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Abstract

We characterize when the elementary diagram of a mutually al-
gebraic structure has a model complete theory, and give an explicit
description of a set of existential formulas to which every formula
is equivalent. This characterization yields a new, more constructive
proof that the elementary diagram of any model of a strongly minimal,
trivial theory is model complete.

1 Introduction

In [6], which borrows heavily from [5], it is shown that for any mutually
algebraic structure M (see Definition 1.4), its elementary diagram, which we
denote by T (M), has a near model complete theory. Indeed, Definition 1.6
describes a specific class E of existential L(M)-formulas, and every L(M)-
formula is T (M)-equivalent to some boolean combination of formulas from
E .

In earlier papers, it was shown that under stronger hypotheses on the
theory of M , the elementary diagram T (M) has a model complete theory.
Indeed, in [3], Goncharov, Harizanov, Lempp, McCoy, and the author prove
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that the elementary diagram of every model of a strongly minimal, trivial
theory is model complete. In [2], this result was strengthened by Dolich,
Raichev, and the author to give the same result for any model of an ℵ1-
categorical, trivial theory of Morley rank 1. In both instances, it follows that
every L(M)-formula is equivalent to an existential formula, but the proofs
do not give a specific description of a ‘minimal set’ of existential formulas
needed to describe all L(M)-formulas.

The main theorem of this short note, Theorem 2.4, characterizes when
the elementary diagram of a mutually algebraic structure M has a model
complete theory (as opposed to simply being near model complete). More-
over, we display a set P of easily understood existential formulas1, and show
that T (M) is model complete if and only if every L(M)-formula is T (M)-
equivalent to an element of P . Then, in the third section, we indicate that
these conditions hold for models of either of the two types of theories de-
scribed above.

We conclude the Introduction by recalling the major definitions and re-
sults from [5] and [6].

Definition 1.1 When we write a tuple z̄ of variable symbols, we assume
that the elements of z̄ are distinct, and range(z̄) denotes the underlying set
of variable symbols. A proper partition z̄ = x̄ˆȳ satisfies lg(x̄), lg(ȳ) ≥ 1,
range(x̄) ∪ range(ȳ) = range(z̄), and range(x̄) ∩ range(ȳ) = ∅. We do not
require x̄ be an initial segment of z̄ but to simplify notation, we write it as
if it were.

Definition 1.2 Let M denote any L-structure. An L(M)-formula ϕ(z̄) is
mutually algebraic if there is an integer N so that M |= ∀ȳ∃≤N x̄ϕ(x̄, ȳ) for
every proper partition x̄ˆȳ of z̄. We letMA(M) denote the set of all mutually
algebraic L(M)-formulas. When M is understood, we simply write MA.

The reader is cautioned that whether a formula ϕ(z̄) is mutually alge-
braic or not depends on the choice of free variables. In particular, mutual
algebraicity is not preserved under adjunction of dummy variables. Note

1Every ϕ(ȳ) ∈ P can be written in the form ∃x̄ψ(x̄, ȳ), where ψ is quantifier free and
there is an integer K so that T (M) |= ∀ȳ∃<K x̄ψ(x̄, ȳ). Perhaps such a formula should be
called an ‘algebraically existential’ formula?
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that every L(M)-formula ϕ(z) with exactly one free variable symbol is mu-
tually algebraic. Furthermore, note that inconsistent formulas are mutually
algebraic.

The following Lemma indicates some of the closure properties of the set
MA. In what follows, when we write ϕ(x̄, ȳ) ∈ MA, we mean that ϕ(z̄) ∈
MA for any tuple z̄ of distinct symbols such that range(z̄) = range(x̄) ∪
range(ȳ), but that we are concentrating on a specific proper partition z̄ = x̄ˆȳ
of ϕ(z̄).

Lemma 1.3 Let M be any structure in any language L.

1. If ϕ(z̄) ∈ MA, then ϕ(σ(z̄)) ∈ MA for any permutation σ of the

variable symbols;

2. If ϕ(x̄, ȳ) ∈ MA and ā ∈ M lg(ȳ), then both ∃ȳϕ(x̄, ȳ) and ϕ(x̄, ā) ∈
MA;

3. If ϕ(z̄) ⊢ ψ(z̄) and ψ(z̄) ∈ MA, then ϕ(z̄) ∈ MA;

4. For k ≥ 1, if {ϕi(z̄i) : i < k} ⊆ MA, and
⋂

i<k range(z̄i) is nonempty,

then ψ(w) :=
∧

i<k ϕi(z̄i) ∈ MA, where range(w) =
⋃

i<k range(z̄i);

5. If ϕ(x̄, ȳ) ∈ MA and r ∈ ω, then θr(ȳ) := ∃≥rx̄ϕ(x̄, ȳ) ∈ MA.

Definition 1.4 Given an arbitrary L-structureM , let MA∗(M) denote the
set of all L(M)-formulas that are T (M)-equivalent to a boolean combina-
tion of formulas from MA(M). A structure M is mutually algebraic if
L(M) = MA∗(M), i.e., every L(M)-formula is T (M)-equivalent to a boolean
combination of mutually algebraic formulas.

It is evident that the mutual algebraicity of a structure is preserved under
elementary equivalence. The following is the main theorem of [6].

Theorem 1.5 The following are equivalent for any theory T :

1. Every model of T is a mutually algebraic structure;

2. Every mutually algebraic expansion of every model of T is a mutually

algebraic structure;
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3. Th((M,A)) has the nfcp for every M |= T and every expansion (M,A)
by a unary predicate;

4. Every complete extension of T is weakly minimal and trivial.

Next, we recall four classes of L(M)-formulas that were introduced in [5].

Definition 1.6 Let M be any L-structure.

• A = {all quantifier-free, mutually algebraic L(M)-formulas};

• E = {all L(M)-formulas of the form ∃x̄θ(x̄, ȳ), where θ ∈ A} (we allow
lg(x̄) = 0 so A ⊆ E);

• A∗ = {all L(M)-formulas T (M)-equivalent to a Boolean combination
of formulas from A}; and

• E∗ = {all L(M)-formulas T (M)-equivalent to a Boolean combination
of formulas from E}.

The following Theorem is the main result of [5] (noting that by The-
orem 1.5, if M is mutually algebraic, then Th(M) is weakly minimal and
trivial).

Theorem 1.7 Let M be any mutually algebraic structure. Then:

1. Every quantifier-free L(M)-formula θ(z̄) is in A∗.

2. Every L(M)-formula is T (M)-equivalent to a Boolean combination of

formulas from E , i.e., E∗ = L(M).

2 A new class of existential formulas

We begin this section with the central definitions of the current note.

Definition 2.1 A formula S(w) is a partial equality diagram if it is a boolean
combination of formulas of the form w = w′ for various w,w′ ∈ w.

An L(M)-formula θ(ȳ, z̄) is preferred if it has the form

∃x̄(R(x̄, ȳ) ∧ S(x̄, ȳ, z̄))
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where x̄, ȳ, z̄ are disjoint tuples of variable symbols, lg(ȳ) ≥ 1, R(x̄, ȳ) ∈ A,
and S(x̄, ȳ, z̄) is a partial equality diagram.

Let P denote the set of all L(M)-formulas that are T (M)-equivalent to
a positive boolean combination of preferred formulas.

As the quantification in a preferred formula is only over the mutually al-
gebraic conjunct, it is easily checked that every ϕ(ȳ) ∈ P is T (M)-equivalent
to an ‘algebraically existential’ formula in the sense of the footnote.

Lemma 2.2 Suppose that M is an infinite, mutually algebraic structure,

x̄, z̄, y are disjoint sequences of variable symbols, lg(y) = 1, and {Rj(x̄j, y, z̄j) :
j ∈ J} is a finite set of quantifier free, mutually algebraic formulas where,

for each j, x̄j ⊆ x̄, z̄j ⊆ z̄, and the variable y occurs in Rj. Then T (M) |=
∀x̄∀y∃z̄

∧

j∈J ¬Rj(x̄j, y, z̄j).

Proof. Given such a set of formulas, choose N � M and ā, b from N .
We will produce a tuple ē from N so that N |= ¬R(āj, b, ēj) for each j ∈ J .
Say z̄ = (z0, . . . , zk−1). For each ℓ < k, let Jℓ = {j ∈ J : zℓ occurs in z̄j} and
let

Bℓ := {c ∈ N : N |= ∃z̄j[Rj(āj, b, z̄j) ∧ zℓ = c] for some j ∈ Jℓ}

As each Rj is mutually algebraic and b is fixed, it follows that each of the
sets Bℓ is finite. Since N is infinite, we can choose ē = (e0, . . . , ek−1) so that
eℓ 6∈ Bℓ for each ℓ < k. It is easily checked that ē is as desired.

Lemma 2.3 Let M be an infinite, mutually algebraic structure. Say

ψ(x̄, y) :=
∧

i∈I

Ri(x̄i, y) ∧
∧

j∈J

¬Rj(x̄j, y)

where I and J are finite, each Ri, Rj is quantifier free and mutually algebraic,

each x̄i and x̄j is a subsequence of x̄, lg(y) = 1, and y occurs in each Ri, Rj.

Then ∃x̄ψ(x̄, y) ∈ P.

Proof. First, if I = ∅, then by Lemma 2.2, T (M) |= ∀y∃x̄ψ(x̄, y), hence
∃x̄ψ(x̄, y) is true for every y. In this case, ∃x̄ψ is equivalent to y = y, which
is in A, and hence in P .
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Next, assume that I 6= ∅. Let x̄′ be the smallest subsequence of x̄ for
which every x̄i is a subseqence of x̄′. Let z̄ = x̄\ x̄′, let K = {j ∈ J : x̄j ⊆ x̄′}
and let J∗ = J \ K. As I is non-empty, it follows from Lemma 1.3(3) and
(4) that the formula

θ(x̄′, y) :=
∧

i∈I

Ri(x̄i, y) ∧
∧

j∈K

¬Rj(x̄j, y)

is mutually algebraic (and it is visibly quantifier free). But, by Lemma 2.2,
it follows that ∃x̄ψ(x̄, y) is T (M)-equivalent to ∃x̄′θ(x̄′, y), so ∃x̄ψ(x̄, y) ∈ P .

Theorem 2.4 The following are equivalent for every mutually algebraic struc-

ture M :

1. ∃=rx̄R(x̄, y) ∈ P for all R(x̄, y) ∈ A with lg(y) = 1 and all r ∈ ω;

2. ∃=rx̄R(x̄, y) ∈ P for all R(x̄, y) ∈ A with lg(y) ≥ 1 and all r ∈ ω;

3. P is closed under negation;

4. P = L(M);

5. T (M) is model complete.

Proof. First, note that if the universe of M is finite, then all five con-
ditions hold trivially. Thus, we assume throughout that M is infinite.

(1) ⇒ (2): Assume that (1) holds. Choose any R(x̄, ȳ) ∈ A and any
integer r. Choose any variable symbol y∗ ∈ ȳ and let ȳ′ satisfy ȳ′ˆy∗ = ȳ.
Choose an integer N so that R(x̄ȳ′, y∗) has fewer than N solutions. For each
m < N , let

Sm(u0v0 . . . um−1vm−1, ȳ
′) :=

∧

i 6=j

uivi 6= ujvj∧
∨

Q∈(mr )

(

∧

i∈Q

vi = ȳ′ ∧
∧

i 6∈Q

vi 6= ȳ′

)

and let

θm(ȳ) := ∃u0v0 . . . ∃um−1vm−1

(

∧

i<m

R(uivi, y
∗) ∧ Sm(u0v0 . . . um−1vm−1ȳ

′)

)

.
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Using the closure properties in Lemma 1.3, θm(ȳ) is a preferred formula. Let
w be new variables satisfying lg(w) = lg(u) + lg(v) and let δ(ȳ) be

∨

m<N

(∃=mwR(w, y∗) ∧ θm(ȳ))

It is easily checked that δ(ȳ) is T (M)-equivalent to ∃=rx̄R(x̄, ȳ) and, using
(1), δ(ȳ) ∈ P .

(2) ⇒ (3): In order to show that P is closed under negation, by DeMor-
gan’s laws it suffices to show that the negation of every preferred formula
is in P . So fix a preferred formula θ(ȳ, z̄) := ∃x̄(R(x̄, ȳ) ∧ S(x̄, ȳ, z̄)), where
R(x̄, ȳ) ∈ A, lg(ȳ) ≥ 1, and S(x̄, ȳ, z̄) is a partial equality diagram. Choose
N so that T (M) implies that ∃<N x̄R(x̄, ȳ). It is easily checked that ¬θ(ȳ, z̄)
is T (M)-equivalent to

∨

m<N

(∃=mx̄R(x̄, ȳ) ∧ ψm(ȳ, z̄))

where

ψm(ȳ, z̄) := ∃x̄0 . . . x̄m−1

(

∧

i<m

R(x̄i, ȳ) ∧
∧

i 6=j

ȳi 6= ȳj ∧
∧

i<m

¬S(x̄i, ȳ, z̄)

)

Thus, ¬θ(ȳ, z̄) ∈ P by (2).
(3) ⇒ (4): As P is closed under positive boolean combinations by defi-

nition, it follows immediately from (3) that P is closed under all boolean
combinations. However, E ⊆ P trivially, so E∗, the closure of E under
boolean combinations, is also a subset of P . But, as M is mutually alge-
braic, E∗ = L(M) by Theorem 1.7(2). Thus P = L(M).

(4) ⇒ (5): Visibly, every preferred formula is an existential L(M)-
formula, and the set of existential L(M)-formulas is closed under positive
boolean combinations. Thus, (4) implies that every L(M)-formula is T (M)-
equivalent to an existential formula, which is equivalent to model complete-
ness (see e.g., [1]).

(5) ⇒ (1): Assume that T (M) is model complete. We argue that every
L(M)-formula ϕ(y) with lg(y) = 1 is in P . Fix such a formula ϕ(y).

Claim: For any N � M and any b ∈ N such that N |= ϕ(b), there is
δ(y) ∈ P such that N |= δ(b) ∧ ∀y(δ(y) → ϕ(y)).
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Proof. Fix such an N and b. As T (M) is model complete, this implies
that

T (M) ∪∆M∗ |= ϕ(b)

where ∆M∗ is the atomic diagram of M∗. Thus, by compactness, there is a
quantifier-free θ(ē, b) ∈ ∆M∗ such that T (M) ∪ {θ(ē, b)} |= ϕ(b). Without
loss, we may assume that ē is disjoint from M ∪ {b}, so it follows that
T (M) |= ∀y(∃x̄θ(x̄, y) → ϕ(y)).

By Theorem 1.7(1), θ(x̄, y) ∈ A∗. Thus, by considering the Disjuntive
Normal Form, we can write θ(x̄, y) as

∨∧

Rij(z̄ij), where each each z̄ij is con-
tained in x̄∪{y} and Rij(z̄ij) quantifier-free and is either mutually algebraic
or the is negation of a mutually algebraic formula.

Thus, one of the disjuncts ψ(x̄′, y) of θ(x̄, y) satisfies N |= ∃x̄′ψ(x̄′, b),

T (M) |= ∀y(∃x̄′ψ(x̄′, y) → ϕ(y))

and x̄′ ⊆ x̄. Now ψ(x̄′, y) has the form

∧

Ri(x̄i, y) ∧
∧

¬Rj(x̄j, y)

where each Ri and Rj is quantifier-free and mutually algebraic and each
x̄i, x̄j ⊆ x̄′. We may additionally assume that the variable symbol y appears
in each Ri and Rj. As M is infinite, Lemma 2.3 applies, and the formula
δ(y) := ∃x̄′ψ(x̄′, y) ∈ P is as required.

To finish the proof of (5) ⇒ (1), let

Γ := {δ(y) ∈ P : T (M) |= ∀y(δ(y) → ϕ(y))}

It follows immediately from the Claim and compactness that the formula
ϕ(y) is T (M)-equivalent to a finite disjunction

∨

i δi(y) of elements δi ∈ Γ.
As P is closed under T (M)-equivalence and finite disjunctions we conclude
that ϕ(y) ∈ P .

3 New proofs of model completeness

We close by giving new proofs of the model completeness results first proved
in [3] and [2]. The first theorem clearly follows from the second, but we give
a separate proof as it follows so easily from our main result.
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Theorem 3.1 If T is strongly minimal and trivial, then T (M) is model

complete and L(M) = P for every model M of T .

Proof. Fix a modelM of T . With our eye on Clause (1) of Theorem 2.4,
choose an L(M)-formula ϕ(y) with lg(y) = 1. By strong minimality, the solu-
tion set ϕ(N) in any N �M is either finite or cofinite, with the ‘exceptional
set’ contained in M . That is, there is some finite set Q ⊆ M such that, let-
ting θ(y) :=

∨

m∈Q y = m, ϕ(y) is T (M)-equivalent to either θ(y) or ¬θ(y).
As any quantifier free L(M)-formula in a single free variable is in A and
hence in P , both θ,¬θ ∈ P . Applying this argument to any instance of
∃=rz̄R(z̄, y), we conclude that both T (M) is model complete and L(M) = P
by Theorem 2.4.

Theorem 3.2 Suppose T is ℵ1-categorical, trivial, and of Morley rank 1.

Then for every M |= T , the elementary diagram is model complete. Further-

more, L(M) = P.

Proof. Again, we employ Theorem 2.4, but here we need to focus on
a particular instance of Clause (1). So fix a formula R(z̄, y) ∈ A and an
integer r. As ∃≥rz̄R(z̄, y) ∈ P , to establish Clause (1) it suffices to prove
that ∃≤rz̄R(z̄, y) ∈ P .

Toward this end, our assumptions on T imply that there are finitely many
non-algebraic 1-types over M . Indeed, if Sna := {pi : i < d} denotes this
set of non-algebraic 1-types, then d is the Morley degree of T . As well, the
ℵ1-categoricity of T implies each of these types are non-orthogonal. As T is
trivial, this further implies that pi ⊥/

a

M

pj for all pi, pj ∈ Sna. As forking of a 1-

type implies algebraicity, this implies that for any N �M and any a ∈ pi(N),
there is b ∈ pj(N) such that b ∈ acl(M ∪ {a}) (and hence a ∈ acl(M ∪ {b})).
As E∗ = L(M), it is easy to verify that for all pairs pi, pj ∈ Sna, there is
a mutually algebraic, quantifier free formula θij(x, y, z̄) such that for any
a ∈ pi(N), there is b ∈ pj(N) such that N |= ∃z̄θij(a, b, z̄). Fix a finite set
F ⊆ A consisting of one such θij for each pair pi, pj ∈ Sna (if i = j we can
take θij to be the mutually algebraic formula x = y).

Now, fix an elementary extension N �M . For every b ∈ N , let

• θ∗(b,N) = {c ∈ N : N |= ∃wθ(b, c, w)} i.e., θ∗(b,N) is the set of
elements that are part of a tuple realizing θ(b,N);
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• F(b) =
⋃

θ∈F θ
∗(b,N); and

• Fr(b) = {c ∈ F(b) : N |= ∃≥r+1z̄R(z̄, c)}.

Clearly, for b ∈ N \M , Fr(b) ⊆ F(b) and |F(b)| ≤
∑

θ∈F Nθ · lg(z̄), where
Nθ is an integer such that T (M) |= ∀y∃<Nθ z̄θ(y, z̄).

Thus, there is a finite exceptional set Q ⊆M and an integer ℓ∗ such that

1. T (M) |= ∀y(y 6∈ Q→ |Fr(y)| ≤ ℓ∗) and

2. For some b ∈ N \M , |Fr(b)| = ℓ∗.

Also, it is clear that the size |Fr(b)| depends only on tp(b/M), i.e., if
tp(b/M) = tp(b′/M), then |Fr(b)| = |Fr(b

′)|. Fix any non-algebraic 1-type
p∗(y) ∈ Sna such that |Fr(b)| = ℓ∗ for some (every) realization b of p∗.

Let δ(x) express

“There is some θ(x, y, z̄) ∈ F such that ∃y∃z̄
(

θ(x, y, z̄)∧y 6∈ Q

and there are distinct elements {wi : i < ℓ∗} witnessing that

|Fr(y)| ≥ ℓ∗ and x 6= wi for all i < ℓ∗
)

.”

It is routine to check that the formula δ(x) ∈ P . It suffices to prove the
following:

Claim: T (M) |= ∀x[∃≤rz̄R(z̄, x) ↔ δ(x)].

Proof. Fix any N � M and a ∈ N . First, suppose N |= ∃≤rz̄R(z̄, a).
Choose θ(x, y, z̄) ∈ F such that there is b ∈ p∗(N) with N |= ∃z̄θ(a, b, z̄). By
our choice of p∗ we have |Fr(b)| = ℓ∗, so choose an enumeration {ci : i < ℓ∗}
of Fr(b). Since the definition of Fr(b) implies that N |= ∃≥r+1z̄R(z̄, ci) for
each i, it follows that a 6= ci for each i. Thus, N |= δ(a).

Conversely, suppose that N |= ∃≥r+1z̄R(z̄, a). Choose any b ∈ N \Q such
that N |= ∃z̄θ(a, b, z̄) for some θ ∈ F and |Fr(b)| ≥ ℓ∗. Choose any set of ℓ∗

distinct elements {ci : i < ℓ∗} ⊆ Fr(b). But now, as b 6∈ Q,

N |= |Fr(b)| ≤ ℓ∗

This, combined with the fact that our assumption on a and θ imply that
a ∈ Fr(b), guarantees that a = ci for some i. That is, N |= ¬δ(a), completing
the proof of the Claim.

As we have shown that ∃≤rz̄R(z̄, x) ∈ P , it follows from Theorem 2.4
that both T (M) is model complete and L(M) = P .
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