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Abstract. We consider several ways of decomposing models into parts of

bounded size forming a congruence over a base, and show that admitting any
such decomposition is equivalent to mutual algebraicity at the level of theories.

We also show that a theory T is mutually algebraic if and only if there is a

uniform bound on the number of coordinate-wise non-algebraic types over
every model, regardless of its cardinality.

1. Introduction

A key theme in model theory is to identify which theories have models that
admit a structure theory, in the sense that their models can be decomposed into
simple pieces that relate to each other in a controlled way. Intertwined with this
is the theme of determining the complexity of theories by counting the number of
types over models. The archetypal example of a structure theory is for classifiable
theories, whose models are determined by a well-founded tree of countable elemen-
tary substructures [9, 5]. Integral to the analysis of classifiable theories are the
properties of stability and superstability, both initially defined by type-counting.

Here we investigate a family of much stronger decompositions for models, and
show that they are all equivalent at the level of theories. In particular, for each type
of decomposition, the property that all models of T admit such a decomposition is
equivalent to T being mutually algebraic. (Mutual algebraicity is a condition gen-
eralizing bounded-degree graphs, and already has several characterizations [7]. For
this note, all we need is contained in Facts 2.3 and 2.4.) Type-counting plays a fun-
damental role in the proof, and we almost simultaneously obtain a characterization
of mutual algebraicity in terms of a very strong type-counting condition.

Stability in a cardinal κ is defined by there being only κ consistent types over
every model M of size κ. This is as low as possible since for every m ∈ M , there
exists the algebraic type containing x = m. But by only considering types p(x̄) that
are coordinate-wise non-algebraic over M , i.e. with no variable in x̄ set equal to an
element of M , we may do better for some theories. Following [1, Corollary 6.1.8],
we call a theory bounded if there is a uniform bound on the number of coordinate-
wise non-algebraic types over every model, regardless of its size. We show a theory
is bounded if and only if it is mutually algebraic, and in fact the bound on the
number of coordinate-wise non-algebraic types is 2|T |.
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Our decomposition conditions are more involved, but they are also rooted in
ideas from [1]. There, it is shown for a monadically stable theory T , i.e. every
expansion of T by unary predicates remains stable, every model of T admits a
decomposition into an independent tree of countable elementary submodels, as in
the classifiable case but without any need to complete to prime models. Our notion
of decomposition (in particular, what we call a (|T |,QF)-model decomposition)
corresponds to such a tree-decomposition of depth one.

Thus a corollary of our result on decompositions is that the monadically stable
theories of depth one are the same as the mutually algebraic theories. This gen-
eralizes the corresponding result for the ω-categorical case, which follows from the
classification of ω-categorical monadically stable theories in [6] and the characteri-
zation of ω-categorical mutually algebraic theories in [2].

2. Preliminaries

Rather than work with the coordinate-wise non-algebraic types from the intro-
duction, we recall a notion of complexity rtp∆(N,B) that was used by the authors
in [3], which counts the number of ∆-types over B that are realized in (N −B)<ω.
When B is a model and N is |B|+-saturated, then rtp∆(N,B) counts the number
of consistent coordinate-wise non-algebraic ∆-types over B.

Definition 2.1. For a fixed language L, a set ∆ of L-formulas is reasonable if it
contain all quantifier free formulas and is closed under permutation of variables and
boolean combinations. Examples include QF, boolean combinations of Σn, or FO,
the set of all L-formulas.

For an L-structure N and a subset B ⊆ N , and c̄ ∈ (N −B)k, let

tp∆(c̄/B) = {ϕ(x̄, b̄) : ϕ(z̄) ∈ ∆, x̄ȳ a partition of z̄, b̄ ∈ Blg(ȳ), N |= ϕ(c̄, b̄)}
and let rtp∆(N,B) denote the number of ∆-types over B realized in (N − B)<ω.
When ∆ = FO, we simply write rtp(N,B).

We record the following facts about rtp(N,B).

Fact 2.2. Let B ⊆ N be arbitrary.

(1) If QF ⊆ ∆ ⊆ FO, then rtpQF(N,B) ≤ rtp∆(N,B) ≤ rtpFO(N,B);
(2) rtp(N,B) ≤ ℶω+1(rtpQF(N,B)).

(3) Let L+ be an expansion of L by finitely many unary predicates, and N+ a
corresponding expansion of N . Then rtpL+(N+, B) ≤ ℶω+1(rtpQF(N,B)).

Proof. (1) is immediate as for any c̄, d̄ ∈ (N − B)k, tp(c̄/B) = tp(d̄/B) implies
tp∆(c̄/B) = tp∆(d̄/B) implies tpQF(c̄/B) = tpQF(d̄/B).

(2) This is Lemma 4.6 of [3].
(3) This follows from the proof of Lemma 4.7 of [3].

□

We now state the two facts we will need about mutually algebraic theories, the
first a non-structure theorem and the second a structure theorem.

Fact 2.3 ([4, Theorem 3.2]). Suppose T is not mutually algebraic. Then there is
some expansion T+ of T by finitely many unary predicates and a model N+ |= T+

with a definable X ⊂ N+ and definable E ⊂ X2 such that E is an equivalence
relation with infinitely many classes, each infinite.
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Fact 2.4 ([7, Propositions 4.2, 4.4]). Suppose T is mutually algebraic, and M ⪯
N |= T . Then N−M is partitioned into components {Ci : i ∈ I } forming a forking-
independent set over M , and such that each Ci = acl(ci) \M for any ci ∈ Ci and
M ∪ Ci ⪯ N .

From each fact we prove a corresponding lemma, which together will quickly
yield our main results.

Lemma 2.5. Suppose T is a non-mutually algebraic L-theory, and let ∆ be a
reasonable set of L-formulas. Then for every cardinal µ, there is a cardinal λ >
µ and models M ≺ N |= T with |M | = λ and |N | = λ+ such that for every
intermediate set M ⊆ Y ⊂ N with |Y | = λ, we have rtp∆(N,Y ) ≥ µ.

Proof. Consider an expansion T+ of T by finitely many unary predicates, N+ |=
T+, and E ⊂ (N+)2 as in Fact 2.3. Fix λ ≥ max(ℶω+1(µ), |T |). By possibly
passing to an elementary extension, we may assume that E has at least λ classes
and each E-class has size λ+. By possibly adding another unary predicate, we may
assume E has exactly λ classes.

Let M+ ≺ N+ be a Skolem hull of a transversal of E, so |M+| = λ. Then for
any intermediate set M+ ⊆ Y ⊂ N+ with |Y | = λ, both Y and N+ − Y contain a
point from each E-class, so rtp(N+, Y ) ≥ λ.

Finally, we takeM,N to be the L-reducts ofM+, N+. By Fact 2.2, rtp∆(N,Y ) ≥
µ. □

Remark 2.6. An alternate proof of Lemma 2.5 follows from Theorem 6.1 of [8]. One
can use the infinitely many infinite arrays given by that theorem to obtain many
types, in place of the infinitely many infinite E-classes.

Before the next lemma, we introduce a doubly parameterized family of decompo-
sitions, where we vary the size of the sets using κ and the strength of the congruence
(see Definition 2.7) by ∆, and we may also vary whether the decomposition is into
subsets or elementary substructures. Pleasingly, we will see in Theorem 3.1 that at
the level of theories, admitting essentially any of these decompositions is equivalent
to mutual algebraicity.

Definition 2.7. Given a language L, fix a set ∆ of L-formulas and fix a cardinal
κ.

A κ-partition of an L-structure N = A ⊔
⊔
{Bi : i ∈ I} with |A| ≤ κ and each

|Bi| ≤ κ.
A κ-partition induces an equivalence relation∼∆ on (N\A)<ω, defined as follows.

As notation, for c̄ ∈ (N − A)k, if we write c̄ = c1; . . . ; cn, then there are distinct
⟨i1, . . . , in⟩ from I such that each cℓ ⊆ Biℓ . To ease notation, we write e.g., c1 as
being an initial segment of c̄, although it need not be.

Given c̄, d̄ ∈ (N − A)<ω, we say c̄ ∼∆ d̄ if and only if there are no repeated
elements in either tuple taken individually and we can write c̄ = c1; . . . ; cn and
d̄ = d1; . . . ;dn with tp∆(cℓ/A) = tp∆(dℓ/A) for every 1 ≤ ℓ ≤ n.

A κ-partition N = A ⊔
⊔
{Bi : i ∈ I} is a ∆-congruence over A if, for all

c̄, d̄ ∈ (N −A)<ω, c̄ ∼∆ d̄ implies tp∆(c̄/A) = tp∆(d̄/A).
A (κ,∆)-decomposition of N is a κ-partition N = A ⊔

⊔
{Bi : i ∈ I} that

is a ∆-congruence over A, and a (κ,∆)-model decomposition of N is a (κ,∆)-
decomposition of N in which A and each A ∪ Bi are universes of elementary sub-
structures of N .
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For an L-theory T , we say the pair (κ,∆) is viable if κ ≥ |T | and ∆ is reasonable
as in Definition 2.1.

We say an L-theory T admits (κ,∆)-decompositions if every N |= T with |N | ≥
|T | has a (κ,∆)-decomposition, and T admits (κ,∆)-model decompositions if every
N |= T with |N | ≥ |T | has a (κ,∆)-model decomposition.

Lemma 2.8. Let T be mutually algebraic and let M ≺ N |= T with |M | ≤ |T |. Let
{Ci : i ∈ I } be the partition of N −M into components as in Fact 2.4. Then for
any reasonable ∆, this partition is a (|T |,∆)-model decomposition over M .

Proof. By Fact 2.4, for each i we haveM∪Ci ⪯ N and |Ci| ≤ |T | since Ci ⊆ acl(Mc)
for some singleton. So it remains to check that the partition is a ∆-congruence over
M . In fact, we will show the stronger statement that for any formula ϕ, the partition
is a ϕ-congruence over M . This will follow from the fact that in a stable theory, if
a tuple can be partitioned into two independent subtuples over a model M , then
the ϕ-type of the tuple over M is determined by the ϕ-type of the two independent
subtuples over M . We write the details below.

Fix a formula ϕ(z̄) and tuples c̄, d̄ ∈ (N −M)≤|z̄| with c̄ ∼ϕ d̄. As in Definition
2.7, let c̄ = c1; . . . ; cn and d̄ = d1; . . . ;dn with tpϕ(cℓ/M) = tpϕ(dℓ/M) for every
1 ≤ ℓ ≤ n. Choose a (possibly trivial) partition of z̄ to give ϕ(x̄; ȳ). Choose
m̄ ∈ M |ȳ| and c′ ⊆ c1c2 with |c′| = |x̄|, and let c′1 = c′ ∩ c1, c

′
2 = c′ ∩ c2.

Since c1 |⌣M
c2, and forking-independence agrees with finite satisfiability over a

model (since mutually algebraic theories are stable), we have N |= ϕ(c′1c
′
2, m̄) if

and only if there exists some m̄′ ⊂ M such that N |= ϕ(c′1m̄
′, m̄). Using analogous

notation for d̄, we have that N |= ϕ(d′
1d

′
2, m̄) if and only if there exists some

m̄′ ⊂ M such that N |= ϕ(d′
1m̄

′, m̄). Since tpϕ(c1/M) = tpϕ(d1/M), this gives
N |= ϕ(c′1c

′
2, m̄) ⇐⇒ N |= ϕ(d′

1d
′
2, m̄), so tpϕ(c1c2/M) = tpϕ(d1d2/M). By

continuing inductively, we may show tpϕ((c1c2)c3/M) = tpϕ((d1d2)d3/M), and
eventually that tpϕ(c/M) = tpϕ(d/M). □

Our last lemma will be useful when using decompositions to bound the number
of realized types.

Lemma 2.9. Let T be a theory and (κ,∆) be viable. Let N |= T and let {Bi :
i ∈ I} be any (κ,∆)-decomposition of N over A. For any non-empty J ⊆ I let
BJ =

⋃
j∈J Bj. Then for any J ⊆ I, rtp∆(N,ABJ) ≤ 2κ.

Proof. As |A| ≤ κ, there are at most 2κ ∼∆-classes in (N − A)n for each n. Thus
it will suffice to show that c̄ ∼∆ d̄ ⇒ tp∆(c̄/ABJ) = tp∆(d̄/ABJ) for every c̄, d̄ ⊂
N\ABJ . From the original congruence condition and the fact that c̄, d̄ are disjoint
from BJ , we have tp∆(c̄BJ/A) = tp∆(d̄BJ/A), and so tp∆(c̄/ABJ) = tp∆(d̄/ABJ).

□

3. Main results

In this section, we give some characterizations of mutual algebraicity for a the-
ory. One is in terms of type-counting, while the others concern various types of
decomposition.

Theorem 3.1. The following are equivalent for any theory T .

(1) For some viable (κ,∆), T admits (κ,∆)-decompositions.
(2) For all viable (κ,∆), T admits (κ,∆)-decompositions.
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(3) For some viable (κ,∆), T admits (κ,∆)-model decompositions.
(4) For all viable (κ,∆), T admits (κ,∆)-model decompositions.
(5) T is mutually algebraic.

Proof. It is clear that (1) − (3) follow from (4), and (5) ⇒ (4) is immediate from
Lemma 2.8.

We now verify (1) ⇒ (5). By way of contradiction, suppose there is some viable
(κ,∆) such that T admits (κ,∆)-decompositions, but T is not mutually algebraic.

Let µ > 2κ, let M ≺ N |= T and λ > µ be as in Lemma 2.5, and let A ⊔⊔
{Bi : i ∈ I } be a (κ,∆)-decomposition of N . Let J ⊂ I be minimal such that

ABJ , in the notation of Lemma 2.9, covers M . Then M ⊆ ABJ and |ABJ | = λ,
so rtp∆(N,ABJ) ≥ µ > 2κ by Lemma 2.5. But this contradicts Lemma 2.9. □

In proving (1) ⇒ (5) in Theorem 3.1, there is a tension between taking ∆ = QF
and ∆ = FO. On the one hand, our non-structure result for non-mutually al-
gebraic theories yields an FO-definable equivalence relation in a unary expan-
sion. However, although it is easy that taking a unary expansion preserves admit-
ting (κ,QF)-congruences, this is not clear for (κ,FO)-congruences, which prevents
pulling the non-structure back to the original theory. By instead passing through
type-counting, Lemma 2.9 allows us to relate ∆ = QF and ∆ = FO. We now also
characterize mutual algebraicity in terms of this sort of type counting.

Definition 3.2. Call a (possibly incomplete) theory T bounded if there is some
cardinal κ such that for any M |= T (of any size), there are at most κ coordinate-
wise non-algebraic types over M . Equivalently, rtp(N,M) ≤ κ for all M ⪯ N |= T .

The notion of a theory being bounded was investigated in [1, Corollary 6.1.8],
which proves that T is bounded if and only if it is strongly decomposable (i.e.
admits (|T |, QF)-model decompositions).

Theorem 3.3. A theory T is mutually algebraic if and only if T is bounded. Fur-
thermore, if T is bounded then it is bounded by 2|T |, and if T is not bounded then
it is not bounded even for quantifier-free types.

Proof. First, assume T is mutually algebraic and let M ⪯ N |= T . Let M0 ⪯
M with |M0| ≤ |T |, and consider the partition of N over M0 into components
{Ci : i ∈ I } as in Fact 2.4. By Lemma 2.8, this is a (|T |,FO)-decomposition of N
over M0. Since M is algebraically closed, we have M = M0CJ , in the notation of
Lemma 2.9, for some J ⊂ I. Thus by Lemma 2.9, rtp(N,M) ≤ 2|T |.

Conversely, if T is not mutually algebraic, the statement holds by Lemma 2.5. □

Remark 3.4.

(1) In the definition of boundedness, it is crucial that the base be restricted to
elementary submodels of N . As an example, take L = {R} and let N be an
infinite model of ‘mated pairs,’ i.e., R is symmetric, irreflexive, and every
element of N is R-related to exactly one element. Then Th(N) is mutually
algebraic and totally categorical. But, for any infinite cardinal λ, taking N
to be the model of size λ and B to be a set of R-representatives, we have
rtp(N,B) = rtpQF(N,B) = λ.

(2) The bound of 2|T | in Theorem 3.3 is sharp, as witnessed by the theory T of
κ independent unary predicates. Then |T | = κ and is mutually algebraic.
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However, if N |= T realizes all of the 2κ types over ∅ and if M ⪯ N is any
elementary substructure of size < 2κ, then rtp(N,M) = rtpQF(N,M) = 2κ.

(3) Theorem 3.3 is similar to the main result of [8], which, for a finite re-
lational language, characterizes mutual algebraicity by there being only
finitely many quantifier-free coordinate-wise non-algebraic n-types for each
n, over every model.

We close with a question. Even though many notions of decompositions men-
tioned in Theorem 3.1 are all equivalent to mutual algebraicity at the level of
theories, requiring that the base set A = ∅ is more restrictive. That is, define an
∅-(κ,∆)-decomposition of N to be a (κ,∆)-decomposition of N in which A = ∅.
As an easy example, take L = {E} and let T be the complete L-theory asserting
that E is an equivalence relation with two classes, both infinite. Then T is mutu-
ally algebraic, but if N is the saturated model of size ℵ1, then N does not have
an ∅-(ℵ0,QF)-decomposition since there is only one 1-type over the empty set. It
would be desirable to characterize those (mutually algebraic) theories that admit
∅-(κ,∆)-decompositions.

References

1. John T Baldwin and Saharon Shelah, Second-order quantifiers and the complexity of theories.,

Notre Dame Journal of Formal Logic 26 (1985), no. 3, 229–303.
2. Samuel Braunfeld and Michael C Laskowski, Mutual algebraicity and cellularity, arXiv preprint

arXiv:1911.06303 (2019).

3. , Characterizations of monadic NIP, Transactions of the AMS, Series B 8 (2021), 948–

970.

4. , Worst case expansions of complete theories, arXiv preprint arXiv:2107.10920 (2021).
5. Bradd Hart, Ehud Hrushovski, and Michael C Laskowski, The uncountable spectra of countable

theories, Annals of Mathematics (2000), 207–257.

6. Alistair H. Lachlan, ℵ0-categorical tree-decomposable structures, The Journal of Symbolic Logic
57 (1992), no. 2, 501–514.

7. Michael C Laskowski, Mutually algebraic structures and expansions by predicates, The Journal

of Symbolic Logic 78 (2013), no. 1, 185–194.
8. Michael C Laskowski and Caroline A Terry, Uniformly bounded arrays and mutually algebraic

structures, Notre Dame journal of formal logic 61 (2020), no. 2, 265–282.

9. Saharon Shelah and Steven Buechler, On the existence of regular types, Annals of Pure and
Applied Logic 45 (1989), no. 3, 277–308.
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