MATH 141, Tricks with Complex Numbers

Prof. Jonathan Rosenberg

Fall Semester, 2012

A very useful application of complex numbers is to simplify many of the integration formulas from Chapter 8 in Ellis and Gulick. Here are a few examples:

1. Suppose we want to compute $\int e^{a x} \cos (b x) d x$ or similar integrals. One method discussed in Chapter 8 is to use integration by parts twice, then solve for the unknown integral. This works, but it's complicated and time-consuming. The complex exponential function gives a much simpler approach. Recall that

$$
e^{(a+i b) x}=e^{a x}(\cos (b x)+i \sin (b x)) .
$$

So if a, b, and x are real, $e^{a x} \cos (b x)$ is the real part of $e^{(a+i b) x}$. But integrating exponential functions is easy! So we get

$$
\begin{aligned}
\int e^{a x} \cos (b x) d x & =\int \operatorname{Re}\left(e^{(a+i b) x}\right) d x \\
& =\operatorname{Re} \int e^{(a+i b) x} d x \\
& =\operatorname{Re}\left(\frac{1}{a+i b} e^{(a+i b) x}\right)+C \\
& =\operatorname{Re}\left(\frac{a-i b}{a^{2}+b^{2}} e^{a x}(\cos (b x)+i \sin (b x))\right)+C \\
& =\frac{a}{a^{2}+b^{2}} e^{a x} \cos (b x)+\frac{b}{a^{2}+b^{2}} e^{a x} \sin (b x)
\end{aligned}
$$

Done!
2. A rather mysterious result is the formula for the integral of the secant function: $\int \sec x d x=$ $\ln (\sec x+\tan x)+C$ (for $|x|<\frac{\pi}{2}$). The standard derivation of this, found in Ellis and Gulick section 5.7, seems to come out of nowhere. A more natural approach uses the complex exponential function. Recall that in terms of complex exponentials, $\cos x=\left(e^{i x}+e^{-i x}\right) / 2$, and so $\sec x=$
$2 /\left(e^{i x}+e^{-i x}\right)$. So we obtain

$$
\begin{aligned}
\int \sec x d x & =\int \frac{2}{e^{i x}+e^{-i x}} d x \\
& =\int \frac{2 e^{i x}}{e^{i x}\left(e^{i x}+e^{-i x}\right)} d x \\
& =\int \frac{2 e^{i x}}{1+e^{2 i x}} d x \\
& \left(\text { substitute } u=e^{i x}, d u=i e^{i x} d x\right) \\
& =\int \frac{2 d u}{i\left(1+u^{2}\right)} \\
& =-2 i \tan ^{-1}(u)+C^{\prime}=-2 i \tan ^{-1}\left(e^{i x}\right)+C^{\prime}
\end{aligned}
$$

This looks rather strange, especially since if $x=0, e^{i x}=1$ and thus $-2 i \tan ^{-1}\left(e^{i x}\right)=-2 i \tan ^{-1}(1)=$ $-i \pi / 2$. So it's natural to relabel the constant and take $C^{\prime}=\frac{i \pi}{2}+C$. This will make C real, and give

$$
\int \sec x d x=-2 i \tan ^{-1}\left(e^{i x}\right)+\frac{i \pi}{2}+C .
$$

This doesn't look at all like the usual formula, but it's possible to check that it's equivalent. For example, if $x=\pi / 4, \ln (\sec x+\tan x)=\ln (1+\sqrt{2})$, while $e^{i x}=\cos x+i \sin x=\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}=$ $(1+i) / \sqrt{2}$. It turns out that

$$
\tan ^{-1}\left(\frac{1+i}{\sqrt{2}}\right)=\frac{\pi}{4}+i \frac{\ln (1+\sqrt{2})}{2}
$$

so

$$
-2 i \tan ^{-1}\left(\frac{1+i}{\sqrt{2}}\right)+\frac{i \pi}{2}=\frac{-i \pi}{2}+\frac{i \pi}{2}+2 \frac{\ln (1+\sqrt{2})}{2}=\ln (1+\sqrt{2})
$$

the same as the usual formula.

