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ABSTRACT where the frame bounds < A < B < oo are fixed con-

It is shown that Sigma-DeltalA) algorithms can be used ~ StaNts:

effectively to quantize finite frame expansions Rf. Er- The frame igightif A — B. Animportant remark is that the
ror estimates for various quantized frame expansions are des.ame houndA of auniformor normalizedtight frame, i.e
rived, and in particular, it is shown th&tA quantizers out- a tight frame withe,, | = 1 for all n, “measures” the redun-

perform the standard PCM schemes. dancy of the system. It = 1 then a uniform tight frame
{en} is an orthonormal basis and there is no redundancy.
1. INTRODUCTION The larger the frame bound > 1 is, the more redundant a
uniform tight frame is.
In signal processing, one of the primary goals is to obtain
a digital representation of the signal of interest that i&-su  Definition 2 Let {e,,}.cs be a frame for a Hilbert space

able for storage, transmission, and recovery. In genér@l, t /7 with frame bounds! and B. The analysis operator
first step towards this objective is finding an atomic decom-

position of the signal. More precisely, one expands a given F:H —I*(A)
signalz over a dictionary{e,, } ,ea such that
is defined by(Fx);, = (z,e). The operatorS = F*F is
T = Z TrCn, Q) called theframe operatqrand it satisfies

neA
AI < S < BI,
wherez,, are real or complex numbers. Such an expan-

sion is said to beedundantf the choice ofz,, in (1) isnot  whereT is the identity operator orff. The inverse of,

unique. S—1, is called thedual frame operatoand it satisfies
Although (1) is a discrete representation, it is certainly
not “digital” since the coefficient sequen¢e,, } . is real B lr<st<aAlr

or complex valued. Therefore, a second step is needed to
reduce the continuous range of this sequence to a discretel he following theorem illustrates why frames can be useful
preferably finite, set. This second step is calipentiza- in signal processing.

tion.
Theorem 3 Let{e, } ,ca be aframe foH with frame bounds

A and B, and letS be the corresponding frame operator.
Then{S~'e, },.ca is aframe forH with frame bounds 1
and AL, Further, forallz € H

2. FRAME THEORETIC BACKGROUND

In various applications it is convenient to assume that the
signals of interest are elements of a Hilbert space, e.gd-ba _ g-1 5
limited functions, L?(R%), or R%. In this case, one can r= Z<x’en>( en) @

consider more structured dictionaries, such as frames. neA
= z,(S7te,)e 3)
Definition 1 A collectionF' = {e,, },,ea in a Hilbert space 7§\< ( n)jen

H is aframeif
The atomic decompositions in (2) and (3) are the first
Vo € H, Alz|* < Z [(z,eq)* < B|lz|?, step towards a digital representation. If the frame is tight



with frame bound4, then both frame expansions are equiv- Sigma-Delta £A) quantizers are widely implemented
alent and we have to quantize oversampled bandlimited functions [6, 7]. When
used to quantize oversampled bandlimited functions, first-
VreH, w=A" Z@’ en)en- ) order 1-k?itZA quantizers )E)ield approximations where the
neh pointwise approximation error is bounded @yA—"! [7] or
For the important case dinite uniform framegor R? better [8], and the MSE behaves like3 [9], where A is
andC¢, the frame constant is N/d, whereN is the car- the frame bound of the corresponding tight frame for the
dinality of the frame [1], [2], [3], [4]. space of bandlimited functions.

3. QUANTIZATION 4. FIRST-ORDER XA QUANTIZERS

In this section we shall discuss the quantization of tight In this section, we introduce the standard first orlek
frame expansions, (4). An intuitive quantization techeiqgu scheme with the aim of using it to quantize finite frame ex-
is the 2[1/47-level PCM quantizer with step sizg given pansions iR <.

by replacinge,, = (x, e,,) with ¢, = §([z,, /6] — 1/2). One Given themidrisequantization alphabety, := {(— K+
can show that ifz,,| < 1 for all n thensup |x,, — g,| < /2 1/2)0, (—K+3/2)4,--- ,(—1/2)6,(1/2)4,--- ,(K—-1/2)d},
for all n. we define

If {e,}_, is a uniform tight frame foR?, and|| - || Q(u) = arg min,¢ 45 |u — q| (7)

denotes the Euclidean norm ¢, then the approximation
error satisfies

al d
— At E <[ =
|z n:1qﬂen|| > (2> 9, (%)

whereA = N/d. This error estimate does not utilize the
redundancy of the frame. (5) can be improved by making
the assumption that the quantization error sequéngé =

{z,, —q,} is asignal independent sequence.afi. random
variables with mean 0 and variang®/12. This is Bennett's  where{u,, } is an auxiliary sequence of state variables, and

white noise assumptidb]. Here, the sequendey, } is ran- Q is the2 K -level midrise uniform scalar quantizer defined
domized by assuming that it is computed for a random sig- by (7).

nal x € H with a smooth probability distribution. In this _ o _
case, one can show that the mean square (approximationyVe say that a first-ordefA quantizer is 2K-level first-

For simplicity, we only consider midrise quantizers, altbb
our results are also valid more generally, e.g.,rfodtread
quantization alphabets.

Definition 4 Given a sequence of frame coefficiepis }V_,,
a first-order> A quantizer produces the quantized sequence
{¢n} by running the iteration

Up =Un—1+ Tn —qn, Gn = Q(unfl + (En), 8)

error (MSE) satisfies order XA quantizer with step sizgif it is defined by means
N 452 of (8), whereQ is as in (7).
MSE =E|z— A} Z Qn€n||2 < — (6) The following proposition asserts that the first-orilex
n=1 124 quantizer isstable

whereA = N/d, and E is the expectation with respect to  Proposition 5 Let K be a positive integer, let > 0, and
Fhe assqmated probability dlst_rlbutlon, cf., [3]. Notatk6) consider theZA system defined by (8) and (7). |4f,| <
is unsatisfactory for the following reasons: (K —1/2)4 for all n and |ug| < §/2, then|u,,| < §/2 for

(@) The white noise assumption does not hold in some all n.

elementary settings. For example, consider the tight

frame{e, = (cos(n(2m/N)),sin(n(2r/N))}Y_, for 5. $A QUANTIZATION OF FRAMES FOR R?

R? with evenN. Clearly,e,, = —enyn/2 foranyn,

and this violates Bennett's assumption. Thus, the pre- Theorem 6 Let K be a positive integer, let > 0, and con-
dicted MSE will not be attained in this case. sider{e, = (ey,,e;)}n_; auniform tight frame foR?, or-

o ) dered so thatrctan(e /e}.) < arctan(e?/ef) if k <. Let
(b) The MSE bound (6) only gives information about the ,. - R2 satisfy||z|| < (K — 1/2), and supposég, }V_,

average quantizer performance. is produced by &K -level first-order=A quantizer with
(c) As one increases the redundancy of the expansion St€P size) using the frame Foef.f'f'em{&n N <x]7ven>} as

i.e., as the frame bound increases, the MSE given the input. Then, the approximatian:= 2N"" 3/, gnen

in (6) decreases only a9 A4, i.e., the redundancy of satisfies N .

the expansion is not utilized very efficiently. |z — 2l < N7 (27 + 2)0. C))



Corollary 7 Given the hypotheses of Theorem 6, the esti-” J 2 -
mate in (9) can be replaced by J

() ||z —7Z|| < N~' (27 +1)6 if we choosery = 0in (8),
and by

10° 10° 10°

(i) |l* — z|| < 2aN—'6 when N is even if we have o 19 o 0 W 9
a midrise quantizer, if we choose = 0, and if

22;1 en = 0. Fig. 1. Comparison of the MSE fo2 K-level PCM quan-
_ tizers and2 K -level first-orderx A quantizers with step size
The above results can be generalized to the case of uni _ 1/K. The figures plot MSE versus the frame bourd,
form non-tight frames. Le{e,};_, be a uniform frame  Frame expansions of 100 randomly selected poin®&in
for R? with frame boundsA and B, and with frame op-  for frames obtained by tha/th roots of unity were quan-
eratorS. Letw, := (z,e,) and suppose, is obtained  {izeq. In the figure legend PCM and SD correspond to the
by quantizingr,, using a2k -level first-orden:A quantizer  \sE for PCM and the MSE for first-ordétA obtained ex-
with step sizej. Define := 37, ¢.(S™'en). Note that  perimentally, respectively. In the legend, the bound on the
BT <STH <AL MSE for PCM, computed with white noise assumption, is
denoted by WNA. Finally, SDWN in the legend stands for
the MSE bound fob:A that we would obtain if the approx-
imation error was uniformly distributed between 0 and the
upper bound of Corollary 7(i).

Proposition 8 With the setup of the previous paragraph,
the pointwise approximation errdfx — z|| satisfies the in-
equality
- _ 0

lz =2 < IS7H[(27 + 2)5. (10) )
Moreover, we can replac&r + 2) in (10) with (27 + 1)
and 27 if the conditions listed in Corollary 7 (i) and (ii),
respectively, are satisfied.

Relative Frequency

A simple comparison of the error bounds obtained in
this section with the MSE error bounds for PCM quantiz-
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ers, which were discussed in Section 3, shows that the MSE ' " s oprsson e
corresponding to first-ordéEA quantizers is smaller than (a) natural order (b) reordered
the MSE corresponding to PCM quantizers for uniform tight

frames ofR? with redundancyA if Fig. 2. The histograms of Example 9.

e A > 1.5(2m + 1)? ~ 80 for any uniform tight frame
for R?, as long as the frame elements are ordered as 6. QUANTIZATION OF UNIFORM FRAME
described in Theorem 6 with the additional condition EXPANSIONS IN HIGHER DIMENSIONS

thatug is chosen to be 0, or
In this section we show how to generalize the two dimen-

e A > 1.5(2m)? & 59 if the uniform tight frame foiR > sional results of the previous section to higher dimensions
is as described in Corollary 7 (ii). We start by noting that A schemes are defined in an itera-
i _ oo tive manner, see (8). Therefore, given a frafng}\_; and
Numerical experiments indicate that smaller redundandcy , - g2 the resulting quantization of the frame coefficients
than above may still be sufficient for first ordei\ quanti- ¢ ;. 55 well as the approximation error bounds in Section 5

zation to outperform PCM. Figure 1 shows the MSE achievedyeang heavily on the order in which the frame coefficients
by 2K-level PCM quantizers anglf-level first-order>A are quantized. In Theorem 6, we imposed a natural order on
quantizers with step sizé= 1/K for several values ok the frame coefficients to obtain the estimate given by (9).

for uniform tight frames foiR? obtained by theVth roots  cpanging this order has a drastic affect on the approxima-
of unity. The plots suggest that if the frame bound is larger 41, error.

than approximately 10, the first-orderA quantizer outper-

forms PCM. Example 9 Consider the uniform tight frame fdk? given
Finally, we want to note that the upper-bound on the by {e,}”_,, wheree,, := (cos(n2r/7),sin(n27/7)). We

MSE for first-orderC A quantizers is the asymptotic lower randomly choose 10,000 points in the unit balRot. First,

bound for the MSE for PCM quantizers with step size  we quantize the frame coefficients of each point using (8)

givenin [3]. in their natural order, by setting:,, = (z,e,) in (8). Fig-



ure 2 (a) shows the histogram of the corresponding approx-
imation errors. Next, we quantize the frame coefficients
of the same 10,000 points, only this time after reordering
the frame coefficients as , x4, x7, x3, g, T2, x5. Figure 2

(b) shows the histogram of the corresponding approxima-
tion errors in this case. Clearly, the average approximatio
error for the new ordering is significantly larger than the
average approximation error associated with the original
ordering. This example and the earlier discussion motivate
the following notation.

Definition 10 Let F' = {e,}_, be a finite frame folR¢,
and letp be a permutation of1,2,..., N}. We define the
(first-order) variationof the frameF' with respect tg as

N-1
o(F,p) = Z Hep(n) - ep(n+1)||~ (11)
n=1

Now, we can restate Theorem 6 in a more general way.

Theorem 11 Let F = {e,}N_, be a uniform tight frame
for R?, and letp be as above. Suppose tHstis a positive
integer andé > 0. Considerg,, that are produced by the
first orderX A quantizer defined by (8) and (7) using the se-
quence{(z, ep(n)>}fle as the input. Then the approxima-
tionz := dN ! 22;1 Inep(n) = dN—1 25:1 Qp=1(n)€n
satisfies

o3l < S o(F.p) +2)2 (12

2
Theorem 11 shows that the performance of the first-
orderXA algorithm in quantizing a given frame expansion
in RY depends on the variation of the frame with respect to
the order in which the coefficients are quantized.
Theharmonic framesor R [4] provide an infinite fam-
ily of uniform tight frames with arbitrarily high redundayc
for which we can derive uniform bounds on the frame vari-
ation.

Theorem 12 Let Fy be a harmonic frame foR? and let
p be the identity map of1,2,...,N}. Theno(Fy,p) <
wd(d + 1).

Theorems 11 and 12 show that first-ordek schemes have
approximation error which i©®) (N~1) asN — oo when
used to quantize harmonic frame expansionsRdr N is

the number of frame elements. Thus the MSE correspond-

ing to the first-orde= A quantization of harmonic frames
for R behaves likeV—2. This is the theoretical asymptotic
lower bound for the MSE for PCM given in [3]. Further-
more, the upper bound on the MSE for the first-orklex
guantization performs better than the MSE for PCM com-
puted under Bennett’s white noise assumptiolV ifs suffi-
ciently large.

See [10] for further results on finite fram&\ quantiza-
tion, as well as proofs of the results presented in this paper
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