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Abstract

We characterize when the elementary diagram of a mutually al-
gebraic structure has a model complete theory, and give an explicit
description of a set of existential formulas to which every formula
is equivalent. This characterization yields a new, more constructive
proof that the elementary diagram of any model of a strongly minimal,
trivial theory is model complete.

1 Introduction

In [6], which borrows heavily from [5], it is shown that for any mutually
algebraic structure M (see Definition 1.4), its elementary diagram, which we
denote by T'(M), has a near model complete theory. Indeed, Definition 1.6
describes a specific class € of existential L(M)-formulas, and every L(M)-
formula is T'(M)-equivalent to some boolean combination of formulas from
E.

In earlier papers, it was shown that under stronger hypotheses on the
theory of M, the elementary diagram T'(M) has a model complete theory.
Indeed, in [3]|, Goncharov, Harizanov, Lempp, McCoy, and the author prove
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that the elementary diagram of every model of a strongly minimal, trivial
theory is model complete. In [2], this result was strengthened by Dolich,
Raichev, and the author to give the same result for any model of an N;-
categorical, trivial theory of Morley rank 1. In both instances, it follows that
every L(M)-formula is equivalent to an existential formula, but the proofs
do not give a specific description of a ‘minimal set’ of existential formulas
needed to describe all L(M )-formulas.

The main theorem of this short note, Theorem 2.4, characterizes when
the elementary diagram of a mutually algebraic structure M has a model
complete theory (as opposed to simply being near model complete). More-
over, we display a set P of easily understood existential formulas', and show
that T (M) is model complete if and only if every L(M)-formula is T'(M)-
equivalent to an element of P. Then, in the third section, we indicate that
these conditions hold for models of either of the two types of theories de-
scribed above.

We conclude the Introduction by recalling the major definitions and re-
sults from [5] and [6].

Definition 1.1 When we write a tuple Z of variable symbols, we assume
that the elements of z are distinct, and range(z) denotes the underlying set
of variable symbols. A proper partition z = &"y satisfies lg(z),lg(y) > 1,
range(Z) U range(y) = range(z), and range(Z) N range(y) = . We do not
require T be an initial segment of Z but to simplify notation, we write it as
if it were.

Definition 1.2 Let M denote any L-structure. An L(M)-formula ¢(Zz) is
mutually algebraic if there is an integer N so that M | Vy3=Nzo(z,y) for
every proper partition Z"y of z. We let MA(M) denote the set of all mutually
algebraic L(M)-formulas. When M is understood, we simply write M.A.

The reader is cautioned that whether a formula ¢(2) is mutually alge-
braic or not depends on the choice of free variables. In particular, mutual
algebraicity is not preserved under adjunction of dummy variables. Note

'Every ¢(y) € P can be written in the form 3z (Z, ), where v is quantifier free and
there is an integer K so that T(M) = Vy3<%z(z, 7). Perhaps such a formula should be
called an ‘algebraically existential’ formula?



that every L(M)-formula ¢(z) with exactly one free variable symbol is mu-
tually algebraic. Furthermore, note that inconsistent formulas are mutually
algebraic.

The following Lemma indicates some of the closure properties of the set
MA. In what follows, when we write ¢(Z,7) € MA, we mean that p(z) €
MA for any tuple z of distinct symbols such that range(z) = range(z) U

— A —

range(y), but that we are concentrating on a specific proper partition zZ = ="y
of p(2).

Lemma 1.3 Let M be any structure in any language L.

1. If p(2) € MA, then p(o(z)) € MA for any permutation o of the
variable symbols;

2. If o(z,7) € MA and a € M®9) | then both Jjp(z, ) and ¢(Z,a) €
MA;

3. If o(2) FY(Z) and ¥(Z) € MA, then p(z) € MA;

4. For k> 1, if {¢i(%) i < k} € MA, and (,_, range(Z;) is nonempty,
then (W) := N\, vi(Zi) € MA, where range(w) = | J,_,, range(Z;);

5. If p(Z,9) € MA and r € w, then 0,(y) = F="Tp(Z,y) € MA.

Definition 1.4 Given an arbitrary L-structure M, let MA*(M) denote the
set of all L(M)-formulas that are T'(M )-equivalent to a boolean combina-
tion of formulas from MA(M). A structure M is mutually algebraic if
L(M)=MA"(M),ie., every L(M)-formula is T'(M )-equivalent to a boolean
combination of mutually algebraic formulas.

It is evident that the mutual algebraicity of a structure is preserved under
elementary equivalence. The following is the main theorem of [6].

Theorem 1.5 The following are equivalent for any theory T ':
1. Every model of T' is a mutually algebraic structure;

2. FEvery mutually algebraic expansion of every model of T is a mutually
algebraic structure;



3. Th((M, A)) has the nfcp for every M =T and every expansion (M, A)

by a unary predicate;

4. Fvery complete extension of T is weakly minimal and trivial.
Next, we recall four classes of L(M)-formulas that were introduced in [5].

Definition 1.6 Let M be any L-structure.
o A = {all quantifier-free, mutually algebraic L(M )-formulas};

o & = {all L(M)-formulas of the form 3z6(z,y), where § € A} (we allow
lg(z) =0s0 ACE);

o A* = {all L(M)-formulas T'(M)-equivalent to a Boolean combination
of formulas from A}; and

o & = {all L(M)-formulas T'(M )-equivalent to a Boolean combination
of formulas from E}.

The following Theorem is the main result of [5] (noting that by The-
orem 1.5, if M is mutually algebraic, then Th(M) is weakly minimal and
trivial).

Theorem 1.7 Let M be any mutually algebraic structure. Then:
1. Every quantifier-free L(M)-formula 6(Z) is in A*.
2. Fvery L(M)-formula is T'(M)-equivalent to a Boolean combination of
formulas from £, i.e., £ = L(M).
2 A new class of existential formulas
We begin this section with the central definitions of the current note.

Definition 2.1 A formula S(w) is a partial equality diagram if it is a boolean
combination of formulas of the form w = w' for various w, w’ € w.
An L(M)-formula 0(g, z) is preferred if it has the form

3z(R(z,7) A S(Z,7, 2))
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where T, 7, z are disjoint tuples of variable symbols, 1g(7) > 1, R(Z,7) € A,
and S(Z,y, Z) is a partial equality diagram.

Let P denote the set of all L(M)-formulas that are T'(M)-equivalent to
a positive boolean combination of preferred formulas.

As the quantification in a preferred formula is only over the mutually al-
gebraic conjunct, it is easily checked that every ¢(7) € P is T'(M)-equivalent
to an ‘algebraically existential’ formula in the sense of the footnote.

Lemma 2.2 Suppose that M is an infinite, mutually algebraic structure,
T, Z,y are disjoint sequences of variable symbols, 1g(y) = 1, and {R;(Z;, v, Z;) :
Jj € J} is a finite set of quantifier free, mutually algebraic formulas where,
for each j, z; C &, z; C Z, and the variable y occurs in R;. Then T(M) =
Vvy3z N, —Ri(Z5,y, %)

Proof. Given such a set of formulas, choose N = M and a,b from N.
We will produce a tuple € from N so that N = —R(a;,b,¢€;) for each j € J.
Say Z = (20,...,2,-1). Foreach ¢ <k, let Jy={j € J: 2z occurs in z;} and
let

By:={ce N: N = 3z[Rj(a;,b, Z;) \ z, = ] for some j € J;}

As each R; is mutually algebraic and b is fixed, it follows that each of the
sets By is finite. Since N is infinite, we can choose € = (e, ..., e,_1) so that
er & By for each ¢ < k. It is easily checked that € is as desired.

Lemma 2.3 Let M be an infinite, mutually algebraic structure. Say

V(@ y) = \Ri(z,9) A )\ ~R;(Z5,y)

el jeJ

where I and J are finite, each R;, R; is quantifier free and mutually algebraic,
each T; and z; is a subsequence of T, 1g(y) = 1, and y occurs in each R;, R;.
Then 3z)(z,y) € P.

Proof. First, if I = (), then by Lemma 2.2, T(M) |= Vy3z¢ (T, y), hence
Az (z,y) is true for every y. In this case, 371 is equivalent to y = y, which
is in A, and hence in P.



Next, assume that I # (. Let 7’ be the smallest subsequence of z for
which every z; is a subseqence of #’. Let 2 = z\@', let K = {j € J:7; C 7'}
and let J* = J\ K. As I is non-empty, it follows from Lemma 1.3(3) and
(4) that the formula

0(x',y) = N\ Ri(zi,y) A )\ ~R;(Z;,v)

iel jeK

is mutually algebraic (and it is visibly quantifier free). But, by Lemma 2.2,
it follows that 3z (Z,y) is T'(M )-equivalent to 3z'0(Z', y), so Iz (Z,y) € P.

Theorem 2.4 The following are equivalent for every mutually algebraic struc-
ture M :

1. I7"zR(z,y) € P for all R(Z,y) € A with 1g(y) =1 and all r € w;
2. I7"zR(Z,y) € P for all R(Z,y) € A with 1g(y) > 1 and all r € w;
3. P s closed under negation;

4. P=L(M);

5. T(M) is model complete.

Proof. First, note that if the universe of M is finite, then all five con-
ditions hold trivially. Thus, we assume throughout that M is infinite.

(1) = (2): Assume that (1) holds. Choose any R(Z,y) € A and any
integer r. Choose any variable symbol y* € y and let ¥ satisfy ¢’ y* = 7.
Choose an integer N so that R(Zy',y*) has fewer than N solutions. For each
m < N, let

S (WT0 -+ T 1Tm-1,7) = [\ # WA \/ ( Awi=7nN\vi # y’)
i#j Qe(™) \i€Q i#Q

and let

Hm(g) = Elﬂo@o C Hﬂmflﬁmfl </\ R(ﬂlﬁz, y*) VAN Sm(ﬂoﬂo .. -Emlﬁmlg/)> .

<m



Using the closure properties in Lemma 1.3, 6,,(y) is a preferred formula. Let
w be new variables satisfying lg(w) = lg(u) 4 lg(v) and let 6(y) be

\/ G BR@, y") A0 (7))

m<N

It is easily checked that §(y) is T'(M)-equivalent to 3="zR(z,y) and, using
(1), 5(5) € P.

(2) = (3): In order to show that P is closed under negation, by DeMor-
gan’s laws it suffices to show that the negation of every preferred formula
is in P. So fix a preferred formula 6(y, z) := 3z(R(z,y) A S(Z,y, z)), where
R(z,y) € A, 1g(y) > 1, and S(Z,7, 2) is a partial equality diagram. Choose
N so that T'(M) implies that 3Nz R(z, 7). It is easily checked that —6(7, 2)
is T'(M)-equivalent to

\/ @ "2R(%,5) A (3. 7))

m<N

where

U (F,Z) =32 . .. Ty (/\ R@,y) A N\wi # 9~ \ 9,7, z))
i<m i#j i<m
Thus, =0(y, z2) € P by (2).

(3) = (4): As P is closed under positive boolean combinations by defi-
nition, it follows immediately from (3) that P is closed under all boolean
combinations. However, £ C P trivially, so £*, the closure of £ under
boolean combinations, is also a subset of P. But, as M is mutually alge-
braic, £* = L(M) by Theorem 1.7(2). Thus P = L(M).

(4) = (5): Visibly, every preferred formula is an existential L(M)-
formula, and the set of existential L(M)-formulas is closed under positive
boolean combinations. Thus, (4) implies that every L(M)-formula is T'(M )-
equivalent to an existential formula, which is equivalent to model complete-
ness (see e.g., [1]).

(5) = (1): Assume that T'(M) is model complete. We argue that every
L(M)-formula ¢(y) with lg(y) = 1 is in P. Fix such a formula ¢(y).

Claim: For any N > M and any b € N such that N |= ¢(b), there is
d(y) € P such that N = 46(b) AVy(d(y) — ¢(y)).
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Proof. Fix such an N and b. As T'(M) is model complete, this implies
that
T(M)U Ay = ¢(b)

where Ajs« is the atomic diagram of M*. Thus, by compactness, there is a
quantifier-free 0(e,b) € Ay such that T(M) U {6(e,b)} E ¢(b). Without
loss, we may assume that e is disjoint from M U {b}, so it follows that
T(M) b= Vy(356(2,y) > 9(y).

By Theorem 1.7(1), 6(z,y) € A*. Thus, by considering the Disjuntive
Normal Form, we can write 6(z, y) as \/ A\ Ri;(Zi;), where each each Z;; is con-
tained in U {y} and R;;(Z;;) quantifier-free and is either mutually algebraic
or the is negation of a mutually algebraic formula.

Thus, one of the disjuncts ¢(z’,y) of 6(Z,y) satisfies N = 37/ (7,b),

T(M) | VyEz'y(@' y) — ¢(y))

and ' C Z. Now ¢(Z',y) has the form

/\ Ri(Z;,y) A /\ —R;(Z,y)

where each R; and R; is quantifier-free and mutually algebraic and each
z;,z; C . We may additionally assume that the variable symbol y appears
in each R; and R;. As M is infinite, Lemma 2.3 applies, and the formula
d(y) :==3F7Y(Z',y) € P is as required.

To finish the proof of (5) = (1), let
[i={d(y) € P:T(M) = vy(5(y) — »(y))}

It follows immediately from the Claim and compactness that the formula
¢(y) is T'(M)-equivalent to a finite disjunction \/, ;(y) of elements 9, € I'.
As P is closed under T'(M )-equivalence and finite disjunctions we conclude
that p(y) € P.

3 New proofs of model completeness

We close by giving new proofs of the model completeness results first proved
in [3] and [2]. The first theorem clearly follows from the second, but we give
a separate proof as it follows so easily from our main result.
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Theorem 3.1 If T is strongly minimal and trivial, then T(M) is model
complete and L(M) =P for every model M of T.

Proof. Fix amodel M of T. With our eye on Clause (1) of Theorem 2.4,
choose an L(M)-formula ¢(y) with lg(y) = 1. By strong minimality, the solu-
tion set (V) in any N = M is either finite or cofinite, with the ‘exceptional
set” contained in M. That is, there is some finite set () C M such that, let-
ting 0(y) == V,,coy = m, ¢(y) is T(M)-equivalent to either 6(y) or =0(y).
As any quantifier free L(M)-formula in a single free variable is in A and
hence in P, both 6,-0 € P. Applying this argument to any instance of
3="ZR(Z,y), we conclude that both T'(M) is model complete and L(M) =P
by Theorem 2.4.

Theorem 3.2 Suppose T' is Ny-categorical, trivial, and of Morley rank 1.
Then for every M |= T, the elementary diagram is model complete. Further-
more, L(M) ="P.

Proof. Again, we employ Theorem 2.4, but here we need to focus on
a particular instance of Clause (1). So fix a formula R(z,y) € A and an
integer 7. As 32"zZR(Z,y) € P, to establish Clause (1) it suffices to prove
that 35"zR(z,y) € P.

Toward this end, our assumptions on 7" imply that there are finitely many
non-algebraic 1-types over M. Indeed, if S,, := {p; : i < d} denotes this
set of non-algebraic 1-types, then d is the Morley degree of T'. As well, the
N;-categoricity of T implies each of these types are non-orthogonal. As T is
trivial, this further implies that p; £ p; for all p;,p; € Sy,. As forking of a 1-

M

type implies algebraicity, this implies that for any N = M and any a € p;(N),
there is b € p;(N) such that b € acl(M U {a}) (and hence a € acl(M U {b})).
As & = L(M), it is easy to verify that for all pairs p;,p; € Spq, there is
a mutually algebraic, quantifier free formula 6;;(z,y, Z) such that for any
a € pi(N), there is b € p;(N) such that N = 3z6;;(a,b, Z). Fix a finite set
F C A consisting of one such 6;; for each pair p;,p; € S,, (if i = j we can
take 0;; to be the mutually algebraic formula x = y).
Now, fix an elementary extension N = M. For every b € N, let

e *(byN) = {c € N : N = Jwl(b,c,w)} i.e., 6*(b,N) is the set of
elements that are part of a tuple realizing 6(b, N);
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o F(b) = Uper0(b,N); and

o F.(b)={ce F(): N EFTzR(z,¢)}.

Clearly, for b€ N\ M, F,.(b) € F(b) and |F(b)| <> ycr No-1g(2), where
Ny is an integer such that T(M) = Vy3<Nz0(y, z).

Thus, there is a finite exceptional set ) C M and an integer ¢£* such that

L T(M) EVy(y ¢ Q = |F(y)| < ) and

2. For some b € N\ M, |F,.(b)| = ¢*.

Also, it is clear that the size |F.(b)| depends only on tp(b/M), i.e., if
tp(b/M) = tp(b//M), then |F,.(b)| = |F.(V')|. Fix any non-algebraic 1-type
p*(y) € Spa such that |F,.(b)| = ¢* for some (every) realization b of p*.

Let §(x) express

“There is some 0(x,y, z) € F such that Jy3z <9(a:, Y, Z)A\y & Q
and there are distinct elements {w; : i < ¢*} witnessing that
IF,(y)| > ¢* and = # w; for all i < e*)

It is routine to check that the formula 6(x) € P. It suffices to prove the
following;:
Claim: T(M) = Vz[35"zR(z, ) <> §(x)].

Proof. Fix any N = M and a € N. First, suppose N = 3="zR(z, a).
Choose 0(x,y, z) € F such that there is b € p*(N) with N = 3z0(a, b, z). By
our choice of p* we have |F,.(b)| = £*, so choose an enumeration {¢; : i < £*}
of F,(b). Since the definition of F,.(b) implies that N = 32"z R(z, ¢;) for
each i, it follows that a # ¢; for each i. Thus, N | 6(a).

Conversely, suppose that N |= 32" "'zZR(z,a). Choose any b € N\ Q such
that N |= 3z6(a, b, 2) for some 6 € F and |F.(b)| > ¢*. Choose any set of *
distinct elements {¢; : i < £*} C F,.(b). But now, as b ¢ Q,

N E R W) <

This, combined with the fact that our assumption on a and 6 imply that
a € F,(b), guarantees that a = ¢; for some i. That is, N |= —d(a), completing
the proof of the Claim.

As we have shown that 35"zR(z,x) € P, it follows from Theorem 2.4
that both T'(M) is model complete and L(M) = P.
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