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Abstract. Let 1 < p, q < ∞ satisfy 1

p
+ 1

q
= 1. We construct an orthonormal

basis {bn} for L2(R) such that ∆p(bn) and ∆q(cbn) are both uniformly bounded

in n. Here ∆λ(f) ≡ infa∈R

`R
|x − a|λ|f(x)|2dx

´ 1
2 . This generalizes a theorem

of Bourgain and is closely related to recent results on the Balian-Low theorem.

1. Introduction

Given a square integrable function f ∈ L2(R), we formally define the Fourier
transform of f by

f̂(γ) =

∫
f(t)e−2πitγdt,

where integration is over the real line R. The uncertainty principle in harmonic
analysis is the general statement that a function and its Fourier transform can not
both be “too well localized”. For example, Heisenberg’s inequality states that if
f ∈ L2(R) is of norm one then

(1.1)
1

4π
≤ ∆(f)∆(f̂).

Here ∆(·) is defined by

(1.2) ∆(f) =

(∫
|t− µ(f)|2|f(t)|2dt

) 1
2

where

(1.3) µ(f) =

∫
t|f(t)|2dt.

For an overview of recent mathematical work on the uncertainty principle we refer
the reader to [FS], [B1], [HJ].

This paper deals with how the uncertainty principle constrains the time and
frequency localization of the elements in an orthonormal basis for L2(R). We gen-
eralize a theorem of Bourgain on the construction of orthonormal bases which are
uniformly well-localized with respect to the (t2, γ2) weights implicit in (1.1). We
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consider the more general class of non-symmetric weights given by (tp, γq), where
1
p + 1

q = 1.

2. Background

2.1. The (t2, γ2) weight. The Balian-Low theorem [Bal], [Lo], [G2] is the
classical example of an uncertainty principle for orthonormal bases. If, for a given
f ∈ L2(R), we define the Gabor system, G(f, a, b) = {fm,n : m,n ∈ Z}, by

(2.1) fm,n(t) = e2πitmbf(t− na),

then the Balian-Low theorem states that when G(f, 1, 1) is an orthonormal basis
for L2(R) we have

(2.2)

∫
|t|2|f(t)|2dt = ∞ or

∫
|γ|2|f̂(γ)|2dγ = ∞.

In particular, either ∆(fm,n) = ∆(f) = ∞ for all m,n ∈ Z or ∆(f̂m,n) = ∆(f̂) =
∞ for all m,n ∈ Z. Thus, if a Gabor system forms an orthonormal basis for
L2(R), then its elements either have uniformly poor localization in time or uniformly
poor localization in frequency. The Balian-Low theorem is true in much greater
generality than above, e.g., [DJ], [GHHK], [BCM], [GH].

A recent result due to the authors together with W. Czaja and P. Gadziński
shows that the (t2, γ2) weights used in (2.2) can not be significantly weakened.
In [BCGP] it was shown that there exists f ∈ L2(R) such that G(f, 1, 1) is an
orthonormal basis for L2(R) and such that, for each d > 2,

(2.3)

∫
1 + |t|2

logd(|t| + 2)
|f(t)|2dt <∞

and

(2.4)

∫
1 + |γ|2

logd(|γ| + 2)
|f̂(γ)|2dγ <∞.

In view of this result and the Balian-Low theorem, it is natural to ask what
happens for general orthonormal bases, i.e., those which are not necessarily Gabor
systems. Namely, can a general orthonormal basis have “uniform” localization with
respect to the (t2, γ2) weights? This question was first posed by Balian [Bal] and
answered by Bourgain [Bou] in 1986.

Bourgain showed that given any ε > 0, there exists an orthonormal basis {bn :
n ∈ N} for L2(R) such that

(2.5) ∀n ∈ N, ∆(bn) ≤ 1

2
√
π

+ ε and ∆(b̂n) ≤ 1

2
√
π

+ ε.

This basis is uniformly localized with respect to (t2, γ2) in the sense that the ∆(bn)

and ∆(b̂n) are uniformly bounded. To put this in perspective, note that there are
ψ ∈ S(R), the Schwartz class, which generate wavelet orthonormal bases, {ψm,n :

m,n ∈ Z}, for L2(R), [LM]. Since ψ ∈ S(R), each ∆(ψm,n) and ∆(ψ̂m,n) is
finite. However, these variances are not uniformly bounded for any wavelet system,
although their product may be, e.g., see [B1].

The constant 1
2
√

π
in (2.5) is significant since g(t) = 21/4e−πt2 implies ∆(g) =

∆(ĝ) = 1
2
√

π
. Moreover, it is well known that this choice of g gives equality in

(1.1), i.e., the Gaussian is a minimizer for Heisenberg’s inequality. Thus, each
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of the elements in Bourgain’s basis is almost optimally localized with respect to
Heisenberg’s inequality.

2.2. The (tp, γq) weights. The three results in the previous subsection give
insight into the limits of the uncertainty principle for the t2 and γ2 weights. Our
investigation in this paper deals with the more general weights tp and γq, where
1
p + 1

q = 1 and 1 < p, q < ∞. In this setting, one has the following analogue to

the Balian-Low theorem which follows from work of Feichtinger and Gröchenig.
Suppose ε > 0, f ∈ L2(R), and G(f, 1, 1) is an orthonormal basis for L2(R). Then

(2.6)

∫
|t|p+ε|g(t)|2dt = ∞ or

∫
|γ|q+ε|ĝ(γ)|2dγ = ∞.

This result is proven by combining Theorem 4.4 of [FG1] and Theorem 1 of [G1].
As in the case (p, q) = (2, 2), we proved that Gabor bases are possible if the tp

and γq weights are weakened slightly. In particular, it was shown in [BCGP] that
there exists f ∈ L2(R) such that G(f, 1, 1) is an orthonormal basis for L2(R) and
such that, for every d > 2,

(2.7)

∫
1 + |t|p

logd(|t| + 2)
|f(t)|2dt <∞

and

(2.8)

∫
1 + |γ|q

logd(|γ| + 2)
|f̂(γ)|2dγ <∞.

2.3. Statement of the main result. In view of the results in the previous
subsection, we now consider the question of whether or not there is an analogue of
Bourgain’s theorem for the weights (tp, γq). The following definition provides an
appropriate generalization of ∆(·).

Definition 2.1. Given f ∈ L2(R) and λ > 0. We define

∆λ(f) = infa∈R

(∫
|t− a|λ|f(t)|2dt

) 1
2

.

It is easy to verify that when λ = 2, and ||f ||L2(R) = 1, this definition agrees
with the one given by (1.2) and (1.3). Let C∞

c (R) be the space of compactly
supported, infinitely differentiable functions on R. We now state our main result.

Theorem 2.2. Assume 1 < p, q < ∞, where 1
p + 1

q = 1. Fix ε > 0 and

ϕ ∈ C∞
c (R) with ||ϕ||L2(R) = 1. There exists an orthonormal basis, {bn : n ∈ N} ⊆

C∞
c (R), for L2(R) such that

(2.9) ∀n ∈ N, ∆p(bn) ≤
(∫

|t|p|ϕ(t)|2dt
) 1

2

+ ε ≡ Cp,ϕ + ε

and

(2.10) ∀n ∈ N, ∆q(b̂n) ≤
(∫

|γ|q|ϕ̂(γ)|2dγ
) 1

2

+ ε ≡ Cq,ϕ + ε.

For perspective, let us mention that Cowling and Price [CP] proved analogues
of Heisenberg’s inequality for the (tp, γq) weights. Their results are quite general,
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but as a special case one has that if 1 < p, q <∞ and 1
p + 1

q = 1, then there exists

a constant 0 < Kp,q such that for all f ∈ L2(R) of norm one there holds

(2.11) Kp,q ≤ [∆p(f)]
2
p [∆q(f̂ )]

2
q .

Our main result, Theorem 2.2, allows one to construct orthonormal bases whose ele-
ments are almost optimally localized with respect to the Cowling-Price uncertainty
principle, (2.11).

3. Preliminary lemmas

In this section we shall state several lemmas which will be needed to prove
Theorem 2.2.

3.1. Decay rates of inverses of matrices. Theorem 3.2 relates the off-
diagonal decay of an invertible matrix to the off-diagonal decay of its inverse. The
results are due to Jaffard, [J], and have been further studied and simplified by
Strohmer in [S]. We also note that Bourgain implicitly made use of similar im-
plications in [Bou]. For example, see the transition between equations (2.11) and
(2.12) in [Bou].

The following definition appears in [S].

Definition 3.1. Let A = (Am,n)m,n∈I be a matrix, where the index set is

I = Z,N, or {0, · · · , N − 1}. Fix s > 1. We say that A belongs to Qs if the

coefficients Am,n satisfy

∃C > 0 such that ∀m,n ∈ I, |Am,n| <
C

(1 + |m− n|)s
.

We say that A belongs to Es if

∃C > 0 such that ∀m,n ∈ I, |Am,n| < Ce−s|m−n|.

Theorem 3.2 (Jaffard). Let A : l2(I) → l2(I) be an invertible matrix, where

I = Z,N, or {0, · · · , N − 1}. Then

A ∈ Qs =⇒ A−1 ∈ Qs

and

A ∈ Es =⇒ A−1 ∈ Es′ ,

for some 0 < s′ ≤ s.

The case I = {0, 1, 2, · · · , N − 1} should be interpreted as follows. We quote
from [S]: “View the n × n matrix An as a finite section of an infinite dimensional
matrix A. If we increase the dimension of An (and thus consequently the dimen-
sion of (An)−1) we can find uniform constants independent of n such that the
corresponding decay properties hold.”

Let us next comment on the constants which arise in Jaffard’s theorem. We
restrict ourselves to the case I = {0, 1, · · · , N − 1}. Suppose that the AN are
sections of the infinite matrix A, and that

∃C > 0 such that ∀N ≥ 1 and ∀ j, k ∈ I, |AN (j, k)| ≤ C

1 + |j − k|s .

Further, suppose for simplicity that there is a fixed 0 < r < 1 such that

∀N ≥ 1, BN ≡ IN −AN satisfies ||BN || ≤ r < 1,
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where IN is the N × N identity matrix. Jaffard’s theorem then says that there
exists C ′ such that

∀N ≥ 1 and ∀ j, k ∈ I, |A−1
N (j, k)| ≤ C ′

1 + |j − k|s .

The constant C ′ depends only on r, s, and C. The proof of this assertion can be
obtained by examining Jaffard’s proofs, [J].

3.2. A simple lemma.

Lemma 3.3. Fix ϕ ∈ L2(R) and 1 < q <∞. If
∫
|γ|q|ϕ(γ)|2dγ <∞ then

(3.1)

∫
|γ +N |q|ϕ(γ)|2dγ ≤ 3q|N |q||ϕ||22 +

(
3

2

)q ∫

R\[−2N,2N ]

|γ|q|ϕ(γ)|2dγ

holds for all N ≥ 0.

Proof. First note that
∫ 2N

−2N

|γ +N |q|ϕ(γ)|2dγ ≤ 3q|N |q||ϕ||2L2(R).

Next note that 2N ≤ γ implies |γ +N |q ≤
(

3
2

)q |γ|q. Thus
∫ ∞

2N

|γ +N |q|ϕ(γ)|2dγ ≤
(

3

2

)q ∫ ∞

2N

|γ|q|ϕ(γ)|2dγ.

Likewise, ∫ −2N

−∞
|γ +N |q|ϕ(γ)|2dγ ≤

(
3

2

)q ∫ −2N

−∞
|γ|q|ϕ(γ)|2dγ.

This completes the proof. �

4. Finite, orthonormal, well localized systems

Lemma 4.1. Assume 1
p + 1

q = 1, where 1 < p, q <∞. Fix ε > 0 and ϕ ∈ C∞
c (R)

with ||ϕ||L2(R) = 1. There is K((p, q), ε, ϕ) such that for each K > K((p, q), ε, ϕ),
there exists an infinite orthonormal set S0 = S0(K,ϕ) = {sn}∞n=0 ⊆ C∞

c (R) satis-

fying

(4.1) supp sn = supp ϕ ⊆ [−K/2,K/2],

(4.2)

(∫
|t|p|sn(t)|2dt

) 1
2

≤
(∫

|t|p|ϕ(t)|2dt
) 1

2

+ ε ≡ Cp,ϕ + ε,

and

(4.3)

(∫
|γ − nK|q|ŝn(γ)|2dγ

) 1
2

≤
(∫

|γ|q|ϕ̂(γ)|2dγ
) 1

2

+ ε ≡ Cq,ϕ + ε

for n = 0, 1, 2, · · · .
Proof. Throughout the proof, C will denote various constants which are inde-

pendent of K. C may depend on (p, q), ϕ, and N , all of which are fixed throughout
the proof.
i. Let ε > 0 and let ϕ ∈ C∞

c (R) have L2(R) norm one. We may assume ϕ satisfies

(4.4) |ϕ̂(γ)| ≤ C

|γ|N + 1
,
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where N > 4q,N ∈ N. Now define

ϕj(t) = e2πijKtϕ(t), j = 0, 1, 2, · · · ,
where K is a sufficiently large integer which will depend on (p, q), ϕ,N, and ε. We
shall specify how large to take K during the proof. Next, define

(4.5) h0(t) = ϕ0(t)

and

(4.6) hn(t) = ϕn(t) −
n−1∑

j=0

an,jϕj(t), n = 1, 2, · · · ,

where the an,j are chosen to make hn orthogonal to {ϕj}n−1
j=0 . This choice of an,j

implies that, for all 0 ≤ l ≤ n− 1,

〈ϕn, ϕl〉 =

n−1∑

j=0

an,j〈ϕj , ϕl〉.

Rewriting this in matrix form, we have

Ga = g,

where G =




〈ϕn−1, ϕn−1〉 〈ϕn−2, ϕn−1〉 · · · 〈ϕ0, ϕn−1〉
〈ϕn−1, ϕn−2〉 〈ϕn−2, ϕn−2〉 · · · 〈ϕ0, ϕn−2〉

· · · · · · · · · · · ·
〈ϕn−1, ϕ0〉 〈ϕn−2, ϕ0〉 · · · 〈ϕ0, ϕ0〉




a =




an,n−1

an,n−2

· · ·
an,0


 and g =




〈ϕn, ϕn−1〉
〈ϕn, ϕn−2〉

· · ·
〈ϕn, ϕ0〉


 .

Note that these matrices all depend on n, but we shall usually suppress this for
economy of notation. When we wish to emphasize the dependence on n, we shall
write G = Gn.
ii. First of all, observe that G is an invertible matrix since the finite set {ϕj}n−1

j=0

is linearly independent by Proposition 1 of [HRT]. In particular, one also has that
{an,j}n−1

j=0 is uniquely determined.
To apply Jaffard’s theorem, we also need to know that the spectrum of G = Gn

stays uniformly bounded away from 0 independent of n. Note that the matrix G
is a Toeplitz matrix, and by (4.4) it has polynomial decay of order N off the main
diagonal; in fact,

(4.7) |G(j, k)| ≤ C

1 +KN |j − k|N ≤ C

1 + |j − k|N .

For K large enough, the first inequality of (4.7) implies G = Gn is diagonally
dominant and has spectrum uniformly bounded away from 0.
iii. By Jaffard’s theorem, G−1 has the same type of decay off its main diagonal as
G, namely,

|G−1(j, k)| ≤ C

1 + |j − k|N .

Also, the comments after the statement of Jaffard’s theorem ensure that C is inde-
pendent of K.
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Therefore, noting that an,n−j is the j-th element of the vector a,

|an,n−j | ≤
n−1∑

l=0

|G−1(j, l)||gl| =
n−1∑

l=0

|G−1(j, l)||〈ϕn, ϕn−l−1〉|

≤
n−1∑

l=0

(
C

1 + |j − l|N
)(

C

1 +KN |l + 1|N
)

≤
n−1∑

l=0

C

1 + |j − l|N
(

C

KN (l + 1)N

)

≤ C

KN

n−1∑

l=0

1

(1 + |j − l|N )

1

|l + 1|N

≤ C

KN

∞∑

l=1

1

(1 + |(j + 1) − l|N )

1

|l|N

≤
(

1

KN

)
C

|j + 1|N .

To see the last step, first note that

∑

1≤l≤ j+1

2

1

|l|N (1 + |j + 1 − l|N )
≤ 1

(1 + | j+1
2 |N )

∞∑

l=1

1

lN
.

Combining this with a similar estimate for the remaining range of summation gives
the desired inequality.

Thus, we have

(4.8) |an,j | = |an,n−(n−j)| ≤
C

KN |n− j + 1|N .

iv. Observe that

(4.9)

n−1∑

j=0

|an,j | ≤
C

KN

n−1∑

j=0

1

|n− j + 1|N ≤ C

KN

n+1∑

j=2

1

jN
≤ C

KN
.

Combining this and (4.6), we can estimate the localization of the hn(t).

(∫
|t|p|hn(t)|2dt

) 1
2

≤
(∫

|t|p|ϕn(t)|2dt
) 1

2

+

n−1∑

j=0

|an,j |
(∫

|t|p|ϕj(t)|2dt
) 1

2

=

(∫
|t|p|ϕ(t)|2dt

) 1
2

+




n−1∑

j=0

|an,j |



(∫

|t|p|ϕ(t)|2dt
) 1

2

≤
(∫

|t|p|ϕ(t)|2dt
) 1

2

+
C

KN

(∫
|t|p|ϕ(t)|2dt

) 1
2

Thus for K large enough,

(4.10)

∫
|t|p|hn(t)|2dt ≤ Cp,ϕ +

ε

2

holds for all n = 0, 1, 2, · · · .
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v. We now estimate the localization of the ĥn(t).

(∫
|γ − nK|q|ĥn(γ)|2dγ

) 1
2

≤
(∫

|γ − nK|q|ϕ̂(γ − nK)|2dγ
) 1

2

+



∫

|γ − nK|q|
n−1∑

j=0

an,jϕ̂(γ − jK)|2dγ




1
2

≤
(∫

|γ|q|ϕ̂(γ)|2dγ
) 1

2

+
n−1∑

j=0

|an,j |
(∫

|γ −K(n− j)|q|ϕ̂(γ)|2dγ
) 1

2

.

Using (4.8) and Lemma 3.3 we have

n−1∑

j=0

|an,j |
(∫

|γ −K(n− j)|q|ϕ̂(γ)|2dγ
) 1

2

≤
n−1∑

j=0

|an,j |
[
|K(n− j)|q||ϕ̂||2L2(R) + (3/2)q

∫
|γ||ϕ̂(γ)|2dγ

] 1
2

≤ CKq/2
n−1∑

j=0

|an,j ||n− j|q/2 ≤ CKq/2
n−1∑

j=0

|n− j|q/2

KN |n− j + 1|N

≤ C

KN−q/2
.

Thus, combining the above with K large enough gives

(4.11)

(∫
|γ − nK|q|ĥn(γ)|2dγ

) 1
2

≤ Cq,ϕ +
ε

2

for all n = 0, 1, 2, · · · .
vi. It remains to normalize the hn. First note that

||ϕn − hn||L2(R) ≤
n−1∑

j=0

|an,j | ≤
C

KN

n−1∑

j=0

1

|n− j + 1|N ≤ C

KN

∞∑

j=2

1

jN
=

C

KN
,

so that

1 = ||ϕn||L2(R) ≤ ||hn||L2(R) + ||hn − ϕn||L2(R) ≤ ||hn||L2(R) +
C

KN

and

||hn||L2(R) ≤ ||ϕ||L2(R) + ||hn − ϕn||L2(R) ≤ 1 +
C

KN
.

Thus we have

(4.12) 1 − C

KN
≤ ||hn||L2(R) ≤ 1 +

C

KN
.

Finally, let sn(t) = hn(t)/||hn||L2(R). Taking K large enough and combining
(4.10), (4.11), and (4.12) now shows that that (4.2) and (4.3) hold. �
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Lemma 4.2. Assume 1
p + 1

q = 1, where 1 < p, q <∞. Fix ε > 0 and ϕ ∈ C∞
c (R)

with ||ϕ||L2(R) = 1. Fix K ∈ N sufficiently large. For each T > 1 there exists a

finite orthonormal set,

S = S(T,K) = S(T,K,ϕ) = {sm,n : 0 ≤ m < bT 2/qc, 0 ≤ n < bT 2/pc} ⊆ C∞
c (R),

of cardinality bT 2/pcbT 2/qc ≤ T 2 satisfying

(4.13) supp sm,n ⊆
[
1

2
T 2/p, 2T 2/pK

]
,

(4.14)

(∫
|t−Kn− T (2/p)K|p|sm,n(t)|2dt

) 1
2

≤ Cp,ϕ + ε,

and

(4.15)

(∫
|γ −Km|q|ŝm,n(γ)|2dγ

) 1
2

≤ Cq,ϕ + ε,

for all 0 ≤ m < bT 2/qc, 0 ≤ n < bT 2/pc. Here Cp,ϕ and Cq,ϕ are defined as in the

previous lemma.

Proof. Let {sm}bT
2/qc−1

m=0 be defined using the system from the previous lemma.
Define

sm,n(t) = sm(t− nK − T (2/p)K) for 0 ≤ m < T 2/q and 0 ≤ n < T 2/p.

Now, (4.14) and (4.15) hold by the previous lemma. Since K was chosen large
enough so that supp ϕ ⊆ [−K/2,K/2], it follows that

supp sm,n ⊆
[
nK + T 2/pK −K/2, nK + T 2/pK +K/2

]
,

so that all the sm,n are supported in
[
T 2/pK −K/2, (T 2/p − 1)K + T 2/pK +K/2

]
⊆
[
1

2
T 2/p, 2KT 2/p

]
.

�

Lemma 4.3. Fix ε > 0 and ϕ ∈ C∞
c (R). There exists a constant C such that

for each S(T,K) as in the previous lemma and for every Φ ∈ span S(T,K) and

each 0 ≤ y ≤ T 2/qK one has

(4.16)

∫
|γ − y|q|Φ̂(γ)|2dγ ≤ CKqT 2||Φ||2L2(R).

Proof. i. First note that
∫ 2T 2/qK

−2T 2/qK

|γ − y|q|Φ̂(γ)|2dγ ≤ 3qKqT 2||Φ||2L2(R).

ii. Recall that

span S(T,K) = span{ϕm,n : 0 ≤ m < bT 2/qc, 0 ≤ n < bT 2/pc},
where

ϕm,n(t) = e2πiKmtϕ(t− nK − T 2/pK).

Next, note that for K large enough, {ϕm,n : m,n ∈ Z} is a Riesz basis for
its closed linear span. To see this, it suffices to show that {gm,n : m,n ∈ Z} =
G(ϕ,K,K) is a Riesz basis for its closed linear span. Using Theorem 9 of Chapter
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1, Section 8 in [Y] this is equivalent to proving that the Gram matrix G(j,k),(l,m) =

〈gj,k, gl,m〉 defines a bounded positive operator on l2(Z × Z). Since ϕ ∈ S(R) one
may directly verify that the Gram matrix is positive and bounded for all large
enough K. In particular, for K large enough one can use Schur’s test (see Lemma
6.2.1 in [G2]) to show that M ≡ G− I satisfies ||M || < 1

2 , where I is the identity

matrix, and || · || denotes the operator norm induced by the l2(Z×Z) norm. Hence
there exists K0 such that for all K > K0, {ϕm,n} is a Riesz basis for its closed
linear span.

By the definition of Riesz basis there exist 0 < A ≤ B <∞, such that for each
finite sum Φ(t) =

∑
dm,nϕm,n(t)

(4.17) A
∑

|dm,n|2 ≤ ||Φ||2L2(R) ≤ B
∑

|dm,n|2.

For us the constants A,B can be chosen independent of T and K. To see this, first
note that the proof of Theorem 9 in Chapter 1, Section 8 of [Y] shows that one
may take B = ||G|| and A = ||G−1||−1, where G is the Gram matrix defined above.
A direct calculation with the Gram matrix shows that since ϕ ∈ S(R), the norm of
the Gram matrix and its inverse approach 1 as K → ∞.

We may conclude that there exists C, independent of T and K, such that for
each Φ =

∑
dm,nϕm,n ∈ span S(T,K)

(4.18)
(∑

|dm,n|2
) 1

2 ≤ C||Φ||L2(R).

Here, and below, sums are over 0 ≤ m < bT 2/qc, 0 ≤ n < bT 2/pc.
iii. We need to show that

(4.19)

∫ ∞

2T 2/qK

|γ − y|q|Φ̂(γ)|2dγ ≤ CKqT 2||Φ||2L2(R).

iii.a. First note that since 0 ≤ y ≤ T 2/qK, we have

(4.20)

(∫ ∞

2T 2/qK

|γ − y|q|Φ̂(γ)|2dγ
) 1

2

≤
(∫ ∞

2T 2/qK

|γ|q|Φ̂(γ)|2dγ
) 1

2

.

iii.b. To estimate the right side of (4.20) we begin as follows:

(∫ ∞

2T 2/qK

|γ|q|Φ̂(γ)|2dγ
) 1

2

=



∫ ∞

2T 2/qK

|γ|q
∣∣∣∣∣
∑

m,n

dm,nϕ̂m,n(γ)

∣∣∣∣∣

2

dγ




1
2

≤
∑

m,n

|dm,n|
(∫ ∞

2T 2/qK

|γ|q
∣∣ϕ̂m,n(γ)

∣∣2 dγ
) 1

2

≤ ||dm,n||l2(Z2)

∑

m,n

(∫ ∞

2T 2/qK

|γ|q
∣∣ϕ̂m,n(γ)

∣∣2 dγ
) 1

2

≤ C||Φ||L2(R)

∑

m,n

(∫ ∞

2T 2/qK

|γ|q
∣∣ϕ̂m,n(γ)

∣∣2 dγ
) 1

2

.(4.21)

Next note that

(4.22) |ϕ̂m,n(γ)| = |ϕ̂(γ −Km)|.
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Thus,

∑

m,n

(∫ ∞

2T 2/qK

|γ|q
∣∣ϕ̂m,n(γ)

∣∣2 dγ
) 1

2

=
∑

m,n

(∫ ∞

2T 2/qK

|γ|q |ϕ̂(γ −mK)|2 dγ
) 1

2

= bT 2/pc
bT 2/qc−1∑

m=0

(∫ ∞

2T 2/qK

|γ|q|ϕ̂(γ −mK)|2dγ
) 1

2

≤ T 2

(∫ ∞

2T 2/qK

|γ|q|ϕ̂(γ − T 2/qK)|2dγ
) 1

2

= T 2

(∫ ∞

T 2/qK

|γ + T 2/qK|q|ϕ̂(γ)|2dγ
) 1

2

≤ T 22q/2

(∫ ∞

T 2/qK

|γ|q|ϕ̂(γ)|2dγ
) 1

2

≤ CT 2

|T 2/qK|2q
.

The final inequality holds since ϕ ∈ S(R). Together with (4.21), this gives

(4.23)

(∫ ∞

2T 2/qK

|γ|q|Φ̂(γ)|2dγ
) 1

2

≤ C||Φ||L2(R)

K2qT 2
.

Combining (4.20) and (4.23) yields (4.19), as desired.
iv. It remains to show that

∫ −2T 2/qK

−∞
|γ − y|q|Φ̂(γ)|2dγ ≤ CKqT 2||Φ||2L2(R).

This follows by calculations similar to those in part iii. The proof is complete. �

5. A (p, q) version of Bourgain’s theorem

We are now ready to prove our main result, Theorem 2.2. The proof follows
that of Bourgain, [Bou], which, in turn, depends on an idea of W. Rudin, [R], used
to construct certain orthonormal bases for H2(B), where B is the unit ball of Cn.

Proof of Theorem 2.2. Throughout the proof C will denote various constants which
are independent of n, Tn, K, Θ, and any indices.

Let {fn}n∈N ⊆ C∞
c (R) be sequence which is dense in the unit sphere of L2(R).

Let ε > 0 and ϕ ∈ C∞
c (R) be given. Let K be sufficiently large to ensure we

may use Lemma 4.2 applied to ε
2 . The orthonormal basis we construct will be of

the form
⋃∞

n=1Bn where Bn is a finite orthonormal subset of C∞
c (R). We shall

construct the Bn inductively.

i. Suppose B1, . . . , Bn−1 are already defined such that Bj is a finite orthonormal

subset of C∞
c (R) and the elements of

⋃n−1
j=1 Bj are mutually orthonormal. Define

Fn = fn −P[B1,...,Bn−1]fn, where P[B1,...,Bn−1] is the orthogonal projection of L2(R)
onto

[B1, . . . , Bn−1] ≡ span

n−1⋃

l=1

Bl.

For the base case of the induction we simply let F1 = f1. Using Fn, we now prepare
to construct Bn.
i.a. Note that

(5.1) ||Fn||2L2(R) ≤ 1
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because Fn ⊥ P[B1,··· ,Bn−1]fn and ||fn||L2(R) = 1.
i.b. Since fn and all elements of the Bj are in C∞

c (R), it follows that Fn ∈ C∞
c (R).

Choose Tn > 2 large enough so that

(5.2)
bT 2/p

n cbT 2/q
n c

T 2
n

>
1

4
,

(5.3) supp Fn ⊆
[
−1

2
T 2/p

n ,
1

2
T 2/p

n

]
,

(5.4) supp b ⊆ [−1

2
T 2/p

n ,
1

2
T 2/p

n ] for all b ∈
n−1⋃

j=1

Bj ,

and

(5.5) ∀y ≥ 1,

∫

R\[−2y,2y]

|γ|q|F̂n(γ)|2dγ ≤ Tn

1 + |y|N ,

where we have used the fact that F̂n ∈ S(R) (Fn ∈ C∞
c (R)).

ii. Let

S = S(Tn,K) = {sn
j,k : 0 ≤ j < bT (2/p)

n c and 0 ≤ k < bT (2/q)
n c}

be the system from Lemma 4.2 applied with ε
2 instead of ε. We shall switch from

the double indexing (j, k) to single indexing, and enumerate the elements of the

system as {sn
l }

bT 2/p
n cbT 2/q

n c
l=1 . If l1, l2 are the indices for which sn

l = sn
l1,l2

, let

x(sn
l ) = Kl1 + T (2/p)

n K and y(ŝn
l ) = Kl2,

so that by Lemma 4.2

(5.6)

(∫
|t− x(sn

j )|p|sn
j (t)|2dt

) 1
2

≤ Cp,ϕ +
ε

2

and

(5.7)

(∫
|γ − y(ŝn

j )|q|ŝn
j (γ)|2dγ

) 1
2

≤ Cq,ϕ +
ε

2
.

Note that

(5.8) T (2/p)
n K ≤ x(sn

j ) ≤ 2KT 2/p
n and 0 ≤ y(ŝn

j ) ≤ KT 2/q
n .

Let 0 < Θ < 1
4 be sufficiently small and be fixed throughout the proof. We

shall be more precise later about how small to take Θ. For now, note that K
is fixed throughout the proof, so that Θ may depend on K (but not Tn). Let

νn = bT 2/p
n cbT 2/q

n c. Now define

bn1 (t) =
Θ

Tn
Fn(t) + αn,1s

n
1 (t)

bn2 (t) =
Θ

Tn
Fn(t) + σn,1s

n
1 (t) + αn,2s

n
2 (t)

...

bnνn
(t) =

Θ

Tn
Fn(t) + σn,1s

n
1 (t) + · · · + σn,νn−1s

n
νn−1(t) + αn,νn

sn
νn

(t),
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where the σn,j and αn,j are chosen to ensure that {bnj }νn
j=1 is orthonormal.

ii.a. The choice of σn,j and αn,j implies that

(5.9) |1 − αn,j | ≤
Θ

Tn
for j = 1, 2, · · · , T 2

n ,

and

(5.10) |σn,j | ≤
Θ

T 2
n

for j = 1, 2, · · · , T 2
n − 1.

To see this, first note that {Fn}
⋃
S(Tn,K) is an orthogonal set. Therefore, {bnj }νn

j=1

being orthonormal implies that for l = 1, 2, · · · , T 2
n we have

(5.11) 0 =
Θ2

T 2
n

||Fn||2L2(R) + σ2
n,1 + · · · + σ2

n,l−1 + σn,lαn,l

and for l = 1, 2, · · · , T 2
n − 1

(5.12) α2
n,l = 1 − Θ2

T 2
n

||Fn||2L2(R) − σ2
n,1 − · · · − σ2

n,l−1.

ii.b. Using (5.11) and (5.12) we shall now prove (5.9) and (5.10) by induction. The
case j = 1 of (5.9) holds since (5.12) implies

1 =
Θ2

T 2
n

||Fn||2L2(R) + α2
n,1.

Since 2 < Tn and Θ < 1
4 , we may choose 0 < αn,1 ≤ 1. Therefore,

|1 − αn,1| ≤ |1 − α2
n,1| ≤

Θ2

T 2
n

≤ Θ

Tn
.

Using this, the case j = 1 of (5.10) now follows since, by (5.11),

0 =
Θ2

T 2
n

||Fn||2L2(R) + αn,1σn,1,

which implies

|σn,1| ≤
Θ2

T 2
n

1

|αn,1|
≤ Θ2

T 2
n

1

(1 − Θ/Tn)
≤ Θ

T 2
n

.

The last inequality holds because Θ < 1
4 and Tn > 2.

ii.c. Next, assume |σn,j | ≤ Θ
T 2

n
holds for j < l. We may once again choose 0 <

αn,l ≤ 1. Since the cardinality of S(Tn,K) is at most T 2
n ,

|1 − αn,l| ≤ |1 − α2
n,l| ≤

Θ2

T 2
n

+

l−1∑

j=1

σ2
n,j ≤ Θ2

T 2
n

+ T 2
n

Θ2

T 4
n

≤ 2
Θ2

T 2
n

≤ Θ

Tn
,

and (5.9) follows by induction. For (5.10), assume that |σn,j | ≤ Θ
T 2

n
for j < l and

|1 − αn,l| ≤ Θ
Tn

. Thus,

|σn,l| ≤
1

|αn,l|


Θ2

T 2
n

||Fn||2L2(R) +

l−1∑

j=1

σ2
n,j


 ≤ 1

(1 − Θ/Tn)

(
2
Θ2

T 2
n

)
≤ Θ

T 2
n

,

and (5.10) holds by induction.
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iii. By (5.9) and (5.10), we know that σn,j is close to zero and αn,j is close to one.
Thus, we expect to have bnj close to sn

j . In fact,

(5.13) ||bnj − sn
j ||L2(R) ≤ 3

Θ

Tn
.

To see this, note that by (5.9) and (5.10)

||bnj − sn
j ||L2(R) ≤ ||bnj − αn,js

n
j ||L2(R) + |1 − αn,j |

≤ ||bnj − αn,js
n
j ||L2(R) +

Θ

Tn

=

(
Θ2

T 2
n

||Fn||2L2(R) +

j−1∑

k=1

|σn,k|2
) 1

2

+
Θ

Tn

≤
(

Θ2

T 2
n

+

(
T 2

n

Θ2

T 4
n

)) 1
2

+
Θ

Tn
≤ 3

Θ

Tn
.

iv. Let us now prove that

(5.14) ∆p(b
n
j ) ≤

(∫
|t− x(sn

j )|p|sn
j (t)|2dt

) 1
2

+ CKp/2Θ ≤ Cp,ϕ + ε.

Using (5.8), (5.13), and the fact that the bnj are supported in [− 1
2T

2/p
n , 2T

2/p
n K]

(since Fn and sn,j are), we have

(∫
|t− x(sn

j )|p|bnj (t)|2dt
) 1

2

≤
(∫

|t− x(sn
j )|p|bnj (t) − sn

j (t)|2dt
) 1

2

+

(∫
|t− x(sn

j )|p|sn
j (t)|2dt

) 1
2

≤ |2T 2/p
n K + 2KT 2/p

n |p/2||bnj − sn
j ||L2(R) +

(∫
|t− x(sn

j )|p|sn
j (t)|2dt

) 1
2

≤ CKp/2Tn||bnj − sn
j ||L2(R) +

(∫
|t− x(sn

j )|p|sn
j (t)|2dt

) 1
2

≤ CKp/2Θ +

(∫
|t− x(sn

j )|p|sn
j (t)|2dt

) 1
2

.

Assume Θ was chosen small enough to ensure CΘKp/2 < ε
2 . Thus, by (5.6) we have

(5.15) ∆p(b
n
j ) ≤ Cp,ϕ + CK(p/2)Θ < Cp,ϕ + ε.

v. Here we shall prove that

∆q(b̂nj ) ≤
(∫

|γ − y(ŝn
j )|q|ŝn

j (γ)|2dγ
) 1

2

+ CΘK(q/2) < Cq,ϕ + ε.

v.a. First we show that

(5.16)

(∫
|γ − y(ŝn

j )|q| Θ

Tn
F̂n(γ)|2dγ

) 1
2

≤ CΘK(q/2).
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This follows from (5.5), (5.8), and Lemma 3.3:

∫
|γ − y(ŝn

j )|q|F̂n(γ)|2dγ ≤ 3q|y(ŝn
j )|q||F̂n||2L2(R) +

(3/2)qTn

1 + |y(ŝn
j )|M

≤ CT 2
nK

q + CTn ≤ CT 2
nK

q.

v.b. Next, we show that

(∫
|γ − y(ŝn

j )|q|b̂nj (γ) − ŝn
j (γ) − Θ

Tn
F̂n(γ)|2dγ

) 1
2

≤ CΘK(q/2).

Let Ψ(γ) = b̂nj (γ)− ŝn
j (γ)− Θ

Tn
F̂n(γ). Note that Ψ is in the span of S(Tn,K). Thus,

using (5.8), (5.10), and Lemma 4.3,

∫
|γ − y(ŝn

j )|q|Ψ̂(γ)|2dγ ≤ CT 2
nK

q||Ψ||2L2(R) = CT 2
nK

q

bT 2/p
n cbT 2/q

n c−1∑

l=1

|σn,l|2

≤ CT 2
nK

q

(
T 2

n

Θ2

T 4
n

)
= CKqΘ2.

v.c. Combining the estimates from v.a and v.b we have

∆q(b̂nj ) ≤
(∫

|γ − y(ŝn
j )|q|bnj (γ)|2dγ

) 1
2

≤
(∫

|γ − y(ŝn
j )|q|ŝn

j (γ)|2dγ
) 1

2

+

(∫
|γ − y(ŝn

j )|q|b̂nj (γ) − ŝn
j (γ)|2dγ

) 1
2

≤
(∫

|γ − y(ŝn
j )|q|ŝn

j (γ)|2dγ
) 1

2

+

(∫
|γ − y(ŝn

j )|q| Θ

Tn
F̂n(γ)|2γ

) 1
2

+

(∫
|γ − y(ŝn

j )|q|b̂nj (γ) − ŝn
j (γ) − Θ

Tn
F̂n(γ)|2dγ

) 1
2

≤
(∫

|γ − y(ŝn
j )|q|ŝn

j (γ)|2dγ
) 1

2

+ ΘCK(q/2) + ΘCK(q/2)

=

(∫
|γ − y(ŝn

j )|q|ŝn
j (γ)|2dγ

) 1
2

+ CΘK(q/2).

Assume Θ was chosen small enough so that CΘKq/2 < ε
2 . Thus,

(5.17) ∆q(b̂nj ) ≤ Cq,ϕ + CK(q/2)Θ < Cq,ϕ + ε.

vi. Having shown that all the elements of B =
⋃∞

j=1 b
n
j have the desired localization,

it only remains to prove that B is complete. To see this, note that, by (5.2) and
the definition of Fn, we have
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||P[B1,··· ,Bk]fk||2L2(R) = ||P[B1,··· ,Bk−1]fk||2L2(R) + ||P[Bk]fk||2L2(R)

= ||P[B1,··· ,Bk−1]fk||2L2(R) + ||P[Bk](Fk + P[B1,··· ,Bk−1]fk)||2L2(R)

= 1 − ||Fk||2L2(R) + ||P[Bk]Fk||2L2(R)

= 1 − ||Fk||2L2(R) +

bT 2/p
k cbT 2/q

k c∑

j=1

|〈Fk, b
k
j 〉|2

= 1 − ||Fk||2L2(R) + bT 2/p
k cbT 2/q

k c
(

Θ

Tk
||Fk||2L2(R)

)2

≥ 1 − ||Fk||2L2(R) + (Θ/2)2||Fk||4L2(R)

≥ (Θ/2)2.

To see the final inequality, let h(t) = 1 − t2 + a2t4 be defined on [0, 1], where
0 < a < 1

4 is fixed. It is easy to see that h(t) ≥ a2. Since ||Fn||L2(R) ≤ 1 and

Θ < 1
4 , the last step follows.

Now, suppose y ∈ L2(R) satisfies 〈y, b〉 = 0 for all b ∈ B. If y is not identically
zero, then ỹ = y/||y||L2(R) is in the unit sphere of L2(R) and there exists fnk

such

that fnk
→ ỹ in L2(R) as k → ∞. Thus,

0 <
Θ

2
≤ ||P[B1,··· ,Bnk

]fnk
||L2(R) ≤ ||P[B]fnk

||L2(R) → ||P[B]ỹ||L2(R) = 0.

where the limit is taken as k → ∞. This contradiction shows that the orthonormal
set B is complete, and hence it is an orthonormal basis for L2(R). �
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