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“Original” Compression schemes

Suppose C ⊆ X 2 is a set of ‘concepts’.
Let C |fin = {c|Y : c ∈ C and Y ⊆ X ,Y finite}
and C |≤d = {c |Z : c ∈ C and Z ⊆ X , |Z | ≤ d}.

Definition (Littlestone-Warmuth, 1986)

A d-dimensional compression scheme consists of a
compression function κ : C |fin → C |≤d and a
reconstruction function ρ : C |≤d → X 2 satisfying

κ(c |Y ) ⊆ c |Y ⊆ ρ(κ(c |Y ))

for all c ∈ C and finite Y ⊆ X .
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Let C |fin = {c|Y : c ∈ C and Y ⊆ X ,Y finite}
and C |≤d = {c |Z : c ∈ C and Z ⊆ X , |Z | ≤ d}.

Definition (Littlestone-Warmuth, 1986)

A d-dimensional compression scheme consists of a
compression function κ : C |fin → C |≤d and a
reconstruction function ρ : C |≤d → X 2 satisfying

κ(c |Y ) ⊆ c |Y ⊆ ρ(κ(c |Y ))

for all c ∈ C and finite Y ⊆ X .

Open Question Does every d-dimensional VC class C of concepts
have a d-dimensional compression scheme?
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“Original” Compression schemes

Suppose C ⊆ X 2 is a set of ‘concepts’.
Let C |fin = {c|Y : c ∈ C and Y ⊆ X ,Y finite}
and C |≤d = {c |Z : c ∈ C and Z ⊆ X , |Z | ≤ d}.

Definition (Littlestone-Warmuth, 1986)

A d-dimensional compression scheme consists of a
compression function κ : C |fin → C |≤d and a
reconstruction function ρ : C |≤d → X 2 satisfying

κ(c |Y ) ⊆ c |Y ⊆ ρ(κ(c |Y ))

for all c ∈ C and finite Y ⊆ X .

Open Question Does every d-dimensional VC class C of concepts
have a d-dimensional compression scheme?
Warmuth has offered a $600 prize for an answer in either direction.

Chris Laskowski University of Maryland

Data compression and definability of types in stable and dependent formulas



Extended Compression schemes

To get a better behaved notion, allow finitely many reconstruction
functions.

Definition

Fix C ⊆ X 2. A d-dimensional extended compression scheme
consists of a compression function κ : C |fin → X d and
finitely many reconstruction functions ρi : X d → X 2 such that for
every c ∈ C and Y ⊆fin X ,

range(κ(c |Y )) ⊆ Y and

ρi (κ(c |Y )) extends c |Y for at least one i .

This is equivalent to definitions proposed and studied by
Litman-Ben-David, Basu, and Floyd-Warmuth.
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Question: Which concept classes C ⊆ X 2 have d-dimensional
extended compression schemes?
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Question: Which concept classes C ⊆ X 2 have d-dimensional
extended compression schemes?

• If X is finite, then all C ⊆ X 2 do.
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Question: Which concept classes C ⊆ X 2 have d-dimensional
extended compression schemes?

• If X is finite, then all C ⊆ X 2 do.

• If X is infinite and C has a d-dimensional extended compression
scheme (with k reconstruction functions), then for Y ⊆ X finite,
elements of CY = {c |Y : c ∈ C } are determined by κ(c|Y ) ∈ Y d

and by the choice of ρi . Thus, |CY | ≤ k |Y |d .
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Question: Which concept classes C ⊆ X 2 have d-dimensional
extended compression schemes?

• If X is finite, then all C ⊆ X 2 do.

• If X is infinite and C has a d-dimensional extended compression
scheme (with k reconstruction functions), then for Y ⊆ X finite,
elements of CY = {c |Y : c ∈ C } are determined by κ(c|Y ) ∈ Y d

and by the choice of ρi . Thus, |CY | ≤ k |Y |d .
It follows that C is a Vapnik-Chervonenkis (VC) class, i.e., for
some m, no m-element subset of X is shattered by C .
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Which concept classes have extended compression
schemes?
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Which concept classes have extended compression
schemes?

This is a model theoretic question!
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Which concept classes have extended compression
schemes?

This is a model theoretic question!
Given C ⊆ X 2, form a structure MC = (C ,X ,R(x , y)).
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Fact

If C ⊆ X 2 is given and the relation R(x , y) is stable in the
associated structure MC , then C has an extended compression
scheme.

Chris Laskowski University of Maryland

Data compression and definability of types in stable and dependent formulas



Fact

If C ⊆ X 2 is given and the relation R(x , y) is stable in the
associated structure MC , then C has an extended compression
scheme.

Pf: Definability of types!
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Fact

If C ⊆ X 2 is given and the relation R(x , y) is stable in the
associated structure MC , then C has an extended compression
scheme.

Pf: Definability of types!
There is a formula ψ(y , z1, . . . , zd ) such that for any Y ⊆ X and
for any c ∈ C , there are (b1, . . . , bd ) ∈ Y d such that
R(c ,Y ) = ψ(Y , b1, . . . , bd ).
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Fact

If C ⊆ X 2 is given and the relation R(x , y) is stable in the
associated structure MC , then C has an extended compression
scheme.

Pf: Definability of types!
There is a formula ψ(y , z1, . . . , zd ) such that for any Y ⊆ X and
for any c ∈ C , there are (b1, . . . , bd ) ∈ Y d such that
R(c ,Y ) = ψ(Y , b1, . . . , bd ).
Compress via κ(c |Y ) = (b1, . . . , bd ) and reconstruct by
ρ(b1, . . . , bd ) = ψ(X , b1, . . . , bd ).
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Question: If ϕ(x , y) is stable, can we bound the d in a uniform
defining formula ψ(y , z1, . . . , zd ) ?
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Question: If ϕ(x , y) is stable, can we bound the d in a uniform
defining formula ψ(y , z1, . . . , zd ) ?

Answer: YES.
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Question: If ϕ(x , y) is stable, can we bound the d in a uniform
defining formula ψ(y , z1, . . . , zd ) ?

Answer: YES. d ≤ Rϕ(x = x , 2).
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Why? Recall Rϕ(θ(x), 2) ≥ 0 iff θ(x) is consistent and
Rϕ(θ(x), 2) ≥ n + 1 iff for some a, both Rϕ(θ ∧ ϕ(x , a), 2) ≥ n and
Rϕ(θ ∧ ¬ϕ(x , a), 2) ≥ n.
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Why? Recall Rϕ(θ(x), 2) ≥ 0 iff θ(x) is consistent and
Rϕ(θ(x), 2) ≥ n + 1 iff for some a, both Rϕ(θ ∧ ϕ(x , a), 2) ≥ n and
Rϕ(θ ∧ ¬ϕ(x , a), 2) ≥ n.

Thus: • ϕ(x , y) is stable iff Rϕ(x = x , 2) is finite;
• {e : Rϕ(θ(x , e), 2) ≥ n} is definable;
• If Rϕ(θ, 2) = n, then for any a, at most one of θ ∧ ϕ(x , a),
θ ∧ ¬ϕ(x , a) has Rϕ = n.
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Given p ∈ Sϕ(A), call a subtype pi ⊆ p one-element minimal if
Rϕ(q, 2) = Rϕ(pi , 2) for all pi ⊆ q ⊆ p with |q \ pi | = 1.
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Given p ∈ Sϕ(A), call a subtype pi ⊆ p one-element minimal if
Rϕ(q, 2) = Rϕ(pi , 2) for all pi ⊆ q ⊆ p with |q \ pi | = 1.

Note: For any p ∈ Sϕ(A) there is a one-element minimal pi ⊆ p
with |pi | ≤ Rϕ(x = x , 2).
Why? Let p0 = ∅ and given pi , let pi+1 ⊆ p be any one-element
extension of pi of smaller 2-rank (if one exists).
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Given p ∈ Sϕ(A), call a subtype pi ⊆ p one-element minimal if
Rϕ(q, 2) = Rϕ(pi , 2) for all pi ⊆ q ⊆ p with |q \ pi | = 1.

Note: For any p ∈ Sϕ(A) there is a one-element minimal pi ⊆ p
with |pi | ≤ Rϕ(x = x , 2).
Why? Let p0 = ∅ and given pi , let pi+1 ⊆ p be any one-element
extension of pi of smaller 2-rank (if one exists).

Check: For any p ∈ Sϕ(A), if pi ⊆ p is one-element minimal then
p is defined by the formula “Rϕ(pi ∧ ϕ(x , y), 2) = Rϕ(pi , 2).”
Why? For a ∈ A, ϕ(x , a) ∈ p ⇒ Rϕ(pi ∧ ϕ(x , a), 2) = Rϕ(pi , 2) by
minimality of pi and
ϕ(x , a) 6∈ p ⇒ ¬ϕ(x , a) ∈ p ⇒ Rϕ(pi ∧ ¬ϕ(x , a), 2) = Rϕ(pi , 2)⇒
Rϕ(pi ∧ ϕ(x , a), 2) 6= Rϕ(pi , 2).

Chris Laskowski University of Maryland

Data compression and definability of types in stable and dependent formulas



Caution: Even though every ϕ-type has a definition
ψ(y , z1, . . . , zd ) with d ≤ Rϕ(x = x , 2), this does not imply that
one can bound the size of a subtype p0 ⊆ p such that
Rϕ(p0, 2) = Rϕ(p, 2).
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A new notion:
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A new notion:

Definition

A formula ϕ(x , y) has Uniform Definability Types over Finite
Sets (UDTFS) if there is a formula ψ(y , z1, . . . , zd ) such that for
every finite set A, |A| ≥ 2 and every p ∈ Sϕ(A), there are
(b1, . . . , bd ) ∈ Ad such that

ϕ(x , a) ∈ p ⇐⇒ |= ψ(a, b1, . . . , bd )

for every a ∈ A.
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Observation

If ϕ(x , y) has UDTFS, then the uniformly definable family
Cϕ(x ,y) = {ϕ(c ,M) : c ∈ Sort(x)} has an extended compression
scheme.
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Which formulas have UDTFS?

• If ϕ(x , y) is stable, then ϕ(x , y) has UDTFS.
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Which formulas have UDTFS?

• If ϕ(x , y) is stable, then ϕ(x , y) has UDTFS.

• If ϕ(x , y) has UDTFS via ψ(y , z1, . . . , zd ), then for any finite set
Y , |Sϕ(Y )| ≤ |Y |d , so ϕ(x , y) is dependent (NIP) with
independence dimension at most d .
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Which formulas have UDTFS?

• If ϕ(x , y) is stable, then ϕ(x , y) has UDTFS.

• If ϕ(x , y) has UDTFS via ψ(y , z1, . . . , zd ), then for any finite set
Y , |Sϕ(Y )| ≤ |Y |d , so ϕ(x , y) is dependent (NIP) with
independence dimension at most d .

Open Question Does every dependent formula have UDTFS?
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Which formulas have UDTFS?

• If ϕ(x , y) is stable, then ϕ(x , y) has UDTFS.

• If ϕ(x , y) has UDTFS via ψ(y , z1, . . . , zd ), then for any finite set
Y , |Sϕ(Y )| ≤ |Y |d , so ϕ(x , y) is dependent (NIP) with
independence dimension at most d .

Open Question Does every dependent formula have UDTFS?
If you can prove this, you can petition Warmuth for $600.
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Definability over Indiscernible Sequences

A plausibility argument:
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Definability over Indiscernible Sequences

A plausibility argument:

Theorem

A partitioned formula ϕ(x , y)
is stable if and only if there
exists a formula ψ(y , z) so
that for all order indiscernible
sequences A and all
p ∈ Sϕ(A), there exists a ∈ Ad

so that ψ(y , a) defines p.

Theorem

A partitioned formula ϕ(x , y)
is dependent iff there exists a
formula ψ(y , z) so that for all
finite order indiscernible
sequences A and all p ∈ Sϕ(A)
there exists a ∈ Ad so that
ψ(y , a) defines p.
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The class of UDTFS formulas is well behaved:
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The class of UDTFS formulas is well behaved:

• Closed under boolean combinations: If ϕ(x , y) and ψ(x , z) are
both UDTFS, then so are ¬ϕ(x , y) and [ϕ ∧ ψ](x , yz).
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The class of UDTFS formulas is well behaved:

• Closed under boolean combinations: If ϕ(x , y) and ψ(x , z) are
both UDTFS, then so are ¬ϕ(x , y) and [ϕ ∧ ψ](x , yz).

• ”Finitely many defining formulas suffice” Given ϕ(x , y), if there
are finitely many ψi (y , z1, . . . , zd ) such that for every finite A,
every p ∈ Sϕ(A) is definable by some ψi (y , a1, . . . , ad ), then ϕ has
UDTFS.
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The class of UDTFS formulas is well behaved:

• Closed under boolean combinations: If ϕ(x , y) and ψ(x , z) are
both UDTFS, then so are ¬ϕ(x , y) and [ϕ ∧ ψ](x , yz).

• ”Finitely many defining formulas suffice” Given ϕ(x , y), if there
are finitely many ψi (y , z1, . . . , zd ) such that for every finite A,
every p ∈ Sϕ(A) is definable by some ψi (y , a1, . . . , ad ), then ϕ has
UDTFS.

• ”Sufficiency of a single variable” [Guingona] If every formula
ϕ(x , y) with a single x-variable has UDTFS, then every formula
ϕ(x , z) has UDTFS.
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Theorem (H. Johnson-L, 2008)

If T is o-minimal then every formula ϕ(x , y) is UDTFS. It follows
that the uniformly definable family Cϕ(x ,y) has a d-dimensional
extended compression scheme where d = lg(x).

Chris Laskowski University of Maryland

Data compression and definability of types in stable and dependent formulas



Theorem (H. Johnson-L, 2008)

If T is o-minimal then every formula ϕ(x , y) is UDTFS. It follows
that the uniformly definable family Cϕ(x ,y) has a d-dimensional
extended compression scheme where d = lg(x).

In some sense, this was proved by Marker-Steinhorn who
established definability of types for o-minimal structures with
Dedekind complete order types.
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Vincent Guingona’s results:
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Vincent Guingona’s results:

• If T is weakly o-minimal, then every formula has UDTFS.
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Vincent Guingona’s results:

• If T is weakly o-minimal, then every formula has UDTFS.

• If ϕ has independence dimension one, then ϕ has UDTFS.
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Vincent Guingona’s results:

• If T is weakly o-minimal, then every formula has UDTFS.

• If ϕ has independence dimension one, then ϕ has UDTFS.

• If T is VC-minimal, then every formula has UDTFS.
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Vincent Guingona’s results:

• If T is weakly o-minimal, then every formula has UDTFS.

• If ϕ has independence dimension one, then ϕ has UDTFS.

• If T is VC-minimal, then every formula has UDTFS.

• If ϕ has density one, i.e., there is a constant k so that
|Sϕ(A)| ≤ k |A| for all finite sets A in the sort of y , then ϕ has
UDTFS.
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Some deeper results (also proved by Guingona):
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Some deeper results (also proved by Guingona):

Theorem (Guingona)

Suppose there is an n such that for any set A of size n (in the sort
of y), |Sϕ(A)| ≤

(n
2

)
+
(n
1

)
then ϕ has UDTFS.
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Some deeper results (also proved by Guingona):

Theorem (Guingona)

Suppose there is an n such that for any set A of size n (in the sort
of y), |Sϕ(A)| ≤

(n
2

)
+
(n
1

)
then ϕ has UDTFS.

Remark: If the independence dimension of ϕ is 2, then
|Sϕ(A)| ≤

(n
2

)
+
(n
1

)
+ 1 by Sauer’s theorem.
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An ict-pattern with two rows consists of two formulas ϕ(x , y) and
ψ(x , z) such that for every N there exist {bi : i < N} and
{cj : j < N} such that each of the N2 formulas

ϕ(x , bi∗) ∧ ψ(x , cj∗) ∧
∧

i 6=i∗

¬ϕ(x , bi ) ∧
∧

j 6=j∗

¬ψ(x , cj )

indexed by (i∗, j∗) ∈ N2 is consistent.
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An ict-pattern with two rows consists of two formulas ϕ(x , y) and
ψ(x , z) such that for every N there exist {bi : i < N} and
{cj : j < N} such that each of the N2 formulas

ϕ(x , bi∗) ∧ ψ(x , cj∗) ∧
∧

i 6=i∗

¬ϕ(x , bi ) ∧
∧

j 6=j∗

¬ψ(x , cj )

indexed by (i∗, j∗) ∈ N2 is consistent.

A theory T is dp-minimal if it does not admit an ict-pattern with
two rows.
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An ict-pattern with two rows consists of two formulas ϕ(x , y) and
ψ(x , z) such that for every N there exist {bi : i < N} and
{cj : j < N} such that each of the N2 formulas

ϕ(x , bi∗) ∧ ψ(x , cj∗) ∧
∧

i 6=i∗

¬ϕ(x , bi ) ∧
∧

j 6=j∗

¬ψ(x , cj )

indexed by (i∗, j∗) ∈ N2 is consistent.

A theory T is dp-minimal if it does not admit an ict-pattern with
two rows.

Theorem (Guingona)

If T is dp-minimal then every formula has UDTFS.
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