Basics of Trapezoidal and Simpson Rules

Let f be a continuous function on $[a, b]$. We subdivide the interval into n pieces and let $x_{0}=a, x_{1}=a+(b-a) / n, x_{2}=a+2(b-a) / n, \ldots$, $x_{n}=a+n(b-a) / n=b$. The Trapezoidal Rule approximation to

$$
\int_{a}^{b} f(x) d x
$$

is

$$
\frac{b-a}{2 n}\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right) .
$$

Note that we are taking a kind of weighted average of values of f at $n+1$ points, $n-1$ of them weighted by 2 and 2 of them weighted by 1 . The sum of the weights is thus $2(n-1)+2=2 n$, which is precisely the denominator. The error bound for this approximation is

$$
\mid \text { error } \left\lvert\, \leq \frac{\max _{[a, b]}\left|f^{\prime \prime}(x)\right|}{12 n^{2}}(b-a)^{3} .\right.
$$

The Simpson's Rule approximation to the integral (assuming n even) is
$\frac{b-a}{3 n}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\cdots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)$.
Again, the sum of the weights (all 1, 2, or 4) in the numerator is the denominator, $3 n$. The error bound for this approximation is

$$
\mid \text { error } \left\lvert\, \leq \frac{\max _{[a, b]}\left|f^{\prime \prime \prime \prime}(x)\right|}{180 n^{4}}(b-a)^{5} .\right.
$$

Example. Say we want to approximate $\int_{0}^{1} x^{4} d x=1 / 5$. Take $a=0$, $b=1, x_{j}=j / n, f(x)=x^{4}$. Here $f^{\prime \prime}(x)=12 x^{2}$, with maximum value of 12 . So the error bound in the Trapezoidal Rule is $1 / n^{2}$. Since $f^{\prime \prime \prime \prime}(x)=24$, the error bound in Simpson's Rule is

$$
\frac{24}{180 n^{4}}=\frac{2}{15 n^{4}} .
$$

So suppose we want accuracy to 4 decimal places, that is, an error no bigger than 10^{-4}. To guarantee this with the Trapezoidal Rule, we could take n big enough so that $1 / n^{2} \leq 10^{-4}$, or $n^{2} \geq 10^{4}$. So $n=100$ would work. But to guarantee this with Simpson's Rule, it would suffice to choose n so that $15 n^{4} \geq 20000$, or $n^{4} \geq 1334$. For this, $n=6$ almost suffices, and we certainly could get the desired accuracy with $n=8$.

Indeed, we find that the trapezoidal rule with $n=100$ gives the approximation 0.200033333 to the integral, good to 4 but not to 5 decimal places, while Simpson's rule with $n=6$ gives 0.200102881 and Simpson's rule with $n=8$ gives 0.200032552 (very slightly better than the trapezoidal rule with $n=100$). So certainly with smooth integrands like x^{4}, Simpson's rule is much more efficient.

