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The Shapiro–Rudin polynomials are well traveled, and their relation to Golay
complementary pairs is well known. Because of the importance of Golay pairs
in recent applications, we spell out, in some detail, properties of Shapiro–Rudin
polynomials and Golay complementary pairs. However, the theme of this paper
is an apparently new elementary geometric observation concerning cusp-like be-
havior of certain Shapiro–Rudin polynomials.

1. Introduction

We begin by defining Shapiro–Rudin polynomials [Shapiro 1951; Rudin 1959]
(see also [Tseng and Liu 1972]). N, Z, R, and C are the sets of natural numbers,
integers, real numbers, and complex numbers, respectively.

Definition 1.1. The Shapiro–Rudin polynomials, Pn , Qn , n = 0, 1, 2, . . . , are de-
fined recursively as follows. For t ∈ R/Z, we set P0(t)= Q0(t)= 1 and

Pn+1(t)= Pn(t)+ e2π i2n t Qn(t), Qn+1(t)= Pn(t)− e2π i2n t Qn(t). (1-1)

The number of terms in the n-th polynomial, Pn or Qn , is 2n . Thus, the sequence
of coefficients of each polynomial, Pn or Qn , is a sequence of length 2n consisting
of ±1s.

Definition 1.2. For any sequence z={zk}
n−1
k=0⊆C and for any m∈{0, 1, . . . , n− 1},

the m-th aperiodic autocorrelation coefficient, Az(m), is defined as

Az(m)=
n−1−m∑

j=0

z j zm+ j . (1-2)

We now define a Golay complementary pair of sequences. The concept was
introduced by Golay [1951; 1961; 1962], but a significant precursor is found in
[Golay 1949].
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Definition 1.3. Two sequences, p={pk}
n−1
k=0⊆C and q={qk}

n−1
k=0⊆C, are a Golay

complementary pair if Ap(0)+ Aq(0) 6= 0 and

Ap(m)+ Aq(m)= 0 for all m = 1, 2, . . . , n− 1. (1-3)

It is well known that the Shapiro–Rudin coefficients are Golay pairs; see Propo-
sition 2.1. Further, Welti codes [1960] are intimately related to Golay pairs and
Shapiro–Rudin polynomials. In Section 3, we begin with a useful formula for
the Shapiro–Rudin polynomials, then record MATLAB code for their evaluation.
Page 457 is devoted to graphs of Shapiro–Rudin polynomials; these graphs served
as the basis for our geometrical observations about cusps, quantified in Section 4.
In fact, in Theorem 4.8, we shall prove that the graph or trajectory of P2n in C, as a
function of t ∈R, has a quadratic cusp at t = 2π j, j ∈Z. Clearly, P2n is 1-periodic
and infinitely differentiable as a function of t ∈ R.

Remark 1.4. (a) Shapiro–Rudin polynomials have the Pythagorean and quadrature
mirror filter (QMF or CMF) property:

|Pn(t)|2+ |Qn(t)|2 = 2n+1 for all n ≥ 0 and t ∈ R

(see [Vaidyanathan 1993; Daubechies 1992; Mallat 1998]), as well as the sup-norm
bound or “flatness” property,

‖Pn‖C(R/Z) ≤ 2(n+1)/2 and ‖Qn‖C(R/Z) ≤ 2(n+1)/2 , (1-4)

where ‖ f ‖C(R/Z)= supt∈R | f (t)|, for continuous and 1-periodic functions f :R→
C. Note that the L2(R/Z) norms of the Shapiro–Rudin polynomials are

‖Pn‖L2(R/Z) =

(∫ 1

0
|Pn(t)|2dt

)1/2
= 2n/2 and ‖Qn‖L2(R/Z) = 2n/2 .

The sup-norm estimates have deep analytic implications in bounding the pseu-
domeasure norms of important measures arising in the study of restriction algebras
of the Fourier algebra of absolutely convergent Fourier series (see, for example,
[Kahane 1970]). Benke’s analysis and generalization of Shapiro–Rudin polyno-
mials [Benke 1994] provide an understanding of the importance of unitarity in
obtaining the low sup-norm bound in (1-4) vis a vis the exponential growth, 2n , of
Pn and Qn . This issue is central in the Littlewood flatness problem and associated
applications dealing with crest factors, ‖ f ‖C(R/Z)/‖ f ‖L2(R/Z) (see, for example,
[Benedetto 1997, page 238]).

(b) In classical Fourier series, Shapiro–Rudin polynomials can be used to construct
continuous and 1-periodic functions f : R→ C which are of Lipschitz order 1/2,
but which do not have an absolutely convergent Fourier series [Katznelson 1976,
pages 33-34].



GEOMETRIC PROPERTIES OF SHAPIRO–RUDIN POLYNOMIALS 451

(c) There is a large literature, several research areas, and a plethora of fiendish unre-
solved problems associated with Shapiro–Rudin polynomials, Golay complemen-
tary pairs, and Welti codes. For a sampling of the literature, besides [Benke 1994],
we mention [Brillhart and Carlitz 1970; Brillhart 1973; Saffari 1986; 1987; Eliahou
et al. 1990; 1991; Brillhart and Morton 1996; Saffari 2001; Jedwab 2005; Jedwab
and Yoshida 2006]. This is truly the tip of the iceberg, even for the one-dimensional
case, and the references in these articles give a hint of the breadth of the area.

(d) Besides applications to coding theory and to antenna theory, reflected by the
analysis of crest factors mentioned above, Golay complementary pairs are now
being used in radar waveform design [Levanon and Mozeson 2004; Howard et al.
2006; Searle and Howard 2007; Pezeshki et al. 2008], perhaps inspired by [Lüke
1985; Budišin 1990], and certainly going back to [Welti 1960].

2. Shapiro–Rudin polynomials and Golay complementary pairs

Let P̂n = {P̂n(k)}2
n
−1

k=0 denote the sequence of ±1 coefficients of Pn , and let Q̂n =

{Q̂n(k)}2
n
−1

k=0 denote the sequence of ±1 coefficients of Qn . Note that k = 0 corre-
sponds to the first coefficient, k = 1 to the second, and so on.

As a result of the recursive construction of the Shapiro–Rudin polynomials, the
coefficients of the (n+1)-st polynomials can be given in terms of the coefficients
of the n-th polynomials:

{P̂n+1(k)}2
n+1
−1

k=0 =
{
{P̂n(k)}2

n
−1

k=0 , {Q̂n(k)}2
n
−1

k=0

}
,

{Q̂n+1(k)}2
n+1
−1

k=0 =
{
{P̂n(k)}2

n
−1

k=0 ,−{Q̂n(k)}2
n
−1

k=0

}
.

(2-1)

For example, we have

{P̂1(k)}1k=0 =
{
{P̂0}, {Q̂0}

}
= {1,−1},

{Q̂1(k)}1k=0 =
{
{P̂0},−{Q̂0}

}
= {1,−1},

{P̂2(k)}3k=0 =
{
{P̂1(k)}1k=0, {Q̂1(k)}1k=0

}
= {1, 1, 1,−1},

{Q̂2(k)}3k=0 =
{
{P̂1(k)}1k=0,−{Q̂1(k)}1k=0

}
= {1, 1,−1, 1},

{P̂3(k)}7k=0 =
{
{P̂2(k)}3k=0, {Q̂2(k)}3k=0

}
= {1, 1, 1,−1, 1, 1,−1, 1},

{Q̂3(k)}7k=0 =
{
{P̂2(k)}3k=0,−{Q̂2(k)}3k=0

}
= {1, 1, 1,−1,−1,−1, 1,−1}.

This recursive method of constructing sequences is the append rule [Benke 1994].
The following result is well known.

Proposition 2.1. For each n ∈ N, the sequences P̂n = {P̂n(k)}2
n
−1

k=0 and Q̂n =

{Q̂n(k)}2
n
−1

k=0 are a Golay complementary pair, i.e., A P̂n
(0)+ AQ̂n

(0)= 2n+1 and

A P̂n
(m)+ AQ̂n

(m)= 0 for all m = 1, 2, · · · , 2n
− 1. (2-2)
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Proof. Since {P̂n(k)}2
n
−1

k=0 , {Q̂n(k)}2
n
−1

k=0 ⊆R, complex conjugation is ignored in the
summands A P̂n

(m) and AQ̂n
(m).

Let n ∈ N. If m = 0, then

A P̂n
(0)+ AQ̂n

(0)=
2n
−1∑

j=0

P̂n( j)P̂n( j)+
2n
−1∑

j=0

Q̂n( j)Q̂n( j)

=

2n
−1∑

j=0

(
P̂n( j)2+ Q̂n( j)2

)
=

2n
−1∑

j=0

2= 2n+1.

For m 6= 0, we shall use induction. Two separate cases arise when proving the
inductive step. In the first case, we consider m such that 1 ≤ m ≤ 2n

− 1, and, in
the second case, we consider m such that 2n

≤ m ≤ 2n+1
− 1. In both cases, we

shall use the fact that, for any n ∈ N, P̂n( j) = Q̂n( j) for j = 0, 1, . . . , 2n−1
− 1

and P̂n( j)=−Q̂n( j) for j = 2n−1, . . . , 2n
− 1.

For n = 1, the only nonzero value m takes is m = 1. Consequently,

A P̂1
(1)+ AQ̂1

(1)=
0∑

j=0

P̂1(0)P̂1(1)+
0∑

j=0

Q̂1(0)Q̂1(1)= 1+ (−1)= 0.

We now assume that (2-2) is true for some n ∈ N and for each m such that
1≤ m ≤ 2n

− 1, and we consider the n+ 1 case.

Case 1. If 1≤ m ≤ 2n
− 1, then

A P̂n+1
(m)+AQ̂n+1

(m)=
2n+1
−1−m∑

j=0

(
P̂n+1( j)P̂n+1(m+ j)+ Q̂n+1( j)Q̂n+1(m+ j)

)
=

2n
−1−m∑
j=0

(
P̂n+1( j)P̂n+1(m+ j)+ Q̂n+1( j)Q̂n+1(m+ j)

)
+

2n
−1∑

j=2n−m

(
P̂n+1( j)P̂n+1(m+ j)+ Q̂n+1( j)Q̂n+1(m+ j)

)
+

2n+1
−1−m∑

j=2n

(
P̂n+1( j)P̂n+1(m+ j)+ Q̂n+1( j)Q̂n+1(m+ j)

)
=

2n
−1−m∑
j=0

(
P̂n( j)P̂n(m+ j)+ P̂n( j)P̂n(m+ j)

)
+

2n
−1∑

j=2n−m

(
Q̂n+1( j)P̂n+1(m+ j)+ Q̂n+1( j)

(
−P̂n+1(m+ j)

))
+

2n+1
−1−m∑

j=2n

(
P̂n+1( j)P̂n+1(m+ j)+

(
−P̂n+1( j)

)(
−P̂n+1(m+ j)

))
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=

2n
−1−m∑
j=0

2
(
P̂n( j)P̂n(m+ j)

)
+ 0+

2n
−1−m∑
j=0

2
(
Q̂n( j)Q̂n(m+ j)

)
= 2

2n
−1−m∑
j=0

(
P̂n( j)P̂n(m+ j)+ Q̂n( j)Q̂n(m+ j)

)
= 2

(
A P̂n

(m)+ AQ̂n
(m)

)
.

Since 2
(

A P̂n
(m)+ AQ̂n

(m)
)
= 0 for all m such that 1≤m ≤ 2n

−1 by the inductive
hypothesis, we have that A P̂n+1

(m)+ AQ̂n+1
(m) = 0 for all m such that 1 ≤ m ≤

2n
− 1.

Case 2. If 2n
≤ m ≤ 2n+1

− 1, then

A P̂n+1
(m)+ AQ̂n+1

(m)

=

2n+1
−1−m∑

j=0

(
P̂n+1( j)P̂n+1(m+ j)+ Q̂n+1( j)Q̂n+1(m+ j)

)
=

2n+1
−1−m∑

j=0

(
P̂n+1( j)P̂n+1(m+ j)+

(
P̂n+1( j)

)(
−P̂n+1(m+ j)

))
= 0.

This gives A P̂n+1
(m)+ AQ̂n+1

(m)= 0 for all m such that 2n
≤m ≤ 2n+1

−1, which
completes the inductive step, as well as the proof of the proposition. �

Remark 2.2. This proof remains valid if we begin with any complementary pair
of sequences, {a0( j)}k−1

j=0 and {b0( j)}k−1
j=0, of length k, and we use the append

rule to construct a family, F, of pairs of sequences of length k2n , viz., F =〈
{an( j)}k2n

−1
j=0 , {bn( j)}k2n

−1
j=0

〉
for each n ∈ N. By changing 2n to k2n and 2n+1 to

k2n+1 in the proof of Proposition 2.1 we find that each equilength pair of sequences
in F is a Golay complementary pair. Thus, to show the existence of a Golay pair
of sequences each of length k is to show the existence of Golay pairs of sequences
of length k2n for each n ∈ N.

We have proved that the coefficients of Shapiro–Rudin polynomials form Golay
complementary pairs. There are many examples of pairs of sequences that are
Golay complementary pairs and are not necessarily the coefficients of Shapiro–
Rudin polynomials.

Example 2.3. Let p = {2, 3} and q = {1,−6}. Then

Ap(0)+ Aq(0)= 22
+ 32
+ 12
+ (−6)2 = 50 6= 0

and Ap(1) + Aq(1) = 2 · 3 + 1 · (−6) = 0. Therefore, p and q form a Golay
complementary pair, but the corresponding polynomials P and Q are not Shapiro–
Rudin polynomials.
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Example 2.4. Let a, b, c, d ∈ R, and let at least one of a, b, c, d be nonzero. Let
ab+ cd = 0, and let p = {a, b, c, d} and q = {a, b,−c,−d}. Then

Ap(0)+ Aq(0)= 2(a2
+ b2
+ c2
+ d2) 6= 0 since one of a, b, c, d is nonzero,

Ap(1)+ Aq(1)= (ab+ bc+ cd)+ (ab− bc+ cd)= 2(ab+ cd)= 0,

Ap(2)+ Aq(2)= (ac+ bd)+ (−ac− bd)= 0,

Ap(3)+ Aq(3)= (ad + (−ad))= 0.

Thus, p and q form a Golay complementary pair. By letting a = b = c = 1 and
d = −1, we obtain the special case where p = {P̂2} and q = {Q̂2}. Letting a be
any nonzero real number and b = c = −d = a, we can generate Golay pairs that
are not the coefficients of P2 or Q2.

Example 2.5. Using the append rule (2-1) and Remark 2.2, we can readily con-
struct a nonbinary Golay complementary pair of sequences of length 2n for any
n ∈ N. Starting with p = {2, 3} and q = {1,−6} from Example 2.3, we obtain
p̃ = {2, 3, 1,−6} and q̃ = {2, 3,−1, 6} after one application of the append rule.
By Example 2.4, p̃ and q̃ are a Golay complementary pair. After two applications
of the append rule, we obtain

˜̃p = {2, 3, 1,−6, 2, 3,−1, 6} and ˜̃q = {2, 3, 1,−6,−2,−3, 1,−6} .

By Remark 2.2, ˜̃p and ˜̃q are a Golay complementary pair. Repeated application of
the append rule will continue to produce nonbinary Golay complementary pairs of
length 2n for any n ∈ N.

Example 2.6. It is known that binary Golay complementary pairs of sequences
of length 2a10b26c exist for any nonnegative integers a, b, and c [Turyn 1974].
Earlier, Golay gave examples of Golay complementary sequences of length 10 and
26 [Golay 1961; 1962]. The operation used when calculating the aperiodic auto-
correlation coefficients is parity of elements of the sequences (+1 if two elements
match, and−1 if they do not). Golay’s examples are p={1, 0, 0, 1, 0, 1, 0, 0, 0, 1},
q = {1, 0, 0, 0, 0, 0, 0, 1, 1, 0} for length 10 sequences, and

p = {1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0} ,

q = {0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0}

for length 26 sequences. Using the parity operation on these sequences, as Golay
did, is equivalent to replacing the zeros in each sequence with (−1)s and using
multiplication in the definition of the aperiodic autocorrelation coefficients, as in
Definition 1.2.
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3. A formula for Shapiro–Rudin coefficients,
and some useful MATLAB code

Coefficient formula. Given an n ∈ N and k such that 0 ≤ k ≤ 2n
− 1, the k-th

coefficient of Pn is given in [Brillhart and Carlitz 1970] and [Benke 1994] by
the formula P̂n(k) = (−1)〈Bω,ω〉, where ω is the j × 1 column vector containing
coefficients of the binary expansion of k, and B is the j × j shift operator matrix
given by Bm,n = δm,n+1. The expression 〈Bω,ω〉 is interpreted as the number of
occurrences of two consecutive 1s in ω. Note that k = 0 corresponds to the first
coefficient, k = 1 corresponds to the second coefficient, and so on.

MATLAB codes for Shapiro–Rudin coefficients. The following programs were
coded using MATLAB v.7.0. The first program, shapcoef.m, is a function used
in the second program, shapvector.m.

shapcoef.m

function matches=shapcoef(n);
binary=dec2bin(n);
binaryShifted=binary;
binaryShifted(1)=’0’;
for c=2:length(binary);

binaryShifted(c)=binary(c-1);
end;
binary;
binaryShifted;
matches=0;
for c=1:length(binary);

if binary(c)==binaryShifted(c) && binary(c)==’1’;
matches=matches+1;

end;
end;

shapvector.m

function shapvector(a,b);
for t=a:b;

coeff(t+1)=(-1)^shapcoef(t);
end;
B = nonzeros(coeff);
transpose(B)

One should use the program shapvector by choosing two integers a and b such
that 0 ≤ a ≤ b, and typing shapvector(a,b) into the MATLAB editor window.
The program will return the a-th through b-th coefficients of Pn for sufficiently
large values of n.
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Example 3.1. To compute the coefficients of some Pn , one should use the input
shapvector(0,(2^n)-1). For example, the output for n = 3 is

1 1 1 -1 1 1 -1 1

Example 3.2. Suppose we want the coefficients of Q3. By the append rule (2-1),
they coincide with coefficients 8 through 15 of P4, so we type shapvector(8,15).
The output is

1 1 1 -1 -1 -1 1 -1

Example 3.3. To find the hundredth coefficient of Pn , where 2n
≥ 100, we type

shapvector(100,100). The output is −1.

The program above can be used to construct symbolic Shapiro–Rudin polyno-
mials in MATLAB. One would simply use a for-loop with k = 0, 1, 2, . . . , 2n

−1
to construct a symbolic vector V whose k-th entry is e2π ikt , then use the program
to compute the vectors CP of coefficients of Pn , and CQ of coefficients of Qn . The
dot products 〈CP , V 〉 and 〈CQ, V 〉 are Pn and Qn , respectively.

Parametric images. The parametric image of both P1 and Q1 is a circle of unit
radius centered at (1, 0). For the next three values of n, we illustrate on the next
page the parametric images of Pn and Qn , with the usual convention: a complex
number z is represented by (Re z, Im z). Note the complexity of some of these
graphs.

4. Geometric descriptions of the curves (Re Pn, Im Pn) and (Re Qn, Im Qn)

In Theorem 4.8, we shall show that, for any n ∈N, P2n gives rise to a cusp at t = 0
while P2n+1 and Qn do not give rise to cusps at t = 0. In fact, we shall prove that
the cusp of P2n :R/Z→C occurs at the point (2n, 0) ∈C, and that it is a so-called
quadratic cusp.

We begin by reinforcing our intuitive notion of a cusp with the following defi-
nition [Rutter 2000].

Definition 4.1. A parametrized curve γ : R→ R2, defined by γ (t)= (u(t), v(t)),
has a nonregular point at t = t0 if

du
dt

∣∣∣
t=t0
=

dv
dt

∣∣∣
t=t0
= 0.

Otherwise, t0 is a regular point. A nonregular point t0 gives rise to a quadratic
cusp for γ if (d2u

dt2

∣∣∣
t=t0
,

d2v

dt2

∣∣∣
t=t0

)
6= (0, 0).
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A nonregular point t0 gives rise to an ordinary cusp if it gives rise to a quadratic
cusp, and (d2u

dt2

∣∣∣
t=t0
,

d2v

dt2

∣∣∣
t=t0

)
and

(d3u
dt3

∣∣∣
t=t0
,

d3v

dt3

∣∣∣
t=t0

)
are linearly independent points of the real vector space R2, that is, they are not
parallel vectors in R2.

Example 4.2. Let P(z) = z2
− 2z on C. Then, P ′ has a zero of multiplicity 1

at z0 = 1. In the notation of Definition 4.1, we consider γ : R → R2, where
γ (t)= P(e2π i t), t ∈ R, and so

u(t)= cos(4π t)− 2 cos(2π t) and v(t)= sin(4π t)− 2 sin(2π t).

We compute that γ has a nonregular point at t0 = 0, and, in fact, t0 = 0 gives rise
to a quadratic cusp.

Further, if Q : C→ C is any polynomial with complex coefficients, then t = t0
gives rise to a quadratic cusp for γ , where γ (t) = Q(e2π i t), if and only if Q′

vanishes at e2π i t0 with odd multiplicity. The angle at the cusp point z0 = e2π i t0

naturally depends on the order of the multiplicity. This assertion of odd order of
multiplicity to characterize a cusp is not restricted to polynomials, but is valid for
any complex valued analytic function.

Remark 4.3. To show that P2n gives rise to a quadratic cusp at t = 0, we must
first show the existence of a nonregular point at t = 0, and to show that P2n has a
nonregular point at t = 0, we must show

d
dt

Re P2n

∣∣∣
t=0
=

d
dt

Im P2n

∣∣∣
t=0
= 0. (4-1)

To show that P2n+1 and Qn have regular points at t = 0, we shall verify that

d
dt

Re P2n+1

∣∣∣
t=0
6= 0 or

d
dt

Im P2n+1

∣∣∣
t=0
6= 0 (4-2)

and
d
dt

Re Qn

∣∣∣
t=0
6= 0 or

d
dt

Im Qn

∣∣∣
t=0
6= 0, (4-3)

respectively. Clearly, (4-1) is equivalent to showing (dP2n/dt)|t=0= 0, while (4-2)
is equivalent to showing (dP2n+1/dt)|t=0 6= 0 and (4-3) is equivalent to showing
(dQn/dt)|t=0 6= 0. These calculations are contained in the proof of Theorem 4.8.

Example 4.4. We calculate the derivatives of Pn and Qn . By writing the coeffi-
cients of Pn and Qn as {P̂n(k)}2

n
−1

k=0 and {Q̂n(k)}2
n
−1

k=0 , we have

Pn(t)=
2n
−1∑

k=0

P̂n(k)e2π ikt and Qn(t)=
2n
−1∑

k=0

Q̂n(k)e2π ikt .
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Consequently,

dPn(t)
dt
=

d
dt

2n
−1∑

k=0

P̂n(k)e2π ikt
= 2π i

2n
−1∑

k=0

k P̂n(k)e2π ikt ,

dQn(t)
dt

=
d
dt

2n
−1∑

k=0

Q̂n(k)e2π ikt
= 2π i

2n
−1∑

k=0

k Q̂n(k)e2π ikt .

The following well-known formulas for the sums of coefficients of Shapiro–
Rudin polynomials are used in the verification of Proposition 4.6.

Proposition 4.5. For each n ∈ N,

2n
−1∑

k=0

P̂n(k)=
{

2(n+1)/2 if n is odd,
2n/2 if n is even;

2n
−1∑

k=0

Q̂n(k)=
{

0 if n is odd,
2n/2 if n is even.

(4-4)

Proof. From the append rule (2-1), we have

2n+1
−1∑

k=0

P̂n+1(k)=
2n
−1∑

k=0

P̂n(k)+
2n
−1∑

k=0

Q̂n(k), (4-5)

2n+1
−1∑

k=0

Q̂n+1(k)=
2n
−1∑

k=0

P̂n(k)−
2n
−1∑

k=0

Q̂n(k). (4-6)

We complete the proof using induction. To verify the basic cases, we observe: for
n = 1,

∑1
k=0 P̂1(k) = 1+ 1 = 21 and

∑1
k=0 Q̂1(k) = 1− 1 = 0, and for n = 2,∑3

k=0 P̂2(k)= 1+1+1−1= 2(3−1)/2 and
∑3

k=0 Q̂2(k)= 1+1−1+1= 2(3−1)/2.
For the inductive step, suppose (4-4) holds for some n ∈ N. Then, if n is even,∑2n

−1
k=0 P̂n(k)= 2n/2 and

∑2n
−1

k=0 Q̂n(k)= 2n/2. Hence,

2n+1
−1∑

k=0

P̂n+1(k)=
2n
−1∑

k=0

P̂n(k)+
2n
−1∑

k=0

Q̂n(k)= 2n/2
+2n/2

= 2(n/2)+1
= 2((n+1)+1)/2,

2n+1
−1∑

k=0

Q̂n+1(k)=
2n
−1∑

k=0

P̂n(k)−
2n
−1∑

k=0

Q̂n(k)= 2n/2
−2n/2

= 0,

completing the induction step. The verification in the case of n odd is entirely
analogous. �

We define the finite sums

SP(n)=
1

2π i
dPn

dt

∣∣∣
t=0
=

2n
−1∑

k=0

k P̂n(k), SQ(n)=
1

2π i
dQn

dt

∣∣∣
t=0
=

2n
−1∑

k=0

k Q̂n(k).
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Using this notation, relations (4-1)–(4-3) become, respectively,

SP(2n)= 0, (4-7)

SP(2n+1) 6= 0, (4-8)

SQ(n) 6= 0. (4-9)

The following result is used in the proof of Theorem 4.8.

Proposition 4.6. For all n ∈ N,

SP(n+ 1)=
{

SP(n)+ SQ(n) if n is odd,
SP(n)+ (SQ(n)+ 23n/2) if n is even;

SQ(n+ 1)=
{

SP(n)+ SQ(n) if n is odd,
SP(n)− (SQ(n)+ 23n/2) if n is even.

(4-10)

Proof. Using (4-5), we have, for every n ∈ N,

SP(n+ 1)= SP(n)+
(

SQ(n)+ 2n
2n
−1∑

k=0

Q̂n(k)
)

=

2n
−1∑

k=0

k P̂n+1(k)+
2n+1
−1∑

k=2n

k P̂n+1(k)=
2n+1
−1∑

k=0

k P̂n+1(k)

=

2n
−1∑

k=0

k P̂n(k)+
2n+1
−1∑

k=2n

(
(k− 2n)+ 2n)P̂n+1(k)

=

2n
−1∑

k=0

k P̂n(k)+
2n+1
−1∑

k=2n

(k− 2n)P̂n+1(k)+
2n+1
−1∑

k=2n

2n P̂n+1(k)

=

2n
−1∑

k=0

k P̂n(k)+
2n
−1∑

k=0

k Q̂n(k)+ 2n
2n
−1∑

k=0

Q̂n(k)

=

{
SP(n)+ SQ(n) if n is odd,
SP(n)+

(
SQ(n)+ 23n/2

)
if n is even.

The expression for SQ(n+ 1) is proved analogously, starting from (4-6). �

Example 4.7. Define the finite sums

SP,2(n)=−
1

4π2

d2 Pn

dt2

∣∣∣
t=0
=

2n
−1∑

k=0

k2 P̂n(k),

SQ,2(n)=−
1

4π2

d2 Qn

dt2

∣∣∣
t=0
=

2n
−1∑

k=0

k2 Q̂n(k).
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In [Brillhart 1973], the following formulas relating to the second derivatives of
Shapiro–Rudin polynomials are proved. These formulas will be used in Theorem
4.8 to classify the cusps of Pn and Qn .

SP,2(2n)=
−2n+1(2n

−1)(22n+2
−1)

45
, (4-11)

SP,2(2n+ 1)=
2n+2(22n

− 1)(22n+2
− 1)

9
, (4-12)

SQ,2(2n)=
2n+1(22n

− 1)(13 · 22n−1
−11)

45
, (4-13)

SQ,2(2n+ 1)=
−2n+3(22n

− 1)(22n+2
− 1)

15
. (4-14)

We shall now prove that P2n gives rise to a quadratic cusp at t = 0. We shall also
prove that this cusp occurs at the point (2n, 0). Lastly, we shall prove that P2n+1

and Qn do not give rise to cusps at t = 0 as a result of the fact that t = 0 is a regular
point of each of these curves.

Theorem 4.8. For each n ∈ N, the parametrization (Re P2n, Im P2n) gives rise to
a quadratic cusp at (2n, 0), that is, when t = 0, and neither (Re P2n+1, Im P2n+1)

nor (Re Qn, Im Qn) gives rise to a cusp when t = 0.

Proof. (i) We notice that P2n(0) =
∑22n

−1
k=0 P̂2n(k) = 22n/2

= 2n by (4-4). This
implies that Re P2n(0)= 2n and Im Pn(0)= 0. Thus, at t = 0, (Re P2n, Im P2n)=

(2n, 0). It is clear that none of (4-11), (4-12), (4-13), or (4-14) can ever equal zero,
and, hence, none of the second derivatives can equal zero. This proves that t = 0
is at least a quadratic cusp of the parametrization (Re P2n, Im P2n), provided t = 0
is, in fact, a nonregular point of the curve.

To prove that t = 0 is a nonregular point of P2n , it suffices to prove (4-7). We
shall also prove (4-8) and (4-9), which will, in turn, prove that t = 0 is a regular
point of P2n+1 and Qn .

(ii) Using induction, we shall prove (4-7), (4-8), and (4-9) by showing that, for
each n ∈ N,

SP(n)=
{

0 if n is even,
4
3(2

3(n−1)/2
− 2(n−1)/2)+ 2(n−1)/2 if n is odd

(4-15)

and

SQ(n)=
{1

3(2
3n/2
− 2n/2) if n is even,

−SP(n)=− 4
3(2

3(n−1)/2
− 2(n−1)/2)− 2(n−1)/2 if n is odd.

(4-16)

We start with n= 1, where SP(1)= 0+1= 1= 4
3(2

0
−1)(20)+20 and SQ(1)=

0−1=−1=−4
3(2

0
−1)(20)−20, and with n=2, we have SP(2)=0+1+2−3=0

and SQ(2)= 1
3(2

2
− 1)(22/2)= 2.
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To prove the inductive step, assume (4-15) and (4-16) hold for some n ∈ N.
Assume first that the case where n is even, n is even, so n + 1 is odd. By (4-10)
we have

SP(n+1)= SP(n)+ SQ(n)+ 23n/2
= 0+ 1

3(2
3n/2)− 1

3(2
n/2)+ 23n/2

=
4
3(2

3n/2)− 1
3(2

n/2)= 4
3(2

3n/2)− 4
3(2

n/2)+2n/2
=

4
3(2

3n/2
−2n/2)+2n/2,

SQ(n+1)= SP(n)− SQ(n)− 23n/2
=−

1
3(2

3n/2)+ 1
3(2

n/2)− 23n/2,

=−
4
3(2

3n/2)+ 4
3(2

n/2)− 2n/2
=−

4
3(2

3n/2
− 2n/2)− 2n/2,

completing the induction step in this case. The complementary case is proved
similarly. �

Appendix

The cusps arising in P2n can be explicitly studied using only elementary calcu-
lations. Although such calculations are not very illuminating, they illustrate the
difficulty of discovering and verifying the assertion of Theorem 4.8 by a direct
approach, as opposed to the way we have proceeded. In this appendix we spell out
the details of the special case P2(t).

We have

P2(t)= P1+1(t)= P1(t)+ e2π i2t Q1(t)= P0+1+ e2π i2t Q0+1

= P0(t)+ e2π i t Q0(t)+ e2π i2t (P0(t)− e2π i t Q0(t)
)

= 1+ e2π i t
+ e2π i2t

− e2π i3t .

Define

Pr (t)= Re P2(t)= 1+ cos(2π t)+ cos(2π2t)− cos(2π3t),

Pi (t)= Im P2(t)= sin(2π t)+ sin(2π2t)− sin(2π3t).

We know that P2(t)=Re P2(t)+ i Im P2(t) for t ∈ [0, 1], and so P2(t)= 2+ i0=
(2, 0) ∈ C at t = 0.

Let α = 1/π5. We must show several facts:

(a) Pi (t) > 0 for t ∈ (0, α].

(b) Pi (t) < 0 for t ∈ [−α, 0).

(c) Pr (t) > 0 for t ∈ [−α, α] \ {0}.

(d) Pr (t) is strictly increasing on (0, α].

(e) Pr (t) is strictly decreasing on [−α, 0).

(f) Pi (t) is strictly increasing on [−α, α]\{0}.

(g) limt→0+ P ′i (t)/P ′r (t) and limt→0− P ′i (t)/P ′r (t) both exist as finite real num-
bers.
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These seven facts imply that P2 gives rise to a cusp at (2, 0) ∈ C, as follows.
Conditions (a), (b), and (f) together show that P2 is traced out in the complex plane
from below the real axis to above it, crossing only when t = 0. Conditions (c), (d),
and (e) together show that P2 crosses the real axis on the right side of the line
{2+ xi : x ∈ R}, only touching the line when t = 0. Finally, (g) shows that the
curve is not smooth at (2, 0); in conjunction with (a)–(f), the limits would need to
be ±∞ for no cusp to arise.

We shall use the following Taylor series estimates. For all x ∈ R,

x −
x3

3!
≤ sin x ≤ x −

x3

3!
+

x5

5!
(A.1)

and

1−
x2

2!
≤ cos x ≤ 1−

x2

2!
+

x4

4!
. (A.2)

Verification of (a), viz., Pi (t)= sin(2π t)+sin(4π t)−sin(6π t)>0 for all t ∈ (0, α].
Using (A.1), we make the estimates

sin(2π t)+sin(4π t)≥ 2π t−
(2π t)3

3!
+4π t−

(4π t)3

3!
= 6π t−

1
3!

(
(2π t)3+(4π t)3

)
,

sin(6π t)≤ 6π t−
(6π t)3

3!
+
(6π t)5

5!
.

Hence, it suffices to show that for all t ∈ (0, α],

6π t −
(6π t)3

3!
+
(6π t)5

5!
< 6π t −

1
3!

(
(2π t)3+ (4π t)3

)
,

that is,
(6π t)5

5!
<

1
3!
(2π)3

(
−t3
− (2t)3+ (3t)3

)
=

18
3!
(2π)3t3.

Since t > 0, this simplifies to

t2 <
20
(2π)2

18
35 ,

which in turn is solved by 0< t <

√
5
π

3
√

2
35/2 =

√
10

33/2π
. Since α =

1
π5 <

√
10

33/2π
, we

have proved (a).

Verification of (b), viz., Pi (t) = sin(2π t)+ sin(4π t)− sin(6π t) < 0 for all t ∈
[−α, 0). The proof of (b) relies on the fact that the sine function is odd. Let t=−s,
s ∈ (0, α]. Then

sin(2π t)+ sin(4π t)=− sin(2πs)− sin(4πs)=− (sin (2πs)+ sin (4πs)) .
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We know from (a) that sin(2πs) + sin(4πs) > sin(6πs) for s ∈ (0, α]. Hence
− sin(6πs)>− (sin (2πs)+ sin (4πs)) for s∈(0, α], and therefore, for t ∈[−α, 0),

sin(6π t) > sin (2π t)+ sin (4π t) .

Hence, (b) is proved.

Verification of (c), viz., Pr (t) = 1+ cos(2π t)+ cos(4π t)− cos(6π t) > 0 for all
t ∈ [−α, α]\{0}. It suffices to verify the inequality for t ∈ (0, α] since the cosine
function is even.

Using (A.2), we make the estimates

1+ cos(6π t)≤ 2−
(6π t)2

2!
+
(6π t)4

4!

cos(2π t)+ cos(4π t)≥ 1−
(2π t)2

2!
+ 1−

(4π t)2

2!
.

Hence, to prove (c), it suffices to show that, for all t ∈ (0, α],

2−
(6π t)2

2!
+
(6π t)4

4!
< 2−

((2π t)2+ (4π t)2

2!

)
.

Simplifying, we obtain (6π t)4

4!
<−6π2t2

+
36π2t2

2
, which turns into

54π4t4 < 12π2t2.

Since t > 0, we divide by 6π2t2 to obtain the inequality 9t2π2 < 2, which in turn
is solved by 0< t <

√
2/3π . Since α = 1/π5 <

√
2/3π , we have proved (c).

Verification of (d), viz., P ′r (t) = −2π sin(2π t)− 4π sin(4π t)+ 6π sin(6π t) > 0
for t ∈ (0, α]. We shall prove 3 sin(6π t) > 2 sin(4π t)+ sin(2π t) for all t ∈ (0, α].

Using (A.1), we make the estimates

3 sin(6π t)≥ 3
(

6π t −
(6π t)3

3!

)
,

2 sin(4π t)+ sin(2π t)≤ 2
(

4π t −
(4π t)3

3!
+
(4π t)5

5!

)
+ 2π t −

(2π t)3

3!
+
(2π t)5

5!

= 10π t −
(2π)3

3!
(t3)(1+ 24)+

(2π)5

5!
(t5)(1+ 26).

Hence, to prove (d), it suffices to show that, for all t ∈ (0, α],

10π t −
(2π)3

3!
(t3)(1+ 24)+

(2π)5

5!
(t5)(1+ 26) < 3

(
6π t −

(6π t)3

3!

)
.

Rearranging the inequality, we obtain

10π t +
(2π)5

5!
(t5)(1+ 26)+

(6π t)3

2
< 18π t +

(2π)3

3!
(t3)(1+ 24),
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that is,
(2π)4

4!
13t5
+
(2π)2

2
27t3 < 4t +

(2π)2

3!
17t3.

Since t > 0, this simplifies to

(2π)4

4!
13t4
+
(2π)2

2!

(
27−

17
3

)
t2 < 4.

Since we are attempting to prove that the inequality holds for t ∈ (0, α] with α < 1,
we take advantage of the fact that t4 < t2 when 0< t < 1 to make the estimate

(2π)4

4!
13t4
+
(2π)2

2!

(
27− 17

3

)
t2 < t2

((2π)4(13)
4!

+
(2π)2(64)

3!

)
< t2

((2π)4(78)
3!

)
= t2(2π)4(13) < t2(2π)4(2π)2 = t2(2π)6.

So we obtain the inequality t2(2π)6< 4, which is solved by 0< t <
2

(2π)3
=

1
4π3 .

Since α =
1
π5 <

1
4π3 , we have proved (d).

Verification of (e), viz., P ′r (t) = −2π sin(2π t)− 4π sin(4π t)+ 6π sin(6π t) < 0
for t ∈ [−α, 0). We prove that Pr (t) is strictly decreasing on [−α, 0) using the fact
that the sine function is odd — the same method we used to prove (b).

We know from the calculations in the previous page that P ′r (t)=−2π sin(2π t)−
4π sin(4π t)+6π sin(6π t)> 0 when t ∈ (0, α]. Letting t =−s, s ∈ (0, α], we have

−2π sin(2πs)− 4π sin(4πs)+ 6π sin(6πs) > 0, s ∈ (0, α],

which leads to

−2π sin(2π t)− 4π sin(4π t)+ 6π sin(6π t) < 0, t ∈ [−α, 0).

Thus, for t ∈ [−α, 0), P ′r (t) < 0, so Pr (t) is strictly decreasing on [−α, 0).

Verification of (f), viz., P ′i (t)= 2π cos(2π t)+4π cos(4π t)−6π cos(6π t) > 0 for
t ∈ [−α, α]\{0}. It suffices to verify the inequality for t ∈ (0, α] since the cosine
function is even.

Using (A.2), we make the estimates

cos(2π t)+ 2 cos(4π t)≥ 1−
(2π t)2

2!
+ 2−

2(4π t)2

2!
= 3−

((2π t)2

2
+ (4π t)2

)
,

3 cos(6π t)≤ 3−
3(6π t)2

2!
+

3(6π t)4

4!
.

Hence, to prove (f), it suffices to show that for all t ∈ (0, α],

3−
3(6π t)2

2!
+

3(6π t)4

4!
< 3−

((2π t)2

2
+ (4π t)2

)
,
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that is, −54π2t2
+

2435π4t4

233
<−18π2t2, which simplifies to

162π4t4 < 36π2t2.

Since t > 0, we divide by 6π2t2 to obtain the inequality

27π2t2 < 6,

which in turn is solved by 0< t <
√

6
π
√

27
. Since α=

1
π5 <

√
6

π
√

27
, this proves (f).

Verification of (g), viz., limt→0+ P ′i (t)/P ′r (t) and limt→0− P ′i (t)/P ′r (t) both exist as
finite real numbers. The limits need not be equal, so we evaluate them separately.

lim
t→0+

P ′i (t)
P ′r (t)

= lim
t→0+

2π(cos(2π t)+ 2 cos(4π t)− 3 cos(6π t))
−2π(sin(2π t)+ 2 sin(4π t)− 3 sin(6π t))

,

which has the form 0/0 when plugging in t = 0. We use L’Hôpital’s rule to get

lim
t→0+

P ′i (t)
P ′r (t)

= lim
t→0+

P ′′i (t)
P ′′r (t)

= lim
t→0+

−(2π)2(sin(2π t)+ 4 sin(4π t)− 9 sin(6π t))
−(2π)2(cos(2π t)+ 4 cos(4π t)− cos(6π t))

=
0

4(2π)2
= 0.

Thus, the limit exists as a finite real number.
Since limt→0− P ′i (t)/P ′r (t) also has the form 0/0, and since

P ′′i (t)
P ′′r (t)

=
−(2π)2(sin(2π t)+ 4 sin(4π t)− 9 sin(6π t))
−(2π)2(cos(2π t)+ 4 cos(4π t)− cos(6π t))

is continuous at t = 0, we have

lim
t→0−

P ′i (t)
P ′r (t)

= lim
t→0+

P ′i (t)
P ′r (t)

= lim
t→0

P ′i (t)
P ′r (t)

= lim
t→0

P ′′i (t)
P ′′r (t)

=
P ′′i (0)
P ′′r (0)

= 0

as well. Hence, (g) is proved, which also shows that P2(t) admits a cusp when
t = 0.
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