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Abstract. We prove that if M is any model of a trivial, strongly
minimal theory, then the elementary diagram Th(MM ) is a model
complete LM -theory. We conclude that all countable models of
a trivial, strongly minimal theory with at least one computable
model are 0

′′-decidable, and that the spectrum of computable mod-
els of any trivial, strongly minimal theory is Σ0

5
.

The purely model-theoretic result in the title was not arrived at in
a straightforward way. Rather, it arose from a question in computable
model theory raised by the fourth author of this paper. In discus-
sions with various colleagues over several years, he had been unable to
“code complicated sets into” countable models of uncountably categor-
ical theories. In the end, as our result shows, it turned out that there
was a purely model-theoretic reason for his failure.

Since this paper is intended for two distinct audiences, we organize
the remainder of it as follows. Section 1 recalls some model-theoretic
definitions, states and proves the Main Theorem, and derives some
model-theoretic consequences that are used in the next section. Then
Section 2 presents the motivation from, and some consequences in,
computable model theory.
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For basic definitions and results, we refer the reader to Chang/Keisler
[3], Buechler [2], and Pillay [17] in model theory, and Ershov/Goncharov
[4] and Harizanov [8] in computable model theory.

1. The Main Theorem and its proof

Throughout the paper, we assume a countable first-order language L.
We recall some basic model-theoretic notions for the convenience of the
reader.

Definition 1. (1) A complete theory T is strongly minimal if any
definable subset of any model M of T is finite or cofinite. (Here
and throughout, “definable” means “definable with parame-
ters”.) We call a structure M strongly minimal if it has a
strongly minimal theory.

(2) A strongly minimal model M is trivial (or, more precisely, has
trivial pregeometry) if for all subsets A ⊆M ,

acl(A) =
⋃

a∈A

acl({a}).

Note that a strongly minimal theory in a countable language is un-
countably categorical, and that triviality is really a property of the
theory of a model rather than of the model itself.

Roughly speaking, strongly minimal theories can be classified into
three kinds: trivial, locally modular nontrivial, and non-locally modu-
lar. Canonical examples of these three kinds of theories are the theory
of 〈ω, S〉 (ω with successor function), the theory of a vector space over
a fixed field, and the theory of algebraically closed fields of a fixed
characteristic, respectively.

We will frequently use the concept of expansion by constants. We
set notation in the following

Definition 2. Given a model M and a subset X ⊆ M , the expansion
MX of M by constants in X is obtained by adding constant symbols
for each x ∈ X (interpreted in the canonical way). We denote the
corresponding expansion of the first-order language L by LX . The
elementary diagram of M is the LM -theory Th(MM).

Note that expansion by constants preserves strong minimality and
triviality.

We can now state our

Main Theorem. For any trivial, strongly minimal theory T , the ele-
mentary diagram of any model M of T is a model complete LM-theory.
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Note that a trivial, strongly minimal model need not be model com-
plete in its original language, e.g., 〈ω, S〉 (ω with successor function)
is not model complete. We also note that the triviality of T is used
only once in our proof, namely, in Case 2 of the proof of Lemma 11.
Finally, strong minimality is necessary in the hypothesis of the Main
Theorem by Marker [15], who showed that for every n ∈ ω, there is an
almost strongly minimal ℵ0-categorical (and thus also ℵ1-categorical)
theory which is not Σn-axiomatizable, while we show this to be false
for trivial, strongly minimal theories in Corollary 18.

For the proof of our theorem, fix any model M0 of a trivial, strongly
minimal theory T . We will argue that the elementary diagram of M0

is model complete.
To simplify the notation, let T ∗ denote the theory Th((M0)M0

) and
let L∗ be the language of T ∗ (i.e., L∗ = LM0

). In everything that
follows, we will be working with the theory T ∗ in the language L∗.

Additionally, fix a cardinal κ > |M0| and fix models M ⊆ N of T ∗,
each of size κ. As both M and N are models of T ∗, we may assume
that M0 � M and M0 � N . The entire argument is devoted to
showing that M � N . It is well known (see e.g., Chang/Keisler [3,
Corollary 3.5.3]) that the model completeness of T ∗ follows from this.

In what follows, we require two standard facts about strongly mini-
mal theories. The first is known as the non-finite cover property, which
holds for any uncountably categorical theory (see, e.g., Shelah [18,
Lemma IX.1.10]). In our context, it reads as follows.

Lemma 3. For all L∗-formulas ϕ(x, y), there is a number k such that
for every M∗ |= T ∗ and every b from M∗, either ϕ(b,M∗) is infinite
or has size at most k. Furthermore, the number k depends only on ϕ
and the partition of the free variables into (x, y). �

Thus, we are permitted to use the quantifiers ∃<∞ and ∃∞, where
∃<∞yϕ(x, y) is shorthand for ∃≤kyϕ(x, y), and ∃∞yϕ(x, y) is shorthand
for ¬∃<∞yϕ(x, y). We note a very Simple Observation, which is just
an application of the pigeon-hole principle. However, we distinguish it
as a lemma so that we can refer to it later.

Lemma 4. If N |= ∃∞yϕ(b, y) with lg(y) = k + 1, then there is a
partition of y into wz with lg(w) = 1 and lg(z) = k such that N |=
∃∞w∃zϕ(b, w, z). (The variable w need not be the first element of y,
but it simplifies notation to write it as if it were.) �

The second basic fact goes by the name of “Finite Satisfiability”.
The general formulation is that if M0 � N are models of a stable
theory and N |= ϕ(b, c) for some LM0

-formula and some b, c from N
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that are independent (i.e., do not fork over M0), then there is a from
M0 such that N |= ϕ(a, c). This fact follows easily from the fact that in
a stable theory, every complete type over a model is definable (see e.g.,
Pillay [17, Corollary 1.21]). As this is an important point, we record
how this is manifested in the context of strongly minimal theories with
the lemma below.

Lemma 5. Suppose that M0 � N are models of a strongly minimal
theory, b and c are tuples from N such that at least one of b, c ⊆
acl(M0e) for a single element e, and acl(M0b) ∩ acl(M0c) = M0. If
N |= ϕ(b, c) for an LM0

-formula ϕ(x, y), then there is a from M0 such
that N |= ϕ(a, c).

Proof. By symmetry, suppose that b ⊆ acl(M0b), where b is a single
element. From the note above, it suffices to show that b is independent
from c over M0. But, if b were not independent from c over M0, then
(since b ⊆ acl(M0b)), b would not be independent from c over M0.
Since b is a single element and the theory is strongly minimal, this
would imply b ∈ acl(M0c), so b ⊆ acl(M0c). �

The following well-known notion is crucial for the rest of this section.

Definition 6. An L∗-formula ϕ(x) is absolute if for all b from M ,
M |= ϕ(b) if and only if N |= ϕ(b).

To complete our proof that M � N , it suffices to show that ev-
ery L∗-formula is absolute. Clearly, every quantifier-free L∗-formula
is absolute. Similarly, the family of absolute formulas is closed under
the Boolean operations. Thus, to complete our proof that T ∗ is model
complete, it suffices to show that if an L∗-formula ϕ(x, y) is absolute,
then ∃yϕ(x, y) is absolute as well. The bulk of this section provides a
verification of this claim.

Definition 7. An L∗-formula ϕ(x, y) is an (n,m)-formula if lg(x) = n
and lg(y) = m. We identify three interrelated families of statements:

• An,m, the statement that for all absolute (n,m)-formulas ϕ(x, y),
the formula ∃<∞yϕ(x, y) is absolute.

• Bn,m, the statement that for all absolute (n,m)-formulas ϕ(x, y),

if b ∈ Mn and N |= ∃<∞yϕ(b, y), then ϕ(b,N ) = ϕ(b,M), i.e.,
every realization of ϕ(b, y) in Nm is an element of Mm.

• Cn,m, the statement that for all absolute (n,m)-formulas ϕ(x, y),
the formula ∃yϕ(x, y) is absolute.

In light of our observations above, showing that T ∗ is model com-
plete amounts to showing that Cn,1 holds for all n ∈ ω. Clearly, by
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simply adding dummy variables, each of the three classes of properties
is preserved by decreasing the indices (e.g., Bn,m implies Bn′,m′ for all
n′ ≤ n and all m′ ≤ m).

Lemma 8. For all n,m ∈ ω, Bn,m implies Cn,m.

Proof. Fix n and m and assume that Bn,m holds. We will prove by
induction that Cn,k holds for all k ≤ m. To begin, note that Cn,0 is
vacuously true (since ∃yϕ(x, y) is simply ϕ(x) when lg(y) = 0). So
assume that Bn,m and Cn,k hold, where k < m. We argue that Cn,k+1

holds. Fix an absolute (n, k+1)-formula ϕ(x, y) and b ∈Mn such that
N |= ∃yϕ(b, y). Our proof splits into two cases.

Case 1. N |= ∃<∞yϕ(b, y).
Then, since Bn,k+1 holds (recall k + 1 ≤ m), we have ϕ(b,N ) =

ϕ(b,M), hence there is c ∈ Mk+1 such that M |= ϕ(b, c). Thus,
M |= ∃yϕ(b, y).

Case 2. N |= ∃∞yϕ(b, y).
By the Simple Observation (Lemma 4), there is a partition of y into

wz with lg(w) = 1 and lg(z) = k such that N |= ∃∞w∃zϕ(b, w, z).
Thus, by strong minimality, {e ∈ N | N |= ∃zϕ(b, e, z)} is cofinite,
so there is a ∈ M0 such that N |= ∃zϕ(b, a, z). Let ψ(x, z) be the
(n, k)-formula ϕ(x, a, z). Since ϕ is absolute, ψ is absolute, so, by Cn,k,

∃zψ is absolute. Thus, there is c ∈ Mk such that M |= ϕ(b, a, c). So
ac witnesses M |= ∃yϕ(b, y). �

Lemma 9. For all n,m ∈ ω, Bn,m implies An,m+1.

Proof. Fix n and m such that Bn,m holds. Note that Cn,m holds by

Lemma 8. Fix an absolute (n,m + 1)-formula ϕ(x, y) and choose b ∈
Mn. Clearly, if N |= ∃<∞yϕ(b, y), then M |= ∃<∞yϕ(b, y). So assume
N |= ∃∞yϕ(b, y). It follows from the Simple Observation that there
is a partition y into wz with lg(w) = 1 and lg(z) = m such that
N |= ∃∞w∃zϕ(b, w, z). Thus, {e ∈ N | N |= ∃zϕ(b, e, z)} is cofinite, so
there is an infinite subset {ai | i ∈ ω} of M0 such that N |= ∃zϕ(b, ai, z)
for each i. For i ∈ ω, let ψi(x, z) be the (n,m)-formula ϕ(x, ai, z). Since
ϕ is absolute, each ψi is absolute, so, by Cn,m, ∃zψi is absolute for each

i. Thus, for each i, there is ci ∈ Mm such that M |= ϕ(b, ai, ci). The
sequence 〈aici | i ∈ ω〉 witnesses M |= ∃∞yϕ(b, y). �

Lemma 10. For all m ∈ ω, B1,m (and hence B0,m) holds.

Proof. Let ϕ(x, y) be an absolute (1, m)-formula and choose b ∈ M
such that N |= ∃<∞yϕ(b, y). Choose r ∈ ω such that N |= ∃=ryϕ(b, y).
We argue that M |= ∃=ryϕ(b, y) by splitting into two cases. On the
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one hand, if b ∈ M0, then ∃=ryϕ(b, y) is an L∗-sentence true in N ,
so ∃=ryϕ(b, y) ∈ T ∗, hence is satisfied by M. On the other hand, if
b 6∈M0 then, by strong minimality, there is a finite subset {aj | j < s}
of M0 such that

T ∗ |= ∀x(
∧

j<s

x 6= aj → ∃=ryϕ(x, y)),

so M |= ∃=ryϕ(b, y) as desired.
Now choose distinct c0, . . . , cr−1 ∈ Mm such that M |= ϕ(b, ci) for

each i < r. By absoluteness, N |= ϕ(b, ci) for each i < r, so ϕ(b,N ) =
{ci | i < r} = ϕ(b,M). �

Proposition 11. For all n,m ∈ ω, Bn,m+1 and An+1,m imply Bn+1,m.

Proof. In light of Lemma 10, we may assume n ≥ 1. Choose an absolute
L∗-formula ϕ(x, y, z), where lg(x) = n, lg(y) = 1, and lg(z) = m.
Choose any b ∈ Mn and b2 ∈ M such that N |= ∃<∞zϕ(b, b2, z), and
fix a witness c∗ ∈ Nm such that N |= ϕ(b, b2, c

∗). We will eventually
show that c∗ ∈Mm.

To start, fix any element e∗ ∈ M \ acl(M0b). (For the whole of this
proposition, we compute algebraic closures in the model N .) Such
an element exists because | acl(M0b)| = | acl(M0)| < κ = |M |. Our
argument splits into two cases.

Case 1. N |= ∃∞zϕ(b, e∗, z).
It follows, by strong minimality and since e∗ /∈ acl(M0b), that the set

of all elements d ∈ N with N |= ∃<∞zϕ(b, d, z) is finite. Let ψ(x, y, z)
denote the L∗-formula

ϕ(x, y, z) ∧ ∃<∞wϕ(x, y, w).

Clearly, N |= ψ(b, b2, c
∗). Since An+1,m holds (and since absolute for-

mulas are closed under Boolean operations), ψ is absolute. Let

D = {d ∈ N | N |= ∃zψ(b, d, z)}.

It follows from the first observation of this case that D is finite. Thus,
the set

E = {de ∈ Nm+1 | N |= ψ(b, d, e)}

is finite as well. That is, N |= ∃<∞yzψ(b, y, z). But Bn,m+1 holds,
hence every solution to this formula is in M . In particular, b2c

∗ ∈
Mm+1, so c∗ ∈Mm.

Case 2. N |= ∃<∞zϕ(b, e∗, z).
Let 〈cj | j < r〉 be the realizations of ϕ(b, e∗, z) in Nm. Now fix

j < r. Write cj as 〈ci,j | i < m〉. Let dj denote the subsequence of

cj containing the ci,j’s that satisfy ci,j ∈ acl(M0b) and uj denote the
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corresponding subsequence of z. That is, uj consists of the zi for which

ci,j ∈ acl(M0b). Dually, let ej be the ‘complement’ of dj . That is, ej

is the subsequence of cj containing all of the ci,j 6∈ acl(M0b). Let vj

denote the corresponding subsequence of z. For notational convenience,
we write cj = djej and z = ujvj , although there is no reason why dj

should be an initial segment of cj .
By triviality, every element of ej is in acl(M0e

∗). (To see this, the for-

mula ϕ(b, e∗, z) demonstrates that each element of ej is in acl(M0be
∗).

But triviality implies that acl(M0be
∗) = acl(M0b) ∪ acl(M0e

∗) and the
elements of ej were chosen to be outside of acl(M0b).) In particular, it
follows that

acl(M0bdj) ∩ acl(M0e
∗ej) = M0.

(To see this, suppose we have f ∈ acl(M0bdj) ∩ acl(M0e
∗ej). Then

f ∈ acl(M0b) ∩ acl(M0e
∗). So if f 6∈ M0 then, by exchange,

e∗ ∈ acl(M0f) ⊆ acl(M0b),

which is contrary to our choice of e∗.)
Clearly,

N |= ϕ(b, e∗, dj, ej) ∧ ∃<∞ujϕ(b, e∗, uj , ej).

So, by finite satisfiability (Lemma 5), there is (âj , aj) (corresponding
to (e∗, ej)) from M0 such that

N |= ϕ(b, âj, dj, aj) ∧ ∃<∞ujϕ(b, âj, uj , aj).

Let ψj(x, uj) denote the L∗-formula ϕ(x, âj, uj , aj).
Similarly, by finite satisfiability again, there is (a1

j , a
2
j) from M0 (cor-

responding to (b, dj)) such that

N |= ϕ(a1
j , e

∗, a2
j , ej) ∧ ∃<∞vjϕ(a1

j , e
∗, a2

j , vj).

Let θj(y, vj) denote the L∗-formula ϕ(a1
j , y, a

2
j , vj) and let

δj(x, y, z) := ψj(x, uj) ∧ ∃<∞ujψj(x, uj) ∧ θj(y, vj) ∧ ∃<∞vjθj(y, vj).

Note that

N |= ψj(b, dj) ∧ ∃<∞ujψj(b, uj) ∧ θj(e
∗, ej) ∧ ∃<∞vjθj(e

∗, vj),

hence N |= δj(b, e
∗, cj). Since An,m holds, the L∗-formulas ψj , θj , and

δj are all absolute.

Now, returning to our original scenario, suppose N |= δj(b, b2, c
∗) for

some j < r. Let d
∗

denote the subsequence of c∗ (corresponding to uj)
and let e∗ denote the subsequence of c∗ (corresponding to vj). Then

N |= ψj(b, d
∗
) ∧ ∃<∞ujψj(b, uj).
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Thus, since Bn,m holds, d
∗
∈M lg(uj). Similarly,

N |= θj(b2, e
j) ∧ ∃<∞vjθj(b2, vj),

so, since B1,m holds, e∗ ∈M lg(vj). Hence c∗ ∈Mm as required.

Finally, suppose that N |= ¬δj(b, b2, c
∗) for all j < r. Then N |=

η(b, b2, c
∗), where

η(x, y, z) := ϕ(x, y, z) ∧ ∃<∞zϕ(x, y, z) ∧
∧

j<r

¬δj(x, y, zj).

It follows from An+1,m and the absoluteness of ϕ and the δj ’s that η is
absolute.

We claim that N |= ∃<∞yzη(b, y, z). To see this, let

F = {f ∈ N | N |= ∃zη(b, f, z)}.

If F were infinite, then N |= ∃zη(b, f, z) would hold for every f ∈
N \ acl(M0b). In particular, N |= ∃zη(b, e∗, z). But what could such
a solution be? Since ϕ(x, y, z) is a conjunct of η, the only possible
solutions to η(b, e∗, z) could be {cj | j < r}. But N |= δj(b, e

∗, cj) for

each j, hence N |= ¬∃zη(b, e∗, z). Thus F must be finite. However,
for any f ∈ F there are only finitely many h ∈ Nm such that N |=
η(b, f, h). Thus there are only finitely many tuples fh ∈ Nm+1 that
satisfy η(b, y, z) in N . That is, N |= ∃<∞yzη(b, y, z).

Now, since Bn,m+1 holds, every solution to η(b, y, z) lies in M . In
particular, b2c

∗ ∈Mm+1, so c∗ ∈Mm, completing the proof. �

Proof of the Main Theorem. As noted earlier, the model completeness
of T ∗ follows from a demonstration of M � N . We first show that
Bn,m must hold for all n,m ∈ ω. To see this, we argue, by induction
on n, that Bn,m holds for all m. Lemma 10 provides the base case, i.e.,
B1,m holds for all m ∈ ω. So fix n ≥ 1 and assume that Bn,m holds
for all m. We prove that Bn+1,m holds for all m, by induction on m.
First, Bn+1,0 holds vacuously. So assume that Bn+1,m holds for some
m. Then Bn,m+2 holds by our inductive assumption and An+1,m+1 holds
by Lemma 9 since Bn+1,m holds. So Bn+1,m+1 holds by Proposition 11,
and our induction is complete.

But now, Lemma 8 implies that Cn,m holds for all n,m ∈ ω. In
particular, Cn,1 holds for all n ∈ ω. But this precisely says that the
family of absolute L∗-formulas is closed under existential quantification.
As we already knew that the family of absolute L∗-formulas contains
the quantifier-free formulas and is closed under Boolean connectives,
we conclude that every L∗-formula is absolute. Thus, M � N as
required. �
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We conclude this section with some observations about this variant
of model completeness, which has been studied by Kueker in work that
has not yet been published [14]. All of the results in the remainder of
this section are variants of theorems therein, but we include proofs for
completeness.

Definition 12. For any structure M, let Th∀∃(MM) be the set of all
∀∃-sentences σ ∈ Th(MM) (i.e., in the language LM).

Lemma 13. If the elementary diagram of a structure M is model
complete, then Th(MM) is ∀∃-axiomatizable.

Proof. Well-known (see e.g., Chang/Keisler [3, Proposition 3.5.10]).
�

In addition to providing a criterion that will be useful in the next
section, the following proposition demonstrates that the model com-
pleteness of the elementary diagram of a structure M is a property of
the theory of M. First, we need a definition.

Definition 14. An ∀∃-formula θ(y) of L and an existential L-formula
ψ(x, y) form a linked pair (θ, ψ) (for T ) if

(1) T |= ∃yθ(y) and
(2) T |= ∀y∀y′∀x[θ(y) ∧ θ(y′) ∧ ψ(x, y) → ψ(x, y′)].

Proposition 15. The elementary diagram of an L-structure M is
model complete if and only if, for every L-formula ϕ(x), there is a
linked pair (θ, ψ) for the theory of M such that

M |= ∀y(θ(y) → ∀x[ϕ(x) ↔ ψ(x, y)]).

Proof. First, suppose that the elementary diagram of M is model com-
plete. Fix an L-formula ϕ(x). Since Th(MM) is model complete, there
are an existential L-formula ψ(x, y) and a tuple b from M such that
M |= δ(b), where

δ(y) := ∀x[ϕ(x) ↔ ψ(x, y)].

So Th∀∃(MM) |= δ(b) by Lemma 13. By compactness, there is an
∀∃-formula θ(y) in L such that θ(b) ∈ Th∀∃(MM) and {θ(b)} |= δ(b).
(Without loss of generality, by padding δ, we may assume that any
constant symbol appearing in θ already appears in δ.)

Conversely, suppose that the right-hand side holds. Fix an LM -
formula ϕ(x, a), where ϕ(x, z) is an L-formula and a is fromM . Choose
θ(y) and ψ(x, z, y) corresponding to ϕ(x, z). Let b be any realization
of θ(y) in M . Then

M |= ∀x∀z[ϕ(x, z) ↔ ψ(x, z, b)].
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In particular, M |= ∀x[ϕ(x, a) ↔ ψ(x, a, b)]. Thus, every LM -formula
is Th(MM)-equivalent to an existential LM -formula, so Th(MM) is
model complete. �

Corollary 16. If M and N are elementarily equivalent L-structures
then the elementary diagram of M is model complete if and only if
the elementary diagram of N is model complete. In particular, if T is
a complete theory and the elementary diagram of some model of T is
model complete, then the elementary diagram of every model of T is
model complete. �

Proposition 17. Let T be any L-theory such that the elementary di-
agram of some model of T is model complete. Then T is ∃∀∃-axiom-
atizable.

Proof. Assume that σ is an L-sentence such that T |= σ. Let M be
a model of T for which the elementary diagram is model complete; so
Th∀∃(MM) logically implies σ. Therefore, there is a conjunction ψ of
∀∃-sentences of LM which logically implies σ. Since none of these extra
constant symbols from M appears in σ, we can existentially quantify
out variables substituted for these constant symbols and obtain a for-
mula of the desired complexity which logically implies σ. �

The following Corollary follows immediately from our Main Theorem
and Proposition 17.

Corollary 18. Every trivial, strongly minimal theory is ∃∀∃-axiomat-
izable. �

2. Motivation from and consequences in computable

model theory

The original motivation of our work was a question in computable
model theory. One of the goals of computable model theory is to deter-
mine the computational complexity of various models of a fixed first-
order theory T . This is especially important in situations where the
models of T are well understood classically, as for uncountably cate-
gorical models, where, by Baldwin/Lachlan [1], the countable models
form an elementary chain of length ω+1 (unless T is totally categorical
and thus uninteresting in our context).

We recall some basic definitions of computable model theory.

Definition 19. (1) A countable first-order language L is comput-
able if its relation, function and constant symbols each form a
computable set and the arity of any function or relation symbol
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of L can be computed effectively. (Thus, in particular, every
finite language is computable.)

For the remainder of the definition, fix a computable lan-
guage L.

(2) A countable L-model M is computable (or recursive) if the open
(i.e., quantifier-free) diagram of M forms a computable set of
LM -formulas.

(3) A countable L-model M is decidable if the (full) elementary
diagram of M forms a computable set of LM -formulas.

Similarly, for any set X ⊆ ω, a countable model is X-computable, or
X-decidable, respectively, if the open diagram, or full diagram, forms
an X-computable set of LM -formulas.

Of course, the above assumes a Gödel numbering of the symbols of L
and of all LM -formulas, which we suppress here. We also ignore here
the question of different numberings of the same model (up to isomor-
phism), i.e., we call a model M computable, or decidable, if some iso-
morphic copy of M is computable or decidable, respectively, as defined
above, or, more precisely, if there is some numbering of M such that
the open diagram, or full diagram, respectively, forms a computable
set of LM -formulas under the induced numbering of LM -formulas.

Effectivizing the Henkin construction, one can easily see that any
decidable first-order theory T has at least one decidable model M. In
the case of an uncountably categorical decidable first-order theory T ,
Harrington [9] and Khisamiev [11] showed that indeed all countable
models of T are decidable. If T is uncountably categorical but not de-
cidable, however, it is possible that some of the countable models of T
are computable while others are not. This was first shown by Gon-
charov [5], who constructed an uncountably categorical but not totally
categorical theory in infinitely many unary relations for which only the
prime model is computable. This naturally leads to the following

Definition 20. Given a computable language L and an uncountably
categorical but not totally categorical L-theory T , let Mα (for α ≤ ω)
be the αth model in the elementary chain of countable models of T
given by Baldwin/Lachlan [1]. The spectrum of computable models
of T is

SCM(T ) = {α ≤ ω | Mα is computable}.

Clearly (e.g., using algebraically closed fields), SCM(T ) = ω ∪ {ω}
is a possible spectrum of computable models. Goncharov’s result [5]
above can be restated as saying that SCM(T ) = {0} is also a possible
spectrum of computable models. A number of other possible spectra
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have been found by Kudaibergenov [13], Khoussainov/Nies/Shore [12]
and Nies [16]. The first spectrum of computable models (6= ω ∪ {ω})
for a finite language (in fact, for the language of a single binary relation
symbol) was found by Herwig/Lempp/Ziegler [10].

In the mid-1990’s, Lempp raised the question of how much the vari-
ous countable models of a fixed uncountably categorical theory T could
differ in their computational complexity. Goncharov’s theory [5] has a
computable prime model while all its countable nonprime models are
not only 0′-computable but can also compute 0′. Lempp asked if it
was possible to construct an uncountably categorical theory T with
computable prime model such that none of the countable nonprime
models is even arithmetical. (Here, a model is arithmetical iff it is X-
computable for some arithmetical set X.) For a long time, and with
various collaborators, he tried unsuccessfully to code more complicated
sets, like 0′′ or 0′′′, into the countable nonprime models while keeping
the prime model computable.

It turned out the model theory “obstructed” the coding: All the
theories for which the spectrum of computable models had been inves-
tigated thus far turned out to be strongly minimal and trivial. And for
such theories, our Main Theorem answers Lempp’s question as follows.

Theorem 21. Let M be a computable trivial, strongly minimal model.
Then Th(M) forms a 0′′-computable set of L-sentences, and thus all
countable models of Th(M) are 0′′-decidable (and so, in particular,
0′′-computable).

Proof. By our Main Theorem, Th(MM) is model complete and thus
∀∃-axiomatizable. Then Th∀∃(MM) is a 0′′-computable set of formulas
which axiomatizes Th(MM), and so Th(MM) and its reduct Th(M)
are 0′′-computable sets of formulas as well. So, by Harrington [9] and
Khisamiev [11] relativized to 0′′, any countable model of Th(M) is
0′′-decidable. �

We note that Goncharov and Khoussainov [6, 7] have shown that
the hypothesis of strong minimality is necessary in Theorem 21 by
exhibiting, for any n ∈ ω, a non-strongly minimal, trivial, uncountably
categorical theory of degree 0(n), all of whose countable models are
computable.

We also note here a preliminary result of ours, which preceded the
above and which can be seen immediately from Lemma 3.

Proposition 22. Let L∞ be the “infinitary” logic obtained from first-
order logic by replacing the usual quantifiers ∃ and ∀ by the “infinitary”
quantifiers ∃<∞ and ∀∞ (i.e., “there exist at most finitely many” and
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“for cofinitely many”). Then the L∞-theory (and indeed the elementary
L∞-diagram) of any computable trivial, strongly minimal model is 0′-
computable. �

Proposition 17 also allows us to bound the complexity of possible
spectra of computable models.

Proposition 23. Let T be an uncountably categorical but not totally
categorical L-theory such that the elementary diagram of some model of
T is model complete. Then the spectrum of computable models SCM(T )
is a Σ0

5-subset of ω ∪ {ω}.

Proof. Suppose SCM(T ) is nonempty since otherwise the result is ob-
vious. Thus T has a computable model N . By Proposition 17, T is
∃∀∃-axiomatizable and 0′′-computable. Given a computable L-model
M, it is thus Π0

4 to check whether M |= T ; and given any computable
L-model M |= T and a tuple a ∈M , it is Π0

3 to check whether a is alge-
braically independent in M, as we will show starting three paragraphs
below.

Now let k be the largest size of an algebraically independent subset
(over ∅) of the prime model of T . Since T is not ℵ0-categorical, k is
finite. Then a model M |= T is isomorphic to the model Mα from
Definition 20 iff k+α is the largest size of an algebraically independent
subset of M. (Here, we are broadly following Nies [16, Proposition
1.1].)

So n ∈ ω is in SCM(T ) iff there is an index e for a model M such that
(i) M |= T , (ii) there is an algebraically independent subset ofM of size
k + n, and (iii) all subsets of M of size k + n+ 1 are not algebraically
independent. All this constitutes a Σ0

5-condition for n ∈ SCM(T ).
(Whether ω ∈ SCM(T ) can be determined nonuniformly.)

We are thus left to show that algebraic independence of a tuple is a
Π0

3-property. A tuple a from a recursive model M of T is algebraically
independent if and only if for all θ, ψ, b (where θ is an ∀∃-formula,
ψ is existential, and b is a tuple from M) and all a∗ ∈ a, one of the
following holds:

(a) (θ, ψ) is not a linked pair (as specified in Definition 14), or
(b) M |= ¬θ(b), or
(c) M |= ¬ψ(a, b), or
(d) M |= ∃∞xψ(x, a′, b) (where a′ = a \ {a∗}).

Now (a) and (b) are ∆0
3 (since we are already assuming that M |= T ),

(c) is Π0
1, and (d) is Π0

2. In particular, we have universal quantifiers in
front of a Π0

3-relation, so algebraic independence is Π0
3.
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That the criterion works can be seen as follows. First, suppose that a
is algebraically independent. Fix any linked pair (θ, ψ) and b such that
M |= θ(b)∧ψ(a, b). Then M |= η(a), where η(x) := ∃y[θ(y)∧ψ(x, y)].
Since a is algebraically independent, for any a∗ ∈ a there are infinitely
many c in M such that M |= η(ca′) (where a′ = a \ {a∗}). For each

such c, choose b
′
such that θ(b

′
)∧ ψ(ca′, b

′
) holds in M. Since (θ, ψ) is

a linked pair, this implies that ψ(ca′, b) holds in M. Thus (d) holds.
Conversely, suppose that a is not algebraically independent. Then

some a∗ ∈ a depends on a′ = a \ {a∗}. So, by the above argument,
there is an L-formula ϕ(x) that “witnesses it”, i.e., M |= ϕ(a) but
there are only finitely many c such that M |= ϕ(ca′). Now choose a
linked pair (θ, ψ) for ϕ using Proposition 15 and choose any b from M
such that θ(b) holds. It is now easy to check that conditions (a)–(d)
all fail. �

Corollary 24. For any strongly minimal, trivial, not totally categorical
theory T , the spectrum of computable models SCM(T ) is a Σ0

5-subset
of ω ∪ {ω}.

Proof. Immediate by the Main Theorem and Proposition 23. (Note
that triviality implies that k ≤ 1 in the proof of Proposition 23.) �
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