The Integral Form of the Remainder in Taylor's Theorem MATH 141H

Jonathan Rosenberg

April 24, 2006

Let f be a smooth function near $x=0$. For x close to 0 , we can write $f(x)$ in terms of $f(0)$ by using the Fundamental Theorem of Calculus:

$$
f(x)=f(0)+\int_{0}^{x} f^{\prime}(t) d t
$$

Now integrate by parts, setting $u=f^{\prime}(t), d u=f^{\prime \prime}(t) d t, v=t-x, d v=d t$. (Remember, the variable of integration is t, and we're thinking of x as a constant.) We get

$$
\begin{aligned}
f(x) & =f(0)+\int_{0}^{x} f^{\prime}(t) d t \\
& =f(0)+\left[(t-x) f^{\prime}(t)\right]_{t=0}^{t=x}-\int_{0}^{x}(t-x) f^{\prime \prime}(t) d t \\
& =f(0)+x f^{\prime}(0)-\int_{0}^{x}(t-x) f^{\prime \prime}(t) d t .
\end{aligned}
$$

Now repeat the process. Again, integrate by parts, this time with $u=f^{\prime \prime}(t), d u=f^{\prime \prime \prime}(t) d t$, $v=(t-x)^{2} / 2, d v=(t-x) d t$. We get

$$
\begin{aligned}
f(x) & =f(0)+x f^{\prime}(0)-\int_{0}^{x}(t-x) f^{\prime \prime}(t) d t \\
& =f(0)-\left[\frac{(t-x)^{2}}{2} f^{\prime \prime}(t)\right]_{t=0}^{t=x}+\int_{0}^{x} \frac{(t-x)^{2}}{2} f^{\prime \prime \prime}(t) d t \\
& =f(0)+x f^{\prime}(0)+\frac{x^{2}}{2} f^{\prime \prime}(0)+\int_{0}^{x} \frac{(t-x)^{2}}{2} f^{\prime \prime \prime}(t) d t .
\end{aligned}
$$

Continuing this process over and over, we see eventually that

$$
f(x)=f(0)+x f^{\prime}(0)+\cdots+\frac{x^{n}}{n!} f^{(n)}(0)+R_{n}(x)
$$

where the remainder $R_{n}(x)$ is given by the formula

$$
R_{n}(x)=(-1)^{n} \int_{0}^{x} \frac{(t-x)^{n}}{n!} f^{(n+1)}(t) d t=\int_{0}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) d t
$$

In principle this is an exact formula, but in practice it's usually impossible to compute. However, let's assume for simplicity that $x>0$ (the case $x<0$ is similar) and assume that

$$
a \leq f^{(n+1)}(t) \leq b, \quad 0 \leq t \leq x
$$

In other words, a is a lower bound for $f^{(n+1)}(t)$ on the interval $[0, x]$, and b is an upper bound for $f^{(n+1)}(t)$ on the same interval. Then we get

$$
\begin{equation*}
\int_{0}^{x} \frac{(x-t)^{n}}{n!} a d t \leq R_{n}(x)=\int_{0}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) d t \leq \int_{0}^{x} \frac{(x-t)^{n}}{n!} b d t \tag{**}
\end{equation*}
$$

But

$$
\begin{aligned}
\int_{0}^{x} \frac{(x-t)^{n}}{n!} d t & =(-1)^{n} \int_{0}^{x} \frac{(t-x)^{n}}{n!} d t=(-1)^{n}\left[\frac{(t-x)^{n+1}}{(n+1)!}\right]_{t=0}^{t=x} \\
& =(-1)^{n}\left[\frac{0}{(n+1)!}-\frac{(-x)^{n+1}}{(n+1)!}\right]=-(-1)^{n}(-1)^{n+1} \frac{x^{n+1}}{(n+1)!} \\
& =\frac{x^{n+1}}{(n+1)!}
\end{aligned}
$$

Plugging this into $(* *)$, we see that

$$
a \frac{x^{n+1}}{(n+1)!} \leq R_{n}(x) \leq b \frac{x^{n+1}}{(n+1)!},
$$

which is Lagrange's estimate for the remainder.

