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Abstract

The second order Sigma-Delta (Σ∆) scheme with linear quantization rule is ana-
lyzed for quantizing finite unit-norm tight frame expansions for R

d. Approximation
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quantization error is of order 1/N2, where N is the frame size. However, in contrast
to the setting of bandlimited functions there are many situations where the second
order scheme only gives approximation error of order 1/N . For example, this is the
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yield smaller invariant sets for the linear second order Σ∆ scheme.
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1 Introduction

In many data driven applications it is important to find a digital signal repre-
sentation which is well adapted to tasks such as storage, processing, transmis-
sion, and recovery. Given a signal x of interest, one often begins by expanding
x over an at most countable dictionary {en}n∈Λ to obtain an atomic decom-
position,

x =
∑

n∈Λ

xnen, (1)

where the coefficients xn are real or complex numbers. Such an expansion
is redundant if the choice of xn in (1) is not unique. Although (1) is a dis-
crete representation, it is certainly not “digital” since the coefficient sequence
{xn}n∈Λ is real or complex valued. The intrinsically lossy process of reducing
the continuous range of this sequence to a discrete, preferably finite, set A,
is called quantization. A scheme that maps the real or complex valued coeffi-
cients xn of (1) to qn ∈ A is said to be a quantization scheme. Equivalently,
the map Q : x → x̃ =

∑
n∈Λ qnen is called a quantizer. The pointwise perfor-

mance of a quantizer is reflected by the approximation error ‖x− Qx‖ where
‖ · ‖ is a suitable norm. One is usually constrained by the available “bit bud-
get”, which in turn restricts the cardinality of the quantization alphabet A as
well as the redundancy of the atomic decomposition (1). It is a challenging
problem to distribute the available bits appropriately so that A has a suffi-
cient number of elements to ensure the precision of the approximation and to
ensure that the expansion is redundant enough for a robust and numerically
stable implementation. Furthermore, when the expansion is redundant, find-
ing a good quantizer with a given alphabet A is also a non-trivial problem.
These problems, which we shall refer to as the quantization problem, arise in
many different applied settings.

A fundamental example of quantization in signal processing is the process of
analog to digital (A/D) conversion. There the signal space of interest consists
of bandlimited functions. When a bandlimited function, f, is uniformly sam-
pled at rate λ at or above the Nyquist rate, it can be fully reconstructed from
its samples in the form of a sampling expansion,

f(t) =
1

λ

∑

n∈Z

f(
n

λ
)ϕ(t − n

λ
), (2)

where ϕ is an appropriate sampling kernel. Sampling expansions are a type
of atomic decomposition, where the dictionary elements are translates of the
sampling kernel, and the coefficients are the sample values. The A/D conver-
sion problem is to replace the analog samples f(n

λ
) by quantized coefficients

qn so that the resulting quantized expansion is a good approximation to the
original signal. Since one usually oversamples in practice, i.e., takes λ strictly
greater than the Nyquist rate, the sampling expansions are generally redun-
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dant. More information on sampling theorems and analog to digital conversion
can be found in [1–3].

Another important example of quantization arises in image processing in the
setting of digital halftoning, [4,5]. There the signal space consists of all digital
greyscale images at a fixed resolution such as 512 × 512. One may think of
images in terms of non-redundant atomic decompositions, where the dictio-
nary elements are pixels, and the pixel coefficients are the greyscale intensities
at the pixels. The halftoning problem is to print the color or greyscale image
using only black or white “dots”. In this example, the original pixel coeffi-
cients are already discrete (e.g., 256 level greyscale), but the printer requires a
representation using an even smaller set, namely black or white. The practical
halftoning methods most commonly used in printers, such as dithering and
error diffusion, achieve remarkably good image quality.

In certain settings it is equally natural to view the quantization problem as
a coding problem. For example, Goyal, Kovačević, Kelner, and Vetterli [6,7],
cf., [8], propose using finite tight frames for Rd to transmit data over erasure
channels. Given a signal x ∈ Rd which one wishes to transmit, one computes
its coefficients with respect to a finite tight frame for Rd, and transmits the
corresponding coefficients. It is not possible to send the coefficients with in-
finite precision, so one must decide on a robust way to code or quantize the
coefficients for transmission. In an erasure channel, errors are modeled by the
loss, i.e., erasure, of certain transmitted coefficients. Redundancy is especially
important in such applications since it provides resistance to data loss. In
particular, it has been shown that the redundancy of frames can be used to
“mitigate the effect of the losses in packet-based communication systems”[9],
cf., [10].

Note that one can consider some A/D conversion problems in the setting
of frame theory. For example, when ϕ is the sinc(·) sampling kernel, then the
sampling expansion (2) is in fact a redundant tight frame expansion when λ >
1 because the set {ϕ(·− n

λ
)} is a tight frame for the space of square integrable

bandlimited functions, and the sample values f(n
λ
) are the corresponding frame

coefficients. Thus, in this setting, an A/D conversion scheme quantizes the
frame coefficients of the function f with respect to the frame {ϕ(· − n

λ
)}.

2 Overview and main results

In this paper we shall focus on the quantization problem for certain finite
atomic decompositions for Rd, i.e., finite unit-norm tight frame expansions for
Rd. In particular, we shall analyze the performance of a second order Sigma-
Delta (Σ∆) scheme and show that it outperforms the standard quantization
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techniques in many settings. We begin by presenting the basic definitions and
theorems on finite frames in Section 3.

In Section 4, we discuss the quantization problem for finite frame expansions.
Section 4.1 presents the standard PCM technique of quantization and states
the corresponding approximation error estimates. We emphasize that PCM is
poorly suited to quantizing highly redundant frame expansions. First order
Sigma-Delta (Σ∆) schemes offer a different approach which is better suited
for quantizing redundant expansions than PCM. In Section 4.2, we review the
basic first order Σ∆ scheme and error estimates derived in [11,12]. In Section
4.3 we discuss second order Σ∆ schemes with the aim of showing that they
can be used to quantize effectively finite frame expansions. In fact, they will
outperform both PCM and first order Σ∆ schemes in many settings.

Section 5 discusses the key property of stability for the second order Σ∆ quan-
tizer defined in Section 4.3. Section 5.1 reviews the invariant set construction
in [13], and Section 5.2 derives an improved version which will be needed for
our subsequent error estimates. The improvement allows us to bound the in-
variant set inside (−2, 2) × R. This property, which is crucial for our error
bounds, does not hold in [13].

In Section 6 we derive approximation error estimates for the 1-bit second order
Σ∆ scheme with linear quantization rule which was introduced in Section 4.3.
We introduce the notion of higher order frame variation in Section 6.1. This
allows us to derive a general error bound in Section 6.2, and then to apply it
to the quantization of specific classes of frame expansions, such as harmonic
frames. For example, let Hd

N = {en}N−1
n=0 be the harmonic frame for Rd with

N elements, and assume that d is even. If N is even, then we prove that the
second order Σ∆ scheme gives approximation error ||x − x̃|| . 1/N2 for the
Euclidean norm ‖ · ‖. However, if N is odd, we show that the approximation
error satisfies 1/N . ||x − x̃|| . 1/N . The notation A . B means that there
exists an absolute constant C such that A ≤ CB. This dichotomy between
even and odd cases stands in unexpected contrast to the behavior of Σ∆
algorithms in other settings such as A/D conversion of bandlimited signals.

Section 7 is devoted to a hybrid PCM/Σ∆ scheme for multibit quantization of
finite frame expansions. The hybrid scheme achieves the same asymptotic uti-
lization of frame redundancy as the 1-bit second order scheme in the previous
section, with the added benefit of multibit resolution.
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3 Finite frames for Rd

Finite frames are a natural model and tool for many applications. In addition
to applications related to erasure channels, [6,7,9,8,10], the use of finite frames
has also been proposed for generalized multiple description coding [14,15], for
multiple-antenna code design [16], for formulating results on Welch bound in-
equality sequences [17], and for solving modified quantum detection problems
[18].

Definition 3.1 A set {en}N
n=1 ⊆ Rd of vectors is a finite frame for Rd if there

exists 0 < A ≤ B < ∞ such that

∀x ∈ R
d, A||x||2 ≤

N∑

n=1

|〈x, en〉|2 ≤ B||x||2, (3)

where || · || denotes the Euclidean norm.

The constants A and B are called frame bounds, and the coefficients 〈x, en〉,
n = 1, . . . , N , are called the frame coefficients of x with respect to {en}N

n=1. If
the frame bounds are equal, A = B, then the frame is said to be tight. If all
the frame elements satisfy ||en|| = 1 then the frame is said to be uniform or
unit-norm. There are several natural operators associated to a frame.

Definition 3.2 Given a finite frame {en}N
n=1 for Rd with frame bounds A

and B. The analysis operator F : Rd → l2({1, · · · , N}) is defined by (Fx)k =
〈x, ek〉, and the synthesis operator F ∗ : l2({1, · · · , N}) → H is its adjoint
defined by F ∗({cn}N

n=1) =
∑N

n=1 cnen. The operator S = F ∗F is called the
frame operator, and it satisfies

AI ≤ S ≤ BI, (4)

where I is the identity operator on Rd. The inverse of S, S−1, is called the
dual frame operator, and it satisfies

B−1I ≤ S−1 ≤ A−1I. (5)

The following theorem shows how frames are used to give atomic decomposi-
tions.

Theorem 3.3 Let {en}N
n=1 be a frame for Rd with frame bounds A and B,

and let S be the corresponding frame operator. Then {S−1en}N
n=1 is a frame

for Rd with frame bounds B−1 and A−1, and

∀x ∈ R
d, x =

N∑

n=1

〈x, en〉(S−1en) =
N∑

n=1

〈x, (S−1en)〉en.
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If the frame is tight with frame bound A, then both frame expansions in
Theorem 3.3 reduce to

∀x ∈ R
d, x = A−1

N∑

n=1

〈x, en〉en. (6)

It is important to be able to construct useful classes of frames. Given a set
{vn}N

n=1 of N vectors in Rd or Cd, define the associated matrix M to be the
d × N matrix whose columns are the vn. The following lemma can be found
in [19].

Lemma 3.4 A set {vn}N
n=1 of vectors in H = Rd or Cd is a tight frame with

frame bound A if and only if its matrix M satisfies MM∗ = AId, where M∗

is the conjugate transpose of M , and Id is the d × d identity matrix.

For the important case of finite unit-norm tight frames for Rd and Cd, the
frame bound A is N/d, where N is the cardinality of the frame [6,20,19]. A
physical characterization of finite unit-norm tight frames is given in [21]. In
contrast to the above lemma, note that general unstructured finite frames are
easy to construct - one simply needs to span the whole space.

The simplest examples of unit-norm tight frames for R2 are given by the Nth
roots of unity viewed as elements of R2. Namely, if

eN
n = (cos(2πn/N), sin(2πn/N)),

then EN = {eN
n }N

n=1 is a unit-norm tight frame for R2 with frame bound N/2.

The most natural examples of unit-norm tight frames for Rd, d > 2, are
the harmonic frames, e.g., see [6,19,20]. These frames are constructed using
columns of the Fourier matrix. We follow the notation of [19], although the
terminology “harmonic frame” is not specifically used there. The definition of
the harmonic frame Hd

N = {ej}N−1
j=0 , N ≥ d, depends on whether the dimension

d is even or odd.

If d is even let

ej =

√
2

d

[
cos

2πj

N
, sin

2πj

N
, cos

2π2j

N
, sin

2π2j

N
, cos

2π3j

N
,

sin
2π3j

N
, · · · , cos

2π d
2
jπ

N
, sin

2π d
2
jπ

N

]

for j = 0, 1, · · · , N − 1.
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If d is odd let

ej =

√
2

d

[
1√
2
, cos

2πj

N
, sin

2πj

N
, cos

2π2j

N
, sin

2π2j

N
,

cos
2π3j

N
, sin

2π3j

N
, · · · , cos

2π d−1
2

jπ

N
, sin

2π d−1
2

jπ

N

]

for j = 0, 1, · · · , N − 1.

It is shown in [19] that Hd
N , as defined above, is a unit-norm tight frame

for Rd. If d is even then Hd
N satisfies the zero sum condition S = 0, where

S =
∑N−1

n=0 en, [12]. If d is odd then the frame is not zero sum, and S =
N√
d
(1, 0, · · · , 0).

4 Quantization of finite frame expansions

Let F = {en}N
n=1 be a finite unit-norm tight frame for Rd and let x be in Rd.

We shall study how to quantize the frame expansion

x =
d

N

N∑

n=1

xnen =
d

N

N∑

n=1

〈x, en〉en.

In fact, we wish to replace the sequence {xn}N
n=1 of frame coefficients by a

quantized sequence {qn}N
n=1, where qn are chosen from a given quantization

alphabet A, such that

x̃ =
d

N

N∑

n=1

qnen (7)

is close to x in the Euclidean norm, || · ||.

In any practical setting, the quantization alphabet will be a finite set. This, in
turn, imposes a uniform bound M on the norm of the vectors x to be quantized.
Note that in this case, the frame coefficients xn of x satisfy |xn| ≤ M . Below,
we shall specify the value of M whenever appropriate.

Let us also mention that while we shall only consider linear reconstruction as
in (7), there do exist other more general, but more computationally complex,
nonlinear reconstruction techniques, e.g., [22,23,20].

4.1 PCM quantization

Pulse Code Modulation (PCM) schemes are probably the simplest approach
to quantizing finite frame expansions. Consider x ∈ Rd, ‖x‖ ≤ 1. The 2K-level

7



PCM scheme with step size δ replaces each xn with

qn = Q(xn) = argminq∈Aδ

K

|xn − q|, (8)

where Aδ
K = {(−K + 1/2)δ, (−K + 3/2)δ, · · · , (K − 1/2)δ}. The function Q,

defined as above, is called the K-level midrise uniform scalar quantizer with
step size δ.

One can show that

∀n, |xn| < Kδ =⇒ sup
n

|xn − qn| ≤ δ/2,

and that one has the basic error estimate

||x− x̃|| =
d

N
||

N∑

n=1

(xn − qn)en|| ≤
δd

2N

N∑

n=1

||en|| =
δd

2
.

While it is possible to decrease the error ||x− x̃|| by decreasing the step size δ,
this error estimate does not utilize the redundancy of the frame. The following
example highlights the inability of PCM to make good use of redundancy.

Example 4.1 Let EN = {en}N
n=1 be the unit-norm tight frame for R2 given

by the N th roots of unity. The frame coefficients of x = (0, b) ∈ R2, 0 < b < 1
with respect to EN are given by xN

n = 〈x, eN
n 〉 = b sin(2πn/N). If we use the

2-level PCM scheme with step size δ = 1 to quantize the frame coefficients xN
n

then we obtain

qN
n =





1/2 if 1 ≤ n < N/2,

−1/2 if N/2 ≤ n ≤ N.

Using this, one can verify that, for N ≥ 2,

1

2π
≤ || 2

N

N∑

n=1

qN
n eN

n ||.

This shows that the quantized expansion has its norm bounded away from
zero independent of 0 < b < 1 and N . Thus, if b is sufficiently small then,
regardless of how redundant the frame is, one can not achieve arbitrarily small
approximation error when this 1-bit PCM scheme is used to quantize the frame
expansion for (0,b). In the next section we shall present a quantization scheme
which does not suffer from this type of limitation, and, in fact, it is able to
utilize frame redundancy much more efficiently than PCM.

Although the above example shows that PCM fails to take advantage of frame
redundancy, at least for certain x in the unit ball of Rd, there have been
attempts to show that PCM utilizes redundancy on average. This approach
considers the average approximation error corresponding to an ensemble of
vectors. To that end one makes the hypothesis that the quantization error
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sequence {xn−qn}N
n=1 can be modeled as a signal independent sequence of i.i.d.

random variables with mean 0 and variance δ2/12. This is called Bennett’s
white noise assumption [24,20], and it yields a mean square error

MSE = E||x − d

N

N∑

n=1

qnen||2 =
d2δ2

12N
.

The problem with this estimate is that the white noise assumption is not
rigorously justified and is actually false in many simple circumstances, e.g.,
see [12]. Moreover, the MSE bound only decreases on the order of 1/N ; one
can do better than this, e.g., [12].

Some existing approaches to finite frame quantization improve the PCM quan-
tization error by using more advanced reconstruction strategies. For example,
consistent reconstruction is one especially important class of nonlinear recon-
struction, [22,23,20]. Other differently motivated approaches include [25,26].
The noise shaping approach of [26] was shown to be effective for subband cod-
ing applications and is related to the Σ∆ techniques which we describe in the
following sections.

4.2 First order Σ∆ quantization

Sigma Delta (Σ∆) schemes were introduced in the engineering community
for the purpose of coarsely quantizing sampling expansions in the setting of
analog to digital conversion, e.g., see [27,28]. In particular, Σ∆ schemes were
originally used to quantize a sampling expansion

f(t) =
1

λ

∑

n∈Z

f(
n

λ
)ϕ(t − n

λ
)

by

f̃(t) =
1

λ

∑

n∈Z

qnϕ(t − n

λ
),

where each qn ∈ {−1, 1}. Although Σ∆ schemes have been successfully imple-
mented in practice for quite a while, and exhibit excellent empirical approxi-
mation error and robustness properties, they have only recently attracted the
attention of the mathematical community, [1]. Work on Σ∆ quantization now
ranges from practical circuit implementation and design [29], to mathematical
analysis relying on harmonic analysis, dynamical systems, analytic number
theory, and issues in tiling, [30–33].

In [12], first order Σ∆ schemes were used to quantize finite frame expan-
sions, and it was shown that they offer excellent approximation error, and
outperform the standard techniques for quantizing finite frame expansions. In
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particular, let F = {en}N
n=1 be a finite unit-norm tight frame for Rd, and let

p be a permutation of {1, 2, · · · , N}. Given x ∈ Rd with frame coefficients
{xn}N

n=1, the first order Σ∆ scheme produces the quantized sequence {qn}N
n=1

by iterating

un = un−1 + xp(n) − qn,

qn = Q(un−1 + xp(n)),

where {un}N
n=0 is the state sequence with u0 = 0, and Q is a K-level midrise

uniform quantizer with step size δ, i.e., Q(w) = argminq∈Aδ

K

|w − q|, where

Aδ
K = {(−K + 1/2)δ, (−K + 3/2)δ, · · · , (K − 1/2)δ}. We shall refer to the

permutation p as the quantization ordering since it denotes the order in which
frame coefficients are entered into the Σ∆ algorithm.

The quantized sequence {qn}N
n=1 is used to reconstruct an approximation x̃ as

in (7). It was shown in [12] that the first order Σ∆ scheme gives the approxi-
mation error bound

||x − x̃|| ≤ δd

2N

(
σ(F, p)

2
+ 1

)
, (9)

where σ(F, p) is a quantity called the frame variation which depends on the
frame and the quantization ordering. For certain infinite families of frames,
such as harmonic frames, it is possible to find a uniform upper bound on the
frame variation independent of the size N of the frame, and depending only
on the dimension d. In view of this, (9) shows that the Σ∆ scheme is able
to utilize the frame redundancy to achieve improved approximation error. In
particular, (9) implies that the first order Σ∆ scheme satisfies the MSE bound,

MSE ≤ δ2d2

4N2

(
σ(F, p)

2
+ 1

)2

,

which is better than the bound for PCM achieved using the non-rigorous
Bennett white noise assumption, provided the frame redundancy is sufficiently
large.

Comparing the first order Σ∆ scheme with PCM, we see that, unlike the
situation in Example 4.1, the error estimate (9) shows that the approximation
error in Σ∆ quantization decreases as the frame redundancy increases.

4.3 Second order Σ∆ schemes

Although (9) gives an error estimate whose utilization of redundancy is of
order 1/N , it is natural to seek even better utilization of the frame redundancy.
Higher order schemes make this possible.
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Given a sequence {xn}N
n=1 of frame coefficients and a permutation p of {1, 2, · · · , N},

the general form of a second order Σ∆ scheme is

un = un−1 + xp(n) − qn,

vn = un−1 + vn−1 + xp(n) − qn, (10)

qn = Q(F (un−1, vn−1, xp(n)),

where u0 = v0 = 0, Q : R → R is an appropriate quantizer, and F : R
3 → R

is a specified quantization rule. Some choices of F from the literature (e.g.,
[29,1,34]) are

• F (u, v, x) = u + γv with γ > 0;
• F (u, v, x) = u + x + Msign(v) with M > 0;
• F (u, v, x) = (6x − 7)/3 + (u + (x + 3)/2)2 + 2(1 − x)v.

In this paper we only consider the linear rule F (u, v, x) = F (u, v) = u + γv,
where γ > 0 is fixed. This scheme is important because it has a simple form
that is well suited for implementation and because it has desirable stability
properties, e.g., [13]. Until Section 7 we shall also restrict ourselves to the 1-bit
case,

Q(w) =
δ

2
sign(w) =





δ
2
, if w ≥ 0,

− δ
2
, if w < 0.

Thus, we shall consider the scheme

un = un−1 + xp(n) − qn,

vn = un−1 + vn−1 + xp(n) − qn, (11)

qn =
δ

2
sign( un−1 + γvn−1 ),

for n = 1, · · · , N , with initial states u0 = v0 = 0. We consider the 1-bit case
because it is the simplest case to analyze, and because it allows us to build
on the results in [13]. However, we also examine a multibit hybrid PCM/Σ∆
scheme in Section 7.

One surprising point of this paper is that Σ∆ schemes behave quite differ-
ently when used to quantize finite frame expansions than they do for their
original purpose of quantizing sampling expansions for bandlimited functions.
In particular, when a stable second order Σ∆ scheme is used to quantize A/D
sampling expansions one has the approximation error estimate

||f − f̃ ||L∞(R) .
1

λ2
,

where λ is the sampling rate. By analogy, one might expect that when a second
order Σ∆ scheme is used to quantize a finite frame expansion that one will
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have

||x − x̃|| .
1

N2
, (12)

where N is the frame size, which is analogous to the sampling rate in that it
determines the redundancy of the atomic decomposition. Here x̃ is defined as
in (7). We shall see that (12) is not true in general. We shall show that there
are many circumstances where one is only able to achieve an approximation
where the approximation error is of order 1/N as N tends to infinity. We shall
also specify certain conditions under which we can ensure that the approxi-
mation error behaves asymptotically like 1/N2. A key issue will be that the
finite nature of the problem for finite frame expansions gives rise to non-zero
boundary terms in certain situations, and that these boundary terms may
negatively affect error estimates.

5 Stability for the second order linear scheme

For any Σ∆ scheme to have potential use in practice it is crucial for it to be
stable. In other words, given a bounded input sequence xn, the state variables
(un and vn in the second order case) of the scheme should remain bounded. It
is relatively simple to verify that the first order Σ∆ scheme is stable, but this
is more complicated for second order Σ∆ schemes.

The approach to proving stability taken in [13] is to view the problem in terms
of finding an invariant set for a certain mapping of R2 to R2. We say that a set
S ⊆ Rd is an invariant set for a map T : Rd → Rd if T (S) ⊆ S. For simplicity
we shall only present proofs for Q(w) = sign(w); the extension to the case
Q(w) = δ

2
sign(w) is straightforward.

Following the presentation in [13], 0 ≤ α < 1 will denote an upper bound on
the absolute value of the input sequence of frame coefficients, i.e., |xn| ≤ α < 1.
Suppose γ > 0 is given so that the quantization rule qn = sign(un−1 + γvn−1)
is defined. Let δn = |xn − qn|, δ− = 1 − α, and δ+ = 1 + α, and note that
δ− ≤ δn ≤ δ+. We may now rewrite (11) as

(un, vn) =





Sδ
l (un−1, vn−1) = (un−1 − δn, un−1 + vn−1 − δn), if qn = 1,

Sδ
r (un−1, vn−1) = (un−1 + δn, un−1 + vn−1 + δn), if qn = −1.

(13)
When convenient we simply write

(un, vn) = Sγ(un−1, vn−1, δn).
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It is important to keep in mind that the map Sγ is determined by the choice
of parameter γ.

With this setup, given 0 ≤ α < 1 and γ > 0, the stability problem is to find
a set R ⊂ R2 such that if δ ∈ [δ−, δ+] = [1 − α, 1 + α] then

(u, v) ∈ R =⇒ Sγ(u, v, δ) ∈ R. (14)

5.1 An invariant set for the linear scheme

In this section we recall the invariant set construction of [13].

Given the parameters 0 ≤ α < 1 (so that δ− and δ+ are defined) and 0 < C.
We define

B1(u) =




− 1

2δ−

(
u − δ−

2

)2
+ δ−

8
+ C, if u ≥ 0,

− 1
2δ+

(
u − δ+

2

)2
+ δ+

8
+ C, if u < 0,

(15)

and

B2(u) = v





1
2δ+

(
u + δ+

2

)2 − δ+
8
− C, if u ≥ 0.

1
2δ−

(
u + δ−

2

)2 − δ−
8
− C, if u < 0.

(16)

C 

P
1
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Fig. 1. The invariant set of [13]. ΓB1
and ΓB2

are the graphs of the functions B1

and B2 respectively. L is the line on which F (u, v) = u + γv = 0.

Let l(u) = − 1
γ
u be the equation of the line corresponding to F (u, v) = u+γv =

0. Define

R1 = {(u, v) : v ≤ B1(u), v ≥ B2(v), v ≥ l(u)},
R2 = {(u, v) : v ≤ B1(u), v ≥ B2(v), v < l(u)}, (17)

R = R1 ∪ R2.

Thus, R is the region bounded between the graphs of B1 and B2. Note that R
is fully determined by the two parameters α and C. [13] showed that for certain
choices of the parameters α, γ, C, (14) holds. Figure 1 shows the graphs ΓB1

13



and ΓB2
, of B1 and B2, respectively. Let P0 = (u0, v0) be the left intersection

point of ΓB1
and ΓB2

, let P1 = (u1, v1) be the left intersection point of L and
ΓB1

, let P2 = (u2, v2) be the right intersection point of L and ΓB2
, and let

P3 = (u3, v3) = (−u0,−v0) be the right intersection point of ΓB1
and ΓB2

.
Additionally, let Λ be the part of ΓB2

which lies between P2 and the right
intersection point P3 of ΓB1

and ΓB2
. One has

u0 = −[2C(1 − α2)]
1
2 ,

v0 = B1(u0),

and (u2, v2) = (−u1,−v1).

The following lemma [13] shows that the region below ΓB1
is invariant under

Sδ
l , and that the region above ΓB2

is invariant under Sδ
r .

Lemma 5.1 If δ ∈ [δ−, δ+] then the region T1 below the graph ΓB1
of B1 is

invariant under the mapping

Sδ
l : (u, v) 7−→ (u − δ, u + v − δ).

Likewise, the region T2 above the graph ΓB2
of B2 is invariant under the map-

ping

Sδ
r : (u, v) 7−→ (u + δ, u + v + δ).

This invariance means that Sδ
l (T1) ⊆ T1 and Sδ

r(T2) ⊆ T2.

The next result [13] shows that the image of R1 under Sδ
l stays above ΓB2

,
and analogously for R2.

Theorem 5.2 Let P1 = (u1, v1) be the intersection point of the line L defined
by F (u, v) = u + γv = 0 and let ΓB1

be as shown in Figure 1. Suppose

u0 + δ+ ≤ u1 ≤ −δ+. (18)

Then Sδ
l (R1) ⊆ R and Sδ

r (R2) ⊆ R for any δ ∈ [δ−, δ+].

Combining the previous two results gives the following stability result [13].

Theorem 5.3 If the parameters 0 ≤ α < 1 and 0 < C, γ are chosen so that

δ ∈ [δ−, δ+] and u0 + δ+ ≤ u1 ≤ −δ+,

then

(u, v) ∈ R =⇒ Sγ(u, v, δ) ∈ R.

In particular, if |xn| ≤ α then the state variables of the second order Σ∆
scheme satisfy (un, vn) ∈ R for all n.

14



The error estimates which we derive in Section 6 will depend critically on
being able to bound the invariant set R inside of (−2, 2) × R. Unfortunately,
the condition (18) prevents this from being the case. In particular, it was
shown in [13] that the condition (18) only makes sense if C ≥ 21+α

1−α
. This, in

turn, implies that u0 = −[2C(1− α2)]
1
2 ≤ −2(1 + α2) < −2, and that u3 > 2.

Thus, the hypotheses of Theorem 5.2 make it impossible to bound R inside
(−2, 2) × R.

5.2 An improved stability theorem

To ensure that the invariant set stays inside (−2, 2) × R we must introduce
weaker hypotheses than (18).

Theorem 5.4 Let P1 = (u1, v1) be the intersection point of the line L defined
by F (u, v) = u + γv = 0 and let ΓB1

be as shown in Figure 1. Suppose

u0 + δ+ ≤ u1 (19)

and

u2 + v2 − δ ≥ B2(u2 − δ), for δ = δ− and δ = δ+. (20)

Then Sδ
l (R1) ⊆ R for any δ ∈ [δ−, δ+].

PROOF. By Lemma 5.1 it suffices to show that Sδ
l (R1) lies above ΓB2

. Using
the simplifications and convexity arguments in the proof of Theorem 4 in [13],
it suffices to show that Sδ

l (P1), Sδ
l (P2), and Sδ

l (Λ) lie above ΓB2
for δ = δ−

and δ = δ+.

The conditions (19) and (20) respectively ensure that Sδ
l (P1) and Sδ

l (P2) lie
above ΓB2

for δ ∈ {δ−, δ+}. Therefore it remains to show that Sδ
l (Λ) lies above

ΓB2
for δ ∈ {δ−, δ+}. Since P2 is the left endpoint of Λ, and since Sδ

l (P2) lies
above ΓB2

for δ = δ− and δ = δ+, it will suffice to show that the graph of Sδ
l (Λ)

has a larger derivative than the corresponding portion of B2, for δ ∈ {δ−, δ+}.

Let (u, B2(u)) ∈ Λ, where u2 ≤ u ≤ −u0 = u3. By definition Sδ
l (u, B2(u)) =

(u − δ, u + B2(u) − δ). So the image of Λ under Sδ
l is given by the graph of

f(u) = u + B2(u + δ), for u2 − δ ≤ u ≤ −u0 − δ.

We want to show that

f ′(u) = 1 + B′
2(u + δ) ≥ B′

2(u) on [u2 − δ,−u0 − δ]

15



for δ = δ− and δ = δ+. From the definition of B2 we have

B′
2(u) =





1
δ+

(u + δ+
2

), if u ≥ 0,
1

δ−
(u + δ−

2
), if u < 0.

Since 0 ≤ u2 we have u + δ ≥ 0 and f ′(u) = 1 + 1
δ+

(u + δ + δ+
2

).

1. Let us first consider the case δ = δ+ = 1 + α. We have

f ′(u) = 1 +
1

1 + α
(u +

3

2
(1 + α)) =

5

2
+

u

1 + α
, u ∈ [u2 − δ+,−u0 − δ+].

If u < 0 then

B′
2(u) =

1

2
+

u

1 − α
<

5

2
+

u

1 + α
= f ′(u).

If 0 ≤ u then

B′
2(u) =

1

2
+

u

1 + α
<

5

2
+

u

1 + α
= f ′(u).

Thus f ′(u) ≥ B′
2(u), and we have that S

δ+
l (Λ) lies above ΓB2

.

2. Let us now consider the case δ = δ−. We have

f ′(u) = 1 +
1

1 + α
(u + 1 − α +

1 + α

2
) =

3

2
+

u

1 + α
+

1 − α

1 + α
.

If u < 0 then

B′
2(u) =

1

2
+

u

1 − α
≤ 1

2
+

u

1 + α
<

3

2
+

u

1 + α
+

1 − α

1 + α
= f ′(u).

If u ≥ 0 then

B′
2(u) =

1

2
+

u

1 + α
≤ 3

2
+

u

1 + α
+

1 − α

1 + α
= f ′(u).

Thus f ′(u) ≥ B′
2(u), and we have that S

δ−
l (Λ) lies above ΓB2

. 2

A similar proof as above gives the analogous result for Sδ
r(R2).

Theorem 5.5 Let P1 = (u1, v1) be the intersection point of the line L defined
by F (u, v) = u + γv = 0 and let ΓB1

be as shown in Figure 1. Suppose

u0 + δ+ ≤ u1 (21)

and
u1 + v1 + δ ≤ B1(u1 + δ) , for δ = δ−, and δ = δ+. (22)

Then Sδ
r (R2) ⊆ R for any δ ∈ [δ−, δ+].
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Combining Theorems 5.4 and 5.5, we have the following stability theorem.

Theorem 5.6 Suppose |xn| ≤ α for all n, and that un, vn are the state vari-
ables of the second order linear Σ∆ scheme. If the parameters γ, α, C satisfy
the hypotheses of Theorems 5.4 and 5.5, then

∀n, (un, vn) ∈ R.

Our main motivation for deriving the stability result, Theorem 5.6, under the
weaker hypotheses of Theorems 5.4 and 5.5 was to obtain invariant sets which
can be bounded inside (−2, 2)×R. Let us now check that this is indeed possible
under the weaker hypotheses. We need to show that there exist combinations
of the parameters 0 < γ, C and 0 < α < 1 such that

Condition (A) : (19), (20), (21), (22) hold, and − 2 < u0.

One can check that this is possible by inspection. First note that the items in
Condition (A) can all be written exclusively in terms of γ, C, and α. In fact,

one has δ− = 1 − α, δ+ = 1 + α, u0 = −[2C(1 − α2)]
1
2 , and v0 = B1(u0). It is

also straightforward to derive that

u1 =
(1 + α)(1 + 2

γ
) −

√
(1 + α)2(1 + 2

γ
)2 + 8(1 + α)C

2

and

v1 = −1

γ
u1.

Figure 2 plots a range of the parameters 0 < γ and 0 < α < 1, with C fixed
at C = 1.99, for which Condition (A) holds.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.4

0.5

0.6

0.7

0.8

0.9

1

α

γ

Fig. 2. With C = 1.99 fixed, the figure shows a range of the parameters γ and α
for which Condition (A) holds. In particular, for these choices of parameters the
invariant set R is bounded inside (−2, 2) × R.

Finally, let us mention that the previous stability result extends to the general
1-bit case with Q(w) = δ

2
sign(w).
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Corollary 5.7 Suppose |xn| ≤ δ
2
α for all n, and that un, vn are the state

variables of the second order linear Σ∆ scheme with Q(w) = δ
2
sign(w). If the

parameters γ, α, C satisfy the hypotheses of Theorems 5.4 and 5.5, then

∀n, (un, vn) ∈ δ

2
R.

6 Approximation error

We are now ready to derive approximation error estimates for the second
order Σ∆ scheme (11). More precisely, given a unit-norm tight frame F =
{en}N

=1 for Rd, a permutation p of {1, 2, · · · , N}, and x ∈ Rd, we let xp(n) =
〈x, ep(n)〉 be the frame coefficients. The Σ∆ scheme (11) produces a quantized
sequence {qn}N

n=1 where each qn ∈ {−1, 1}. We shall derive estimates for the
approximation error

||x − x̃|| = || d

N

N∑

n=1

(xp(n) − qn)ep(n)||, (23)

where x̃ is as in (7).

Σ∆ schemes are iterative in nature, and it was observed in [12] that the ap-
proximation error for Σ∆ quantization of finite frame expansions depends
closely on the order in which frame coefficients are quantized, i.e., it depends
on the choice of p. The intuition behind this is that Σ∆ schemes are able to
take advantage of “interdependencies” between the frame elements in a redun-
dant frame expansion. In fact, it is advantageous to order the frame so that
adjacent frame elements are closely correlated in order to obtain optimally
small approximation error. To make this more precise we introduce the notion
of frame variation.

6.1 Frame variation

Given a finite frame F = {en}N
n=1 for Rd and a permutation p of {1, 2, · · · , N}.

The jth order frame variation σj(F, p) of F with respect to p is defined by

σj(F, p) =
N−j∑

n=1

||∆jep(n)||,

where ∆j is the jth order difference operator defined by

∆1en = ∆en = en − en+1 and ∆jen = ∆j−1∆1en.

18



The first order variation, σ(F, p) = σ1(F, P ) =
∑N−1

n=1 ||ep(n) − ep(n+1)||, is
simply an overall measure how well adjacent frame elements are correlated in
the permutation p. The first order frame variation was used in [12] to analyze
first order Σ∆ schemes. Since this paper deals with a specific second order
scheme, our error estimates will involve computations with the second order
frame variation. The following result shows that harmonic frames in their
natural ordering have uniformly bounded 2nd order frame variation.

Lemma 6.1 Let Hd
N = {en}N−1

n=0 be an harmonic frame for Rd as defined in
Section 3, and let p be the identity permutation of {0, 1, · · · , N − 1}. Then

σ2(H
d
N , p) ≤ 2π2d2

N
.

PROOF. First suppose d is even. Using the definitions of the second order
variation and harmonic frame, and using the mean value theorem to obtain
the second inequality, we have
√

d

2
σ2(H

d
N , p) =

√
d

2

N−3∑

j=0

||ej − 2ej+1 + ej+2||

≤
N−3∑

j=0




d/2∑

k=1

(
cos

2πkj

N
− 2 cos

2πk(j + 1)

N
+ cos

2πk(j + 2)

N

)2

+
d/2∑

k=1

(
sin

2πkj

N
− 2 sin

2πk(j + 1)

N
+ sin

2πk(j + 2)

N

)2



1
2

≤
N−3∑

j=0


2

d/2∑

k=1

(
2πk

N

)4



1
2

≤ 4π2

N

√
2




d/2∑

k=1

k4




1
2

≤ 2π2d5/2

N
√

2
.

If d is odd we likewise have

√
d

2
σ2(H

d
N , p) ≤ 4π2

N

√
2




(d−1)/2∑

k=1

k4




1
2

≤ 2π2d5/2

N
√

2
.

Thus,

σ2(H
d
N , p) ≤ 2π2d2

N
.

2

6.2 Error estimates

Using the second order frame variation, we are now ready to derive error
estimates for the scheme (11).
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Theorem 6.2 Let F = {en}N
n=1 be a finite unit-norm tight frame for Rd and

let p be a permutation of {1, 2, · · · , N}. Suppose that x ∈ Rd. Let {qn}N
n=1 be

the quantized bits produced by (10) for any function Q, and let the input be
given by the frame coefficients {xp(n)}N

n=1 of x. Then

||x − x̃|| ≤ d

N

(
||v||∞σ2(F, p) + |vN−1| ||∆ep(N−1)|| + |uN |

)
,

where x̃ is as in (7) and || · ||∞ denotes the l∞ norm of a sequence.

PROOF. Let fn = ep(n) − ep(n+1), and also recall that u0 = v0 = 0 and
∆vn = un by (11). Then

x − x̃ =
d

N

N∑

n=1

(xp(n) − qn)ep(n)

=
d

N

(
N∑

n=1

unep(n) −
N∑

n=1

un−1ep(n)

)

=
d

N

(
N−1∑

n=1

un(ep(n) − ep(n+1)) − u0ep(1) + uNep(N)

)

=
d

N

(
N−1∑

n=1

∆vnfn + uNep(N)

)

=
d

N

(
N−2∑

n=1

vn(fn − fn+1) + vN−1fN−1 − v0f1 + uNep(N)

)

=
d

N

(
N−2∑

n=1

vn(fn − fn+1) + vN−1fN−1 + uNep(N)

)
. (24)

Thus,

||x − x̃|| ≤ d

N

(
||v||∞σ2(F, p) + |vN−1| ||∆ep(N−1)|| + |uN |

)
. (25)

2

For our subsequent approximation error estimates, it will be especially impor-
tant to determine the value of |uN |.

Lemma 6.3 Let F = {en}N
n=1 be a finite unit-norm tight frame for Rd and

suppose that S =
∑N

j=1 en. If x ∈ R
d is the signal being quantized, then

uN ∈



〈x, S〉 + δZ, if N is even,

〈x, S〉 + δ(Z + 1
2
), if N is odd.

(26)

20



PROOF. First note that by definition of the Σ∆ scheme and our hypotheses

uN = u0 +
N∑

j=1

〈x, en〉 −
N∑

j=1

qN = 〈x, S〉 −
N∑

j=1

qN .

Since qn ∈ {− δ
2
, δ

2
},

N∑

j=1

qN ∈




δZ, if N is even,

δ(Z + 1
2
), if N is odd,

and the result follows. 2

Corollary 6.4 (Harmonic frames in even dimensions) Let F = Hd
N =

{en}N
n=1 be an harmonic frame for Rd, where d is even, and let p be the identity

permutation of {1, 2, · · · , N}. Suppose that x ∈ Rd, ||x|| ≤ δ
2
α, α < 1, and that

the parameters α, C, γ satisfy Condition (A). Let {qn}N
n=1 be the quantized bits

produced by (11) with Q(w) = δ
2
sign(w), and suppose the input is given by the

frame coefficients {xp(n)}N
n=1 of x. Then if N is even, we have

‖x − x̃‖ ≤ dδ

N2

(
Cπ2d2 + Cπd

)
,

and if N is odd, we have

dδ

N

(
1

2
− Cπ2d2 + Cπd

N

)
≤ ‖x − x̃‖ ≤ dδ

N

(
Cπ2d2 + Cπd

N
+

1

2

)
.

In particular, if N is odd then δ
N

. ||x − x̃|| . δ
N

.

PROOF. First note that by Corollary 5.7, the state variables un, vn stay
bounded in the set δ

2
R defined by (17). Moreover, Condition (A) ensures that

R ⊆ δ
2
((−2, 2) × [−C, C]). Thus, for all n, the state variables satisfy

|un| < δ and |vn| ≤ C
δ

2
. (27)

Further since d is even, S =
∑N

n=1 en = 0. Also note that for harmonic frames
Hd

N , ||∆en|| ≤ 2πd
N

. This follows by calculating as in Lemma 6.1, or as in [12].

If N is even, then by Lemma 6.3, uN ∈ δZ, and thus (27) implies that uN = 0.
By Lemma 6.1 and Theorem 6.2,

||x − x̃|| ≤ dδ

N2

(
Cπ2d2 + Cπd

)
.
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If N is odd, then proceeding as above we have that |uN | = δ/2. In this case,
Lemma 6.1 and Theorem 6.2 imply

||x − x̃|| ≤ dδ

N

(
Cπ2d2

N
+

Cπd

N
+

1

2

)
.

δ

N
.

Likewise, working directly with (24) gives

dδ

2N
≤ ||x − x̃|| + dδ

N2

(
Cπ2d2 + Cπd

)
.
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Fig. 3. The frame expansions of (0.37/π, 0.0017, e−7 , 0.001) ∈ R
4 with respect to the

harmonic frames H4
N are quantized using the second order Σ∆ scheme (11) with

γ = 1/2. The figure shows a log-log plot of the approximation error ||x− x̃|| against
the frame size N . The figure also shows the graphs of 1/N and 1/N2 for comparison.

Figure 3 shows a log-log plot of the approximation error when the second
order Σ∆ scheme is used to quantize harmonic frame expansions in R4 of
x = ( .37

π
, 0.0017, e−7, 0.001) ∈ R4. The figure plots the approximation error,

||x− x̃||, against the cardinality, N , of the harmonic frame Hd
N . The quantiza-

tion ordering is taken to be the natural ordering of the harmonic frame. The
figure also plots the functions 1/N and 1/N2 for comparison. Observe that
the approximation error behaves quite differently for N even and N odd. This
observation agrees with the theoretical error estimates given by Corollary 6.4.

One has a similar result for odd dimensions. We omit the proof since it is
similar to the proof of Corollary 6.4.

Corollary 6.5 (Harmonic frames in odd dimensions) Let F = Hd
N =

{en}N
n=1 be an harmonic frame for R

d, where d is odd, and let p be a per-
mutation of {1, 2, · · · , N}. Suppose that x ∈ Rd, ||x|| ≤ δ

2
α, α < 1, and that

the parameters α, C, γ satisfy Condition (A). Let {qn}N
n=1 be the quantized bits

produced by (11) with Q(w) = δ
2
sign(w), and suppose the input is given by the
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frame coefficients {xp(n)}N
n=1 of x. Let S = N√

d
(1, 0, · · · , 0). Then

dδ

N

(
CS,N − Cπ2d2 + Cπd

N

)
≤ ||x − x̃|| ≤ dδ

N

(
Cπ2d2 + Cπd

N
+ CS,N

)
,

where CS,N is the unique element of SN contained in (−δ, δ), and

SN =




〈x, S〉 + δZ, if N is even,

〈x, S〉 + δ(Z + 1
2
), if N is odd.

Note that if CS,N = 0 then ||x − x̃|| . δ
N2 ; otherwise δ

N
. ||x − x̃|| . δ

N
. A

simple case where CS,N = 0 occurs when x is in the d−1 dimensional subspace
determined by 〈x, S〉 = 0.

7 A hybrid multibit scheme

So far we have only considered the 1-bit, 2nd order scheme (11), i.e., with
Q(w) = δ

2
sign(w). Although the error estimate (9) for first order Σ∆ quantiz-

ers was derived for multibit quantizer functions, it is not so simple to extend
second order results to general Q. The main reason for this is that the in-
variant set results of Section 5 do not immediately extend to the multibit
case, although it is likely that analogous, but “messier”, stability results do
exist. Deriving invariant sets for general K level quantizers with step size δ
represents ongoing work.

Similar to (9), for multibit second order schemes we would like to have the
error estimate

||x − x̃|| .
dδ

N2
(28)

hold for a range of x which is independent of δ. By Corollary 6.4, the 1-bit
scheme can give the estimate (28); however, there the estimate only holds if
||x|| ≤ δ

2
α. In particular, it does not hold for a range of x which is independent

of δ. The most direct way to avoid this is to use a multibit scheme, i.e.,
a multilevel quantizer function, but as mentioned above, an analysis of the
multibit second order Σ∆ scheme requires a deeper investigation of stability
results, and takes us beyond the intended scope of this paper. In view of this,
our solution is to introduce a hybrid PCM/Σ∆ scheme.

The hybrid PCM/Σ∆ scheme consists of the following three steps:

(1) Let x ∈ Rd satisfy ‖x‖ < Kδ. First, quantize the frame expansion of
x using qQ

n = Q(xn), where Q(·) is the K level midrise quantizer with
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stepsize δ, and call the resulting signal

xQ =
d

N

N∑

n=1

qQ
n en.

This is simply PCM quantization. In particular, we have x = xQ + xR,
where xR = d

N

∑N
n=1(xn − qQ

n ) en, and xR
n = xn − qQ

n satisfy |xR
n | ≤ δ/2.

(2) Next apply the second order Σ∆ scheme (11) to xR
n , and obtain

x̃R =
d

N

N∑

n=1

qR
n en.

(3) We define the quantized output of the hybrid scheme to be

x̃H =
d

N

N∑

n=1

(qQ
n + qR

n )en.

Theorem 7.1 Let F = {en}N
n=1 be a unit-norm tight frame for Rd such that∑N

n=1 en = 0, let p be a permutation of {1, 2, · · · , N}, and let x ∈ Rd satisfy
||x|| ≤ Kδ. If the parameters γ, α, C satisfy Condition (A), and if

∑N
n=1 qQ

n =
0 then

‖x − x̃H‖ ≤ dCδ

2N
(σ2(F, p) + ‖ep(N−1) − ep(N)‖).

PROOF. As in the proof of Corollary 6.4, Condition (A) implies that the
state variables satisfy |un| < δ and |vn| < C δ

2
, and that uN = 0. The result

now follows from Theorem 6.2. 2

The condition
∑N

n=1 qQ
n = 0 holds in many settings, depending on the frame

F , and the element x being quantized. For example, one has the following
corollary.

Corollary 7.2 Let EN = {en}N
n=1 be the unit-norm tight frame for R2 given

by the N th roots of unity, and suppose the parameters γ, α, C satisfy Condition
(A). If N is even then for almost every x ∈ R2 satisfying ||x|| ≤ α,

||x − x̃H || ≤ 2πCδ

N2
(2π + 1).

PROOF. This follows from Theorem 7.1 since the symmetry of the frame and
alphabet implies that whenever the frame coefficients 〈x, eN

n 〉 are all nonzero
(note that this happens for a.e. x ∈ R

2), one has
∑N

n=1 qQ
n = 0. We also used

that σ2(EN , p) ≤ (2π)2/N and ||∆eN || ≤ 2π/N. 2
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