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Abstract

We study classes of atomic models AtT of a countable, complete
first-order theory T . We prove that if AtT is not pcl-small, i.e., there is
an atomic model N that realizes uncountably many types over pcl(ā)
for some finite ā from N , then there are 2ℵ1 non-isomorphic atomic
models of T , each of size ℵ1.

1 Introduction

In a series of papers [2, 3, 4], Baldwin and the authors have begun to develop
a model theory for complete sentences of Lω1,ω that have fewer than 2ℵ1 non-
isomorphic models of size ℵ1. By well known reductions, one can replace the
reference to infinitary sentences by restricting to the class of atomic models
of a countable, complete first-order theory.1

∗Partially supported by NSF grant DMS-1308546.
†Partially supported by European Research Council grant 338821 and NSF grant DMS-

1362974. Publication no. 1099.
1Specifically, for every complete sentence Φ of Lω1,ω, there is a complete first-order

theory T in a countable vocabulary containing the vocabulary of Φ such that the models
of Φ are precisely the reducts of the class of atomic models of T to the smaller vocabulary.
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Fix, for the whole of this paper, a complete theory T in a countable lan-
guage that has at least one atomic model2 of size ℵ1. By theorems of Vaught,
these restrictions on T are well understood. Such a T has an atomic model if
and only if every consistent formula can be extended to a complete formula.
Furthermore, any two countable, atomic models of T are isomorphic, and a
model is prime if and only if it is countable and atomic. Using a well-known
union of chains argument, T has an atomic model of size ℵ1 if and only if
the countable atomic model is not minimal, i.e., it has a proper elementary
substructure.

The analysis of AtT , the class of atomic models of T , begins by restricting
the notion of types to those that can be realized in an atomic model. Suppose
M is atomic and A ⊆ M . We let Sat(A) denote the set of complete types
p over A for which Ab is an atomic set for some (equivalently, for every)
realization b of p. It is easily checked that when A is countable, Sat(A) is a
Gδ subset of the Stone space S(A), hence Sat(A) is Polish with respect to the
induced topology. We will repeatedly use the fact that any countable, atomic
set A is contained in a countable, atomic model M . However, unlike the first-
order case, some types in Sat(A) need not extend to types in Sat(M). Indeed,
there are examples where the space Sat(A) is uncountable (hence contains
a perfect set) while Sat(M) is countable. Thus, for analyzing types over
countable, atomic sets A ⊆M , we are led to consider

S+
at(A,M) := {p|A : p ∈ Sat(M)}.

Equivalently, S+
at(A,M) is the set of q ∈ Sat(A) that can be extended to

a type q∗ ∈ Sat(M).
Next, we recall the notion of pseudo-algebraicity, which was introduced in

[2], that is the correct analog of algebraicity in the context of atomic models.
Suppose M is an atomic model, and b, ā are from M . We say b ∈ pclM(ā) if
b ∈ N for every elementary submodel N �M that contains ā. The seeming
dependence on M is illusory – as is noted in [2], if b′, ā′ are inside another
atomic model M ′, and tpM ′(b

′ā′) = tpM(bā), then b ∈ pclM(ā) if and only if
b′ ∈ pclM ′(ā

′). It is easily seen that inside any atomic model M , pclM(ā) is
countable for any finite tuple ā. Moreover, if f : M →M ′ is an isomorphism
of atomic models, then f(pclM(ā)) = pclM ′(f(ā)) setwise. As an important
special case, if ā ⊆ M ′ � M and f : M → M ′ fixes ā pointwise, then f

2A model M is atomic if, for every finite tuple ā from M , tpM (ā) is principal i.e., is
uniquely determined by a single formula ϕ(x) ∈ tpM (ā).
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induces an elementary permutation on D = pclM(ā), which in turn induces
a bijection between S+

at(D,M) and S+
at(D,M

′).
We now give the major new definition of this paper:

Definition 1.1 An atomic class AtT with an uncountable model is pcl-small
if, for every atomic model N and for every finite ā from N , N realizes only
countably many complete types over pclN(ā).

The name of this notion is by analogy with the first-order case – A com-
plete, first-order theory T is small if and only if for every model N and
every finite ā from N , N realizes only countably many complete types over
ā. The following proposition relates pcl-smallness with the spaces of types
S+
at(D,M).

Proposition 1.2 The atomic class AtT is pcl-small if and only if the space
of types S+

at(pclM(ā),M) is countable for every countable, atomic model M
and every finite ā from M .

Proof. First, assume that some atomic model N and finite sequence
ā from N witness that AtT is not pcl-small. Choose {ci : i ∈ ω1} ⊆ N
realizing distinct complete types over D = pclN(ā). Also, choose a countable
M � N that contains ā, and hence D. Then {tp(ci/D) : i ∈ ω1} witness
that S+

at(D,M) is uncountable.
For the converse, choose a countable, atomic model M and ā from M

such that S+
at(D,M) is uncountable, where D = pclM(ā). We will induc-

tively construct a continuous, increasing elementary chain 〈Mα : α < ω1〉 of
countable, atomic models with M = M0 and, for each ordinal α, there is an
element cα ∈ Mα+1 such that tp(cα/D) is not realized in Mα. Given such a
sequence, it is evident that N =

⋃
α<ω1

Mα and ā witness that AtT is not
pcl-small. To construct such a sequence, we have defined M0 to be M and
take unions at limit ordinals. For the successor step, assume Mα has been
defined. As M and Mα are each countable atomic models that contain ā,
choose an isomorphism f : M → Mα fixing ā pointwise. As noted above,
f fixes D setwise. As Mα is countable, so is the set {tp(c/D) : c ∈ Mα}.
As S+

at(D,M) is uncountable, choose an atomic type p ∈ Sat(M), whose re-
striction to D is distinct from {f−1(tp(c/D)) : c ∈ Mα}. Now choose cα to
realize f(p). Then, as Mαcα is a countable atomic set, choose a countable
elementary extension Mα+1 �Mα containing cα.
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Recall that an atomic class AtT is ℵ0-stable3 if Sat(M) is countable for all
(equivalently, for some) countable atomic models M . As S+

at(A,M) is a set
of projections of types in Sat(M), it will be countable whenever Sat(M) is.
This observation makes the following corollary to Proposition 1.2 immediate:

Corollary 1.3 If an atomic class AtT is ℵ0-stable, then AtT is pcl-small.

The converse to Corollary 1.3 fails. For example, the theory T = REF (bin)
of countably many, binary splitting equivalence relations is not ℵ0-stable, yet
pclM(ā) = ā for every model M and ā from M . Thus, Sat(pclM(ā)) and hence
S+
at(pcl(ā),M) is countable for every finite tuple ā inside any atomic model
M . The main theorem of this paper is:

Theorem 1.4 Let T be a countable, complete theory T with an uncountable
atomic model. If the atomic class AtT is not pcl-small, then there are 2ℵ1

non-isomorphic models in AtT , each of size ℵ1.

Section 2 sets the stage for the proof. It describes the spaces of types
S+
at(A,M), states a transfer theorem for sentences of Lω1,ω(Q), and details

a non-structural configuration arising from non-pcl-smallness. In Section 3,
the non-structural configuration is exploited to give a family of 2ℵ0 non-
isomorphic structures (N, b̄∗), where each of the reducts N is in AtT and
has size ℵ1. Theorem 1.4 is finally proved in Section 4. It is remarkable
that whereas it is a ZFC theorem, the proof is non-uniform depending on the
relative sizes of the cardinals 2ℵ0 and 2ℵ1 .

2 Preliminaries

In this section, we develop some general tools that will be used in the proof
of Theorem 1.4.

2.1 On S+
at(A,M)

In this subsection we explore the space of types

S+
at(A,M) = {p|A : p ∈ Sat(M)}

3Sadly, this usage of ‘ℵ0-stability’ is analogous, but distinct from, the familiar first-order
notion.
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where A is a subset of a countable, atomic model M .
Fix a countable, atomic model M and an arbitrary subset A ⊆ M . Let

P denote the space of complete types in one free variable over finite subsets
of M . As M is atomic, P can be identified with the set of complete formulas
ϕ(x,m) over M . Implication gives a natural partial order on P , namely p ≤ q
if and only if dom(p) ⊆ dom(q) and q ` p. One should think of elements of P
as ‘finite approximations’ of types in S+

at(A,M). We describe two conditions
on p ∈ P that identify extreme behaviors in this regard.

Definition 2.1 We say a type p∗ ∈ S+
at(A,M) lies above p ∈ P if there is

some p̄ ∈ Sat(M) extending p ∪ p∗. As every p ∈ P extends to a type in
Sat(M), it follows that at least one p∗ ∈ S+

at(A,M) lies above p.

• An element p ∈ P determines a type in S+
at(A,M) if exactly one p∗ ∈

S+
at(A,M) lies above p.

• An element p ∈ P is A-large if {p∗ ∈ S+
at(A,M) : p∗ lies above p} is

uncountable.

To understand these extreme behaviors, we define a rank function rkA :
P → (ω1 + 1) as follows:

• rkA(p) ≥ 0 for all p ∈ P ;

• For α ≤ ω1, rkA(p) ≥ α if and only if for every β < α and for all finite
F , dom(p) ⊆ F ⊆ M , there is q ∈ Sat(F ) with q ≥ p that β-A splits,
where:

– A type q ∈ Sat(F ) A-splits if, for some ϕ(x, ā) with ā from A,
there are q1, q2 ≥ q with q ∪ ϕ(x, ā) ⊆ q1 and q ∪ ¬ϕ(x, ā) ⊆ q2;
and q ∈ Sat(F ) β-A splits if, in addition, rkA(q1), rkA(q2) ≥ β.

• For α < ω1, we say rkA(p) = α if rkA(p) ≥ α, but rkA(p) 6≥ α + 1.

Proposition 2.2 If p ∈ P and rkA(p) = α < ω1, then some r ≥ p deter-
mines a type in S+

at(A,M).

Proof. We prove this by induction on α. We begin with α = 0. Suppose
rkA(p) = 0. As rkA(p) 6≥ 1, there is a finite F , dom(p) ⊆ F ⊆ M for which
there is no q ∈ Sat(F ) and ϕ(x, ā) with ā from A for which q ≥ p and both

5



q ∪ {ϕ(x, ā)} and q ∪ {¬ϕ(x, ā)} are consistent. So fix any r ∈ Sat(F ) with
r ≥ p. Any such r determines a type in S+

at(A,M).
Next, choose 0 < α < ω1 and assume the Proposition holds for all β < α.

Choose p ∈ Sat(E) with rkA(p) = α. As rkA(p) ≥ α, while rkA(p) 6≥ α + 1,
there is a finite F , E ⊆ F ⊆ M for which there is no q ∈ Sat(F ) that
both extends p and α-A splits. So choose any q ∈ Sat(F ) with q ≥ p.
If q determines a type in S+

at(A,M), then we finish, so assume otherwise.
Thus, there is some ϕ(x, ā) with ā from A such that both q ∪ {ϕ(x, ā)}
and q ∪ {¬ϕ(x, ā)} are consistent. Choose complete types q1, q2 ∈ Sat(F ā)
extending these partial types. Clearly, both q1, q2 ≥ q, but since q does not
α-A split, at least one of them has rkA(q`) < α. But then by our inductive
hypothesis, there is r ≥ q` that determines a type in S+

at(A,M) and we finish.

Next, we turn our attention to A-large types and types of rank at least ω1

and see that these coincide. We begin with two lemmas, the first involving
types of rank at least ω1 and the second involving A-large types.

Lemma 2.3 Assume that E ⊆M is finite and p ∈ Sat(E) has rkA(p) ≥ ω1.
Then:

1. For every finite F , E ⊆ F ⊆ M , there is q ∈ Sat(F ), q ≥ p, with
rkA(q) ≥ ω1; and

2. There is some formula ϕ(x, ā) with ā from A and q1, q2 ∈ P with p ∪
{ϕ(x, ā)} ⊆ q1, p ∪ {¬ϕ(x, ā)} ⊆ q2, and both rkA(q1), rkA(q2) ≥ ω1.

Proof. (1) Fix a finite F satisfying E ⊆ F ⊆ M . As rkA(p) ≥ ω1, for
every β < ω1 there is some q ≥ p with q ∈ Sat(F ) for which certain extensions
of q have rank at least β. It follows that rkA(q) ≥ β for any such witness.
However, as Sat(F ) is countable, there is some q ∈ Sat(F ) which serves as a
witness for uncountably many β. Thus, rkA(q) ≥ ω1 for any such q ≥ p.

(2) Assume that there were no such formula ϕ(x, ā). Then, for any for-
mula ϕ(x, ā), since P is countable, there would be an ordinal β∗ < ω1 such
that either every q ∈ P extending p∪{ϕ(x, ā)}, rkA(q) < β∗ or every q ∈ P
extending p ∪ {¬ϕ(x, ā)} has rkA(q) < β∗. Continuing, as there are only
countably many formulas ϕ(x, ā), there would be an ordinal β∗∗ < ω1 that
works for all formulas ϕ(x, ā). Restating this, p does not β∗∗-A split, so no
extension of p could β∗∗-A split either. This contradicts rkA(p) ≥ β∗∗ + 1.
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Lemma 2.4 Suppose q ∈ Sat(F ) is A-large. Then:

1. For every finite F ′, F ⊆ F ′ ⊆ M , there is some A-large r ∈ Sat(F
′)

with r ≥ q; and

2. For some ϕ(x, ā), there are A-large extensions r1 ⊇ q ∪ {ϕ(x, ā)} and
r2 ⊇ q ∪ {¬ϕ(x, ā)}.

Proof. Fix such a q and let S = {p∗ ∈ S+
at(A,M) : p∗ lies above q}.

(1) is immediate, since S is uncountable, while Sat(F
′) is countable.

For (2), first note that if there is no such ϕ(x, ā), then there is at most
one p∗ ∈ S with the property that:

For any formula ϕ(x, ā) with parameters from A, ϕ(x, ā) ∈ p∗ if
and only if there is an A-large r ∈ Sat(F ā) extending q∪{ϕ(x, ā)}.

It follows that for any q∗ ∈ S − {p∗}, q∗ lies over some r ≥ q that is not
A-large. That is, using the fact that there are only countably many r ≥ q,
S − {p∗} is contained in the union of countably many countable sets. But
this contradicts q being A-large.

Proposition 2.5 For p ∈ P, rkA(p) ≥ ω1 if and only if p is A-large.

Proof. First, assume that rkA(p) ≥ ω1. Fix an enumeration {cn : n ∈
ω} of M . Using Clauses (1) and (2) of Lemma 2.3, we inductively construct
a tree {pν : ν ∈ 2<ω} of elements of P satisfying:

1. rkA(pν) ≥ ω1 for all ν ∈ 2<ω;

2. If lg(ν) = n, then {ci : i < n} ⊆ dom(pν);

3. p〈〉 = p;

4. For ν E µ, pν ≤ pµ;

5. For each ν there is a formula ϕ(x, ā) with ā from A such that ϕ(x, ā) ∈
pν0 and ¬ϕ(x, ā) ∈ pν1.

Given such a tree, for each η ∈ 2ω, let p̄η :=
⋃
{pη|n : n ∈ ω} and let p∗η :=

p̄η|A. By Clauses (2) and (4), each p̄η ∈ Sat(M), so each p∗η ∈ S+
at(A,M). By

Clause (5), p∗η 6= p∗η′ for distinct η, η′ ∈ 2ω. Finally, each of these types lies
over p by Clause (3). Thus, p is A-large.

Conversely, we argue by induction on α < ω1 that:
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(∗)α : If p ∈ P is A-large, then rkA(p) ≥ α.

Establishing (∗)0 is trivial, and for limit α < ω1, it is easy to establish (∗)α
given that (∗)β holds for all β < α. So assume (∗)α holds and we will establish
(∗)α+1. Choose any A-large p ∈ P . Towards showing rkA(p) ≥ α+ 1, choose
any finite F , dom(p) ⊆ F ⊆ M . As Sat(F ) is countable and uncountably
many types in S+

at(A,M) lie above p, there is some A-large q ∈ Sat(F ) with
q ≥ p.

Next, by Lemma 2.4 choose a formula ϕ(x, ā) with ā from A such that
there are A-large extensions r1 ⊇ q ∪ {ϕ(x, ā)} and r2 ⊇ q ∪ {¬ϕ(x, ā)}.
Applying (∗)α to both r1, r2 gives rkA(r1), rkA(r2) ≥ α. Thus, q α-A splits.
Thus, by definition of the rank, rkA(p) ≥ α + 1.

We obtain the following Corollary, which is analogous to the statement
‘If T is small, then the isolated types are dense’ from the first-order context.

Corollary 2.6 If S+
at(A,M) is countable, then every p ∈ P has an extension

q ≥ p that determines a type in S+
at(A,M).

Proof. If S+
at(A,M) is countable, then no p ∈ P is A-large. Thus, every

p ∈ P has rkA(p) < ω1 by Proposition 2.5, so has an extension determining
a type in S+

at(A,M) by Proposition 2.2.

We close with a complementary result about extensions of A-large types.

Definition 2.7 A type r ∈ Sat(M) is A-perfect if r�A is omitted in M and
for every finite m from M , the restriction r�m is A-large.

The name perfect is chosen because, relative to the usual topology on
Sat(M), there are a perfect set of A-perfect types extending any A-large
p ∈ P . However, for what follows, all we need to establish is that there are
uncountably many, which is notationally simpler to prove.

Proposition 2.8 Suppose p ∈ P is A-large. Then there are uncountably
many A-perfect r ∈ Sat(M) extending p.

Proof. Fix an A-large p ∈ P . Choose a set R ⊆ Sat(M) of represen-
tatives for {p∗ ∈ S+

at(A,M) : p∗ lies above p}, i.e., for every such p∗, there
is exactly one p̄ ∈ R whose restriction p̄�A = p∗. As p is A-large, R is un-
countable. Now, for each finite m from M , there are only countably many
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complete q ∈ Sat(m), and if some q ∈ Sat(m) is A-small, then only countably
many p̄ ∈ R extend q. As M is countable, there are only countably many
m, hence all but countably many p̄ ∈ R satisfy p̄�m A-large for every m.
Further, again since M is countable, at most countably many p̄ ∈ R have
restrictions to A that are realized in M . Thus, all but countably many p̄ ∈ R
are A-perfect.

2.2 A transfer result

In this brief subsection we state a transfer result that follows immediately by
Keisler’s completeness theorem for the logic Lω1,ω(Q), given in [6]. Recall that
Lω1,ω(Q) is the logic obtained by taking the (usual) set of atomic L formulas
and closing under boolean combinations, existential quantification, the ‘Q-
quantifier,’ i.e., if θ(y, x) is a formula, then so is Qyθ(y, x); and countable
conjunctions of formulas involving a finite set of free variables, i.e., if {ψi(x) :
i ∈ ω} is a set of formulas, then so is

∧
i∈ω ψi(x). We are only interested in

standard interpretations of these formulas, i.e., M |=
∧
i∈ω ψi(ā) if and only

if M |= ψi(ā) for every i ∈ ω; and M |= Qyθ(y, ā) if and only if the solution
set θ(M, ā) is uncountable.

Throughout the discussion let ZFC∗ denote a sufficiently large, finite
subset of the ZFC axioms. In the notation of [8], Proposition 2.9 states that
sentences of Lω1,ω(Q) are grounded.

Proposition 2.9 Suppose L is a countable language, and Φ ∈ Lω1,ω(Q) are
given. There is a sufficiently large, finite subset ZFC∗ of ZFC such that IF
there is a countable, transitive model (B, ε) |= ZFC∗ with L,Φ ∈ B and

(B, ε) |= ‘There is M |= Φ and |M | = ℵ1’

THEN (in V !) there is N |= Φ and |N | = ℵ1.

Proof. This follows immediately from Keiser’s completeness theorem
for Lω1,ω, given that provability is absolute between transitive models of set
theory. More modern, ‘constructive’ proofs can be found in [1] and [2]. These
use the existence B-normal ultrafilters. Given an arbitrary language L∗ ∈ B
and any countable L∗-structure (B, E, . . .) where the reduct (B, E) is an ω-
model of ZFC∗, for any B-normal ultrafilter U , the ultrapower Ult(B,U) is a
countable, ω-model that is an L∗-elementary extension of (B, E, . . .). It has
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the additional property that for any L∗-definable subset D, DUlt(B,U) properly
extends DB if and only if (B, E, . . .) |= ‘D is uncountable’.

Using this, one constructs (in V !) a continuous, L∗-elementary ω1-sequence
〈Bα : α < ω1〉 of ω-models, where each Bα+1 = Ult(Bα,Uα). Then the in-
terpretation MC where C =

⋃
α∈ω1
Bα will be a suitable choice of N . More

details of this construction are given in [1] or [2].

2.3 A configuration arising from non-pcl-smallness

The goal of this subsection is to prove the following Proposition, the data
from which will be used throughout Section 3.

Proposition 2.10 Assume T is a countable, complete theory for which AtT
has an uncountable atomic model, but is not pcl-small. Then there are a
countable, atomic M∗ ∈ AtT , finite sequences ā∗ ⊆ b̄∗ ⊆ M∗, and com-
plete 1-types {rj(x, b̄∗) : j ∈ ω} such that, letting D∗ = pclM∗(ā

∗), An =⋃
{rj(M∗, b̄∗) : j < n} and A∗ =

⋃
{An : n ∈ ω} we have:

1. A∗ ⊆ D∗;

2. S+
at(An,M

∗) is countable for every n ∈ ω; but

3. S+
at(A

∗,M∗) is uncountable.

Proof. Fix any countable, atomic M∗ ∈ AtT . Using Proposition 1.2
and the non-pcl-smallness of AtT , choose a finite tuple ā∗ ⊆ M∗ such that
S+
at(D

∗,M∗) is uncountable, where D∗ = pclM∗(ā
∗) ⊆M∗.

Fix any finite tuple b̄ ⊇ ā∗ from M∗ and look at the complete 1-types
Qb̄ := {r ∈ Sat(b̄) such that r(M∗) ⊆ D∗}. These types visibly induce a
partition D∗, and it is easily seen that if b̄′ ⊇ b̄, the partition induced by b̄′

refines the partition induced by b̄. Let Q :=
⋃
{Qb̄ : ā∗ ⊆ b̄ ⊆M∗}.

Define a rank function rk : Q → ON ∪ {∞} as follows:

• rk(c/b̄) ≥ 0 if and only if tp(c/b̄) ∈ Q;

• rk(c/b̄) ≥ 1 if and only if tp(c/b̄) ∈ Q and there are infinitely many
c′ ∈ D∗ realizing tp(c/D∗); and

• for an ordinal α ≥ 2, rk(c/b̄) ≥ α if and only if for every β < α
and every b̄′ from M∗, there is c′ ∈ D∗ realizing tp(c/b̄) such that
rk(c′/b̄b̄′) ≥ β.
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• rk(c/b̄) = α if and only if rk(c/b̄) ≥ α but rk(c/b̄) 6≥ α + 1.

Claim 1. For every r ∈ Q, rk(r) is a countable ordinal.

Proof. Assume by way of contradiction that rk(c/b̄) ≥ ω1 for some type
c/b̄. Then, for any b̄′ from M , as D∗ is countable, there is an element c′ ∈ D∗
such that rk(c′/b̄b̄′) ≥ β for uncountably many β’s, hence rk(c′/b̄b̄′) ≥ ω1 as
well. Using this idea, if we let 〈b̄n : n ∈ ω〉 be an increasing sequence of finite
sequences from M∗ whose union is all of M∗, then we can find a sequence
〈cn : n ∈ ω〉 of elements from D∗ such that, for each n, rk(cn/b̄n) ≥ ω1 and
tp(cn/b̄n) ⊆ tp(cn+1/b̄n+1). The union of these 1-types yields a complete,
atomic 1-type q ∈ Sat(M∗) all of whose realizations are in pclM∗(ā). However,
since the type asserting that ‘x = c’ has rank 0 for each c ∈ D∗, q is omitted
in M∗. To obtain a contradiction, choose a realization e of q and, as M∗e is a
countable, atomic set, construct a countable, elementary extension M ′ �M∗

with e ∈ M ′. But now, q implies that e ∈ pclM ′(ā), yet this is contradicted
by the fact that M∗ contains ā but not e.

As notation, for a subset S ⊆ Qb̄, let AS =
⋃
{r(M∗) : r ∈ S}, which is

always a subset of D∗. Define the set of ‘candidates’ as

C = {(S, b̄) : b̄ ⊇ ā∗,S ⊆ Qb̄, and S+
at(AS ,M

∗) uncountable}

Note that C is non-empty as (S0, ā
∗) ∈ C, where S0 is an enumeration of all

the complete, pseudo-algebraic types over ā∗. Among all candidates, choose
(S∗, b̄∗) ∈ C such that

α∗ := sup{rk(r) + 1 : r ∈ S∗}

is as small as possible. Enumerate S∗ = {rj : j ∈ ω} and put A∗ := AS∗
and An :=

⋃
{rj(M∗, b̄∗) : j < n} for each n ∈ ω. As Clauses (1) and (3) are

immediate, it suffices to prove the following Claim:

Claim 2. For each n ∈ ω, S+
at(An,M

∗) is countable.

Proof. Fix any n ∈ ω. First, note that if rk(rj) = 0 for every j < n,
then An would be finite, which would imply Sat(An) is countable. As Sat(An)
contains S+

at(An,M
∗), the result follows.

Now assume rk(rj) > 0 for at least one j < n. Let β := max{rk(rj) : j <
n} and let F = {j < n : rk(rj) = β}. Clearly, β < α∗. For each j ∈ F , as
β > 0 but rk(rj) 6≥ β + 1, there is a finite tuple b̄j such that rk(c/b̄∗b̄j) < β
for all c ∈ rj(M∗).
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Let b̄′ be the concatenation of b̄∗ with each b̄j for j ∈ F and let

S ′ := {r′ ∈ Qb̄′ : r′ extends some rj with j < n}

Subclaim. rk(r′) < β for every r′ ∈ S ′.

Proof. Fix r′ ∈ S ′ and choose c ∈ r′(M∗, b̄′). There are two cases. On
one hand, if r′ extends some rj with j ∈ F , then rk(c/b̄′) ≤ rk(c/b̄∗b̄j) < β.
On the other hand, if r′ extends some rj with rj 6∈ F , then as rk(rj) < β,
rk(c/b̄′) ≤ rk(c/b̄∗) < β.

Clearly AS′ = An, so S+
at(An,M

∗) = S+
at(AS′ ,M

∗). Thus, if S+
at(An,M

∗)
were uncountable, then (S ′, b̄′) would be a candidate, i.e., an element of C.
But, as β < α∗, this is impossible by the Subclaim and the minimality of α∗.

3 A family of 2ℵ0 atomic models of size ℵ1

Throughout the whole of this section, we assume that T is a complete theory
in a countable language for which AtT has an uncountable atomic model,
but is not pcl-small. Appealing to Proposition 2.10,

Fix, for the whole of this section, a countable atomic
model M∗, tuples ā∗ ⊆ b̄∗ ⊆M∗ and sets A∗ and An for
each n ∈ ω as in Proposition 2.10.

We work with this fixed configuration for the whole of this section and,
in Subsection 3.3 eventually prove:

Proposition 3.1 There is a family {(Nη, b̄
∗) : η ∈ 2ω} of atomic models of

T , each of size ℵ1, that are pairwise non-isomorphic over b̄∗.

3.1 Colorings of models realizing many types over A∗

Definition 3.2 Call a structure (N, b̄∗) rich if N ∈ AtT has size ℵ1, M∗ �
N , and N realizes uncountably many 1-types over A∗.

Lemma 3.3 For each n ∈ ω, a rich (N, b̄∗) realizes only countably many
distinct 1-types over An.
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Proof. Fix any (N, b̄∗) and n < ω as above. If {ci : i ∈ ω1} realize
distinct types over An, then the types {tpN(ci/M

∗) : i ∈ ω1} would be
distinct, contradicting S+

at(An,M
∗) countable.

How can we tell whether rich structures are non-isomorphic? We intro-
duce the notion of U -colorings and Corollary 3.6 gives a sufficient condition.

Definition 3.4 Fix a subset U ⊆ ω and a rich (N, b̄∗).

• For elements d, d′ ∈ N , define the splitting number spl(d, d′) ∈ (ω + 1)
to be the least k < ω such that tp(d/Ak) 6= tp(d′/Ak) if such exists;
and spl(d, d′) = ω if tp(d/A∗) = tp(d′/A∗).

• A U-coloring of a rich (N, b̄∗) is a function

c : N → ω

such that for all pairs d, d′ ∈ N , at least one of the following hold:

1. tp(d/A∗) = tp(d′/A∗); or

2. c(d) 6= c(d′); or

3. spl(d, d′) ∈ U .

• The color filter F(N, b̄∗) := {U ⊆ ω : a U -coloring of (N, b̄∗) exists}.

Lemma 3.5 Fix a rich (N, b̄∗). Then:

1. F(N, b̄∗) is a filter;

2. F(N, b̄∗) contains the cofinite subsets of ω; but

3. No finite U ⊆ ω is in F(N, b̄∗).

Proof. (1) First, note that if U ⊆ U ′ ⊆ ω, then every U -coloring c is also
a U ′-coloring. Thus, F(N, b̄∗) is upward closed. Next, suppose U1 ∈ F(N, b̄∗)
via the coloring c1 : N → ω and U2 ∈ F(N, ā∗b̄∗) via the coloring c2 : N → ω.
Fix any bijection t : ω × ω → ω. It is easily checked that c∗ : N → ω
defined by c∗(d) = t(c1(d), c2(d)) is a U1 ∩ U2-coloring of (N, b̄∗). Thus,
U1 ∩ U2 ∈ F(N, b̄∗). So F(N, b̄∗) is a filter.

(2) As F(N, b̄∗) is a filter, it suffices to show (ω − n) ∈ F(N, b̄∗) for each
n ∈ ω. So fix such an n. By Lemma 3.3, N realizes at most countably many
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types over An. Thus, we can produce a map c : N → ω such that c(d) = c(d′)
if and only if tp(d/An) = tp(d′/An). As any such c is an (ω − n)-coloring,
(ω − n) ∈ F(N, b̄∗).

(3) It suffices to show that no n = {0, . . . , n − 1} is in F(N, b̄∗). To see
this, let c : N → ω be an arbitrary map. We will show that c is not an
{0, . . . , n − 1}-coloring. As N realizes ℵ1 distinct types over A∗, there is
some m∗ ∈ ω and an uncountable subset {dα : α < ω1} ⊆ N that realize
distinct types over A∗, yet c(dα) = m∗ for each α. However, as N realizes only
countably many types overAn, there are α 6= β such that n ≤ spl(dα, dβ) < ω.
Thus, c is not an {0, . . . , n− 1}-coloring.

We close with a sufficient condition for non-isomorphism of rich models.

Corollary 3.6 Suppose that for ` = 1, 2, (N`, b̄
∗) is a U`-colored rich model,

and U1 ∩ U2 is finite. Then there is no isomorphism f : N1 → N2 fixing b̄∗

pointwise.

Proof. If there were such an isomorphism, then (N2, b̄
∗) would be both

U1-colored and U2-colored. Thus, both U1,U2 ∈ F(N2, b̄
∗), which contradicts

Lemma 3.5.

3.2 Constructing a colored rich model via forcing

Arguing as in the proof of Proposition 1.2, from the data of Lemma 2.10 we
can construct a rich (N, b̄∗) as the union of a continuous, elementary chain
〈Mα : α ∈ ω1〉 of countable, atomic models with M0 = M∗ such that, for each
α ∈ ω1 there is a distinguished bα ∈Mα+1 such that tp(bα/A

∗) is omitted in
Mα.

Our goal is to construct a sufficiently generic rich (N, b̄∗), along with a
coloring c : N → (ω + 1) via forcing. Our forcing (Q,≤Q) encodes finite
approximations of such an (N, b̄∗) and c. A fundamental building block is
the notion of a striated type over a finite subset ā satisfying b̄∗ ⊆ ā ⊆ M∗.
As an atomic type over a finite subset is generated by a complete formula,
we use the terms interchangeably.

Definition 3.7 Choose a finite tuple ā with b̄∗ ⊆ ā ⊆ M∗. A striated type
over ā is a complete formula θ(x) ∈ Sat(ā) whose variables are partitioned as
x = 〈xj : j < `〉 where, for each j, xj = 〈xj,n : n < n(j)〉 is an n(j)-tuple of
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variable symbols that satisfy tp(xj,0/ā∪{xi : i < j}) is A∗-large. The integer
` is the length of the striated type.

A simple realization of a striated type θ(x) of length ` is a sequence
b̄ = 〈b̄j : j < `〉 of tuples from M∗ such that M∗ |= θ(b̄). A perfect chain
realization of θ(x) is a pair (M, b̄), consisting of a chain M0 �M1 �M`−1 �
M∗ of ` elementary submodels of M∗ and a simple realization b̄ = 〈b̄j : j < `〉
from M∗ that satisfy: For each j < `,

1. ā ∪ {b̄i : i < j} ⊆Mj; and

2. tp(bj,0/Mj) is A∗-perfect (see Definition 2.7).

Lemma 3.8 Every striated type θ(x) ∈ Sat(ā) has a perfect chain realization.

Proof. We argue by induction on `, the length of the striation. For
striations of length zero there is nothing to prove, so assume the Lemma holds
for striated types of length ` and choose an (` + 1)-striation θ(x) ∈ Sat(ā).
Let θ�` be the truncation of θ to the variables x�` = 〈xj : j < `〉. As
θ�` is clearly an `-striation, it has a perfect chain realization, i.e., a chain
M0 � M1 � M`−1 � M∗ and a tuple b̄ = 〈b̄j : j < `〉 from M∗ realizing θ�`
such that ā ∪ {b̄i : i < j} ⊆Mj and tp(bj,0/Mj) is A∗-perfect for each j < `.

Now, since tp(x`,0/āb̄) is A∗-large, by applying Proposition 2.8 there is an
A∗-perfect type p̄ ∈ Sat(M∗) (in a single variable x`,0) extending tp(x`,0/āb̄).
Choose a countable, atomic N � M∗ and e ∈ N realizing p̄. As N and M∗

are both countable and atomic, choose an isomorphism f : N → M∗ that
fixes āb̄ pointwise. Then f(M0) � f(M1) � . . . f(M`−1) � f(M∗) � M∗ is a
chain. Let b`,0 := f(e) and choose 〈b`,1 . . . , b`,n(`)−1〉 arbitrarily from M∗ so
that, letting b̄` = 〈b̄`,n : n < n(`)〉, b̄ _ b̄` realizes θ(x). This chain and this
sequence form a perfect chain realization of θ.

The following Lemma is immediate, and indicates the advantage of work-
ing with A∗-perfect types.

Lemma 3.9 Let (M, b̄) be any perfect chain realization of a striated type
θ(x) ∈ Sat(ā). Then for every c̄ ⊆ M0, tp(b̄/āc̄) ∈ Sat(āc̄) is a striated type
extending θ(x), and (M, b̄) is a perfect chain realization of it.

The Lemma below, whose proof simply amounts to unpacking definitions,
demonstrate that striated types are rather malleable.
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Lemma 3.10 1. If tp(c̄/ā) is a striated type of length k and tp(d̄/āc̄) is a
striated type of length `, then tp(c̄d̄/ā) is a striated type of length k+ `.

2. Suppose tp(b̄/ā) is a striated type of length ` and k < `. Let b̄<k and
b̄≥k be the induced partition of b̄. Then tp(b̄<k/ā) is a striated type of
length ` and tp(b̄≥k/āb̄<k) is a striated type of length (`−k). Moreover,
if (M, b̄) is a perfect chain realization of tp(b̄/ā), then (M<k, b̄<k) is a
perfect chain realization of tp(b̄<k/ā) and (M≥k, b̄≥k) is a perfect chain
realization of tp(b̄≥k/āb̄<k).

We begin by defining a partial order (Q0,≤Q0) of ‘preconditions’. Then
our forcing (Q,≤Q) will be a dense suborder of these preconditions.

Definition 3.11 Q0 is the set of all p = (ap, up, np, θp(xp), kp,Up, cp), where

1. ap is a finite subset of M∗ containing b̄∗;

2. up is a finite subset of ω1;

3. np = 〈nt : t ∈ up〉 is a sequence of positive integers;

4. xp = 〈xt,p : t ∈ up〉, where each xt,p = 〈xt,n : n < nt〉 is a finite
sequence from the set X = {xt,n : t ∈ ω1, n ∈ ω} of variable symbols;

5. θp(xp) ∈ Sat(ap) is a striated type of length |up| (see Definition 3.7);

6. kp ∈ ω;

7. Up ⊆ kp = {0, . . . , kp − 1};

8. cp : xp → ω is a function such that for all pairs xt,n, xs,m from xp with
cp(xt,n) = cp(xs,m)

(a) either spl(bt,n, bs,m) ≥ kp for all perfect chain realizations (M, b̄)
of θp(xp);

(b) or there is some k ∈ Up such that spl(bt,n, bs,m) = k for all perfect
chain realizations (M, b̄) of θp(xp).

We order elements of Q0 by: p ≤Q0 q if and only if

• ap ⊆ aq;
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• up ⊆ uq and nt,p ≤ nt,q for all t ∈ up, hence xp is a subsequence of xq;

• θq(xq) ` θp(xp);

• kp ≤ kq;

• Up = Uq ∩ kp (hence, for j < kp, j ∈ Up if and only if j ∈ Uq);

• cp = cq�xp .

Visibly, (Q0,≤Q0) is a partial order. Call a precondition p ∈ Q0 unarily
decided if, for every xt,n ∈ xp, p(xp) determines a type in S+

at(Akp ,M
∗) (see

Definition 2.1). That the unarily decided preconditions are dense follows
easily from the fact that S+

at(Akp ,M
∗) is countable.

Lemma 3.12 The set {p ∈ Q0 : p is unarily decided} is dense in (Q0,≤Q0).
Moreover, given any p ∈ Q0, there is a unarily decided q ≥Q0 p with xq = xp
and kq = kp (hence Uq = Up).

Proof. Fix p ∈ Q0 and let k := kp. Arguing by induction on the size
of the finite set xp, it is enough to strengthen p(xt,n) individually for each
xt,n ∈ xp. So fix xt,n ∈ xp. By Corollary 2.6 there is an ā′ ⊇ āp and
a 1-type q1(xt,n) ∈ Sat(ā

′) extending tp(xt,n/āp) that determines a type in
S+
at(Akp ,M

∗). Then, using Lemma 3.10(1) we can choose a striated type
p′(xp) ∈ Sat(ā′) extending p(xp) ∪ q1.

We iterate the above procedure for each of the (finitely many) elements of
xp. We then get a unarily decided precondition p′ ≥Q0 p whose type p′(xp)
still has the same free variables, and each of kp, Up, cp are unchanged.

Next, call a precondition p ∈ Q0 fully decided if, it is unarily decided and,
for each pair xt,n, xs,m from xp with cp(xt,n) = cp(xs,m), if spl(bt,n, bs,m) ≥ kp
for some perfect chain realization (M, b̄), then tp(bt,n/A

∗) = tp(bs,m/A
∗) for

all perfect chain realizations (M, b̄) of θp(xp).

Lemma 3.13 The set {p ∈ Q0 : p is fully decided} is dense in (Q0,≤Q0).
Moreover, given any p ∈ Q0, there is a fully decided q ≥Q0 p with xq = xp.

Proof. It suffices to handle each pair xt,n, xs,m from xp with c(xt,n) =
c(xs,m) separately. Given such a pair, suppose there is some perfect chain
realization (M, b̄) of θ(xp) ∈ Sat(ap) with kp ≤ spl(bt,n, bs,m) < ω. Among all
such perfect chain realizations, choose one that minimizes k∗ = spl(bt,n, bs,m).
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Choose a formula ϕ(x, c̄) with c̄ from Ak∗+1 witnessing that tp(bt,n/Ak∗+1) 6=
tp(bs,m/Ak∗+1). As Ak∗+1 ⊆ M0, by applying Lemma 3.9, let θ∗(xp) be a
complete formula over apc̄ isolating tp(b̄/apc̄). Form the precondition p′ ∈
Q0 by putting ap′ = apc̄; θp′ = θ∗; kp′ = k∗ + 1; and Up′ = Up ∪ {k∗}; while
leaving xp and cp unchanged. It is evident that spl(b′t,n, b

′
s,m) = k∗ ∈ Up′ for

all perfect chain realizations (M, b̄′) of θp′ . Continuing this process for each
of the (finitely many) relevant pairs gives us a fully decided extension of p.

Definition 3.14 The forcing (Q,≤Q) is the set of fully decided p ∈ Q0 with
the inherited order.

Lemma 3.15 The forcing (Q,≤Q) has the countable chain condition (c.c.c.).

Proof. Suppose {pi : i ∈ ω1} is an uncountable subset of Q. In light
of Lemma 3.13, it suffices to find i 6= j for which there is some precondition
q ∈ Q0 satisfying pi ≤Q0 q and pj ≤Q0 q. First, by the ∆-system lemma
applied to the finite sets {upi}, we may assume that |upi | is constant and there
is some fixed u∗ that is an initial segment of each upi and, moreover, whenever
i < j, every element of (upi \ u∗) is less than every element of (upj \ u∗). By
further trimming, but preserving uncountability, we may assume that the
integer kp, the subset Up ⊆ kp, and the parameter ap remain constant. As
notation, for i < j, let f : upi → upj be the unique order-preserving bijection.
We may additionally assume that npi(t) = npj(f(t)), hence f has a natural
extension (also called f): xpi → xpj given by f(xt,n) = xf(t),n. With this
identification, we may assume θpi(xpi) = θpj(f(xpi)). As well, we may also
assume tp(xt,n/Akp) = tp(xf(t),n/Akp) for every xt,n ∈ xpi . As well, the
colorings match up as well, i.e., c(xt,n) = xf(t),n.

Now fix i < j. Define q by kq := kp; Uq := Up; and aq := ap (the
common values). Let uq := upi ∪ upj , and, for t ∈ upi , nt,q = nt,pi while
nt,q = nt,pj for t ∈ upj . To produce the striated type θq ∈ Sat(aq), first choose

a perfect chain realization (M, b̄) of θpi(xpi). Say |upi | = ` = |upj |, while
|u∗| = k < `. By Lemma 3.10(2), tp(b̄<k/ap) is a striated type of length k and
(M≥k, b̄≥k) is a perfect chain realization of the striated type tp(b̄≥k/apb̄<k)
of length (`−k). Choose d̄ from Mk such that tp(d̄/apb̄<k) = tp(b̄≥k/apb̄<k).
Then by Lemma 3.9 (with Mk playing the role of M0 there), (M≥k, b̄≥k)
is a perfect chain realization of the striated type tp(b̄≥k/apb̄<kd̄). So, by
Lemma 3.10(1), tp(d̄b̄≥k/apb̄<k) is a striated type of length 2(`−k). Thus, a
second application of Lemma 3.10(1) implies that tp(b̄<kd̄b̄≥k/ap) is a striated
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type of length 2`− k. Let θq be a complete formula over ap generating this
type.

In order to show that q is a precondition (i.e., an element of Q0) only
Clause (8) requires an argument. Fix any xt,n, xs,m in xq with cq(xt,n) =
cq(xs,m). As both pi,pj ∈ Q0, the verification is immediate if {t, s} is a
subset of either upi or upj , so assume otherwise. By symmetry, assume
t ∈ upi − u∗ and s ∈ upj − u∗. The point is that by our trimming, xf(t),n ∈
xpj , cpj(xf(t),n) = cpi(xt,n), and tp(xt,n/Akp) = tp(xf(t),n/Akp). There are
now two cases: First, if tp(xf(t),n/A

∗) = tp(xs,m/A
∗), then it follows that

tp(xt,n/Akp) = tp(xs,m/Akp), hence spl(et,n, es,m) ≥ kp for any perfect chain

realization (N, ē) of θq. On the other hand, if θpj ‘says’ spl(xf(t),n, xs,m) =
k ∈ Up, then θq ‘says’ spl(xt,n, xs,m) = k ∈ Uq as well. Thus, q ∈ Q0, which
suffices by Lemma 3.13.

Lemma 3.16 Each of the following sets are dense and open in (Q,≤Q).

1. For every t ∈ ω1, Dt = {p ∈ Q : t ∈ up};

2. For every (t, n) ∈ ω1 × ω, Dt,n = {p ∈ Q : xt,n ∈ xp}; and

3. Henkin witnesses: For all t ∈ ω1, all 〈xsi,ni : i < m〉 with each si ≤ t
and all ϕ(y, vi : i < m), {p ∈ Q : either θp(xp) ` ∀y¬ϕ(y, xsi,ni : i <
m) or for some n∗, θp(xp) ` ϕ(xt,n∗ , xsi,ni : i < m)}.

4. For all e ∈ M∗, De = {p ∈ Q : e ∈ ap and θ(xp) ` x0,n = e for some
n ∈ ω}.

Proof. That each of these sets is open is immediate. As for density,
in all four clauses we will show that given some p ∈ Q, we will find an
extension q ≥Q p with xq a one-point extension of xp. In all cases, we will
put kq := kp, Uq = Up and since xp is finite, we can choose the color cq
of the ‘new element’ to be distinct from the other colors. Because of that,
Clause (8) for q follows immediately from the fact p ∈ Q. Thus, for all four
clauses, all of the work is in finding a striated type θq extending θp.

(1) Fix t ∈ ω1 and choose an arbitrary p ∈ Q. If t ∈ up then there is
nothing to prove, so assume otherwise. Let ` = |up| and let k = |{s ∈ up :
s < t}|. Assume that k < `, as the case of k = ` is similar, but easier. Choose
a perfect chain realization (M, b̄) of θp(xp). By Lemma 3.10(2), tp(b̄<k/ap)
is a striated type of length k. By Lemma 2.4(1), choose an A∗-large type r ∈
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Sat(apb̄<k) and choose a realization e of r inMk. One checks immediately that
tp(b̄<ke/ap) is a striated type of length (k+1). Now, also by Lemma 3.10(2),
(M≥k, b̄≥k) is a perfect chain realization of tp(b̄≥k/apb̄<k). So, by Lemma 3.9,
(M≥k, b̄≥k) is also a perfect chain realization of tp(b̄≥k/apb̄<ke). In particular,
tp(b̄≥k/apb̄<ke) is a striated type of length (`−k). Thus, by Lemma 3.10(1),
tp(b̄<keb̄≥k/ap) is a striated type of length (` + 1). Take aq := ap, xq :=
xp ∪ {xt,0}, and take θq(xq) to be a complete formula in tp(b̄<keb̄≥k/aq).

The proofs of (2) and (3) are extremely similar. We prove (2) and indicate
the adjustment necessary for (3). Fix (t, n) ∈ ω1×ω. By (1) and an inductive
argument, we may assume we are given p ∈ Q with t ∈ up and xt,n−1 ∈ xp.
Say |up| = ` and assyne t is the (k − 1)st element of up in ascending order.
Choose a perfect chain realization (M, b̄) of θp(xp). By Lemma 3.10(2),
tp(b̄<k/ap) is striated of length k. Choose an arbitrary e ∈ Mk

4 and adjoin
it to b̄k−1. More formally, let b̄∗<k := 〈b̄∗j : j < k〉, where b̄∗j = b̄j for j < k− 2,
while b̄∗k−1 := b̄k−1e. Note that tp(b̄∗<k/ap) remains a striated type of length k.

By Lemma 3.10(2), (M≥k, b̄≥k) is a perfect chain realization of tp(b̄≥k/apb̄<k).
So, by Lemma 3.9 it is also a perfect chain realization of tp(b̄≥k/apb̄

∗
<k). In

particular, tp(b̄≥k/apb̄
∗
<k) is a striated type of length (`−k), so tp(b̄∗<kb̄≥k/ap)

is a striated type of length ` extending θp(xp). Put xq := xp ∪{xt,n} and let
θq(xq) be a complete formula isolating this type.

(4) is also similar and is left to the reader.

The following Proposition follows immediately from the density condi-
tions described above.

Proposition 3.17 Let G be a Q-generic filter. Then, in V [G], a rich, UG-
colored atomic model of T exists, where UG = {k ∈ ω : k ∈ Up for some
p ∈ G}.

Proof. There is a congruence ∼G defined on X = {xt,n : t ∈ ω1, n ∈ ω}
defined by xt,n ∼G xs,m if and only if θp ` xt,n = xs,m for some p ∈ G. Let
MG be the model of T with universe X/ ∼G and relations MG |= ϕ(a1, . . . , ak)
if and only if there are (xt1,n1 , . . . , xtk,nk) ∈ Xk such that [xti,ni ] = ai for each
i and θp ` ϕ(xt1,n1 , . . . , xtk,nk) for some p ∈ G. Since (Q,≤Q) has c.c.c., MG

has size ℵ1. As notation, for each t ∈ ω1, let M≤t be the substructure of MG

with universe {[xs,m] : s ≤ t,m ∈ ω}. Then M∗ � M0 and M≤s � M≤t �
MG whenever s ≤ t < ω1. The definition of a striated type implies that

4In the proof of (3), e would be a realization of ϕ(y, bsi,ni
: i < m) in Mk, if one existed.
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tp([xt,0]/A∗) is omitted in M<t, hence the set {[xt,0] : t ∈ ω1} witnesses that
(MG, b̄

∗) is rich. Also, define cG :=
⋃
{cp : p ∈ G}. Using the fact that each

p ∈ Q is fully decided, check that cG is a UG-coloring of (MG, b̄
∗).

Note that in the Conclusion below, such a G ∈ V always exists, since B
is countable.

Conclusion 3.18 Suppose B is a countable, transitive model of ZFC∗, with
{M∗, T, L} ⊆ B, and let G ∈ V , G ⊆ Q be any filter meeting every dense
D ⊆ Q with D ∈ B. Then: Let UG = {k ∈ ω : k ∈ Up for some p ∈ G}.
Then:

1. UG ∈ V ; and

2. In V , there is a UG-colored, rich atomic model (N, b̄∗) of T .

Proof. That UG ∈ V is immediate, since both B and G are. As for (2),
as G meets every dense set in B, B[G] is a countable, transitive model of
ZFC∗, and by applying Proposition 3.17,

B[G] |= ‘There is a rich, UG-colored (MG, b̄
∗) of size ℵ1’

Let L′ = L ∪ {c, R} ∪ {cm : m ∈ M∗} Working in B[G], expand MG to an
L′-structure M ′, interpreting each cm by m, interpreting the unary function
cM
′

as cG =
⋃
{cp : p ∈ G}, and the unary predicate RM ′ = {[xt,0] : t ∈ ω1}.

Now, for each d, d′ ∈M ′ and k ∈ ω, the relation tpM ′(d/Ak) = tpM ′(d
′/Ak)

is definable by an L′ω1,ω
-formula. Thus, the binary function spl : (M ′)2 →

(ω + 1) is also L′ω1,ω
-definable, hence, using the coloring c, there is an L′ω1,ω

-
sentence Ψ stating that ‘c induces a UG-coloring.’ Finally, using the Q-
quantifier to state that R is uncountable, there is an L′ω1,ω

-sentence Φ ∈ B[G]
stating that the L(b̄∗)-reduct of a given L′-structure is a rich, atomic model
of T , that is UG-colored via c. We finish by applying Proposition 2.9 to M ′

and Φ.

3.3 Mass production

In this subsection we define a forcing (P,≤P) such that a P-generic filter
G produces a perfect set {Gη : η ∈ 2ω} of Q-generic filters such that the
associated subsets {UGη : η ∈ 2ω} of ω are almost disjoint. Although the

21



application there is very different, the argument in this subsection is similar
to one appearing in [7].

We begin with one easy density argument concerning the partial (Q,≤Q).
Fundamentally, it allows us to ‘stall’ the construction for any fixed, finite
length of time.

Lemma 3.19 For every p ∈ Q and every k∗ > kp, there is q ≥Q p such that
xq = xp, (hence cq = cp); but kq = k∗ and Uq = Up, i.e., Uq ∩ [kp, k

∗) = ∅.

Proof. Simply define q as above and then verify that q ∈ Q.

Definition 3.20 For n ∈ ω, let

Pn = {(k, p̄) : k ∈ ω, p̄ = 〈pη : η ∈ 2n〉, where each pν ∈ Q and every kpν = k}

As notation, for p ∈ Pn, we let k(p) denote the (integer) first coordinate of
p. For each ` < k(p), define the trace of `, tr`(p) = {ν ∈ 2n : ` ∈ Upν}.

Let P =
⋃
n∈ω Pn. As notation, for p ∈ P, n(p) is the unique n for which

p ∈ Pn.

Definition 3.21 Define an order ≤P on P by p ≤P q if and only if

1. n(p) ≤ n(q), k(p) ≤ k(q);

2. pν ≤Q qµ for all pairs ν ∈ 2n(p), µ ∈ 2n(q) satisfying ν E µ; and

3. For all ` ∈ [k(p), k(q)), the set {µ�n(p) : µ ∈ tr`(q)} is either empty or
is a singleton.

It is easily checked that (P,≤P) is a partial order, hence a notion of
forcing. The following Lemma describes the dense subsets of P.

Lemma 3.22 1. For each n and k, {p ∈ P : n(p) ≥ n} and {p ∈ P :
k(p) ≥ k} are dense;

2. Suppose D is a dense, open subset of Q. Then for every n and every
p ∈ Pn, there is q ∈ Pn such that q ≥P p and, for every ν ∈ 2n,
qν ∈ D.
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Proof. Arguing by induction, it suffices to prove that for any given
p ∈ P, there is q ≥P p with n(q) = n(p)+1 and an r ≥P p with k(r) > k(p).
Fix p ∈ P. Say p ∈ Pn and p = (k, p̄). To construct q, for each ν ∈ 2n, define
qν0 = qν1 = pν . Let q̄ := 〈qµ : µ ∈ 2n+1〉 and q = (k, q̄). Then q ∈ Pn+1 and
q ≥P p (note that Clause (3) in the definition of ≤P is vacuously satisfied
since k(p) = k(q)).

To construct r, simply apply Lemma 3.19 to each pν to produce an ex-
tension rν ≥Q pν with krν = k+ 1, but Urν = Upν . Then let r̄ := 〈rν : ν ∈ 2n〉
and r = (k + 1, r̄). Then r ≥P p as required.

(2) Fix such a D and n. As we are working exclusively in Pn and because
2n is a fixed finite set, it suffices to prove that for any chosen ν ∈ 2n,

For every p ∈ Pn there is q ∈ Pn with q ≥P p and qν ∈ D.

To verify this, fix ν ∈ 2n and p ∈ Pn. Concentrating on pν , as D is dense,
choose qν ∈ D ∩Q with qν ≥Q pν . Let k∗ := kqν . Next, for each δ ∈ 2n with
δ 6= ν, apply Lemma 3.19 to pδ, obtaining some qδ ∈ Q satisfying qδ ≥Q pδ,
kqδ = k∗, but Uqδ = Upδ . Now, collect all of this data into a condition q ∈ Pn
defined by k(q) = k∗ and q̄ = 〈qγ : γ ∈ 2n〉, where each qγ is as above. To
see that q ≥P p, Clause (3) is verified by noting that for every ` ∈ [k(p), k∗),
tr`(q) is either empty, or equals {ν}, depending on whether or not ` ∈ Uqν .

Notation 3.23 Suppose B |= ZFC∗ and let G∗ ⊆ P, G∗ ∈ V be a filter
meeting every dense subset D∗ ⊆ P with D∗ ∈ B. For each n and ν ∈ 2n, let

Gν := {p ∈ Q : for some p∗ = (k, p̄) ∈ G∗, p = p∗ν}

Then, for each η ∈ 2ω, let

Gη :=
⋃
{Gη|n : n ∈ ω} and Uη := {` ∈ ω : ` ∈ Uq for some q ∈ Gη}

Proposition 3.24 In the notation of 3.23:

1. For every η ∈ 2ω, Gη ⊆ Q is a filter meeting every dense D ⊆ Q with
D ∈ B;

2. The sets {Uη : η ∈ 2ω} are an almost disjoint family of infinite subsets
of ω.
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Proof. (1) follows immediately from Lemma 3.22(2).
(2) Choose distinct η, η′ ∈ 2ω. Choose n0 such that η|n 6= η′|n whenever

n ≥ n0. By Lemma 3.22(1), choose p∗ ∈ G∗ with n(p∗) ≥ n0. We show that
Uη ∩ Uη′ is finite by establishing that if ` ∈ Uη ∩ Uη′ , then ` ≤ k(p∗).

To establish this, choose ` ∈ Uη ∩ Uη′ . By unpacking the definitions,
choose q∗, r∗ ∈ G∗ such that, letting µ := η|n(q∗) and µ′ := η′|n(r∗), we have
` ∈ Uq∗µ ∩ Ur∗µ′ . As G∗ is a filter, choose s∗ ∈ G∗ with s∗ ≥P p∗,q∗, r∗. As

notation, let δ := η|n(s∗) and δ′ := η′|n(s∗).

Claim: ` ∈ Us∗δ ∩ Us∗δ′ .
Proof. As ` ∈ Uq∗µ , ` < k(q∗). From q∗ ≤P s∗ we conclude k(q∗) ≤

k(s∗), so ` < k(s∗) as well. From q∗ ≤P s∗ and µ E δ we obtain q∗µ ≤Q s∗δ .
But then, as ` ∈ Uq∗µ , it follows that ` ∈ Us∗δ . That ` ∈ Us∗

δ′
is analogous,

using r∗ in place of q∗.

Finally, assume by way of contradiction that ` ≥ k(p∗). The Claim
implies that {δ, δ′} ⊆ tr`(s

∗). As ` ∈ [k(p∗), k(s∗)), Clause (3) of p∗ ≤P s∗

implies that δ|n(p∗) = δ′|n(p∗). But, as η|n(p∗) = δ|n(p∗) and η′|n(p∗) =
δ′|n(p∗), we contradict our choice of p∗.

We close this section with the proof of Proposition 3.1, which we restate
for convenience.

Conclusion 3.25 There is a family {(Nη, b̄
∗) : η ∈ 2ω} of 2ℵ0 rich, atomic

models of T , each of size ℵ1, that are pairwise non-isomorphic over b̄∗.

Proof. Choose any countable, transitive model B of ZFC∗ and choose
any G∗ ∈ V , G∗ ⊆ P, G∗ meets every dense subset D∗ ∈ B (as B is countable,
such a G∗ exists). For each η ∈ 2ω, choose Gη and Uη as in Proposition 3.24,
and apply Conclusion 3.18 to get a rich Uη-colored (Nη, b̄

∗) in V . That this
family is pairwise non-isomorphic over b̄∗ follows immediately from Corol-
lary 3.6, since the sets {Uη : η ∈ 2ω} are almost disjoint.

4 The proof of Theorem 1.4

Assume that the class AtT is not pcl-small, as witnessed by an (uncountable)
model N∗ containing a finite tuple ā∗. Fix a countable, elementary substruc-
ture M∗ � N∗ that contains ā∗. To aid notation, let D∗ := pclN∗(ā

∗). We
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now split into cases, depending on the relationship between the cardinals 2ℵ0

and 2ℵ1 .

Case 1. 2ℵ0 < 2ℵ1 .

In this case, expand the language of T to L(D∗), adding a new constant
symbol for each d ∈ D∗. Then, the natural expansion N∗D∗ N

∗ to an L(D∗)-
structure is a model of the infinitary L(D∗)-sentence Φ that entails Th(N∗D∗)
and ensures that every finite tuple is L-atomic with respect to T . As N∗D∗ is
a model of Φ that realizes uncountably many types over the empty set (after
fixing D∗!), it follows from [5], Theorem 45 of Keisler that there are 2ℵ1

pairwise non-L(D∗)-isomorphic models Φ, each of size ℵ1. As 2ℵ0 < 2ℵ1 , it
follows that there is a subfamily of 2ℵ1 pairwise non-L-isomorphic reducts to
the original language L. As each of these models are L-atomic, we conclude
that AtT has 2ℵ1 non-isomorphic models of size ℵ1.

Case 2. 2ℵ0 = 2ℵ1 .

Choose b̄∗ from M∗ as in Proposition 2.10 and apply Conclusion 3.25 to
get a set F∗ = {(Nη, b̄

∗) : η ∈ 2ω} of atomic models, each of size ℵ1, that are
pairwise non-isomorphic over b̄∗. Let F = {Nη : η ∈ 2ω} be the set of reducts
of elements from F∗. By our cardinal hypothesis, F has size 2ℵ1 . The relation
of L-isomorphism is an equivalence relation on F , and each L-isomorphism
equivalence class has size at most ℵ1 (since ℵ<ω1 = ℵ1). As ℵ1 < 2ℵ1 we
conclude that F has a subset of size 2ℵ1 of pairwise non-isomorphic atomic
models of T , each of size ℵ1.
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