Basics of Trapezoidal and Simpson Rules

Let f be a continuous function on [a, b]. We subdivide the interval into n pieces and let $x_0 = a$, $x_1 = a + (b - a)/n$, $x_2 = a + 2(b - a)/n$, ..., $x_n = a + n(b - a)/n = b$. The Trapezoidal Rule approximation to

$$\int_{a}^{b} f(x) \, dx$$

is

$$\frac{b-a}{2n}\Big(f(x_0) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(x_n)\Big).$$

Note that we are taking a kind of weighted average of values of f at n + 1 points, n - 1 of them weighted by 2 and 2 of them weighted by 1. The sum of the weights is thus 2(n - 1) + 2 = 2n, which is precisely the denominator. The error bound for this approximation is

$$|\operatorname{error}| \le \frac{\max_{[a,b]} |f''(x)|}{12n^2} (b-a)^3$$

The Simpson's Rule approximation to the integral (assuming n even) is

$$\frac{b-a}{3n} \Big(f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n) \Big).$$

Again, the sum of the weights (all 1, 2, or 4) in the numerator is the denominator, 3n. The error bound for this approximation is

$$|\operatorname{error}| \le \frac{\max_{[a,b]} |f'''(x)|}{180n^4} (b-a)^5.$$

Example. Say we want to approximate $\int_0^1 x^4 dx = 1/5$. Take a = 0, b = 1, $x_j = j/n$, $f(x) = x^4$. Here $f''(x) = 12x^2$, with maximum value of 12. So the error bound in the Trapezoidal Rule is $1/n^2$. Since f'''(x) = 24, the error bound in Simpson's Rule is

$$\frac{24}{180n^4} = \frac{2}{15n^4}$$

So suppose we want accuracy to 4 decimal places, that is, an error no bigger than 10^{-4} . To guarantee this with the Trapezoidal Rule, we could take n big enough so that $1/n^2 \leq 10^{-4}$, or $n^2 \geq 10^4$. So n = 100 would work. But to guarantee this with Simpson's Rule, it would suffice to choose n so that $15n^4 \geq 20000$, or $n^4 \geq 1334$. For this, n = 6 almost suffices, and we certainly could get the desired accuracy with n = 8.

Indeed, we find that the trapezoidal rule with n = 100 gives the approximation 0.200033333 to the integral, good to 4 but not to 5 decimal places, while Simpson's rule with n = 6 gives 0.200102881 and Simpson's rule with n = 8 gives 0.200032552 (very slightly better than the trapezoidal rule with n = 100). So certainly with smooth integrands like x^4 , Simpson's rule is much more efficient.