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Abstract

We give an algebraic classification of BL-chains, which generalizes
to a classification of BL-algebras. Using this, we classify the finite
and the finitely universal BL-chains. From these results we strengthen
Hijek’s Completeness Theorem for BL-logic and give a new proof of
the decidability of the set of BL-tautologies.

1 Introduction

BL-algebras arise naturally in the analysis of the proof theory of propositional
fuzzy logics. Indeed, in [Ha 1], Hajek introduces the system of Basic Logic
(BL) axioms for propositional logic and defines the class of BL-algebras (see
Definition 1.1). He shows that a propositional formula ¢ is provable from
the BL-axioms if and only if ¢ is an M-tautology for every BL-algebra M.
In this paper we give a complete characterization of the restricted class
of BL-chains (Theorem 3.5). Since every BL-algebra is a subalgebra of a
product of BL-chains (see Lemma 2.3.16 of [Ha 1]), this in turn yields a
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classification of all BL-algebras. We use our characterization to classify the
finite BL-chains (Proposition 5.3) and prove that collectively the class of finite
BL-chains has a certain universality property. Specifically, for every finite
subset X of every BL-chain there is a finite embedding (see Definition 5.4) of
X into some finite BL-chain. It follows that every existential sentence that
is true in some BL-chain is true in some finite BL-chain. This result implies
the decidability of the universal theory of BL-chains (Corollary 5.10).

Finally, we consider the class of all finitely universal BL-chains (i.e., BL-
chains that embed every finite BL-chain). Theorem 5.13 enumerates a num-
ber of characterizations of this class of chains. It follows that this class is
elementary and it is straightforward to construct a decidable finitely univer-
sal BL-chain. The existence of such an object immediately yields a new proof
of a known proof-theoretic result, namely that the set of BL-tautologies is
decidable. (In [BHMV], Baaz et.al. show that the set of BL-tautologies is in
co-NP).

It should be noted that the classification of BL-chains given here is very
similar to Aglian6 and Montagna’s representation [AM] of BL-chains by an
ordinal sum of a family of Wajsberg hoops. As well, certain finitely uni-
versal BL-chains have been presented (see e.g. [BHMV]). However, to our
knowledge the characterization of the class of finitely universal BL-chains
presented here is new. Additionally, while other approaches have concen-
trated on the Mostert-Shields representation [MS] of continuous t-norms on
[0,1], our arguments rely on some classical results about ordered Abelian
groups.

Some of the ideas in this paper were gleaned from the work of Hijek [Ha 2]
and Cignoli et.al. [CEGT], who characterize the class of ‘saturated’ BL-
chains. However, our approach is somewhat different, and we do not use
their classification here. Instead, we first identify a class of very desirable
ordered Abelian semigroups (the ‘basic forms’ of Definition 3.1) and show
that every BL-chain has an associated ‘tower of basic forms.” Conversely,
every tower of basic forms naturally yields a BL-chain (Proposition 3.4).
What is noteworthy is that unlike the classification of the saturated BL-
chains due to Hajek and Cignoli et.al., the basic building blocks of BL-chains
are not BL-chains themselves. Example 4.6 describes a wide family of BL-
chains that have only two idempotents (namely 0 and 1), and hence cannot
be decomposed into smaller BL-chains. However, each of these BL-chains
can be decomposed into smaller algebraic components.

Section 2 is devoted to the analysis of certain ordered Abelian semigroups
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that will be used in Section 3. Section 3 contains the main theorem of the
paper, Theorem 3.5, which classifies the BL-chains. Section 4 is devoted to
examples and a discussion of the uniqueness of the decomposition given in
Section 3. In Section 5 we use Theorem 3.5 to classify the finite and the
finitely universal BL-chains and derive the corollaries mentioned above.

We close the introduction by defining the principal objects of this paper:

Definition 1.1 A BL-algebra is a structure M = (M, x, =, <,N,U, 0, 1) that
satisfies the following:

1. (M, <,N,U,0,1) is a lattice with smallest element 0 and largest element
1 (with respect to the lattice ordering <).

2. (M,*,1) is an Abelian semigroup with the unit element 1.

3. Residuation: For all z,y,z € M, z < (x = y) if and only if z x z < y.
4. Forall z,y e M, zx (x = y) =z Ny.

5. Forallz,ye M, (z = y)U(y=>z) =1.

A BL-chain is a BL-algebra with the additional property that < is a
linear order.

An MV-chain is a BL-chain that satisfies ‘double negation,” i.e., x =
[((z = 0) = 0] for all .

2 Results on Ordered Abelian Semigroups

We begin this section by setting our notation.

Definition 2.1 An ordered Abelian semigroup (G,*,<) is a linear order <
and a commutative and associative operation x which satisfies

r<y implies zxz<yx*z

for all z,y,z € G. (We do not assume that G has an identity element).

An ordered Abelian group (G,*, <) is an ordered Abelian semigroup with
an identity element such that every element has an inverse. In other words,
(G, %) is a group. We will assume throughout the paper that ordered Abelian
groups are infinite. That is, we will exclude the case of G = {0}.
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Let (G, *, <) be any ordered Abelian group. Let d be a nonzero element
of G. Let n be a positive integer. We say that d is divisible by n if there is a
g € G such that ng = d (where ng denotes g x g x g * ... g, n copies).

Let d be a nonzero element of G. We say that d is divisible if d is divisible
by n for all positive integers n. We say that G is a divisible ordered Abelian
group if every nonzero element of G is divisible.

The following types of ordered Abelian semigroups will be used through-
out the paper:

Definition 2.2 Let (G, *, <) be any ordered Abelian group.

1. The negative cone of G is the substructure (N(G),*, <) of G with
universe {z € G : z < 0¢g}.

2. The extended negative cone (N_(G),*,<) is an extension of N(G)
with universe N(G)U {—o0}, where x and < are extended by the defi-
nitions:

T *x (—00) = (—o0) xx := —oc for all z € N_o(G),
—oo < z for all z € N(QG).

3. Choose any d € N(G). The truncation of N(G) at d is the structure
(T(G,d),*r, <r) with universe {x € N(G) : z > d}, where <r is
inherited from < and %7 is defined by:

S zxey ifxrxgy>d
x*Ty'_{d if zxqgy <d

Note: Our notation differs from the standard usage of the word ‘cone’
since the element O¢ is not included in N(G).

The next two lemmas give algebraic characterizations of negative cones
and truncations that will be used in Section 3.

Lemma 2.3 Let (S, *, <) be an ordered Abelian semigroup that satisfies:
1. Forallz,y € S,x > x*y.

2. For each x,y € S such that x > vy, there is a z € S such that xxz = y.

Then (S, *, <) = (N(G),*, <) for some ordered Abelian group G.
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Proof: This is similar to Lemma 1.6.9 of [Ha 1]. We begin by showing
that for all z,y,2z € S, x xy = x % z implies that y = z. Suppose that
y < z. By Clause (2), there is some u € S such that y = z x u. Then
zxy =x*(zxu) = (xx2)*u < x*xz by Clause (1), which proves our
claim. Let S* denote the ordered Abelian semigroup with universe S U {e},
where z < eforall z € S, and x xe = z for all x € S. Then S* is
cancellative and (negatively) naturally ordered. Thus, by Proposition 1, page
154 of [Fu], there is an ordered Abelian group G such that S is isomorphic
to the cone of non-positive elements of G. We leave it to the reader to verify
that (S, %, <) & (N(G),*, <).

Lemma 2.4 Let (S,*,<) be the ordered Abelian semigroup with o <-least
element d that satisfies the following conditions:

1. Foranyz,ye S, xxy < x.
Foranyxz,y €S, if x xy =z, then x = d.

There are x,y € S, x,y > d such that x xy = d.

e R

For each x,y € S such that x > vy, there is a largest z € S such that
Txz=1.

Then (S,*, <) = (T(G, d),*, <) for some ordered Abelian group G and some
de N(G).

Note that Clauses (2) and (4) together imply that for each z,y € S such
that £ > y > d, there is a unique z € S such that x x z = y. Reason as
follows: Assume by way of contradiction that z,y, z, w € S satisfy x > y > d,
z<w,and zxz=1y=1x*xw. Let u € S be the largest such that w*u = z.
Then zxz = (wxu)*x = (wW*x) *u = (2*2x) *xu, which contradicts Clause
(2). The case of z > w is symmetric.

Proof of 2.4: The lemma can be proven directly by explicitly exhibiting
the group G. However, since the verification that G is associative is lengthy,
we will use Chang’s Classification of MV-chains, see [Ch| or Theorem 3.2.19
of [Ha 1]. Let ST := SU{c}, and define cxs = sxc= s for all s € ST, and
s < cforall s € S*. Then ST can be expanded to an MV-chain by defining

R ifx <y
y= the unique z such that zxz =y ify<ax
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zNy=min{z,y},z Uy = max{z,y},0s+ =d,1s+ = ¢
It is straightforward to verify that (S*,%,=,<,N,U,0,1) is a BL-chain.
In fact, more is true:
Claim: (S*,x,=,<,n,U,0,1) is an MV-chain.

Proof of Claim: The arguments used here are similar to those found in
Lemma 3.3 of [CEGT]. In order to prove the claim, we need to show that
——a = a for all @ € ST, where —z is an abbreviation for (z = d). To see
this, first recall two technical facts that hold in any BL-chain:

1. For all @ € St =—a > a and =——a = —a. (Proposition 1.3.14 (1.51,
1.55) of [Tur])

2. For all a,b € S*, (axb) = d = b= (a = d). (Proposition 1.3.13
(1.47) of [Tur))

Subclaim: —u € S\ {d} for all u € S\ {d}.

Proof of Subclaim: First fix z,y € S\ {d} such that z xy = d. Let
w = ——x. From Fact (1), w > z > d. Also, w # c since w x -z = d
but ¢ x ~x = —x > y > d. Now assume, by way of contradiction, that
u € S\ {d} and —u = d. Note that if u < w, then we have a contradiction
since u x (z = d) = d by residuation, implying that —u > (z = d) > d. So
we may assume w < u. Thus:

v=w =u=>(r=>d) = w=>-wuw=-r=>d=w

The second equality comes from two applications of Fact (2). Thus, uxw =
ux (v = w) =uNw=w, but this contradicts Clause (2) of the hypothesis.
So we have established the subclaim.

To complete the argument that S* is an MV-chain, fix any a € S*.
Clearly, if a = ¢ or a = d then =—a = a, so assume by way of contradiction
that a € S\ {d} but =—a > a. Let u = =—a = a. Then u € S, and by the
subclaim, —a € S\ {d}, but:

—a = (—ax(—ae=a)=>d
= (—axu)=d
u = (——a = d) by Fact(2)
(v = ——=a)
= (u = —a) by Fact(1)
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Thus u x 7a = u* (v = —a) = (uN —-a) = -a. But —a > d, so this again
contradicts Clause (2) of the hypothesis.

So by Chang’s Theorem (Theorem 3.2.19 of [Ha 1]), there is an ordered
Abelian group G and d € N(G) such that (ST, %, <) = ([d, 0], %, <). Hence
(5,4, <) 2 (T(G,d), %, <).

3 The Decomposition Theorem

In this, the main section of the paper, we prove a decomposition theorem
for the class of BL-algebras. The decomposition of an arbitrary BlL-algebra
occurs in two stages, the first of which was done by Héjek [Ha 1]. He showed
(Lemma 2.3.16 of [Ha 1]) that every BL-algebra is a subalgebra of a direct
product of BL-chains. Conversely, the fact that every subalgebra of a direct
product of BL-chains is a BL-algebra is immediate since the class of BL-
algebras is a variety. Thus, in order to classify all BL-algebras, it suffices to
classify the BL-chains. With this in mind, we begin by identifying a family of
ordered Abelian semigroups, which we call the basic forms. The fundamental
building blocks of an arbitrary BL-chain will come from this family.

Definition 3.1 Let € := (C,*,<) be an ordered Abelian semigroup. We
say that € is a basic form if one of the following holds:

1. €is a singleton {p}, where pxp = p and p < p.

2. €= N(G) for some ordered Abelian group G.

3. €= N_4(G) for some ordered Abelian group G.

4. €= T(G,d) for some ordered Abelian group G and some d € N(G).

Remark 3.2 For any basic form € = (C, x, <), if z,y € C and = > y, then
there is a largest z € C such that x x z = y.

Definition 3.3 A tower of basic forms is a sequence T = (C; : i € I) indexed
by a linearly ordered set (I, <) with a first and a last element such that each
C; := (Ci, %, <) is a basic form, C; N C; = ( for all 4,57 € I such that i # 7,
Csirst has a least element, and Gy, is a singleton.



Associated to any tower of basic forms is a canonical BL-chain Ag :=
(A, *,=, <,U,N,0,1) built from T defined by:

e A:=J{C;i:i eI}

e Forx € C;,y e Cj, x <gyifandonlyif [ <; jor (i = j and x <g¢, y)];

e (7 := the least element of Cfs, and 14 := the unique element of C',q
e Forx,y € A,
pey = TFCY for z,y € C; for some ¢ €
TY= min{z,y} forz e C,yeCji#j

It follows from Remark 3.2 that for any x,y € A with x >4 y, there is
a largest z € A with z xy z = y. So define:

For x,y € A,

1y ifr <gy

a::>qy:{ largest z € A such that x xgs 2=y ifz >5y

e Forz,y € A, z Ny = min{z,y} and z Uy = max{z, y}

Note that Ag is similar to the ordinal sum construction in Fuchs [Fu].
The verification of the following proposition is straightforward and left to
the reader:

Proposition 3.4 For any tower T of basic forms, the structure Ay con-
structed above is a BL-chain.

Conversely, we have the following theorem, which is the main result of
the paper:

Theorem 3.5 FEvery BL-chain A is isomorphic to Ag for some tower T of
basic forms.

Before beginning the proof of Theorem 3.5, we define the manner in which
we decompose any given BL-chain:

Definition 3.6 Let A be any BL-chain.
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1. For any z,y € A, we say that y stabilizes x if yxx = .
2. For any = € A, let S, := {y € A : y stabilizes z}.

3. We define an equivalence relation ~ on A by: a ~ b if and only if for
all x € A, a stabilizes z if and only if b stabilizes x.

4. For any a € A, C(a) is the equivalence class of a under ~.

Lemma 3.7 Let A be any BL-chain.

1. Foranyx € A, S, is upward closed; that is, if y < z and y € S, then
z € 5;.

2. Ifa <b, then S, C S,.

3. If x and y are in different ~-equivalence classes, then
xxy = min{z, y}.

If x ~y and y stabilizes x, then x is the <-least element of C(x).
c(1) =A{1}.
Every ~-equivalence class is a convex subset of A.

Every ~-equivalence class is closed under x.

o RS &

Ifx ~y and x <y, then x ~ (y = x).

Proof of 1: Assume y € S, and y < 2. Then zx2 > %y = x, and we
always have x x 2 < x,s0 x x z = x.

Proof of 2: Assume a < band yxb =>5b. Then yxa =y*(anNb) =
yx(bx(b=a))=bx(b=a)=anNb=a.

Proof of 3: Suppose < y. Choose b € A such that y stabilizes b but
x does not stabilize b. Let u = zxb < b, and let v = (b = u). Notice that
yxb=>,but vxb= (b= u)*xb = u, so these two imply that v < y. We
have that (y = v) xb = (y = v) * (yxb) = v xb = u. So by residuation,
(y = v) < (b = u) = v. Then by monotonicity, y x (y = v) < y * v, which
means that v < yxv. Thus y stabilizes v. But  x b = u by definition, so by
residuation, x < v. Thus y stabilizes z by (2).

Proof of 4: Choose any b € C(x). Since y stabilizes x, we must also
have that b stabilizes x, so bx x = x, hence b > .
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Proof of 5: Choose any a € C(1). Then a stabilizes every b € A, hence
a stabilizes 1. That is, ax1 =1, s0 a = 1.

Proof of 6: Assume b~ cand b < u < ¢. We will show u ~ b. First, for
any x € A, if u € S;, then ¢ € S, since S, is upward closed, hence b € S,
since b ~ c¢. Conversely, if b € S;, then u € S, again since S, is upward
closed. Thus b ~ wu.

Proof of 7: Assume b ~ c. We will show bxc ~ b. First, for any z € A, if
bxc € S, then b € S, since S, is upward closed. Conversely, if b € S, then
c € Sy as well, so bxx = z and cxx = x, hence (bxc)*x = bx(cxx) = bxx = x.

Proof of 8: If (y = z) = z then we are done. Otherwise, we have
(y = z) xy = yNx = z, which means in particular that (y = x) xy #
min{y, (y = z)}. So y and (y = x) must be in the same ~-class by (3).

Proof of Theorem 3.5: Let A be any BL-chain. Since the ~-equivalence
classes of A are convex, the ordering on A induces an ordering (/, <) on the
~-equivalence classes. For i € I, let C; be the i ~-equivalence class. By
Lemma 3.7 (7), each C; is closed under x, hence each (Cj, *, <) (with x and
< inherited from A) is an ordered Abelian semigroup which we denote by C;.
The bulk of the proof of the theorem is devoted to establishing the following
claim:

Claim: The sequence T = (C; : i € I) is a tower of basic forms.

Proof of Claim: Since C'(04) and C(14) are the first and last equivalence
classes, I has a first and a last element. Clearly C'(04) has a least element
(namely 04) and by Lemma 3.7 (5), C(14) = {14}. Thus, proving the claim
amounts to showing that each C; is a basic form. Fix any equivalence class
€ = (C, %, <). The argument splits into four cases:

Case 1 C s a singleton.
There is only one ordered Abelian semigroup of size 1 up to isomorphism.
Case 2 C does not have a <-least element.

We will show that (C,x,<) = (N(G),*, <) for some ordered Abelian
group G by applying Lemma 2.3 to €. We have already proven that C is
closed under x. Thus € inherits the property of being an ordered Abelian
semigroup directly from A. Since € does not have a <-least element, it
follows from Lemma 3.7, Clause (4) that x xy < z for all z,y € C. Towards
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verifying Clause (2) of Lemma 2.3, choose z,y € C, x > y. Let z := z = y.
Then z € C' by Lemma 3.7, Clause (8), and z x z = v.

Case 3 C has a <-least element d, |C| > 1, and for all x,y € C such that
x,y > d, we have x xy > d.

We will show that (C,*, <) & (N_x(G), *, <) for some ordered Abelian
group G. Let S := C \ {d}. Since x xy > d whenever z,y > d, S is
closed under %, hence (S, %, <) is a nonempty ordered Abelian semigroup. So
S = N(Q) for some ordered Abelian group G by the same argument as that

given in Case 2. Extend this isomorphism by mapping d to —oo, so that
C= N_(G).

Case 4 C has a <-least element d, and there are x,y € C, x,y > d such
that x xy = d.

We will show that (C,x, <) 2 (T'(G,d),*, <) for some ordered Abelian
group G. We do this by showing that € satisfies the hypotheses of Lemma
2.4: Clause (2) holds by Lemma 3.7 (4), and Clause (3) holds by assumption.
So we need only verify Clause (4). Assume z,y € C and z > y. Let
z:= (r = y). By Lemma 3.7, Clause (8), z € C. Since A is a BL-chain, z is
the largest element of A (and hence of C) such that x x4 z = y. Since *e is
inherited from %4, z is the largest element of C' such that z x¢ z = y.

To complete the proof of the theorem, let Ay be the BL-chain associated
to the tower T = (C; : ¢ € I). Clearly, the universe of Ag is (J{C; : i € I},
which is precisely the universe of our original A. We claim that the identity
map between A and Ag is an isomorphism. We show this by establishing
that the functions, relations, and constants correspond. The verification
of these is routine. As an example, we establish the correspondence for x:
When z,y are in the same €, x x5 y is inherited from A, so there is nothing
to show. When z,y are from distinct ~-equivalence classes, it follows that
x *yy = min{x,y} = x x4 y by Lemma 3.7 (3). The other cases are also
easily established.

The following corollary follows immediately since every BL-algebra is a
subalgebra of a direct product of BL-chains.

Corollary 3.8 For any BL-algebra M, there is a collection of basic forms
{Cy i € 1,5 € J} so that M C [[{A; :j € J} and each A; = Ag; where
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4 On the Uniqueness of Decompositions

We begin this section by giving examples of how the three ‘classical’ BL-
chains decompose into ~-equivalence classes via the construction in Theo-
rem 3.5.

In what follows, R denotes the additive ordered Abelian group of the
reals.

Example 4.1 1. The standard Lukasiewicz algebra:
[0, 1]§, denotes the BL-chain with universe [0, 1] and operations defined
by:
zxy=max{0,z+y— 1}
oy — 1 ifx <y
y= 1l—z+4+y ifz>y
Then [0,1]f, = AgL, where T3 = (Cq, C;), where
(Co,x, <) 2 (T(R, —1),%, <) and C] is a singleton.

2. The standard Godel algebra:
0, 1] denotes the BL-chain with universe [0, 1] and operations defined
by:
zxy = min{z,y}
Sy = 1 ifx<y

T=Y= y ifz>y
Then [0, 1] = .ATG, where Ty = (C; : i € [0,1]), where every C; is a
singleton.

3. The standard Product algebra:
[0, 1] denotes the BL-chain with universe [0, 1] and operations defined

by:
THxY =21TY
oy — 1 ife <y
y= y/r ifx>y

Then the decomposition of [0, 1|7 given by ~-classes yields a decom-
position [0,1];7 = Agy, where Tpp = (Co, €1), where (Cp,*,<) &
(N-(R),*, <) and C; is a singleton. However, note that [0, 1]
also isomorphic to .Af;h, where ‘J'i-[ = (Cy, €y, Cy), where (Cy, %, <)
(N(R),*, <) and both Cjy and C; are singletons.

IR &
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Although Theorem 3.5 ensures us that any BL-chain A is isomorphic to
Ag, where T is the tower of ~-equivalence classes, the last example indi-
cates that different towers can generate isomorphic BL-chains. Specifically,
a singleton and a copy of N(G) can be fused together to produce a copy
of N_o(G). We argue that this phenomenon is the only obstruction to the
uniqueness of a decomposition. More formally, we have the following defini-
tions:

Definition 4.2 Given a tower of basic forms (C; : 4 € I) and an ordered
pair (z,') € I?, we say that (€;, ;) is a reducible pair if 7' is the immediate
successor of i, C; is a singleton, and €y = N(G) for some ordered Abelian
group G. A tower of basic forms is irreducible if it has no reducible pairs.

Clearly, for every tower T of basic forms, there is an irreducible tower J’
of basic forms such that Ay = Ag.. The tower T’ is obtained by replacing
each reducible pair (C;, Cy) by a single basic form D; = €; U €. Also, it is
easy to see that for any BL-chain A, the tower of basic forms given by the
~-equivalence classes is irreducible.

Definition 4.3 Two towers of basic forms (C; : ¢ € I) and (D, : j € J) are
equivalent if there is a bijection g : I — J such that C; & Dy, for each i € I.

In the proof of the next lemma, we will repeatedly use the following fact,
which is verified by inspecting each of the four types of basic forms:

Fact: If € is any basic form, then for all a,b € C,
axb=1>0 ifand only if b= minC.
In particular, a is an idempotent (that is, axa = a) if and only if a = min C.

Lemma 4.4 Suppose that the BL-chain A is canonical for each of the irre-
ducible towers of basic forms T =(C;:i € I) and T' = (D; : j € J). Then
there is a bijection g : I — J such that €; = Dy for alli € 1.

Proof: It suffices to show that if C; is a basic form in T and D; is a basic

form in 77 and C; N D; # 0, then C; = D;.
Towards proving this, we first show that
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whenever (C; \ minC;) N D; # 0 or C; N (D; \ min D;) # (. Since the cases
are symmetric, assume a € (C; \ min C;) N D;. Since a is not an idempotent,
a # minD;. So, for any b € C; \ minC;, a * b < min{a,b}, so b € D,.
Again, since b is not an idempotent, b is not the minimal element of Dj,
hence b € D; \min D;. Conversely, if b € D; \ min D;, then a*xb < min{a, b},
so b € C; \ min C;, which establishes (1).

Now, to prove the lemma, suppose that C; N D; # (. We argue that C;
is a singleton if and only if D; is a singleton. Since the cases are symmetric,
assume by way of contradiction that C; = {a}, a € Dj, and |D,| > 1. Note
that since a is an idempotent, @ = minD,. Since D; is not a singleton,
D; must be one of the three other basic forms. Clearly, D; 2 N(G) for any
ordered Abelian group G since D; has a minimal element. If D; = T'(G, d) for
some ordered Abelian group G and some d € N(G), then there is some b € D;
such that b > a and bxb = a. But then since every basic form is closed under
%, it must be that b € C;, which is a contradiction. Thus, it must be that
D; = N_,(G) for some ordered Abelian group G. So D; \ minD; = N(G).
Now choose any b € D; \ min D;. Let’s say b € Cy for some ¢’ € I. For
any c in the interval (a,b), a < ¢xb < ¢, hence ¢ € Cy. Since the entire
interval (a,b) C Cy, ¢’ must be an immediate successor of i. Moreover, Cj
cannot have a minimal element. That is, (C;, Cy) is a reducible pair, which
contradicts T being irreducible.

So we now assume that neither C; nor D; is a singleton. If, in addi-
tion, neither C; nor D; has a minimal element, then C; = D; follows from
Equation (1). If both C; and D; have minimal elements and are not sin-
gletons and C; N D; # 0, then there is some b € (C; \ minC;) N Dy, so
Ci\minC; = D; \ min D;. But minC; is the greatest element of A below
C; \ minC;, and dually for D;, so minC; = minD;. Hence C; = D; as
required.

Finally, assume that neither C; nor Dj is a singleton, but one of these, say
C}, has a minimal element, and D; does not. We argue that these conditions
imply C; N D; = (. To see this, assume by way of contradiction that some
b e C;NDj. Since D; does not have a minimal element, b x b < b, hence
b # minC;. So, it follows from (1) that C; \ minC; = D; \ minD; = D;.
Furthermore, since D is a basic form with no minimal element, D; = N(G)
for some ordered Abelian group G. Look at a = min C;. Choose j' € J such
that a € Dj. Since a is an idempotent, a is the minimal element of D;. But,
since a is the greatest element below C; \ minC;, a is the greatest element
below D;. Hence (D,/, D;) is a reducible pair, contradicting our assumption
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about 7.

Proposition 4.5 For any pair of irreducible towers T and T', Ay = Aq if
and only if T and T' are equivalent.

Proof: From right to left is immediate. On the other hand, suppose
f: Ay = Ag is an isomorphism of BL-chains. Then the tower T, = (f(C;) :
i € I) (where T = (C; : i € I)) and T satisfy the requirements of Lemma 4.4.
Thus, there is a bijection g : I — J such that f(C;) = Dy for all i € I.
This function g witnesses the equivalence of T and TJ".

Finally, we remark that unlike the situation for saturated BL-chains, a
decomposition theorem for the full class of BL-chains cannot rely on idem-
potents. This is best demonstrated by exhibiting a wide class of BL-chains
whose idempotents are trivial:

Example 4.6 Let [ be any linear order and let (G; : i € I) be any sequence
of ordered Abelian groups. Let T = Cgrsy — (C; : ¢ € I) —~ Clast, Where
Chirst and Clug are singletons and each €; 2 N(G;) for each i € I. Then the
canonical BL-chain As has only two idempotents, namely Oy and 1.

5 Finite and Finitely Universal BL-Chains

Definition 5.1 A truncation 7'(G, d) is divisible by n (respectively, divisible)
if d is divisible by n (respectively, divisible) as an element of G.

For each positive integer m, let Z* denote the truncation of N(Z, +, <)
at —m. The universe of Z7, is {—1,-2,..., —m}. Let +,, denote *r(z,—m).

Note that Z7 is the unique one-element ordered Abelian semigroup. For
any positive integer m, it is clear that Z7, is divisible by m. Further, if C is
any truncation, then € is divisible by m if and only if there is an embedding
of Zy, into € as an ordered Abelian semigroup. We begin by classifying the
finite BL-chains.

Lemma 5.2 If T(G,d) is any truncation with exactly m elements, then
Zr, = T(G,d) as ordered Abelian semigroups.
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Proof: Let a € T(G,d) be maximal. Let £ be the least integer such that
ka = d. Since T(G, d) has m elements, we know k£ < m. However, if k£ < m,
then by the pigeonhole principle there are an [ and a b such that 1 <[ < k
and la > b > (I 4+ 1)a. Let ¢ := b — la. Then ¢ € T(G, d), contradicting the
maximality of a. Hence k& = m. It follows that the map f : Z¥, — T(G,d)
defined by f(—!) = la is an isomorphism of ordered Abelian semigroups.

Proposition 5.3 If A is a finite BL-chain, then A = Ag for some tower T
of the form (Z’;j 17 < k), where ny, = 1.

Proof: By Theorem 3.5, A = Aqg for some tower J. Clearly, the number
of basic forms must be finite, and each basic form must be finite. In par-
ticular, no basic form can be a negative cone or an extended negative cone.
Thus, by viewing a singleton as isomorphic to Z7, every basic form in 7T is a
finite truncation. Thus, this lemma follows immediately from Lemma 5.2.

We next show that the class of finite BL-chains has a certain universality
property with respect to the notion of finite embedding.

Definition 5.4 Let A, B be BL-chains. Let X be a finite subset of B. A
map f: X — A is a finite embedding if it satisfies the following conditions:

1. For all a,b € X with axz b € X, f(a*pb) = f(a)*xa f(b).

2. Forall a,b € X, if a <g b, then f(a) <4 f(b).

3. Foralla,b€ X witha =3 b€ X, f(a=5b) = f(a) =4 f(b).
4. If 0 € X, then f(05) = 04.

5. If 13 € X, then f(1g) = 14.

Note that the existence of a finite embedding from X into B is weaker than
saying that the substructure generated by X embeds into B. In particular,
the substructure generated by a finite subset may be infinite.

Proposition 5.5 For any BL-chain B and any finite X C B, there is a
finite BL-chain A and a finite embedding X — A.
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Before proving Proposition 5.5, we begin by giving two algebraic results
which will be used within the proof. The results are very old, but sketches of
proofs are included since the authors do not know of an appropriate reference.

Lemma 5.6 1. Every ordered Abelian group can be extended to a divisible
ordered Abelian group.

2. The extended theory of divisible ordered Abelian groups is a complete
theory.

Proofs: Let (G, *,<) be any ordered Abelian group. Since the underly-
ing Abelian group (G, *) is torsion-free, there is a minimal, divisible Abelian
group (D,x) containing (G, ). (D is unique up to isomorphism fixing G).
Expand (D, x) by calling an element d € D positive if and only if nd = g for
some positive integer n and some positive element g € G. It is routine to
verify that (D, x, <) is a divisible ordered Abelian group extending (G, *, <).

The proof of (2) is a standard exercise in model theory. The usual proof
(see e.g., [RZ] or [Hod]) is to show that the theory of infinite, divisible,
ordered Abelian groups admits elimination of quantifiers in the language of
ordered Abelian groups {*, <,0}.

Definition 5.7 Let § := (5, %, <) be an ordered Abelian semigroup. Let X
be a subset of S. Let m € w\ {0}. A map ¢ : X — Z, is well-behaved if:

1. Forall z,y € X, if x xgsy € X, then g(z *s y) = g(x) +m 9(y)-
2. For all z,y € X, if z <g y, then g(z) < g(y).

3. If z,y,2 € X and z is the largest element of § such that x xg z = v,
then g(z) is the largest element of Z*, such that g(z) 4+, g(z) = g(y).

The following lemma is similar in spirit to the use of the Gurevich-Kokorin

Theorem in the proof of the completeness of Lukasiewicz logic in Lemma
3.2.11 of [Ha 1].

Lemma 5.8 If C is isomorphic to either of T(G,d) or N(G) for some or-

dered Abelian group G and X 1is any finite subset of C, then for some positive
integer m there is a well-behaved embedding g : X — Z,.
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Proof: If € = T(G,d) for some ordered Abelian group G, then let
e := d. Otherwise, if € 2 N(G) for some ordered Abelian group G, then let
e:=3min(X). Let Y := X U{0,e} U{z *¢y : z,y € X}. By Lemma 5.6,
there is a divisible ordered Abelian group D such that G C D. Since the
theory of divisible ordered Abelian groups is complete, there is an order-
preserving f : Y < Q such that f(z x¢ y) = f(z) + f(y) for all z,y € X.
Let H be the least common denominator of {f(y) : y € Y}. Composing f
with multiplication by H yields an order-preserving g : Y < Z such that
g(x*xgy) = g(x)+g(y) for all z,y € X. Let m := g(e). It is routine to verify
that g|x is a well-behaved embedding of X into Z,.

Proof of Proposition 5.5:

Let B be any BL-chain. Let B = Bqs, where T is the tower (C; : i € I),
by applying Theorem 3.5. By decomposing any extended negative cone into
a negative cone with a point below it, we may assume that each C; is either a
singleton, or is isomorphic to some T'(G, d) or to some N(G). Let X be any
finite subset of B. We may assume that 13 € X. Let ip < i1 < ... < iy from
I be the finitely many indices ¢ such that X N C; # (). By Lemma 5.8 (and
the fact that any one element ordered semigroup is isomorphic to Z7), for
each k£ < N, there is a positive integer n; such that there is a well-behaved
embedding g, : X N C;, — Zy . Let T:=(Z; :k < N), where ny =1, and
let Ag be the canonical BL-chain built from . The map g := [J{gx : k£ < N}
is a finite embedding of X into As.

Corollary 5.9 Every existential sentence consistent with the theory of BL-
chains is true in some finite BL-chain.

Proof: Let 376(Z) be an existential sentence consistent with the theory
of BL-chains, where 6 is quantifier-free. Choose B a BL-chain and b from B

=

such that B = 0(b). By Proposition 5.5, there is a finite BL-chain A and a
finite embedding ¢ : b — A. Then A = 6(g(b)), hence A = 370(Z).

The next corollary follows immediately:
Corollary 5.10 The universal theory of BL-chains is decidable.

We next seek to classify the collection of all BL-chains which embed every
finite BL-chain. Examples of such chains follow from Lemma 2 of [BHMV].
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Definition 5.11 Let B be a BL-chain. B is finitely universal if every finite
BL-chain embeds into B as a BL-chain.

The property of being finitely universal will have consequences for uni-
versality with respect to provability from the BL-axiom system, as we will
see in Corollary 5.15. We will show that there are several equivalent ways of
characterizing a BL-chain as finitely universal.

Definition 5.12 Let T := (C; : ¢ € I) be a tower of basic forms. We will say
that T is full if for all £ € w and all finite sequences (n,; : j < k) of positive
integers, there are ig < i; < ... < i1 from I such that i; = min(/) and for
all j <k, €;; is a truncation divisible by n;.

Note that if T is full, then Cg. is a divisible truncation.

Theorem 5.13 Let A be any BL-chain. The following conditions are equiv-
alent:

1. A s finitely universal.
A = Aqg for some full tower T.

For every BL-chain B, every finite subset of B finitely embeds into A.

e e

FEvery existential sentence consistent with the theory of BL-chains is
true in A.

Proof: (1 = 2): Suppose that A is finitely universal. From Theorem 3.5,
we know that A = Ag for some tower T = (C; : i € I). We wish to show that
T is a full tower. Choose any k£ € w and any sequence of integers (n; : j < k).
We may assume each n; > 1. Let J':=(Zy, : j < k), where n;, =1, and let
g be an embedding of the canonical BL- chain B into A. For each j <k,
let b; := min(Z;, ), and for each j < k, let i; € I be such that g(b;) € Cj;.
Since 0g,, = by and g(0z,,) = 04, we know that i, = min(I). Further, since
distinct idempotents of Bg» must map to distinct idempotents of A under g,
we have that g(b;) = min(Cj;) for each j < k. Thus ip < 41 < ... < Qg1
since g is order-preserving. As well, for any j < k and any b € Z} o there is
some m € w such that mb = b;, hence mg(b) = min(Cj;). Since n; > 1 for
each j <k, €;; must be a truncation. Furthermore g(b) € C;; for all b € Z, .
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Hence 9|sz is an embedding of ordered Abelian semigroups into €;. That
is, €;; is a truncation divisible by n;.

(2 = 3): Let B be any BL-chain, and let X be any finite subset of B.
By Proposition 5.5, there is a finite BL-chain M and a finite embedding
g : X — M. By Proposition 5.3, M = Mg for some tower T’ of the form
(Zj, :k < N), where ny = 1. Let g : X — Mg be an embedding satisfying
all of the conditions of Definition 5.4. Now we apply the definition of T being
a full tower to the sequence of numbers (n; : k < N) to say that there are
Jo < J1 < ... < jn—1 from J such that D; is a truncation divisible by ny
for all k < N and jo = min(J). For each k < N, let f; : Z; — Dj, be
defined by fx(—m) := m(d/ny), where d = min(D;,). Let f = |J{fx : k£ <
N} U{{1nm,14)}. The composition f o g is a finite embedding of X into A.

(3 = 4): This is analogous to the proof of Corollary 5.9.

(4 = 1): Let B be any finite BL-chain. Let Ag denote the atomic
diagram of B. Let the tuple b enumerate all elements of B, and choose 0(%)
so that Ag = 6(b). By our construction, 376(Z) is true in B, hence by (4),
we have A = 376(Z). Choosing witnesses for 6 in A gives our embedding of
B into A.

Note that Clause (4) implies that the finitely universal BL-chains form
an elementary class.

As examples, if T is any tower of basic forms that contains infinitely many
divisible truncations and whose minimal element is a divisible truncation,
then the associated BL-chain Ag will be finitely universal. In particular,
there are many decidable ones. Let U be the BL-chain with universe [0, 1]NQ,
where for each k > 0 the restriction of U to kLH, z—ié) N Q is isomorphic to
T(Q,—1). Then U is finitely universal. Further, if we choose a recursive
bijection between w and [0,1] N Q, then the graphs of < and the operations
*, = are recursive.

We conclude with some applications of the previous results to the Basic
Logic (BL) proof system. In [Ha 1] Hajek introduces a (recursive) set of
propositional statements, called the BL-axioms. He proves a completeness
theorem for this logic, which involves evaluations into arbitrary BL-chains.

Definition 5.14 For a propositional formula ¢, let S(p) denote the set of
subformulas of ¢ (including 0 and 1). An evaluation into a BL-chain A is a
function e : S(¢) — A satisfying:

e ¢(0)=0,¢e(1) =1;
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o c(a&f) =e(a) xe(B) for all (a&f) € S(p);
e c(a— ) =e(a) = e(p) for all (a« — B) € S(p).

Theorem 2.3.19 of [Ha 1] shows that a propositional formula ¢ is provable
from the BL-axiom system (i.e., is a BL-tautology) if and only if e(p) = 14
for all BL-chains A and all evaluations e into A. We offer two strengthenings
of this result. Note that for any propositional formula ¢, one can construct
an existential sentence 6, in the language of BL-chains such that for any
BL-chain B, B |= 6, if and only if there is an evaluation e : S(¢) — B such
that e(p) < 1. Details of this coding can be found in Definition 2.3.17 of
[Ha 1].

Corollary 5.15 1. A propositional formula ¢ is a BL-tautology if and
only if e(¢) = 14 for all finite BL-chains A and all evaluations e into
A

2. Let A be any finitely universal BL-chain. A propositional formula ¢ is
a BL-tautology if and only if e(p) = 14 for every evaluation e into A.

Proof: (1) Assume that ¢ is not provable from the BL-axioms. It follows
from Theorem 2.3.19 of [Ha 1] that the existential sentence 6, associated to
© is consistent with the theory of BL-chains. Thus, by Corollary 5.9, some
finite BL-chain A = 6,. That is, there is an evaluation e satisfying e(¢) < 14.

The proof of (2) is analogous, using Theorem 5.13 (4) in place of Corol-
lary 5.9.

Finally, we are able to give a new proof of the decidability of the BL-
axiom system. In [BHMV], Baaz et.al. not only proved decidability, but
they showed that the set of BL-tautologies are co-NP complete.

Corollary 5.16 The set of BL-tautologies is decidable.

Proof: Recall that the (codes of) axioms of BL are recursive, so the
set of BL-tautologies is recursively enumerable (r.e.). We will show that
this set is co-r.e. as well by considering the finitely universal BL-chain U
exhibited above. Suppose that ¢ is not a BL-tautology. Every mapping of
the variables of ¢ into the universe of U extends uniquely to an evaluation
e : S(¢) — U. Further, since the graphs of the basic operations on U are
recursive, it follows that the question of determining whether e(¢) = 1y for a
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particular map of the variables of ¢ into U is recursive. But, it follows from
Corollary 5.15 (2) that since ¢ is not a BL-tautology, there is an evaluation
e : S(p) — U satisfying e(¢) < 1y. Thus, since the set of finite sequences
from U is recursive, the set of BL-tautologies is decidable.
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