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ABSTRACT
A theory of waveletpackets is developed for nonlinear operators consisting of a composition,

generalizing a sigmoidal operation, followed by convolutions with filter pairs H0 and H1.
The pyramidal waveletpacket structure is defined by bit reversal trees. The reconstruction
theorem, from which the original signal is obtained from frequency localized data at other
nodes of the tree, requires fixed point theory as well as conditions on H0 and H1 resembling
those defining quadrature mirror filter pairs. Applications will be to biological systems and
neural networks where such nonlinearities occur.

1. INTRODUCTION
Sigmoidal nonlinearities arise in mathematical models of biological systems1'3'6"3 and in

neural networks. They are a special case of superpositions2 , viz., (f)(t) = çb(t, f(t));
and superpositions occur everywhere, e.g., differential and integral equations, variational
calculus, probability, etc. The theory of waveletpackets8 arises in addressing data compres-
sion problems, and is a tool in a variety of frequency localization problems. The history of
waveletpackets includes engineering efforts to deal with channel crosstalk at the turn of the
century, as well as significant advances in subband coding by the speech and image processing
communities7 in the late 1970s and early 1980s. There is also related recent work by Mallat
and Zhang on their concept of matching pursuits11. In this paper we consider nonlinear
systems with a subband coding structure. The goal is to provide local and self-similar low
pass and high pass filtering, and accompanying signal reconstruction. A consequence of this
type of filtering is computable frequency localization.

There is a more general and mathematical theory of nonlinear waveletpackets that we
have developed5. In this paper, as well as in the more general theory, the setting is the real
Paley-Wiener space The elements f of PWci,r are real valued, -bandlimited, finite
energy signals, i.e.,

PWç,r {f: R —p R: I L2(F) and suppf c [—c,cl]},

where L2(R) = {f: 111112 (f f(t)12 dt)'/2 < }, f('y) = ff(t)e_2it1 dt, integration is over

R, and supp f c [—a, ]} signifies that f = 0 outside of [—a, ]. There are new constructive
results'2 on the structure of PWc2,r in terms of the notion of weak coercivity; the analysis
involves Caccioppoli's Global Inverse Mapping Theorem.

In Section 2 we motivate and describe a general problem. We solve a refinement of the
problem recursively in Section 3 by means of fixed point theory. This part is inspired by
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the work of Landau and Miranker1° Finally, in Section 4 we formulate the problem as a
local and self-similar low pass and high pass subband coding pyramidal scheme. Using the
results from Section 3, we show how to reconstruct the given signal from frequency localized
nonlinear versions of it.

2. MOTIVATION AND GENERAL PROBLEM

In some mammalian auditory models13 the output of a speech signal f PWc,r on the
basilar membrane filter bank can be thought of as the wavelet transform,

Wgf(s, 1) = (f *

where t is time, * is convolution, g is the impulse response for the cochlear filter' , .s = am
is a scale channel for some a > 1, and D3g(t) = s/2 g(s, t). Next, an instantaneous sigmoidal
nonlinearity q is applied to Wgf followed by a low pass filter with impulse response h. These
processes model the threshold and saturation that occur in the hair cell channels, and the
leakage of electrical current through the membranes of these cells1 . The cochlear output is

C(s,t) = (' 0 Wgf(s,t)) * h(t) (1)

for each channel s. The nonlinearity ç can be of the form

Ty
cb(y)= T(Y) 1+eTY'

noting that ç is an increasing function and limT ç'T is the Heaviside function. From this
point there are a number of hypotheses, e.g., the lateral inhibitory network, and a number
of techniques for speech signal reconstruction, e.g., alternating projections13 and irregular
sampling3'6. Our goal in this paragraph has been to establish the importance of systematically
studying models such as Equation (1).

Let L be the function

L: PWci, — PWç,r
fLf=(of)*h, (2)

where ç : R — R is differentiable and monotonic, 0 < m q' I � M on ft h E PWç,
is the impulse response of the filter h = H, and 0 HI � / on [—a, The general
problem is to reconstruct f from frequency localized data. We are more precise and technical
in Sections 3 and 4.

Assume only that Ic1YI <M on R and çz(O) = 0. Then for all real valued elements f E
we have q o f L2(R). With this assumption and the hypothesis that HI /3 on {—, ],
it is also easy to see that L defined by (2) is a Lipschitz function; in fact,

Vf,,f2 E PWc1,, IILfi Lf2II2 � M/311f, f2II2
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3. A FIXED POINT PROBLEM AND SOLUTION FOR L

3.1 Beurling's uniqueness theorem
It is not difficult to prove the following result by means of the Parseval-Plancherel theorem

and showing a little care about the signs of the functions involved. The idea is due to Beurling,
and was used by Landau and Miranker1° for the case that H = '[ç,ç} , the characteristic
function of

3.1 Theorem. Let L : PWc, " PWi�,r be defined by (2), where qY > 0 on ll, h
PWii,r, and IHI > 0 a.e. on cj for h = H. Then L is injective.

3.2 The Banach fixed point theorem
Let X be a complete metric space with metric d. A function A : X —* X is a contracting

map if there is q E [0, 1) such that

Vf1,f2 E X, d(Af1,Af2) qd(fi,f2).

This is a Lipschitz condition. Theorem 3.2 is the Banach fixed-point theorem9 and the proof
is well-known and elementary.

3.2 Theorem. Let A : X '—+ X be a contracting map on the complete metric space X with
metric d.

a. If fo E X and f+i = Af for each n � 0 then

Vk, n�O, d(fn+k,fn)� 1qd(fifO)•

b. The sequence {f } converges to some f in X,

Vn�1, d(f,f)� 1qd(fifO)
and f is the unique solution of the equation Ag = g, i.e., f is the unique fixed point
of A.

3.3 Existence theorem

The main result of Section 3 is the following theorem.

3.3 Theorem. Let L: PWc, * PWc1,r be defined by (2), where 0 <m çb' M on
h E PW1�,r, and 0 < c HI /3 a.e. on [—,] for h = H. Then L is continuous2,
and L1 is Lipschitz; in particular, if q(O) = 0 then there is K > 0 such that L and L1 are
Lipschitz:

Vf1,f2,e PWc2,r, 111L'fi Lf2II2 � M/311f1 f2112 � KM/3IILfi Lf2II2.
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In Section 4 we consider the case 0 < HI � /3 a.e. The difficult case, where 0 < qY M
and a HI � 3, is due to Saliani12.

3.4 Outline of proof
The outline of our proof of Theorem 3.3 seems a little idiosyncratic, but it works.

L is injective by Theorem 3. 1 , and the continuity follows from the general theory of
superposition2 or a direct calculation. We then make the hypotheses that H is real and

M—m a
M+m</3 (3)

Assuming 3 < 1, we can use Theorem 3.2 to see that L is surjective for this case. In fact, we
show that there is a constant c(ç) such that

Vf0 PWç,r and VS E PWç,r, Lf S,

where
lim (f — c(ç)(q o f) * h + c(q)S) = f in PWc,r, (4)n—oo

Vn � 0, f+ = Bf,
and

Bg =g-c()(çog)*h+c(ç)S.
A technical modification then allows us to obtain surjectivity for /3 � 1 in the case of (3).
c(q) is computable and (4) is an iterative means of computing L1S. The fact that L' is
Lipschitz follows from an elementary calculation using (4).

This argument has as a consequence the Landau-Miranker theorem'°, which asserts the
bijectivity of L for the filter H =

Finally, we use the Landau-Miranker theorem and another elementary calculation to com-
plete the proof of Theorem 3.3.

4. A NONLINEAR SUBBAND
CODING PROBLEM AND SOLUTION

4.1 Bit reversal

Bit reversal ordering arises and is required in the FFT algorithm because of decompositions
of DFT computations into smaller and smaller DFT computations. Let M = 2m where
m � 0. At level m = 0 consider the set {0}. At level m = 1 the bit reversal ordering
of the set {0, 1} is the ordered 21-tuple (0, 1). At level m = 2 the bit reversal ordering of
the set {0, 1,2, 3} is the ordered 22-tuple (0,2, 1,3). Inductively, at level m suppose the set
{0, 1,.• ,M — 1} has as its bit reversal ordering the ordered 2tm-tuple,

(b0,b1,... ,bM_1).
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Then, by definition, at level m + 1, the bit reversal ordering of the set {O, 1, • • • , 2M — 1} is
the ordered 2m+ltup1e

(2b0,2b1,.. . ,2bM_l,2b0 + 1,2b1 + 1,. . . ,2bM_1 + 1).

For example, the bit reversal orderings at levels 3 and 4 are

0,4,2,6,1,5,3,7

and
0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15,

respectively. The terminology "bit reversal" is appropriate since the coefficients of the binary
expansion of integers are reversed at the critical step in the above process.

Let {X } be a tree of Banach spaces, where m designates the level, and where, for each
fixed m � 0, there are M = 2m elements X , indexed by n. Using the binary expansion

= 2j-1 e {0,1}, (5)

we write
v-rn — v-rn

— '(ci, ,€m)
and, using the bit reversal ordering, the tree {X }has the form

X8

x x11

x2 x2 x2 x2
(0,0) (0,1) (1,0) (1,1)

At level rn — 1 the space X',• ,m-1 c is the (single) "parent" of

v-rn j v-rnanu

For a given m and n, the generational synapse between "parent" and "child" is a surjective
mapping denoted by

= : çm—1 .............÷
,€m) (€i,•• ,€m__i)

We define the tree {X'} and double sequence {L} of mappings in the next section.
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4.2 Frequency localization

Let X = PWç,r and suppose q : R —f R is a differentiable function which satisfies the
condition,

m, M > 0 such that Vy E R, m qY(y) M.

Let h0 = H0 and h1 = H1 be two filters, where h0, h1 and suppose

acE, 3 > 0 such that c < 1110(7)12 + IH1()I2 i3 a.e. (6)

Generally, H0 is a low pass filter and H1 is a high pass filter on the band {—1, ]. The inequal-
ities (6) extend the QMF condition, and play a critical role in the theory of multiresolution
analysis frames4.

The spaces X ,X at level 1 are determined by the mappings L8 L , which are defined as

Lgf=(of)*ho and

respectively, i.e., x =L (xx) and X =L (x°).

The goal is to decompose the frequency band {—, ] so that locally, for every sufficiently
large level m, there is a "band pass" interval I [—a, 1] which can be associated with the
low pass filter H0, and there are corresponding intervals which bound I and which can be
associated with the high pass filter H1 . We proceed to quantify this point of view.

First, we define the inner and outer dilations D2 and D0 as follows for f E PWc,r and
C > 1:

Df= D1 and DJ= D2 (r()f+Y()f),
where D is the L2-normalized dilation defined in Section 2. D squeezes the support of f
into [—a/c, ft/c], and D0f squeezes the support of f and sends copies "far away". Next, if

{O, 1,... ,2 — 1} has the binary representation (5) and the subspace,

X(l;.,€mi) c PW,r,

is specified, then we define X' as

xm = (Xm_1(c,.•• ,€m) \ (,•• ,m..i)

where

(Lr1.)f)A = ( f)A(DD . . .

H fHo if€=O
H1 if€=1,
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and
DE=IDi if€=O

.7 D0 if€=1.

Using this splitting device, we proceed along various branches by means of the mappings
L to obtain a hemline of subspaces corresponding to a desired bandsplitting of [—1, ].
We then reconstruct f X° from its frequency localized components along the hemline.
Because of the nonlinearities in the mappings L, the results of Section 3 are used in this
reconstruction.

Before stating a special case of the reconstruction theorem we give the following example
to illustrate the frequency localization procedure.

4.3 Example

Let ho = H0 = l[/2,/2J and 7; = H1 = — H0 , and let c = 2 in the definition of
D and D0. Thus, Df(7) = v'f(27) and

D0f(7) = 2(f(47 _ 31) + f(4y + 31k)).

The level m = 0 corresponds to the band [—1, ] since X° = At level in = 1, we
have the following correspondences between function space and the closed band of elements
in it:

X X U [M]. (7)

The union of the bands in (7) is all of [—a,]. At level m = 2 we have the correspondences:

x2 8(0,0) ' (0,1) U ( )

and
2 3

X(1,0) --'-+ U --'+
2 3 ii 3 ii3

X(1,1) U + U '
3d dU -±-

where once again the union of the bands in (8) is all of [—d, d]. The splitting in (8) is due
to the fact that if f E X then

(LO,O)f)A = (of)ADHo and (Lto,l)f)A = (of)ADH1,
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and if f e X11 then

(Lo,o)f) (Qf)ADH and (Ll,l)f)A (of)ADoHi.

Thus, the frequency support I' of the elements of X' is a sequence of intervals. At the
m + 1 level, each subinterval J of I , i.e. , each element of the union (of intervals) I , is
split into two sets J1 and J2 . J1 is an interval which is a symmetric contraction of J. J2
is the union of two intervals which "bound" this contraction (on the left and the right) and
which themselves are contractions of J. Further, J c J1 U J2 . This procedure provides locally
high pass filters corresponding to locally low pass filters, and is the frequency localization of
Section 4.2.

4.4 Frequency localization reconstruction

The following theorem gives signal reconstruction from the hemline X' ,X' consisting of
the first level. (An example of a hemline at the second level is X0) ,X1),X .) There is a
general reconstruction theorem5 for arbitrary hemlines, and it is formulated in terms of our
theory of nonlinear wavelet packets.

4.1 Theorem. Let q : R —* R be a differentiable function for which

m, M > 0 such that Vy E ft m cb'(y) M.

Suppose h0, h1 E PWc2,r = X0° have the properties that

supp H0 c
[—p, ] and

supp H1 c
[—a, ] \ ( — , ),

where ho = H0, 7 = H1, and b � a> 1, and that

a,9> 0 such that a <H(7) = 1110(7)12 + 1111(7)12 <3 a.e.

a. H=hforsomehEPWci,.
b. If we define the mapping,

L:X0° —X0°
fH-*(qof)*h,

then L is a continuous bijection, L is Lipschitz, and

Vf X0°, f = L' (((Lfy o + (Lf)A kl)v)

where "V" designates the inverse Fourier transform.
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