <> [y, za)* < Blyll*. (4)
A and B are frame bounds, and a frame is tight if A = B. A frame is ezact if it is no longer a frame whenever any
one of its elements is removed.
The frame operator of the frame {x,} is the function S : H — H defined as Sy = Y (y, xn )z, for all y € H.
The theory of frames was developed by Duffin and Schaeffer.”

b. An exact frame is a bounded unconditional basis and vice-versa. In particular, orthonormal bases (ONBs) are
exact frames and there are frames which are not exact frames.

An essential feature of frames {z,} C H is that they provide the harmonics for signal reconstruction formulas.
Frames may not be ONBs, but ONBs are not necessarily an advantage when it comes to noise reduction and stable
decompositions.

THEOREM 3.2 (FRAME DECOMPOSITION THEOREM).
Let {x, :n € Z%} C H be a frame for H with frame bounds A and B.

a. The frame operator S is a topological isomorphism with inverse S~™' : H — H. {S™'z,} is a frame with
frame bounds B~! and A~', and

Vy € Ha Yy = Z<y7silxn>xn = Z<yazn>silxn in H. (5)

b. If {xn} is a tight frame for H, if ||x,|| =1 for alln, and if A= B =1, then {x,} is an orthonormal basis for
H.

c. If {x,} is an exact frame for H, then {x,} and {S~'z,} are biorthonormal, i.e.,

¥m,n, (2, S'an) = 6(m,n) = { ! }c mrn

{S~ta,} is the unique sequence in H which is biorthonormal to {x,}.

d. If {x,} is an exact frame for H, then the sequence resulting from the removal of any one element is not
complete in H, i.e., the linear span of the resulting sequence is not dense in H.



DEFINITION 3.3 (FOURIER FRAMES).

a. Let R > 0, and assume that the sequence {ey : A € A} is a frame for H = L?[—R, R]. This is clearly equivalent
to the assertion that there exist A, B > 0 such that

VF € PWr, A|F|2,; < STIFP < BIIF |7, (6)
A€EA

As such we say that {e) : A € A} is a Fourier frame for L?[—R, R], and by (5) we have

Vf € L*[-R,R], f=> ax(f)ex in L*[-R,R]. (7)
AEA
(7) is a non-harmonic Fourier series, see Chapter VII of Paley and Wiener.!°

b. The frame radius Ry(A) of A is

Ry(A) =sup{R >0:{e\} is a Fourier frame for L*[-R, R]}.

EXAMPLE 1. Let us switch the notation R¢ and R? in TheoArem 2.3. We let A C R be a lattice, and we let
E C R? be a unit cell of the reciprocal lattice. Then, if F € L?(R?) is a continuous function with the property that
f=FY =0a.e. off of E, we have the sampling formula

:17 |E| (ZF 27ri<;c,'y>> 1E($) (8)

AEA

in L?(R). More generally, if A C R? is a Fourier frame for PWpg, then

Vf c L2 § :C>\627”<Z’W>
AEA

in L?(E), which can be compared with (8).

4. DENSITY CRITERIA FOR COMPLETENESS

In order to gain insight into the structure of sets A C R¢ for which {ey : A € A} is a Fourier frame for PWp for
some E C R?, it is reasonable to consider first criteria for which {ey : A € A} is complete in the case A C R. To be
precise we let A ={ A\ : k€ Z, A_1 <0< Ao, and limg_, 4 o0 A\, = 00} C Rbea strictly increasing sequence, which
is uniformly discrete or separated in the sense that

Jr >0 such that Vk € Z, Apyyp1 — A\ >

Further, for each R > 0, we let
Xp =span{ey : A € A}

denote the closed linear span of {ey : A € A} in L?[—R, R]. Paley and Wiener'"(Chapter VI) refer to Xp as the
“closure” of the set {ey : A € A} of complex exponential functions. If Xr = L?[—R, R], then {ey : A € A} is complete
in L[~ R, R].

DEFINITION 4.1 (THE CLOSURE OF SETS OF COMPLEX EXPONENTIAL FUNCTIONS).
a. The radius of completeness R.(A) of A is

R.(A)=sup{R>0: Xp = L?|-R, R]}.

R.(A) is well-defined since it is clear that if Ry < Ry and Xg, = L?[—Rs, Ra], then Xg, = L?*[— Ry, Ry].

b. An essential problem is to compute R.(A), and in particular to find an intrinsic property of A so as to conclude
that Xr = L?*[—R, R] for a given R. Note that X = L?[—R, R] for each R < R.(A) and Xg # L?|—R, R] for each



R > R.(A). R.(A) is equal to the radii of completeness for the LP-spaces LP[—R, R], 1 < p < oo, as well as the space
C[—R, R] of continuous functions on [—R, R].

The following theorem is an early, fundamental, and deep result due to Paley and Wiener!'®(Section 26).
THEOREM 4.2 (A PALEY-WIENER COMPLETENESS THEOREM).

Assume that A has the property that A\g = 0 and A_x, = =\ for k > 1. For each vy > 0 let n(~y) be the cardinality

of {Me:k>1 and N\ <~} If
Tm n(v)
im ——=

y—oo Y

> 2R, 9)

then Xp = L*[-R, R].
REMARK 2 (COMPLETENESS AND DENSITY).

a. The “lim” on the left side of (9) is a density condition, and such conditions are essential hypotheses, not
only for completeness theorems such as Theorem 4.2 and Equation (15) below, but also for non-uniform sampling
formulas.

In engineering terms and in the context of non-uniform sampling, we can expect completeness if the number of
samples per unit time exceeds on average twice the largest frequency in the given signal, i.e., if the average sampling
rate exceeds the Nyquist rate. This sampling criteria is a density condition, and accurately quantifying the correct
density to obtain completeness is difficult.

Further, there are genuine engineering applications of some of these completeness theorems in uniquely determin-
ing signals from their non-uniformly spaced samples, e.g., Beutler’s work (1966) using results of Levinson.

b. Paley and Wiener’s book (1934)!? is the progenitor and driving force for an extensive and deep theory relating
refinements of Theorem 4.2 with various notions of density, see Definition 4.3. Some of the many notable works since
then are due to Levinson (1940), Duffin-Eachus (1942) and Duffin-Schaeffer?(1952), Kahane (1962), Beurling and
Landau, e.g., Landau'!(1967), and Beurling and Malliavin (1962 and 1967).

There are also world class expositions due to Koosis (1970 and 1996) and Redheffer (1977) reflecting the authors’
profound understanding of the problems and their own seminal contributions from the 1960s, cf., Boas’ book (1954)
and a more recent and justly influential book due to Young (1980).

This material is expanded as background in a forthcoming tutorial on multidimensional non-uniform sampling.%

DEFINITION 4.3 (DENSITY CRITERIA).

Let A={Ar: k€ Z A1 <0< N, and limg_, 4o \p = o0} C Rbe a strictly increasing uniformly discrete
sequence, and define the function

np = Z kl[>\b>\k+1)

whose distributional derivative is n, = > xea Oa- Clearly, if n: (0,00) — {0,1,...} is defined by n(y) = card{A :
[Ak| < 7}, where “card” is cardinality, then n(y) = na(y) — na(—7y).

a. A reasonable definition of the density of A is

lim ")
y—00 2">/

when this limit exists. As such, and since na (v;) = k, we shall define the natural density of A as

k
D, (A= 1 — 1
n(A) |k|linoo Ak (10)

when the limit in (10) exists. Otherwise, we consider the upper, resp., lower, natural densities

DE(A) = Tm -+ resp, Dy(A)= lim -
k| —o0 Ak k| —o0 Mk

b. A has uniform density D,(A) > 0 if



3C > 0 such that V|| > 0, |na(y) — Dy(A)y] < C. (11)

Since np (Ax) = k, the uniform density inequality (11) is equivalent to the condition that

30> 0 such that Vk, | — Dy(A)| < <,
Ak | Ak|
or, equivalently,
k C
- < — L
o, D

In particular, if D, (A) exists, then D,,(A) exists and equals D, (A). In fact, uniform density can be viewed as natural
density constrained by a convergence rate of 1/|Ag]|.

c. For each v > 0 and each interval I C R of length v, let ny(y) = card {\, € I'}. Define

n” () =infn;(y) and n*('y):Sl}pm(v)

The lower and upper Beurling densities of A are

Dr(A) = 1im " and DF(A) = tim "),

y—00 Y Yoo Y

respectively. These limits exist since n~ is superadditive and nT is subadditive, although it is more common to
replace the limits by a lim and lim, respectively.

d. If A has uniform density D, (A) € (0,00), then

Dy (A) = Df (A) = Dy(A).

e. If D, (A) = D;" (A) = D(A), then the natural density D,,(A) exists and

REMARK 3 (BEURLING-MALLIAVIN DENSITY).

a. By definition of R.(A), it is clear that Paley and Wiener’s Theorem 4.2 is equivalent to the assertion that

SDF(A) < R(A), (12)

Poélya (1929) introduced the notion that is called the Pdlya mazimum density D; (A) of A, and it has the property
that Df (A) > D;f(A). In 1935 Levinson proved that if A is a positive sequence, then

1
S DI (A) < Re(A). (13)
Further, Paley and Wiener!®(Theorem XXXIV on page 94) proved that if A = {\; : A\_x = =X,k = 0,1,...} has
uniform density D, (A) > 0 with small enough bound, then

Re(A) < 3 Du(A). (14)

Other upper bounds on R.(A) are due to Koosis (1958) and Redheffer (1954).

b. In light of (12), (13), and (14), it is not unreasonable to conjecture that 1D, (A) = R.(A) for symmetric
sequences A, e.g., Schwartz (1943). Kahane (1958) constructed a symmetric sequence with the properties that
D, (A) = 0 and R.(A) = oco. Kahane’s sequence A is not uniformly discrete, cf., the results of Koosis (1960) and
Redheffer (1968).



c. In one of the highlights of 20th century analysis, Beurling and Malliavin (1962 and 1967) in 1960-1961 devised
a notion of density, denoted by Dy, (A), allowing them to prove

> D (A) = Re(A). (15)

The direction, Rc(A) > 1Dy, (A), is the easier to prove; and the direction, R.(A) <

of the canonical product,
2
(1 5):
Ak

using potential theory. The explanation par excellence is in Koosis’ book (1996).

%Dbm(A), requires a deep study

5. CHARACTERIZATION OF FOURIER FRAMES

The following theorem is a characterization of Fourier frames in terms of density. Part a is due to Duffin and
Schaeffer? (1952); part b is due to Landau'! (1967), although not using the term “frame”; and part c¢ is due to
Jaffard!? (1991). Jaffard also characterized sets A of frequencies giving rise to Fourier frames as finite unions of
iniformly discrete sets at least one of which is uniformly dense. There is another deep characterization of such sets
by Ortega-Cerda and Seip (2000).

THEOREM 5.1 (FUNDAMENTAL THEOREM OF FOURIER FRAMES).
a. If A has uniform density D, (A) > 2R, then {ex : A € A} is a Fourier frame for L?|—R, R).
b. If {ex : X € A} is a Fourier frame for L?|—R, R], then D; (A) > 2R.
c. If Rf(A) € (0,00), then
Ry(A) = 5 sup{Du(A)),

where A C A has finite uniform density.

6. BALAYAGE

DEFINITION 6.1. a. A convex, compact subset £ C R? is a symmetric body if it is symmetric about the origin in
the sense that if z € E then —x € E.

b. Let E C R? be a symmetric body. Define

Ve e RY, |z|g =inf{r:zerE, r>0},

where rE = {ry : y € E}. It is elementary to prove that || - | is a norm on R? which is equivalent to the Euclidean
norm.

c. Let E C R? be a symmetric body. The set
E*:{*yeﬁd:Ver, <z, ><1},

is the polar set of E. It is clear that E* is a symmetric body, and E* is the unit sphere with respect to the norm
| - ||z In fact,

V]l z+ = sup | <z,v>|
xEFE

and
lzlle = sup | <z,y> | (16)
yeEE*
d. Let z € C%. Because of (16) it is natural to define |||z as

lzlle = sup | < z,v>|.
yEE*



DEFINITION 6.2. Let E C R? be a symmetric body with polar set E*. An entire function ¢ on C? is of exponential
type E* if
Ve>0, dA.>0

such that
Vze 04 |p(z)] < Ace?mFlzle

The classical Plancherel-Pélya Theorem, originally proved on R, has the following formulation on R?, see pages
108-114 of Stein and Weiss.®

THEOREM 6.3. (Plancherel-Pdlya Theorem) Let E be a symmetric body and let p > 1. If ¢ is an entire function of
exponential type E*, then

N 1/p
Ve € RY, (/ﬁd lo(y + &) P dv) < e2rliélles

(JOHLp(ﬁd)‘

The Plancherel-Pélya Theorem can be used to prove the following Paley-Wiener Theorem. Generally, we shall
use the elementary sufficient conditions of the Paley-Wiener Theorem in order to obtain a function of exponential
type; and then we use this property of a given function in order to invoke Plancherel-Pdlya.

THEOREM 6.4. (Paley-Wiener Theorem) Let E C R? be a symmetric body, and let ¢ € L? (Ifld). Then supp” C E
if and only if ¢ is the restriction to R® of an entire function of exponential type E*.

DEFINITION 6.5. a. Let E C R%, and let p,v € M(RY). The notation p ~g v denotes the property that pu¥ = vV
on FE.

b. Let E C R?%, and let A C R? be a closed set. Balayage is possible for (E, A) if
Vu e M(RY), 3v € M(A) such that p¥ =v" on E,

i.e., for each p € M(ﬁd)7 there is a v € M (A) such that p ~g v.
The following is a consequence of the Open Mapping Theorem.
Let E C R, and let A C R? be a closed set. Assume balayage is possible for (F,A). There is K > 0 such that

e MR, it sy < Ky (17)

The infimum of those K for which (17) holds is designated K(E, A).
Beurling considered the following two properties on a closed set E C R.
(a) For each g € E and each € > 0, there is . € M(B(xo,¢€) N E) such that lim|,| o fic(y) = 0;

(B) Eis a set of spectral synthesis, i.e., T(f) = 0 for all f € A(R?) and all T € A’(R?) with the properties that
f=0on E and suppT € A'(R%).

Clearly, if int E # 0, then condition («) is satisfied. There are other equivalent formulations of condition (43).
For example, condition (3) is satisfied if and only if [ () du(y) =0 for all ¢ € By(E) and all € M(R?) with the
property that ©V = 0 on E. We shall use the fact that closed, convex sets E C R are sets of spectral synthesis.

The following result was proved by Beurling.*

LEMMA 6.6. Let E C RY be a compact set satisfying properties (o) and (3), and let E. = {z : dist(x, E) < €}. If
K(E,\) < 0o, then there exists €y such that

V0<e<e, K(E,A) <oo.



We shall also need the following result due to Ingham (1934). This lemma has major extensions and is intimately
related to the uncertainty principle in the context of Fourier analysis.

LEMMA 6.7. Let  be a positive, increasing, continuous function on [0,00), and assume il satisfies the growth

conditions,
< Q)
/ —5 - dy < o0
0 Y
and

/A e~ 2UED ge < .

R

For any € > 0, there exists an entire function h on C¢ with the properties that h(0) = 1,
Vee R, [A(E)] < cem D,

and supph C B(0,¢).

Using these results as well as Theorems 6.3 and 6.4, Beurling provided the ideas and methods for proving the
following theorem.

THEOREM 6.8. Let E C R? be a closed set satisfying properties () and (3), assume E is symmelric with respect

to the origin, and let A C R? be uniformly discrete. If balayage is possible for (E,A), then A is a Fourier frame for
PWg.

7. BEURLING COVERING THEOREM

The following result was proved for the unit ball £ = B(0,1) C R? by Beurling.! As with Theorem 6.8, the proof
of the following result is a consequence of Beurling’s methods and ideas.%

LEMMA 7.1. Let E C R? be a symmetric body, and let £,n € R be points such that € —n € {v:I7llgx <1/4}. There
exists a discrete measure v € M(R®) with the properties that v has support contained in the line passing through &

and 1, v({§}) = v({n}) = 0, and

be ~ i cos(2m€ — nll5)5, + v.

This balayage of the Dirac measure is then used in conjunction with Theorem 6.8 to prove the following Beurling
Covering Theorem.

THEOREM 7.2. Let E C R? be a symmetric body, and let A C R? be uniformly discrete set satisfying the covering

property
U X E“k = Rd.
AEA

If r < 1/4, then A is a Fourier frame for PW,g.

The example at the end of Section 3 and Theorem 7.2 leads to the problem of relating coverings A + E* and
tilings H + E when comparing the non-uniform and uniform sampling cases. Since tilings on R? do not give rise
coverings on R? for d > 4, when analyzing uniform sampling as a special case of Theorem 7.2, it is natural to
construct appropriate reciprocal sets H corresponding to uniformly discrete A so that the hypothesis in Theorem 7.2
generalizes tiling on R?. This represents current work with Cabrelli and Molter.

8. A SPIRAL MRI RECONSTRUCTION ALGORITHM

As mentioned in the Introduction, we shall use the Beurling Covering Theorem to give a constructive irregular
sampling signal reconstruction method in the setting of interleaving spirals, see Example 3. Our method is much
more general than the geometry of interleaving spirals, and the particular examples which follow can in fact be
calculated using Beurling’s original formulation stated in the Introduction.

ExXAMPLE 2. Fix ¢ > 0. We shall show how to choose a uniformly discrete subset Ag of the spiral

A, = {(c cos 2m8, chsin 276) : § > 0} C R?



such that Ag is a Fourier frame for PWm, for some R > 0.

i. Let (Ao,70) € R2. There exists 0o € [0,1) and rg > 0 such that (Ag,y0) = ro(cos 2wby, sin 276y) € R2. We first
observe that

diSt(()\(),’Y(]),Ac) S 6/27 (18)

and, in fact, SUD (e dist((Xo,Y0), Ac) = ¢/2. To see this, note that either 0 < ro < c¢fy < ¢ or that there is

ng € N U {0} for which
e(ng +6p) <ro <c(ng+1+6p).

Thus,
dist((Ao, 70), Ae) < min{|e(ng 4+ 6g) — 7o, |c(no + 6o + 1) — 7o}
since '
[(hos70) — (B + o)1) g — c(B + o).
Also,

c=c(no+00+1)—c(ng+6p) =clng+60o+1)—ro+ro—c(no+6p) > 2min{|c(ng+ 0y) — 7o), |c(no+ 0o +1) — rol},

and (18) is obtained.

ii. Now, choose R for which Re < 1/2, and then take § > 0 such that (¢/2+0)R < 1/4. Next, choose a uniformly
discrete set of points Ar along the spiral A, having curve distance between consecutive points less than 29, and
beginning within 24 of the origin. Then the curve distance, and consequently the ordinary distance, from any point
on the spiral A, to Ag is less than 6. Further, as we showed in part i, the distance from any point in R? to the spiral
A, is less than or equal to ¢/2. Thus, by the triangle inequality,

VEe R, dist(6,Ag) < g +5=p.

Hence, Rp < 1/4 by our choice of R and ¢§; and so we can invoke Beurling’s Covering Theorem, Theorem 7.2, or the

original formulation stated in the Introduction, to conclude that Ag is a Fourier frame for PWm.

EXAMPLE 3. Given any R > 0 and ¢ > 0. We shall show how to construct a finite interleaving set B = Ui\/[;llAk of
spirals
A = {ceem(e—’“/M) 0> 0}, k=0,1,...,M—1,

and a uniformly discrete set Ag C B such that Ag is a Fourier frame for PWm. Thus, all of the elements of

L?(B(0, R)) will have a decomposition in terms of the Fourier frame {ey : A € Ag}.
We begin by choosing M such that cR/M < 1/2. We shall write any given &, € R? as & = 10e>™%  where ry > 0
and 6y € [0,1). Then either 0 < rg < cfy < ¢ or there is ng € N U {0} for which
C(TLO + 00) <rg< C(TL() + 1+ 00)
In this latter case, we can find k € {0,..., M — 1} such that

k k+1
C(no+90+M) §T0<C(n0+90+7).

Thus,

Cc
i < —.
dlSt(£0aB) = oM

Next, we choose ¢ > 0 such that Rp < 1/4, where p = (¢/2M + 9).

Then, for each £k = 0,1,..., M — 1, we choose a uniformly discrete set Ay of points along the spiral A having
curve distance between consecutive points less than 29, and beginning within 2§ of the origin. The curve distance,



and consequently the ordinary distance, from any point on the spiral A to A is less than J. Finally, we set
A = U,]y:BIAk. Thus, by the triangle inequality,

Ve e R, dist(€, Ag) < dist(€, B) + dist(B, Ag) < ﬁ +5=p.
Hence, Rp < 1/4 by our choice of M and ¢; and so we can invoke Beurling’s Covering Theorem, Theorem 7.2, or the

original formulation state in the Introduction, to conclude that Ag is a Fourier frame for PWWR)'

Note that since we are reconstructing signals on a space domain having area about R?, we require essentially R
interleaving spirals. On the other hand, if we are allowed to choose the spiral(s) after we are given PWW’ then
we can choose A contained in a single spiral A, for ¢ > 0 small enough.
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