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Abstract—We develop a graph theoretic set of uncer-
tainty principles with tight bounds for difference estima-
tors acting simultaneously in the graph domain and the
frequency domain. We show that the eigenfunctions of a
modified graph Laplacian operator dictate the upper and
lower bounds for the inequalities.

I. INTRODUCTION

Analysis on graphs is a key component to many
techniques in data analysis, dimension reduction, and
analysis on fractals. The Fourier transform on a graph
has been defined using the spectrum of the graph Lapla-
cian, see, e.g., [7], [2], [13], [12], [11], [10], [9], [5],
[3], and [1]. In [1], the authors define the notion of
spread in the spectral and graph domains using the
analytic properties of the graph Fourier transform. The
eigenvalues and eigenvectors of the graph Laplacian play
a central role in determining what values of spread are
feasible. Motivated by this result, we extend the notion of
discrete uncertainty principles such as those introduced
in [6], [14], and [4]. We show that for the graph setting,
the cyclic structure of the discrete Fourier transform is
no longer present for the graph Fourier transform. As a
result, the support theorems (such as in [4]) are no longer
guaranteed. Finally, we extend the frame uncertainty
principle introduced by Lammers and Maeser in [8].

The structure of the paper is as follows. In Section
I, we provide a short overview of elementary graph
theory, and we establish notation. Section III motivates
the choice of the graph Fourier transform by analogy
to the L' Fourier transform, and examines a special
case of the cyclic graph, where columns of the discrete
Fourier transform matrix are eigenfunctions of the graph
Laplacian. An additive graph uncertainty principle is
established in Section IV. In Section V, we extend a
result from [8] to the graph setting. In Section VI,
we provide uncertainty analysis on a complete graph.
Theorems 4.1 and 5.2 are the main results of the paper.

Finally, we discuss future directions concerning graph
theoretical uncertainty.

II. WEIGHTED GRAPHS

A graph G = {V,E CV x V,w} consists of a set
V' of vertices, a set E of edges consisting of pairs of
elements of V, and a weight function w : V x V — RT.
For u,v € V, w(u,v) > 0 if (u,v) € E and is zero
otherwise. If w(u,v) = 1 for all (u,v) € E, then we
say G is “unit weighted.” There is no restriction on the
size of the set V, but we shall restrict our attention to
[V| = N < oco. We also assume that the set {v; };V:_Ol =
V has an arbitrary, but fixed ordering.

For all graphs, we define the adjacency matrix A
component-wise as Ay, , = w(vm, vy,). If A is symmet-
ric, that is, if W(vn, V) = Anm = Amn = W(Vm, V),
then we say G is undirected. If a graph has loops, that
is w(vj,vj) > 0 for some v; € V, then A has nonzero
diagonal entries. Unless otherwise specified, we shall
assume that our graphs are undirected and have no loops.

The degree d of a vertex v; is defined by
N-1 N-1
deg(vj) = > o w(vj,vn) = >, 5 Ajn We
can then define a diagonal degree matrix D =
diag (deg(vg), deg(vy), ...,deg(vn_1)). There are two
common choices for the graph Laplacian:

L =
£:

D—-A
I — ‘D71/2AD71/27

where [ is the N x N identity. L is defined as the
unnormalized graph Laplacian, while £ is defined as
the normalized graph Laplacian. We shall restrict our
results to the unnormalized graph Laplacian and refer to
it as the Laplacian. Define the |E| x |V| unnormalized



incidence matrix M with element M;, ; for edge e;, and
vertex v; by:

—_

, if ex = (vj,v;) and j <
—1, if e = (’l)j7’l)l) and j >
0, otherwise.

My, ; =

Define the diagonal |E| x |E| weight matrix W =
diag(w(eo), w(e1), ..., w(eg|-1))- .

Noting that L = M*WM = (W%M) (W%M),
where -* denotes the conjugate transpose of an operator
-, we conclude that L is real, symmetric, and positive
semidefinite. By the spectral theorem, L must have an
orthonormal basis {x;} of eigenvectors with associated
eigenvalues {)\;} ordered as 0 = Mg < A1 < Ay <

. < An_1. Let x be the matrix whose Ith column is
given by x;. Let A be the diagonalization of L, that is,
X*Lx = A = diag(Ao, ..., Ay—1). We shall use this set
of eigenfunctions to define the graph Fourier transform.

III. THE GRAPH FOURIER TRANSFORM

Functions f defined on a graph G will be written
notationally as a vector f € R where f[j] for j =
0,...,N — 1 is the value of the function f evaluated at
the vertex v;. We say f € [2(G), and use the standard

1/2
2 norm: |7 = (2050 1)

Given this space [?(G) of real-valued functions on
the set V' of vertices of the graph G, it is natural to
define a Fourier transform based on the structure of
G. To motivate this definition, we examine the Fourier
transform on L' (R), viz.,

y) = / F(t)e 2wt dy,

and the formal inverse Fourier transform,

t) = /@ F()e*™ dry,

where R = R is considered the frequency domain.
The functions €27, v € R are the e1genfunct10ns of
the Laplacian operator dtz since we have jTeQT”t'Y =

—472y2e271 If f € LY(R), then the inverse Fourier
transform is an expansion of the function f in terms of
the eigenfunctions with coefficients f(y). With this in
mind, we use the eigenvectors of the graph Laplacian to
define the graph Fourier transform f of f € 12(G) as
follows:

Vi=0,1,.,.N—1, fll]=

Xt [

or, equivalently, f: x* f. It is clear from the orthonor-
mality of the basis, {x;}, that x* = x~!. Thus, the in-
verse graph Fourier transform is glven by Xf xx*f =
If = f, or, equivalently, f[j] = 355" (s f) xalil-

Fig. I. A unit weighted
circulant graph with 8 ver-
tices. The graph Laplacian
associated with this graph is
the classical discrete Lapla-
cian.

Example 3.1: An interesting special case of the graph
Fourier transform occurs when the graph is a unit
weighted circulant graph as in Figure 1. If T" is the N x N
matrix defined by

1 i=5-1
T;; =41 i=N-1,7=0
0 otherwise,

then the Laplacian is given by L = 27° — T — TN~1,
where T° = I is the N x N identity.
If 0 <7 < N —1, then an orthonormal eigenbasis for

T7 is given by
i = (m/ﬁ) woL Wi,

for W = e 2™/N and | = 0,1,..., N — 1. Indeed, we
have T7y; = W—3'y;, and so ; is an eigenvector with
the associated eigenvalue W =3, Therefore, L has the set
{xu} of orthonormal eigenvectors, with eigenvalues A\, =
—2cos(2nl/N) +2 = 4sin?(xl/N) for | = 0,..., N —1.

The unitary N x N discrete Fourier transform (DFT)
matrix is 1

VN
Therefore A = (DFT)*PM is the matrix whose
columns are formed by the set {;} reordered such that
the columns are arranged in ascending order of their
eigenvalues, and where PM is the permutation matrix
that achieves this reordering. Hence, the graph Fourier
transform A* = PM*(DFT) generated by a circulant
graph may be viewed as a permutation of the discrete
Fourier transform.

Graphs, similar to those in Example 3.1, provide
an additional motivation for defining the graph Fourier
transform by way of eigenvectors of the graph Laplacian.

V[/'(N—l)l]*7

DFT = Wy



In fact, the DFT is essentially a special case of the graph
Fourier transform. Motivated by this example, we shall
examine general uncertainty principles that arise from
the graph setting.

IV. A GRAPH UNCERTAINTY PRINCIPLE

In the classical L?(R) setting, we have the additive
Heisenberg uncertainty principle:

Il <2 (lesn® + pio| ). o

For a function f € S(R), the space of Schwartz
functions on R, inequality (1) is equivalent to:

s < (JPof +1ror). e

To achieve a graph analog of inequality (2), we must
define the notion of a derivative or difference operator
in the graph setting. To do this, we examine the following
product:

WY2Mf = D, f

where D, = WY/2M. We refer to D, as the differ-
ence operator for the graph G because it generates the
weighted difference of f across each edge of G:

(D, f)[k] = (£[7] — fli]) (w(ex))*/?,

where e, = (vj;,v;) and j < i. Because of this property,
it is common to refer to D, f as the derivative of f (see
[1]). In the case of the unit weighted circulant graph,
D, is the difference operator in [8]. With this in mind,
we establish a graph Fourier transform inequality of the
form of (2).

Theorem 4.1: Let G be a weighted, connected, and
undirected graph. Then, for any non-zero function f €
I2(V), the following inequalities hold:

0 < 171 S0 < ID,f 12 + || Do 7| < 1712 S, ®

where 0 < 5\0 < 5\1 <. < S\N,l are the ordered real
eigenvalues of L+ A. Furthermore, the bounds are sharp.
Proof: Noting that

||D7fH2 = <D7'f> D7f>
= (f,xAX"[)
(79
and, similarly, that HDrﬂr = <j?, Lf> , we have

1012+ |07 = (7o + 2)F).

Assuming Ao > 0, Inequality (3) follows directly from
L+ A being symmetric and positive semidefinite, and by
applying the properties of the Rayleigh quotient to L+A.
To prove positivity of \g, note that for <f, (L+ A)f> =
0 we must have (h, Ah) = 0 = (h, Lh) for some h # 0.
This is impossible as we have, for non-zero h, (h, Ah) =
0 if and only if h = ¢[1,0, ....,0]* for some ¢ # 0. This
implies (h, Lh) = deg(vy) > 0 due to the connectivity
of the graph. ]

A direct consequence of Theorem 4.1 is that for a
constant function f = cxo (¢ # 0) we have || D,cXol| >
0. Hence, D, f = 0 in the graph domain implies a non-
constant function in the graph Fourier domain.

V. A GRAPH FRAME UNCERTAINTY PRINCIPLE

As a generalization of the work by Lammers and
Maeser in [8], we show that the modified Laplacian
operator L + A will dictate an additive uncertainty
principle for frames. Let

E= e e eN—1

be a d x N matrix whose columns form a Parseval frame
for C¢, i.e. EE* = Ijyq. If we let D = T9 — T, then
D* = TO—TN-1 and the classical Laplacian in the dis-
crete setting is given by L, = D*D = 27° - T —TN~1,
Let |||, denote the Frobenius norm. The following
result holds.

Theorem 5.1: (Lammers and Maeser [8]) For fixed
dimension d and N > d > 2, the following inequalities
hold for all d x N Parseval frames:

0 < G(N.d) < |[DDFTE*|[}, + |DE"|},
< H(N,d) 4)
< &d.

Furthermore, the minimum (maximum) occurs when
columns of E* the d orthonormal eigenvectors cor-
responding to the d smallest (largest) eigenvalues of
L. + A, where L. is the classical Laplacian and A,
is its diagonalization. The constant G(N,d) is the sum
of those d smallest eigenvalues, and H (N, d) is the sum
of those d largest eigenvalues.

To extend the inequalities in Theorem 5.1 to the
graph Fourier transform setting, we apply D, to the
frame’s conjugate transpose F* and to the graph Fourier
transform x*E*, and then find bounds for the Frobenius
norms.



Theorem 5.2: For any graph G as in Theorem 4.1, the
following inequalities hold for all d x N Parseval frames
E:

d

1 N-—1

Y * Tk |2 * 12 3

A SIDeCE 7+ IDE (7. < D Xy, (5)
j=N-—-d

<.
I
o

where {Xj} is the ordered set of real, non-negative

eigenvalues of L + A. Furthermore, these bounds are
sharp.
Proof: Writing out the Frobenius norms as trace opera-
tors yield:

|Dox"E* |3, + || Do E*|[5, = tr(ExD; D, x*E*) (6)

+tr(D.E*ED}).

Using the invariance of the trace when reordering prod-
ucts, we have HDT.X*E*H?T + HDT.E*H?T
r(Lx*E*Ex) + tr(LE*E)
(LX*E*Ex) +tr(xAx"E*E)
((L+ A)x*E*EY).

t
tr
tr

The operator A + L is real, symmetric, and positive
semidefinite. By the spectral theorem, it has an orthonor-
mal eigenbasis P that, upon conjugation, diagonalizes
A+ L:

P*(A + L)P = A = diag(\o, A1, ..., AN_1)-
Hence, we have
HDTXE*II?cr + HDTE*H?T =tr((A+ L)X"E*Ex)
= tr(PAP*x*E*EY)
= tr(AP*x*E*ExP)
N-—1

= Y (KTK); ;X
=0

where K = ExP. The matrix K is a Parseval frame
because unitary transformations of Parseval frames are
Parseval frames . Therefore, tr(K*K) = tr(KK*) = d.
K* K is also the product of matrices with operator norm
< 1. Therefore, each of the entries, (K*K) I satisfies
0 < (K*K)j,j < 1. Hence, minimizing (maximizing)
Z;VZ_OI (K*K), ); is achieved if

) _{1j<dUzN@

(K*K); ;= : :
0 j>d(j<N-—d.

33
Choosing E to be the first (last) d rows of (xP)*
accomplishes this. The positivity of the bounds follows
from the proof of Theorem 4.1 |

VI. THE COMPLETE GRAPH

Fig. 2. A unit
weighted  complete
graph with 16
vertices.

Unit weighted graphs for which every vertex is con-
nected directly to every other vertex, as in Figure 2,
are referred to as complete graphs. A complete graph
with N vertices has graph Laplacian L. = NI — O
where O is an N x N matrix each of whose ele-
ments is 1. The minimal polynomial m(x) for L is
given by m(z) = z(z — N), and the characteristic
polynomial is c¢(x) = z(z — N)N~1. As is the case
with all connected graphs, the eigenspace associated
with the null eigenvalue is the constant vector xg =
(1Nﬁ) [1,..,1]% Let x1 = (1/v2)[1,-1,0,...,0].
Then (xo,x1) = 0 and Ly; = Nx;. Upon solving for
the N — 2 remaining orthonormal eigenvectors y; for
l=2,..,N — 1, we define the complete graph Fourier
transform x* = [xo0, X1, X2,--» Xn—1]*. We then have
X1 =10,1,0,...,0]*, and

|supp(x1)| |supp(X1)| =2 < N

for N > 3; and we see that the support theorems in [4]
do not hold for graphs. Alternatively, applying Theorem
4.1, we have, for N > 2, that

1712 (¥ = VR) < ID.fIF + || D, F| < 1717 2.

Similarly, applying Theorem 5.2, we have, for 2 < d <
N and any d x N Parseval frame F, that

2N(d = 1) < ||Dpx E*|[}, + | Do E*5, -

VII. DISCUSSION

O
O O
Fig. 3. A unit
weighted star graph
o) with 17 vertices.

The complete graph, as in Figure 2 provides a struc-
ture to illuminate the results of our work. However,



the graph Laplacian associated with the complete graph
is invariant when the labeling of elements of V are
permuted. This property is not true in general, as most
graph Laplacians only have invariant eigenvalues when
these permutations occur. For example, the star graph
(see Figure 3) Laplacian L is highly dependent on what
labeling the center vertex receives, but the diagonaliza-
tion A of L is invariant under permutations of labels
in V. As a result, the actual lower bounds in Theorems
4.1 and 5.2, while still always positive, change values
depending on the labeling of vertices. We leave analysis
of the effects of permuting labels to future discussion.
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