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Abstract

In this paper we prove the existence of weak solutions for the thin film
equation with prescribed non zero contact angle and for a large class of
mobility coefficients, in dimension 1. The existence of weak solutions for
this degenerate parabolic fourth order free boundary problem was proved
by F. Otto in [35] when the mobility coefficient is given by f(u) = u, using
a particular gradient flow formulation which does not seem to generalize
to other mobility coefficients. Short time existence (and uniqueness) of
strong solutions was recently proved by H. Knüpfer and N. Masmoudi
in [33, 34] for f(u) = u and f(u) = u2 and for regular enough initial
data (corresponding to a single droplet). In this paper, we use a different
approach to prove the global in time existence of weak solutions without
condition on the support, by using a diffuse approximation of the free
boundary condition. This approach, which can be physically motivated by
the introduction of singular disjoining/conjoining pressure forces has been
suggested in particular by Bertsch, Giacomelli and Karali in [11]. Our
main result is the existence of some weak solutions for the free boundary
problem when the mobility coefficient satisfies f(u) ∼ un as u → 0 for
some n ∈ [1, 2).

1 Introduction

1.1 Regularization of a free boundary problem for capil-
lary surfaces

In this paper, we consider a free boundary problem modeling the motion of
thin viscous liquid droplets on a solid surface. Before discussing the evolution
equation that we will be studying, let us briefly discuss the equilibrium case,
which is considerably simpler. Though the results presented here will only be
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valid in dimension 1, we will discuss the model in any dimension d (the physically
relevant cases correspond to d = 1 or 2).

Equilibrium capillary surfaces. Consider a small liquid droplet lying on a
flat solid surface. We will always assume that the drop can be described as the
set

E = {(x, z) ∈ Rd × (0,∞) ; 0 < z < u(x)}

for some function u : Rd → [0,∞). The graph of the function x 7→ u(x) is the
free surface of the drop (liquid/air interface), while the support of u is the wetted
region (liquid/solid interface). The boundary of the support of u, ∂{u > 0},
is known as the contact line (this is the triple junction where air/liquid/solid
meet). At equilibrium, the shape of the drop is determined by minimizing its
energy, which, neglecting gravitational and other body forces, reads

σ

∫
{u>0}

√
1 + |∇u|2 dx− σβ

∫
Rd
χ{u>0} dx.

The first term is the surface tension energy, proportional to the area of the free
surface (σ is the surface tension coefficient) and the second term is the wetting
energy, proportional to the area of the wetted area (β ∈ (0, 1) is the relative
adhesion coefficient). The resulting minimization problem leads to an elliptic
free boundary problem involving the mean-curvature operator which has been
well studied (see [13, 14, 16, 23] and reference therein).

In the framework of the lubrication approximation, the droplet is assumed
to be very thin, so that we can use the approximation√

1 + |∇u|2 ∼ 1 +
1
2
|∇u|2.

Taking σ = 1 (without loss of generality), the energy of a droplet now reads:

J (u) =
∫

Rd

1
2
|∇u|2 + (1− β)χ{u>0} dx

and minimizers of J (with a volume constraint) are solutions of the following
free boundary problem:{

∆u = −λ in {u > 0}
1
2
|∇u|2 = 1− β on ∂{u > 0}, (1)

where λ is a Lagrange multiplier.
The mathematical analysis of this free boundary problem goes back to the

work of Alt and Caffarelli [1] (see also Caffarelli-Friedman [16] for results involv-
ing the mean-curvature operator). In particular, it is known that the solutions
of (1) are Lipschitz (optimal regularity) and in dimension d = 2 and 3, the free
boundary ∂{u > 0} of the minimizers of J is smooth (see [1, 17]).
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The lubrication approximation. Studying the motion of a liquid drop is a
considerably more difficult problem, mainly because one has to take into account
the motion of the liquid inside the drop. The lubrication approximation allows
to greatly simplify this problem. This approximation is valid for very thin
drops of very viscous liquid, and it consists of a depth-averaged equation of
mass conservation and a simplified Navier-Stokes equations (see [9, 25] for the
derivation of the equation). The evolution of the height of the drop u(x, t) is
then described by the so-called thin film equation:

∂tu+ divx(f(u)∇∆u) = 0 in {u > 0} (2)

where the mobility coefficient f(u) is typically given by f(u) = u3 or f(u) =
u3 + λus, s ∈ [1, 2] depending on the type of boundary conditions imposed on
the fluid velocity at the contact with the solid support. Note that the case
f(u) = u is also important (it corresponds to the evolution of a thin film at the
edge of a Hele-Shaw cell, see [24]), and that the case f(u) = u3 is known to be
critical since the motion of the contact line in that case would lead to infinite
energy dissipation (see [32])

Equation (2) is a fourth order degenerate parabolic equation often studied
when the mobility coefficient is of the form f(u) = un, n > 0. For such mobility
coefficients, (2) looks like the porous media equation. However, because it is of
order four, none of the classical techniques (which often involve the maximum
principle) can be used. Early results were restricted to the one-dimensional case
(Ω = (0, 1)). In particular Bernis and Friedman [6] proved the existence of non-
negative weak solutions for f(u) = un, n > 1. The result was later improved
to include n > 0 and several regularity results and qualitative properties were
established (see in particular [3, 26, 8, 4, 5]). More recently, much of the theory
was extended to higher dimensions (see in particular [20, 21, 10, 27, 28, 29] and
references therein).

In all of the works mentioned above, equation (2) is assumed to be satisfied
on the whole set Ω rather than only in the support of u, and the equation is
supplemented with boundary conditions on ∂Ω:

f(u)∇∆u · n = 0 (null-flux)
∇u · n = 0 (contact angle condition on ∂Ω).

The existence of solutions is then proved via a regularization approach (for
instance by replacing f(u) by f(u) + ε and then passing to the limit ε → 0).
In particular, the boundary of the support ∂{u > 0} (contact line) plays no
particular role in that construction. It can nevertheless be shown that compactly
supported initial data lead to compactly supported solutions (finite speed of
propagation of the support, see [4, 5, 27, 28]) so that we recover the existence
of a contact line. Furthermore, in dimension d = 1 and for n ∈ (0, 3) it has
been shown that the solutions constructed by this method are C1, and therefore
satisfy

|ux| = 0 on ∂{u > 0}.
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This zero contact angle condition should be compared with the free boundary
condition in (1): It correspond to β = 1 (hydrophilic support), and is usually
referred to as the complete wetting regime (note that no stationary solution
can exist in that case).

This contact angle condition is obtained as a consequence of the regulariza-
tion method used to construct the solution, rather than as a conscious choice
of a free boundary condition (this is similar to what is usually done with the
porous media equation). Our goal in this paper is to prove the existence of
solutions to the free boundary problem corresponding to the thin film equation
(2) with non-zero contact angle condition (as in (1)), in dimension d = 1. In
other words, we consider the following free boundary problem (we take β = 0
from now on for the sake of simplicity):

∂tu+ ∂x(f(u)∂xxxu) = 0 in {u > 0}
f(u)∂xxxu = 0 on ∂{u > 0}
1
2 |ux|

2 = 1 on ∂{u > 0}.
(3)

Note that the first free boundary condition imposes null-flux at the contact
line, and thus ensures the preservation of the total volume of the drop. The
fact that we need an additional boundary condition on ∂{u > 0} compared
with (1) is natural since we have a fourth order operator. As usual with null-
flux conditions, it will be enforced in some weak sense as a consequence of the
integral formulation of the equation.

The existence of solutions for (3) is clearly a difficult problem. Short time
existence (and uniqueness) of classical solutions is proved by H. Knüpfer [33] for
f(u) = u2 and by H. Knüpfer and N. Masmoudi [34] for f(u) = u. These results
hold for initial data that are in the form of a single droplet (simply connected
support) and they do not describe the splitting and merging of droplets. To our
knowledge, the only known long time existence result for weak solutions was
obtained by F. Otto [35] in the case f(u) = u. The proof of this result relies on
the fact that when f(u) = u, (3) is the gradient flow for the energy

J0(u) =
∫

1
2
|ux|2 + χu>0 dx

with respect to the Wasserstein distance. Unfortunately, this particular struc-
ture is limited to the case f(u) = u and it does not seem possible to extend this
approach to more general mobility coefficients (see [22] for some extension of
this framework to the case f(u) = un, 0 < n < 1).

In this paper, we prove the existence of weak solutions for this free boundary
problem for mobility coefficient satisfying

f(u) ∼ un as u→ 0 for some n ∈ [1, 2).

Our result thus includes the classical case where f is given by

f(u) = u3 + Λus, s ∈ [1, 2). (4)
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Conjoining/Disjoining pressure. To prove the existence of a solution in
this case, we consider a different approach, which relies on the regularization
of the energy J (and of the free boundary problem (1)) and which can be
physically motivated by the introduction of microscopic scale forces in the form
of long range Van der Waals interactions between the liquid and solid surfaces.
This approach was suggested in particular by Bertsch, Giacomelli and Karali in
[11] who also derive some properties of the singular limit.

From a mathematical point of view, the idea is simply to consider a regular-
ized energy functional Jε defined by

Jε(u) =
∫

1
2
|ux|2 +Qε(u) dx (5)

where u 7→ Qε(u) is a smooth function which converges, as ε goes to zero,
to χ{u>0}. This is a very classical approach for the study of the elliptic (and
parabolic) free boundary problem (1) (see [2, 15, 18] for instance). The mini-
mizers of Jε (without volume constraint) solve the nonlinear equation

∂xxu = Pε(u)

where Pε = Q′ε converges to a Dirac mass at 0. The convergence of the solution
of this equation to solutions of the free boundary problem (1) has been studied,
in particular in [2].

The corresponding regularized thin film equation (3) reads

∂tu+ ∂x

(
f(u)∂x[∂xxu− Pε(u)]

)
= 0 (6)

and is supplemented with boundary conditions on ∂Ω:

f(u)∂x[∂xxu− Pε(u)] = 0 (null-flux)
ux = 0 (contact angle condition on ∂Ω). (7)

Multiplying the equation by [∂xxu− Pε(u)], it is easy to check that smooth
solutions of (6) satisfy

d

dt
Jε(u) +

∫
Ω

f(u)
[
∂x(∂xxu− Pε(u))

]2
dx = 0. (8)

From a physical point of view, equation (6) corresponds to the classical
lubrication approximation equation, when the pressure at the free surface of the
drop, rather than being given by the surface tension alone (which is proportional
to −∂xxu), is given by

Π(u) = −∂xxu+ Pε(u). (9)

The additional pressure term Pε(u) can be interpreted as modeling the effects
of disjoining/conjoining intermolecular forces due to the interactions of the fluid
molecules with the solid support. The inclusion of such forces has been proposed
by several authors to describe the precursor film phenomena.
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In the literature, Pε is often a Lennard-Jones type potential with a singular-
ity at 0 (see in particular [30], [7] for a mathematical analysis of the resulting
model for fixed ε > 0). For technical reasons however, we consider here only
bounded pressure term. More precisely, we assume that P is a given continuous
function satisfying

P (u) > 0 for u ∈ (0, 1), P (u) = 0 for u ≥ 1,
∫ ∞

0

P (u) du = 1. (10)

and Q is given by

Q(u) =
∫ u

0

P (u) du. (11)

We then define
Pε(u) =

1
ε
P (u/ε), Qε(u) = Q(u/ε). (12)

In particular, it is easy to check that Qε(u) ≥ 0 for all u, Qε(u) = 1 for
u ≥ ε and Qε(u)→ χ{u>0} as ε→ 0.

Note that the last two conditions in (10) are by no mean necessary. In fact,
these conditions could easily be replaced by

0 ≤ P (u) ≤ C

uq
for all u ≥ 1, for some q > 1,

∫ ∞
0

P (u) du = M > 0

but we choose to consider slightly more restrictive assumptions in order to sim-
plify the analysis.

The rest of the paper is organized as follows: In the next section, we give
some results concerning the limit ε→ 0 for stationary solutions of (6) (first for
energy minimizers, and then for general stationary solutions). In Section 3, we
give our main result concerning the behavior of the limit ε→ 0 of the solutions
of the singular thin film equation (6). The results for stationary solutions are
then proved in Section 4, while our main result (the convergence of solutions of
(6) to solutions of the free boundary problem) is proved in Section 5.

2 Stationary solutions - Main results

2.1 Energy minimizers

We first consider energy minimizers, that is solutions of

Jε(uε) = min{Jε(v) ; v ≥ 0 in Ω,
∫

Ω

v(x) dx = V } (13)

where Jε is given by (5). Note that using the function v0(x) = V
|Ω| (which is a

local minimizer of Jε), we get

Jε(uε) ≤Jε(v0) ≤ |Ω|. (14)
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Equation (13) is an obstacle problem with volume constraint. Using classical
arguments (see [12] for instance), one can show that uε satisfies

uε′′ ≤ Pε(uε)− λε in Ω (15)

and
uε′′ = Pε(uε)− λε in {uε > 0} (16)

for some constant λε (which is the Lagrange multiplier for the volume con-
straint). Furthermore, uε satisfies the usual free boundary condition (see [12])

uε = |uε′| = 0 on ∂{uε > 0} ∩ Ω (17)

and the Neumann boundary condition on ∂Ω:

uε′ = 0 on ∂Ω. (18)

We are going to show:

Proposition 2.1. Let {uε}ε>0 be a sequence of solutions of (15)-(18) satisfying
(14) and ∫

Ω

uε dx = V

for some fixed volume V > 0. Then, the corresponding constants λε are bounded
(uniformly in ε) and up to a subsequence, uε converges uniformly and H1(Ω)−strong
to u solution of {

u′′ = −λ in {u > 0},
1
2 |u
′|2 = 1 on ∂{u > 0} ∩ Ω

(19)

satisfying the following boundary condition for x ∈ ∂Ω:

u′(x) = 0 if u(x) > 0,
1
2
|u′(x)|2 = 1 if u(x) = 0.

The condition (17) can be interpreted as a microscopic contact angle condi-
tion (with zero contact angle), while (19) gives the macroscopic (or apparent)
contact angle condition (which is not zero).

If we fix λε in (15)-(18) (and let the volume vary), then the problem reduces
to the well-known (and well studied) Bernouilli problem, for which Proposi-
tion 2.1 is a classical result (see [2, 15]). So once we have proved that λε is
bounded uniformly with respect to ε, Proposition 2.1 can be proved using clas-
sical arguments. We will nevertheless give a complete proof of this result in
Section 4.1 because parts of this proof will be used later on (and it introduces
some of the ideas that will be used for the other results).

Let us briefly sketch this proof: Multiplying (16) by uε′ and integrating, one
finds that the function

Gε = Qε(uε)−
1
2
|uε′|2 − uελε
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must be constant throughout each connected component of {uε > 0}. If we
have {uε > 0} 6= Ω (unfortunately, we will see that this might not be true),
then we can take x0 ∈ ∂{uε > 0} ∩ Ω, and using (17) we deduce

Gε(x) = Gε(x0) = 0 for all x ∈ {u > 0}. (20)

We will also prove that:

(i) λε is bounded

(ii) uε converges strongly in H1(Ω),

so that we can pass to the limit in Gε and obtain

1− 1
2
|u′|2 − uλ = 0 in {u > 0},

which gives the free boundary condition in (19).

The main difficulty in the proof will be to deal with the case where {uε >
0} = Ω in which case we do not have (20), and we need to show that Gε → 0
as ε → 0. This function Gε, which plays a crucial role in this proof, as well as
in the rest of the paper can also be written as (using (16)):

Gε(x) = Qε(uε)−
1
2

(uε′)2 + uεuε′′ − uεPε(uε).

In the next section, we discuss the behavior of general stationary solutions which
may not be energy minimizers. In this case (and in the evolution case), the main
additional difficulty is that neither (i) or (ii) above (the bound of λε and strong
convergence of uεx) can be expected to hold.

2.2 General stationary solutions

General solutions of (16)-(18) (which may not be energy minimizers) have been
studied in [36] (for fixed ε > 0). It is easy to show that many of the solutions
constructed there will not satisfy the expected contact angle condition in the
limit ε → 0. Some of these solutions are depicted in Figure 1 and correspond
to ripples. However we will see that such undesirable solutions must cover all
of Ω and can thus be discarded with conditions on the support of the drop (for
instance by taking Ω large, so that (14) holds). They will nevertheless play an
important role in the evolution case in the next section.

But even general solutions of (16)-(17) do not cover all physically relevant
configurations. Indeed, when the support of the drop has several connected
components, (16) imposes the Lagrange multiplier to be the same on each com-
ponent. This implies that the droplet can only split into smaller droplets with
all the same volume. This is too restrictive, and so we define
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u(x)u(x)

x x x

u(x)

Figure 1: Example of limit of solutions of (16)-(17). Only the first one (global mini-
mizer of Jε) satisfies desired contact angle condition.

Definition 2.2. A continuously differentiable function u : Ω → [0,∞] is a
stationary solution if Jε(u) < ∞ and for any (ai, bi) connected component of
{u > 0}, we have u ∈ C2((ai, bi)) and there exists a constant λi such that

u′′ = Pε(u)− λi, in (ai, bi) (21)

and
u′ = 0 on ∂(ai, bi) (22)

(in particular u′ = 0 on ∂Ω).

In particular, one can show that if u : Ω → [0,∞] is a continuous function
such that Jε(u) <∞ and∫

Ω

un[(u′′ − Pε(u))′]2 dx = 0 (23)

(we recognize the dissipation of energy for the thin film equation) for some
n ∈ (0, 3) then u is a stationary solution in the sense of Definition 2.2. Indeed
(23) implies (21) immediately, and it also implies∫

Ω

un[u′′′]2 dx ≤
∫

Ω

unP ′ε(u)[u′]2 dx ≤ CJε(u)

which implies (together with the Neumann condition on ∂Ω) that u ∈ C1,α(Ω)
for some α > 0 (depending on n). Hence (22) holds.

Now, given a sequence {uε}ε>0 of stationary solutions, we want to pass to
the limit ε → 0. This is more difficult than in Proposition 2.1, because we
cannot expect the λεi to be bounded (the drop may split up into smaller and
smaller droplets as ε goes to zero), and in turn, we may not have the strong
convergence of uε in H1(Ω).

Nevertheless, we will show:

Theorem 2.3. Let {uε}ε>0 be a sequence of stationary solution such that∫
Ω

uε dx = V

and
Jε(uε) ≤ |Ω|. (24)
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Then, up to a subsequence, uε converges uniformly to a continuous function u
satisfying

∫
Ω
u dx = V ,∫

Ω

1
2
|u′|2 dx+ |{u > 0}| ≤ lim inf

ε→0
Jε(uε) (25)

and solution of{
u′′ = −λi constant on each connected component (ai, bi) of {u > 0}
1
2 |u
′|2 = 1 on ∂{u > 0} ∩ Ω

(26)
satisfying the following condition on ∂Ω:

u′(x) = 0 if u(x) > 0,
1
2
|u′(x)|2 = 1 if u(x) = 0.

Note that (24) is used here to discard the undesirable solutions mentioned
above (it is not very restrictive since we can assume Ω to be very large). The
proof of Theorem 2.3 will rely on the function

Gε(x) = Qε(uε)−
1
2

(uε′)2 + uεuε′′ − uεPε(uε).

which will be proved to be constant in Ω. The main difficulty (compared with
the previous section) is that it is not possible to pass to the limit in Gε due to
the lack of compactness in H1.

3 The thin film equation - Main results

We now consider the regularized thin film equation:
∂tu+ ∂x(f(u)∂x[∂xxu− Pε(u)]) = 0 for x ∈ Ω, t > 0

f(u)∂x[∂xxu− Pε(u)] = 0, ux = 0 for x ∈ ∂Ω, t > 0

u(x, 0) = u0(x) for x ∈ Ω

(27)

where u0 is a non-negative function in H1(Ω) and the mobility coefficient f(u)
is a smooth function satisfying

f(u) > 0 for u > 0 and f(u) ∼ un as u→ 0 for some n ∈ [1, 2). (28)

This includes in particular the physical case f(u) = u3 + un with n ∈ [1, 2).

For fixed ε > 0, the function Pε is a smooth bounded function for u ≥ 0, so
the existence of a non-negative solution for (27) is a classical problem (see for
instance [6, 8, 11]). Our starting point is thus the following theorem:
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Theorem 3.1. Assume that (28) holds. Then for any ε > 0 and any non-
negative u0 such that J0(u0) < ∞, there exists a non-negative function uε ∈
C 1

8 ,
1
2 ([0,∞)× Ω) such that uε ∈ C1,4({uε > 0}) and for all T > 0:

uε ∈ L∞(0,∞;H1(Ω)) ∩ L2(0, T ;H2(Ω)),
√
f(uε)[uεxxx] ∈ L2({uε > 0})

and satisfying, for all ϕ ∈ D((0,∞)× Ω):
∫ ∞

0

∫
Ω

uεϕt dx+
∫ ∞

0

∫
{uε(t)>0}

f(uε)[uεxx − Pε(uε)]xϕx dx dt = 0

uε(x, 0) = u0(x).
(29)

The Neumann boundary condition is satisfied in the sense that

uεx ∈ L2(0, T ;H1
0 (Ω)) for all T > 0 (30)

and uε satisfies the mass conservation∫
Ω

uε(x, t) dx =
∫

Ω

uε0(x) dx a.e. t ≥ 0, (31)

and the energy inequality:

Jε(uε(t)) +
∫ t

0

∫
Ω

|gε(x, s)|2 dx ds ≤Jε(u0) a.e. t ≥ 0 (32)

with
Jε(u) =

∫
Ω

1
2
u2
x +Qε(u) dx.

and for some function gε satisfying gε =
√
f(uε)

[
(uεxx−Pε(uε))x

]
on {uε > 0}.

Furthermore, the function

Gε = Qε(uε)−
1
2

(uεx)2 + uεuεxx − uεPε(uε) (33)

belongs to L2(0,∞;H1(Ω)) and satisfies

|Gεx(x, t)| ≤ |uε(x, t)|
n−2

2 gε(x, t) a.e. in (0,∞)× Ω (34)

For the sake of completeness (and because (34) is a straightforward, but not
classical inequality), we recall the main steps of the proof of this theorem in
Appendix A. Note that equation (27) also holds in the following stronger sense:∫ ∞

0

∫
Ω

uεϕt dx−
∫ ∞

0

∫
Ω

f ′(uε)uεx[uεxx − Pε(uε)]ϕx dx dt

−
∫ ∞

0

∫
Ω

f(uε)[uεxx − Pε(uε)]ϕxx dx dt = 0.

We can also prove the following result which justifies the notion of stationary
solution introduced in the previous section:
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Proposition 3.2. Let uε be a solution of (27) given by Theorem 3.1. Then
there exists a sequence tk → ∞ such that uε(x, tk) → uε∞(x) uniformly in Ω
where uε∞(x) is a stationary solution in the sense of Definition 2.2.

We include the proof of this proposition in Appendix A.

The main result of this paper is then the following theorem:

Theorem 3.3. Assume that (28) holds and let uε be a solution of (27) given
by Theorem 3.1. Then up to a subsequence, uε converges locally uniformly to a
function u ∈ C 1

8 ,
1
2 ([0,∞)× Ω) satisfying u(x, 0) = u0(x),

uxxx ∈ L2
loc({u > 0}),

√
f(u)uxxx ∈ L2({u > 0}). (35)

Furthermore, u solves the free boundary problem (3) in the following sense:

(a) For every test function ϕ ∈ D((0,∞)× Ω)∫ ∞
0

∫
Ω

uϕt dx dt+
∫ ∞

0

∫
{u(t)>0}

f(u)uxxx ϕx dx dt = 0 (36)

(note that this weak formulation implicitly includes the null-flux free boundary
condition on ∂{u > 0}).

(b) For all t > 0, we have ∫
Ω

u(x, t) dx =
∫

Ω

u0(x) dx. (37)

(c) For almost every t > 0, x 7→ u(x, t) is a Lipschitz function, and there exists
a open set U(t) such that {u(·, t) > 0} ⊂ U(t) and

(i) For all a ∈ ∂{u(·, t) > 0},

1
2
u2
x(a±, t) ≤ 1. (38)

(ii) If (a, b) is a connected component of {u(·, t) > 0} and a ∈ ∂U(t)∩Ω, then

1
2
u2
x(a+, t) = 1 (39)

(and similarly with b).

(iii) The following energy inequality holds:∫
Ω

1
2
u2
x(x, t) dx+ |U(t)|+

∫ t

0

∫
{u(t)>0}

f(u)(uxxx)2 dx ds ≤J0(u0). (40)
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The most important part of this result is the last point (c) which requires
a little discussion. First, we note that the Lipschitz regularity with respect
to x is optimal in view of the non-zero contact angle condition (though the
Lipschitz constant is not bounded uniformly in time). Then, (i) claims that u
is a supersolution for the free boundary condition at any points of the contact
line, while (ii) states that u satisfies the expected free boundary condition only
at the boundary points of a set U(t) which might be bigger than the support of
u.

The introduction of such a set U(t) is fairly classical in such problems. A pos-
sible interpretation for the necessity of this set is that when the drop splits (i.e.
when u vanishes somewhere in Ω), it may not split up cleanly but instead leave
a very thin film behind (corresponding to the complete wetting regime). In fact,
we will also prove the following result (which follows from Proposition 5.5 (ii)):

Proposition 3.4. For almost every t > 0, and for any interval [c, d] ⊂ U(t)
such that u(x, t) = 0 for all x ∈ [c, d], we have

uε(x, t) ≥ κε for all x ∈ [c, d]

for some κ > 0 and for all ε along some subsequence εk → 0.

This result suggests that the set U(t) (rather than the support of u) truly
describes the ”wetted” region.

A similar issue arises in [35] with the thin film equation when f(u) = u,
and in [31], where the motion of liquid drops is studied in the framework of the
quasi-static approximation regime (see also [19]). However it should be noted
that the solutions constructed by F. Otto in [35] are stronger since they satisfy
u(·, t) ∈ C1,2/3(U(t)). This implies in particular that if u vanishes in U , it does
so with a zero contact angle ux = 0. In our case, we only obtain the inequality
(38) instead. A possible interpretation is that while in [35] the ”very thin”
film left behind by the splitting droplet is always smooth, in our approach we
could not eliminate the possibility of some ”very thin” ripples, which correspond
exactly to the undesirable stationary solutions discussed in Section 2 (note that
these stationary solutions are not local energy minimizers). In order to further
characterize this behavior, we can prove the following result:

Proposition 3.5. For almost every t > 0, the following holds: Let a ∈ Ω be
such that u(·, t) = 0 in [a − δ, a] and u(·, t) > 0 in (a, a + δ) for some small δ.
Then,

(i) if 0 < 1
2u

2
x(a+, t) < 1, then

lim
ε→0

∫
I

|uεx(x, t)|2 dx > κ|I|

for some κ > 0 (depending on 1
2u

2
x(a+, t)) and for all interval I ⊂ [a− δ, a].

(ii) if
d

dt

∫ x0

0

uε(x, t) dx ≥ 0 for all x0 ∈ (a− δ, a+ δ) (41)

13



for all ε along an appropriate subsequence, then

either 1
2u

2
x(a+, t) = 0 or 1

2u
2
x(a+, t) = 1.

The first part of this proposition says that the undesirable contact angle val-
ues, 1

2u
2
x(a+, t) ∈ (0, 1), can only appear when uε goes to zero with a lot of oscil-

lations (in particular uε does not converge strongly in H1 in that case). The sec-
ond part says that if the quantity of liquid to the left of the free boundary point
is increasing, then we must have either complete wetting regime ( 1

2u
2
x(a+, t) = 0)

or the expected contact angle ( 1
2u

2
x(a+, t) = 1). This condition on the quantity

of liquid implies in particular that the contact line is moving to the left. In other
words, this result states (in a weak sense) that the undesirable contact angle
values can only be the result of a de-wetting process (so the wetting process is
a clean process, but the de-wetting process can be messy).

Finally, we note that if J0(u0) < |Ω| (which for compactly supported initial
data can always be assumed by taking Ω large enough), then (40) implies that
U(t) 6= Ω, so u will have at least one free boundary point with the right contact
angle.

The proof of Theorem 3.3 is detailed in Section 5. It relies on the function

Gε(x, t) = Qε(uε)−
1
2

(uεx)2 + uεuεxx − uεPε(uε),

introduced in Theorem 3.1. In the stationary case, this function was shown
to be constant throughout Ω. This is not the case here, but inequality (34)
implies that for almost every t, x 7→ Gε(x, t) converges uniformly to a continuous
function x 7→ G0(x, t) which is constant on each connect component of {u = 0}
and satisfies

G0(x, t) = 1− 1
2

(ux)2 + uuxx in {u > 0}.

Formally, we thus expect to have
1
2

(ux)2 = 1−G0(x, t) on ∂{u > 0},

so the value of 1
2 (ux)2 at the free boundary is related to the value of G0(x, t) on

the zero set of u. In Proposition 5.5, we will show that G0 ∈ [0, 1] in {u = 0}
(implying (i)) and that limε→0Qε(uε) = 1 a.e. in {G0 6= 0} (which will give
(iii)). The set U is then defined as {u > 0} ∪ {G0 6= 0}.

Proposition 3.5 is proved at the end of Section 5.

4 Stationary solutions - Proof of the main re-
sults

In this section, we prove our main results concerning stationary solutions. We
start with the simpler case of energy minimizers (Proposition 2.1), and then
turn to general stationary solutions (Theorem 2.3).
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4.1 Proof of Proposition 2.1

We recall that for all ε > 0, uε is a solution of (15)-(18) and satisfies

Jε(uε) =
∫

Ω

1
2
|uεx|2 +Qε(uε) dx ≤ |Ω|. (42)

In particular, uε is bounded in H1(Ω) ⊂ C1/2(Ω) uniformly with respect to
ε and thus converges (up to a subsequence) uniformly (and H1-weak) to some
function u(x) ∈ H1(Ω). Furthermore, classical regularity results for the obstacle
problem imply that for all ε > 0 we have uε ∈ C1,1(Ω) and uε ∈ C∞({uε > 0}).

In order to get better (uniform) estimate and pass to the limit in (16), we
need the following lemma:

Lemma 4.1. There exists a constant C independent of ε such that

0 ≤ λεV ≤ C (43)

and ∫
{uε>0}

Pε(uε) dx ≤
C

V
. (44)

Proof. Multiplying (15) by uε and integrating (and using the Neumann bound-
ary conditions on ∂Ω) we get

λεV ≤
∫

Ω

uεPε(uε) dx+
∫

Ω

|uε′|2 dx.

Using the fact that uPε(u) = u
εP
(
u
ε

)
≤ supv≥0 vP (v) ≤ C, we deduce (43).

Next, we note that the open set {uε > 0} is the countable union of its
connected components (ai, bi). Integrating (16) on (ai, bi) and using (17), we
get ∫ bi

ai

Pε(uε) dx = λε(bi − ai)

and so ∫
{uε>0}

Pε(uε) dx =
∑
i

∫ bi

ai

Pε(uε) dx = λε|{uε > 0}| ≤ λε|Ω|.

In view of (43), we can assume that λε converges to λ and passing to the
limit in (15) and (16), we deduce

uxx ≤ −λ in Ω (45)

and
uxx = −λ in {u > 0}. (46)
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Next, multiplying (17) by uε′, one finds

1
2

(|uε′|2)′ = Qε(uε)′ − uε′λε in {uε > 0}

and so the function

Gε(x) := Qε(uε)−
1
2
|uε′|2 − uελε (47)

is constant throughout each connected component of {uε > 0}. The C1,1 reg-
ularity of uε implies that Gε is continuous in Ω and vanishes whenever u = 0.
We easily deduce that

Gε(x) = Gε is constant in Ω

(and Gε = 0 if uε vanishes at at least one point in Ω).
Finally, (42) and Lemma 4.1 imply that Gε is bounded in L1(Ω), and so

there exists a constant C independent of ε such that

|Gε| ≤ C. (48)

We immediately deduce the following optimal regularity estimate:

Corollary 4.2. There exists a constant C independent of ε such that

sup
x∈Ω
|uε′| ≤ C.

Proof. Using (48) and Lemma 4.1, we get

1
2
|uε′|2 ≤ |Gε|+Qε(uε) + uελε ≤ C

We can now prove the following crucial lemma, which will allow us to pass
to the limit in (47):

Lemma 4.3. Up to a subsequence uε converges strongly in H1(Ω) to u, and
uε′ converges almost everywhere to u′.

Proof of Lemma 4.3. The open set {uε > 0} is the (at most) countable union
of its connected component (ai, bi). Multiplying (16) by uε and integrating over
(ai, bi), we get (using (17) and the Neumann condition on ∂Ω)∫ bi

ai

|uε′|2 dx = λε
∫ bi

ai

uε dx−
∫ bi

ai

uεPε(uε) dx ≤ λε
∫ bi

ai

uε dx

Summing over all connected components of {uε > 0}, we deduce∫
Ω

|uε′|2 dx ≤ λε
∫

Ω

uε dx
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and so
lim inf
ε→0

∫
Ω

|uε′|2 dx ≤ λ
∫

Ω

u dx

Next, we proceed similarly with u, multiplying (46) by u and integrating
over each connected component of {u > 0}. We deduce (using the fact that
u = 0 and |u′| ≤ C on ∂{u = 0} \ ∂Ω):∫

Ω

|u′|2 dx = λ

∫
Ω

u dx.

It follows that
lim inf
ε→0

∫
Ω

|uε′|2 dx ≤
∫

Ω

|u′|2 dx

which implies the lemma.

We can now conclude the proof of Proposition 2.1: We note that Qε(uε)
is bounded in L∞(Ω) and using (44) and Corollary 4.2, we can check that
Qε(uε)′ = Pε(uε)uε′ is bounded in L1(Ω). We can thus assume (up to a subse-
quence) thatQε(uε) converges L1(Ω) strong and almost everywhere to a function
ρ(x). Passing to the limit in (47) (along that same subsequence), we deduce
that there exists a constant G0 such that

G0 = ρ− 1
2

(u′)2 − λu in Ω (49)

and it only remains to show that G0 = 0.

First, it is readily seen (using the definition of Qε(u)) that ρ = 1 in {u > 0},
and so (using (49)):

ρ =

{
1 in {u > 0}
G0 in {u = 0} \ ∂{u > 0}.

(50)

Now, using a classical argument, we can prove that ρ = 0 or 1 a.e.: For any
0 < δ1 < δ2 < 1, we have infδ1≤u≤δ2 P (u) = κ > 0. So (44) implies

|{δ1ε ≤ uε ≤ δ2ε}| ≤
ε

κ

∫
Ω

Pε(uε) dx ≤ C
ε

κ

and so
|{Q(δ1) ≤ Qε(uε) ≤ Q(δ2)}| ≤ C ε

κ
.

Passing to the limit ε→ 0, we deduce:

|{Q(δ1) ≤ ρ ≤ Q(δ2)}| = 0.

Since this holds for any 0 < δ1 < δ2 < 1, it implies that ρ = 0 or 1 almost
everywhere.
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Finally, (42) implies∫
1
2
|u′|2 + ρ dx ≤ lim inf

ε→0
Jε(uε) ≤ |Ω|,

so either
∫
ρ dx = Ω, in which case we must have u is constant in Ω and we

are done, or
∫
ρ dx < Ω in which case we must have ρ = 0 on a set of positive

measure. In view of (50), we must then have G0 = 0 and so (49) gives

0 = 1− 1
2

(u′)2 − λu in {u > 0}

which implies in particular

1
2

(u′)2 = 1 on ∂{u > 0}

and competes the proof of Proposition 2.1.

4.2 Proof of Theorem 2.3

We assume now that {uε}ε>0 is a sequence of stationary solution (in the sense of
Definition (2.2)). The main difficulty in the proof of Theorem 2.3 is that we do
not expect λε to be bounded uniformly with respect to ε and as a consequence
the equivalent of Lemma 4.3 does not hold (that is uε′ might not converge
strongly to u′).

The first step is to define an equivalent of the function Gε defined by (47):
Let (ai, bi) be a connected component of {u > 0}. Multiplying (21) by u′ and
integrating, we get that the function

x 7→ Qε(uε(x))− 1
2
|uε′(x)|2 − λiuε(x)

is constant on (ai, bi).
If {uε > 0} = Ω, then there is only one such component, and so we define

Gε(x) := Qε(uε)−
1
2
|uε′|2 − λuε

= Qε(uε)−
1
2

(uε′)2 + uεuε′′ − uεPε(uε)

which is constant in Ω.
Otherwise, we have (ai, bi) 6= Ω (for any connected component), and so u = 0

at either ai or bi. Using (22), we deduce that the function defined by

Gε(x) := Qε(uε)−
1
2
|uε′|2 − λiuε

= Qε(uε)−
1
2

(uε′)2 + uεuε′′ − uεPε(uε) in (ai, bi)
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satisfies Gε = 0 in (ai, bi).
Either way, the function defined by

Gε(x) :=

{
Qε(uε)− 1

2 (uε′)2 + uεuε′′ − uεPε(uε), in {uε > 0}
0 in {uε = 0}

is constant in Ω.
We can then show:

Lemma 4.4. There exists C (independent of ε) such that

|Gε| ≤ C

and
|uε′(x)| ≤ C for all x ∈ Ω.

Theorem 2.3 will now follow from the following lemma:

Lemma 4.5. We have
lim
ε→0

Gε = 0 in Ω

(along any sequence ε→ 0).

Postponing the proofs of Lemma 4.4 and 4.5, let us now complete the proof
of Theorem 2.3:

Proof of Theorem 2.3. Lemma 4.4 implies that, up to a subsequence, uε con-
verges uniformly and H1-weak to a Lipschitz function u. Furthermore,∫

|u′|2 dx ≤ lim inf
ε→0

∫
|uε′|2 dx,

and if we define
ρ = lim inf

ε→0
Qε(uε),

Fatou’s lemma implies∫
Ω

1
2
|u′|2 dx+ ρ(x) dx ≤ lim inf

ε→0
Jε(uε). (51)

Note that ρ(x) ≥ 0 for all x and ρ = 1 in {u > 0}, so (51) implies (25).

Next, in order to make use of Lemma 4.5, we need to pass to the limit in
Gε. We cannot do it directly, since (uε′)2 does not converge to (u′)2. However,
we really only need to identify the limit of Gε on the connected components of
{u > 0}, where we can get better regularity for uε:

Let (a, b) be a connected component of {u > 0} and K be a compact subset
of (a, b). First, Lemma 4.4 and the definition of Gε imply

uεuε′′ is bounded in L∞(Ω)
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(recall that u 7→ Qε(u) and u 7→ uPε(u) are bounded functions). The continuity
of u and uniform convergence of uε to u implies that there exists δ > 0 such
that for ε small enough we have uε ≥ δ ≥ ε in K, and so

uε is bounded in W 2,∞(K)

and
Qε(uε) = 1 and uεPε(uε) = 0 in K.

It follows that for ε small enough, we have

1
2
|uε′|2 − uεuε′′ = 1 +Gε in K (52)

and that uε′ converges strongly in L2(K) to u′ and uε′′ converges weakly in
?− L∞(K) to u′′. We easily deduce

1
2

(u′)2 − uu′′ − 1 = 0 in (a, b). (53)

This now implies

(uu′′)′ = (
1
2

(u′)2)′ = u′u′′ ∈ L∞(K)

and so
uu′′ ∈W 1,∞(K)

and hence
u ∈W 3,∞(K).

Differentiating (53) once more, we deduce

uu′′′ = 0 in K

which implies u′′′ = 0 in K. Since this holds for any compact subset of (a, b),
we deduce that u is a parabola in (a, b): There exists a constant λ such that

u = −λ(x− a)(x− b).

Plugging this back into (53) yields

1
2
λ2(a− b)2 = 1

which determines λ and implies in particular

1
2
|u′(a)|2 =

1
2
|u′(b)|2 = 1.

This completes the proof of Theorem 2.3.

We now turn to the proofs of the lemma:
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Proof of Lemma 4.4. First, for every connected component (ai, bi) of {uε > 0},
we have:∫

(ai,bi)

Gε dx = −3
2

∫
(ai,bi)

(uε′)2 dx+ (uεuε′)|∂(ai,bi) +
∫

(ai,bi)

Qε(uε)−uεPε(uε) dx.

Hence, using (22) and the fact that Qε(u) and uPε(u) are bounded (uniformly
in u and ε), we deduce

|Ω||Gε| =
∣∣∣∣∫

Ω

Gε dx

∣∣∣∣ ≤ 3Jε(uε) + C|Ω| ≤ C|Ω|,

which gives the first inequality.
Next, if uε′ is maximum at x0, then we must have x0 ∈ {uε > 0} and

uε′′(x0) = 0. We deduce

1
2

(uε′)2(x0) = Gε +Qε(uε(x0))− uε(x0)Pε(uε(x0)).

which is bounded by a constant C uniformly in ε. Proceeding similarly with a
point where uε′ is minimum, we deduce the result.

Proof of Lemma 4.5. If {uε > 0} 6= Ω, we have already seen that Gε = 0. So
we only have to consider a subsequence εk → 0 such that {uεk > 0} = Ω for all
k. In that case, uεk is smooth in Ω and there exists a constant λk such that

uεk ′′ = Pεk(uεk)− λk in Ω.

In particular, the sequence {uεk}k∈N satisfies the hypotheses of Proposition 2.1,
and we can thus proceed as in the proof of Proposition 2.1 to show that

lim
k→∞

Gεk = 0

and the result follows.

5 Thin film equation: Proof of Theorem 3.3

We now turn to the proof of the main result of this paper. We consider a
sequence {uε(x, t)}ε>0 of weak solutions of

∂tu+ ∂x(f(u)∂x[∂xxu− Pε(u)]) = 0 for x ∈ Ω, t > 0

f(u)∂x[∂xxu− Pε(u)] = 0, ux = 0 for x ∈ ∂Ω, t > 0

u(x, 0) = u0(x) for x ∈ Ω

(54)

given by Theorem (3.1). We also fixe T > 0 (T can be arbitrarily large).
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5.1 Proof of Theorem 3.3 parts (a) and (b)

The energy inequality (32) implies that uε is bounded uniformly in ε in L∞(0, T ;H1(Ω)) ⊂
L∞(0, T ;C1/2(Ω)). Classically, this Hölder estimate with respect to the space
variable implies some Hölder regularity in time. More precisely, we have (see
[6] or [11] for instance):

Lemma 5.1. There exists a constant C independent of ε such that

||uε||C1/8,1/2([0,∞)×Ω) ≤ C.

Since uε is also bounded in L∞(0, T ;L1(Ω)), we can extract a subsequence
which converges uniformly (with respect to x and t) to a continuous function
u(x, t).

From now on, we denote by {uk}k∈N such a subsequence. So for all k ∈ N,
the function uk is a solution of (54) with ε = εk and

εk −→ 0

uk −→ u uniformly in (0, T )× Ω.

as k →∞.

Our first task is to show that u satisfy (36) (that is u solves the thin film
equation in its support).

For that purpose, we note that (32) implies that the function gk(x, t), which
satisfies

gk =
√
f(uk)∂x(∂xxuk − Pεk(uk)) in {uk > 0}

is bounded in L2((0, T ) × Ω) uniformly with respect to k and thus converges
weakly to a function g(x, t) satisfying

||g||L2((0,T )×Ω) ≤ lim inf
k→∞

||gk||L2((0,T )×Ω).

Now, let K be a compact set in {u > 0} ∩ (0, T ) × Ω. The continuity of u
and the uniform convergence of uk implies that there exists δ > 0 such that
uk ≥ δ in K for k large enough. If εk < δ (which holds for k large enough), then
Pεk(uk) = 0 and so gk =

√
f(uk)ukxxx ≥

√
f(δ)ukxxx in K. It follows that ukxxx

converges weakly in L2(K) to uxxx and thus that gk converges weakly in L2(K)
to
√
f(u)uxxx. We deduce that g =

√
f(u)uxxx in {u > 0} and (35) follows.

To prove (36), we first rewrite (29) as∫ T

0

∫
Ω

ukϕt dx+
∫ T

0

∫
Ω

√
f(uk)gkϕx dx dt = 0

and pass to the limit k →∞. Note that the conservation of mass, (37), clearly
follows from (31).
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5.2 Proof of Theorem 3.3 part(c)

The remainder of this section is thus devoted to the proof of Theorem 3.3-(c).
The main tool is the function

Gk(x, t) = Qεk(uk)− 1
2

(ukx)2 + uk[ukxx − Pεk(uk)]

introduced in Theorem 3.1 (recall that for all k, we have uk ∈ L2(0, T ;H2(Ω)),
so Gk is defined almost everywhere in (0, T )× Ω).

Inequalities (34) and (32) imply that Gkx is bounded in L2((0, T ) × Ω) (we
recall that n < 2). Since∫

Ω

Gk(x, t) dx =
∫

Ω

Qεk(uk)− ukPεk(uk)− 3
2

(ukx)2 dx,

the energy estimate (32) together with Poincaré inequality gives

Lemma 5.2. There exists a constant C independent of k such that

||Gk||L2(0,T ;H1(Ω)) ≤ C.

Sobolev embeddings thus implies

||Gk||L2(0,T ;C1/2(R)) ≤ C, (55)

and we can also prove the following regularity result:

Corollary 5.3 (Lipschitz regularity). The function ukx is bounded in L2(0, T ;L∞(R))
uniformly with respect to k (in particular uk is Lipschitz in x a.e. in t). More
precisely, there exists a constant C such that

||ukx(·, t)||L∞(Ω) ≤ C
√

1 + ||Gk(·, t)||H1(Ω) a.e. t ∈ [0, T ].

Note that the Lipschitz regularity with respect to x is optimal since we
expect a jump of the derivative at the free boundary. Whether it is possible to
obtain a Lipschitz bound in x that is uniform in time is still an open problem
at this time.

Proof of Corollary 5.3. We recall that uk ∈ L2(0, T ;H2(Ω)) for all k (but this
does not hold uniformly in k) and so for almost every t we have ukx(·, t) ∈
C1/2(Ω). For such a t, ukx(·, t) takes its maximum value at a point x0 ∈ Ω.
If x0 ∈ ∂Ω, then ukx(x, t) ≤ ukx(x0, t) = 0 for all x ∈ Ω (Neumann boundary
condition). If x0 ∈ Ω and uk(x0, t) = 0, then uk has a minimum at x0 and so
we again have ukx(x, t) ≤ ukx(x0, t) = 0 for all x ∈ Ω.

Finally, if x0 ∈ Ω and uk(x0, t) > 0, then uk is smooth at x0 and so
ukxx(x0, t) = 0. In that case, we get

1
2

(ukx)2(x0, t) = Qεk(uk(x0, t))− uk(x0, t)Pεk(uk(x0, t))−Gk(x0, t)

≤ 1 + ||Gk(·, t)||L∞(Ω).
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We deduce that for almost every t ∈ [0, T ], we have

[max
Ω

ukx(·, t)]2 ≤ C + C||Gk(·, t)||L∞(Ω)

and we can proceed similarly to bound [minΩ u
k
x(·, t)]2 and obtain the desired

inequality.

In the remainder of the proof, we will fix t ∈ [0, T ]. But first, we note that
there exists a set P ⊂ [0, T ] of full measure such that for all t ∈ P, we have

lim inf
k→∞

∫
Ω

|gk(x, t)|2 dx <∞

and
ukxx(·, t) ∈ H2(Ω) for all k ∈ N.

Indeed, let

Am =
{
t ∈ [0, T ] ; lim inf

k→∞

∫
Ω

|gk(x, t)|2 dx ≥ m
}
.

Fatou’s lemma and (32) yield

m|Am| ≤
∫
Am

lim inf
k→∞

∫
Ω

|gk(x, t)|2 dx dt

≤ lim inf
k→∞

∫
Am

∫
Ω

|gk(x, t)|2 dx dt

≤J (u0)

and so | ∩m∈N Am| = 0. Similarly, since uk ∈ L2(0, T ;H2(Ω)) for all k, the set

Bk = {t ∈ [0, T ] ; ||uk(·, t)||H2(Ω) =∞}

has measure zero. We can then check that the set P = [0, T ]\[(∩m∈NAm) ∪ (∪k∈NBk)]
has the desired properties.

For the remainder of this section, we fix t ∈ P and we drop the variable t
for the sake of clarity (that is we will write uk(x), Gk(x)... instead of uk(x, t),
Gk(x, t)...). By construction of the set P, up to a subsequence, we can assume
that there exists a constant C (this constant, like all other constant in the rest
of this proof depends implicitly on t) such that∫

Ω

|gk(x)|2 dx ≤ C (56)

for all k. Note also that all subsequences that we will extract from now on will
depend on t. This is not a problem since they still all converge to the previously
defined function u(·, t), and our goal is only to characterize the behavior of u.
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In particular, inequalities (34) and (56) imply that for any interval I ⊂ Ω∫
I

|Gkx|2 dx ≤ C sup
x∈I

uk(x)2−n. (57)

As in Lemma 5.2, (57) implies (using the fact that n < 2)

||Gk||H1(Ω) ≤ C <∞ for all k,

and so up to yet another subsequence, we can assume that

Gk −→ G0 in H1-weak and uniformly

where the function x 7→ G0(x) belongs to C1/2(Ω). Furthermore, proceeding as
in Corollary 5.3, we can show that the function uk is Lipschitz uniformly with
respect to k.

The proof of Theorem 3.3-(c) relies on the properties of this function G0.
First, using (57) and the definition of Gk, we easily get the following lemma:

Lemma 5.4. The function G0 ∈ H1(Ω) ⊂ C1/2(Ω) satisfies∫
I

|G0
x|2 dx ≤ C sup

x∈I
u(x)2−n

for all interval I ⊂ Ω. In particular, if u vanishes in an interval [c, d], then G0

is constant in [c, d]. Furthermore, G0 satisfies

G0 = 1− 1
2

(ux)2 + uuxx in {u > 0}.

Formally, Lemma 5.4 implies that

1
2

(ux)2 = 1−G0 on ∂{u > 0} (58)

(this is made rigorous in Corollary 5.6 below). Since G0 is continuous in Ω, (58)
implies that the contact angle condition on ∂{u > 0} depends on the values of
G0 on the set {u = 0}. More precisely, in order to prove Theorem 3.3-(c-i),
we need to show that G0 ∈ [0, 1] whenever u = 0 (see Proposition 5.5-(i)) ,
while Theorem 3.3-(c-ii) requires us to characterize the points where G0 = 0
(see Proposition 5.5-(ii)).

The key result is thus the following:

Proposition 5.5. The followings hold:

(i) Assume that u = 0 in [c, d] (with possibly c = d). Then G0 is constant in
[c, d] and satisfies 0 ≤ G0 ≤ 1.
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(ii) Assume that G0 ≥ η > 0 in an interval (c, d). Then there exists κ > 0
(depending on η) such that (up to a subsequence)

uk ≥ κεk in (c, d)

and
Qεk(uk) −→ 1 a.e. and L1-strong in (c, d). (59)

Before proving Proposition 5.5, we give the following corollary of Lemma 5.4
and Proposition 5.5 (the proof of which will make use of Lemma 5.7 below):

Corollary 5.6. Let (a, b) be a connected component of {u > 0}. Then

1
2
u2
x(a+) = 1−G0(a) ∈ [0, 1] and

1
2
u2
x(b−) = 1−G0(b) ∈ [0, 1].

We can now complete the proof of Theorem 3.3 (we briefly restore the vari-
able t for this proof):

Proof of Theorem 3.3-(c). For all t ∈ P, the set U(t) is defined as follows:

U(t) = {u(·, t) > 0} ∪ {G0(·, t) 6= 0}.

Since u and G0 are both continuous function of x, the set U(t) is open.
Corollary 5.6 immediately implies (38). Furthermore, if (a, b) is a connected

component of {u(·, t) > 0} and b ∈ ∂U \ ∂Ω, then the continuity of G0 implies
that G0(b) = 0, so Corollary 5.6 implies (39).

In order to prove (40), we need to pass to the limit in (32). The only difficulty
is to show that

lim
k→∞

∫
Ω

Qεk(uk(x, t)) dx ≥ |U(t)|.

For that purpose, we write

U(t) = {u(·, t) > 0} ∪

[ ⋃
m∈N
{G0(·, t) > 1

m
}

]
.

On the set {u(·, t) > 0}, it is easy to show that we have Qεk(uk)→ 1 pointwise.
Next, denoting Am = {G0(·, t) > 1

m}, Proposition 5.5 (ii) implies that for any
connected component (c, d) of Am, we have Qεk(uk) −→ 1 a.e. x in (c, d). We
deduce that Qεk(uk) −→ 1 a.e x in Am. All together, this implies that

Qεk(uk(x, t)) −→ 1 a.e x in U(t)

and Lebesgue dominated convergence theorem yields∫
U(t)

Qεk(uk(x, t)) dx→ |U(t)|.

26



Passing to the limit in (32), we thus get∫
Ω

1
2
u2
x(x, t) dx+ |U(t)|+

∫ t

0

∫
Ω

g2 dx ds ≤J0(u0)

for all t ∈ P (and so it holds a.e. t ∈ [0, T ]), and using the fact that g =√
f(u)uxxx in {u > 0}, we deduce (40).

It only remains to show Proposition 5.5 and its Corollary 5.6. First, Corol-
lary 5.6 will follow from Proposition 5.5 and the following technical lemma (the
proof of which is presented in Appendix B):

Lemma 5.7.

(i) Let x 7→ v(x) be a Lipschitz function on an interval (a, b) satisfying v(a) = 0
and

−vv′′ + 1
2
|v′|2 ≤ h in (a, b) (60)

where h is a non-negative constant. Then

v(x) ≤
√

2h(x− a) +O(|x− a|2) in [a, b].

(ii) Simlary, if x 7→ v(x) be a Lipschitz function on an interval (a, b) satisfying
v(a) = 0 and

−vv′′ + 1
2
|v′|2 ≥ h in (a, b)

where h is a non-negative constant. Then

v(x) ≥
√

2h(x− a) +O(|x− a|2) in (a, b).

Proof of Corollary 5.6. Let (a, b) be a connected component of {u > 0}. Lemma 5.4
implies that

−uuxx +
1
2

(ux)2 = 1−G0

in (a, b). Lemma 5.7 and the Hölder continuity of G0 thus implies

u(x) =
√

2(1−G0(a))(x− a) + o(|x− a|)

which yields
1
2
u2
x(a+) = 1−G0(a).

The result now follows by using Proposition 5.5-(i) which implies that 1 −
G0(a) ∈ [0, 1].

Finally, we complete this section (and the proof of Theorem 3.3) with the
proof of Proposition 5.5:
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Proof of Proposition 5.5. In this proof, we use the notation

F k = ukxx − Pεk(uk),

(recall that F k is in L2(Ω) for all k, though not uniformly in k, and it is smooth
whenever uk > 0), so that

Gk(x) = Qεk(uk)− 1
2

(ukx)2 + ukF k.

First, we check that Gk(x) = 0 whenever uk(x) = 0: Assume that uk(x0) = 0
and Gk(x0) = η 6= 0. Then the continuity of the functions Gk, Qεk(uk) and
1
2 (ukx)2 implies that |ukF k(x)| ≥ |η|/2 in a neighborhood of x0. Using the fact
that uk is Lipschitz, we deduce

|F k(x)| ≥ |η|
2|x− x0|

in a neighborhood of x0, which contradicts the fact that F k is in L2(Ω).

We already saw (Lemma 5.4) that G0 was constant in any interval in which
u is identically zero. So to prove Proposition 5.5-(i), we only need to show that
this constant is in the interval [0, 1]. The proof relies on the following idea: At
a point where uk is minimum in (c, d), we have ukx = 0 and using the dissipation
of energy (and crucially, the fact that n < 2) we will show that ukF k goes to
zero at that point. At such a point, we thus have Gk ∼ Qεk(uk) ∈ [0, 1].

To make this argument precise, we first replace [c, d] by the largest closed
interval containing [c, d] in which u vanishes. Still denoting this interval [c, d],
we have that one of the followings hold:

(1) either for all δ > 0, there exists cδ ∈ (c− δ, c) such that u(cδ) > 0

(2) or c ∈ ∂Ω

and similarly for d.
Clearly, (1) must hold for either c or d (and possibly both of them). We

assume that (1) holds for c and (2) for d (all other cases can be done similarly).
We fix δ > 0 and let xk ∈ [cδ, d] be such that

uk(xk) = min
[cδ,d]

uk. (61)

First, we note that if uk(xk) = 0, we already checked that we must have
Gk(xk) = 0 ∈ [0, 1] and we are done.

We can thus assume that uk(xk) 6= 0. Since limk→∞ uk(x) = 0 in [c, d]
and limk→∞ uk(cδ) = u(cδ) > 0, it is readily seen that for k large enough we
have xk ∈ (cδ, d] and so (using the Neumann boundary condition on ∂Ω if
xk = d ∈ ∂Ω)

ukx(xk) = 0. (62)
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Using (56) (note that [cδ, d] ⊂ {uk > 0}, so uk is smooth and gk =
√
f(uk)F kx

in (cδ, d)), we get∫
(cδ,d)

|F kx |2 dx ≤
C

f(min[cδ,d] uk)
=

C

f(uk(xk))
.

For k large enough, we can assume that uk(cδ) > u(cδ)/2 > εk and so F k(cδ) =
ukxx(cδ) is bounded uniformly with respect to k. Poincaré inequality and Sobolev
embedding thus yield

||F k||L∞(cδ,d) ≤ C +
C

(f(uk(xk)))1/2
. (63)

In particular, we deduce

|uk(xk)F k(xk)| ≤ Cuk(xk) + C
uk(xk)

(f(uk(xk)))1/2
,

and condition (28) (here the fact that n < 2 is crucial) thus implies

lim
k→∞

|uk(xk)F k(xk)| = 0.

Together with (62), this gives

lim
k→∞

|Gk(xk)−Qεk(uk(xk))| = 0. (64)

Up to another subsequence, we can assume that xk converges to xδ ∈ [cδ, d].
Since Gk converges uniformly to G0, we have proved that for all δ > 0, there
exists xδ ∈ [c− δ, d] such that

G0(xδ) = lim
k→∞

Qεk(min
[cδ,d]

uk) ∈ [0, 1]. (65)

Together with the continuity of G0 and the fact that G0 is constant in [c, d],
this implies that G0(x) ∈ [0, 1] for all x ∈ [c, d].

We now prove (ii): First, we can assume that (c, d) is as large as possible in
the sense that one of the following holds:

(1) either for all δ > 0, there exists cδ ∈ (c− δ, c) such that G0,t(cδ) < η

(2) or c ∈ ∂Ω

and similarly for d.
If (c, d) = Ω, then there exists c0 ∈ (c, d) such that u(c0) > 0. Otherwise, we

can assume that (1) holds for c, and using the fact that G0 is constant in any
interval where u = 0, we see that we must have that for all δ > 0, there exists
c′δ ∈ (c− δ, c) such that u(c′δ, t) > 0. Let now xk be such that

uk(xk) = min
[c′δ,d]

uk

29



(take c′δ = c in the case (c, d) = Ω). If limk→∞ uk(xk) 6= 0, then the result is
trivially true. If limk→∞ uk(xk) = 0, then we can proceed as in the first part of
the proof to show that

lim
k→∞

|Gk(xk)−Qεk(uk(xk))| = 0.

In particular, for k large enough, we have

Qεk(uk(xk)) ≥ η/2.

Using the fact that u 7→ Q(u) is strictly increasing and the definition of Qε (see
(10)-(12)), we deduce that there exists κ > 0 (defined by Q(κ) = η/2) such that
for k large enough

uk ≥ min
[c,d]

uk ≥ uk(xk) ≥ κεk in (c, d). (66)

It now remains to prove the convergence of Qεk(uk) to 1. First, Inequality
(63) now gives

||F k||L∞(c,d) ≤ C +
C

(f(κεk)))1/2
,

and we can write∫ d

c

Pεk(uk) dx ≤ ||F k||L1(c,d) +
∫ d

c

ukxx dx

≤ ||F k||L1(c,d) + ukx(d)− ukx(c)

≤ C +
C

(f(κεk)))1/2

where we used the Lipschitz regularity of uk. Using the definition of Pεk , we
deduce: ∫ d

c

P

(
uk

εk

)
dx ≤ Cεk + C

εk
(f(κεk)))1/2

−→ 0 as k →∞. (67)

Finally, for any δ > 0, let κ̄ be such that Q(κ̄) = 1− δ. We then have∫ d

c

|1−Qεk(uk)| dx ≤
∫
{uk≥κ̄εk}

1−Qεk(uk) dx+
∫
{uk≤κ̄εk}

1 dx

≤ δ(d− c) + |{uk < κ̄εk} ∩ (c, d)|

where, using (66) and (67), we find

|{uk < κ̄εk} ∩ (c, d)| ≤ 1
minκ≤u≤κ̄ P (u)

∫ d

c

P

(
uk

εk

)
dx −→ 0 as k →∞

(note that minκ≤u≤κ̄ P (u) > 0 by (10)). We deduce

lim sup
k→∞

∫ d

c

|1−Qεk(uk)| dx ≤ δ(d− c)

for all δ > 0, and the result follows.

30



5.3 Proof of Proposition 3.5

We now compete this section with the proof of Proposition 3.5.

To prove the first part we can assume that G0 6= 0 and G0 6= 1 in (a− δ, a).
In particular, we can use (67), which implies (since Pε(u) = 0 for u > ε),∫

I

ukPεk(uk) dx ≤
∫
I

P

(
uk

εk

)
dx −→ 0

Furthermore, we have∫
I

Gk(x) dx =
∫
I

Qεk(uk) dx− 3
2

∫
I

|ukx|2 dx+ ukukx|∂I −
∫
I

ukPεk(uk) dx

We deduce (using the fact that ukukx → 0 whenever uk → 0)

lim
k→∞

3
2

∫
I

|ukx|2 dx = lim
k→∞

∫
I

Qεk(uk)−Gk dx = |I|(1−G0)

which gives the result (the last equality follows from (59)).

In order to prove the second part of Proposition 3.5, we assume again that
G0(a) ∈ (0, 1) and derive a contradiction. Since x 7→ G0(x) is C1/2, we can
assume that G0(x) ≥ η > 0 in (a − δ, a + δ) and so Proposition 5.5 implies
uk ≥ κεk in (a − δ, a + δ). In particular, uk is smooth in a neighborhood of
the point (a, t). Using Equation (41) and the null-flux condition on ∂Ω, the
condition (41) is equivalent to

f(uk)F kx (x0) ≤ 0 for all x0 ∈ (a− δ, a+ δ)

where we recall the notation F k = ukxx − Pεk(uk). This inequality makes sense
since uk is smooth in (a − δ, a + δ). It is proved by taking some test functions
which converge to H(x0 − x), where H denotes the Heaviside function, in (29).
Since f(uk) > 0 in (a − δ, a + δ), we deduce that x 7→ F k(x) is decreasing in
(a− δ, a+ δ) and so

−F k(x) ≤ −F k(a+ δ) for all x ∈ (a− δ, a+ δ).

Finally, this implies

−
∫ a

a−δ
ukF k =

∫ a

a−δ
|ukx|2 + ukPεk(uk) dx− ukukx|aa−δ ≤ −F k(a+ δ)

∫
uk dx.

Since u(a+ δ) > 0, we can prove that F k(a+ δ) is bounded uniformly in k (and
it converges to uxx(a+ δ)). It follows that

lim
k→∞

∫ a

a−δ
|ukx|2 dx = 0

and the first part of this Proposition gives the expected contradiction.
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A Proof of Theorem 3.1

Throughout this section, ε is fixed, so we can assume that ε = 1 and drop the
ε subscript everywhere. The proof of Theorem 3.1 follows classical arguments
first introduced by Bernis and Friedman [6]. First, we regularize the equation
by introducing, for δ > 0,

fδ(u) = f(|u|) + δ

Since fδ(u) > δ for all u, it is easy to show (see [6] for details) that the equation
∂tu+ ∂x(fδ(u)∂x[∂xxu− P (u)]) = 0 in Ω× (0,∞)

fδ(u)∂x[∂xxu− P (u)] = 0, ∂xu = 0 on ∂Ω× (0,∞)

u(x, 0) = uδ0(x) in Ω

(68)

has a unique classical solution uδ(x, t). Here uδ0 is a smooth approximation of
u0. Note that because (68) is a fourth order equation, the solution uδ may take
negative values so the functions P (u) and Q(u) have to be extended by 0 for
u ≤ 0.

The function uδ satisfies the conservation of mass, and the energy equality:

J (uδ(t)) +
∫ t

0

∫
Ω

fδ(uδ)
[
(uδxx − P (uδ))x

]2
dx ds = J (uδ0) a.e. t ≥ 0 (69)

where
J (u) =

∫
Ω

1
2
u2
x +Q(u) dx.

In particular, uδ is bounded in L∞(0, T ;H1(Ω)) ⊂ L∞(0, T ;C1/2(Ω)) and
satisfies

uδt + hδx = 0

where hδ = fδ(uδ)(uδxx − P (uδ))x is bounded in L2((0, T ) × Ω). Classical ar-
guments imply that uδ is bounded uniformly in C1/8,1/2((0, T ) × Ω) and thus
converges (up to a subsequence) uniformly (and L∞(0, T ;H1(Ω)) ?-weak) to
some function u ∈ L∞(0, T ;H1(Ω)). Furthermore, hδ converges weakly to h in
L2((0, T )× Ω), and we have

ut + hx = 0 in D′.

Next, (69) implies that gδ =
√
fδ(uδ)(uδxx−P (uδ))x is bounded in L2((0, T )×

Ω) and thus converges weakly in L2((0, T ) × Ω) to a function g. Furthermore,
passing to the limit in (69), we get

J (u(t)) +
∫ t

0

∫
Ω

g2 dx ds ≤J (u0).

It is readily seen that g =
√
f(u)[uxx +P (u)]x in {u > 0}, and we deduce (32).
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Assuming that u ≥ 0 (which we will prove shortly), we can also derive (29):
The function hδ =

√
fδ(uδ) gδ converges weakly in L2((0, T )×Ω) to a function

h, and we have

∫
{u≤η}

|hδ| dx ≤ C

(∫
{u≤η}

fδ(uδ) dx

)1/2

and so ∫
{u≤η}

|h| dx ≤ C

(∫
{u≤η}

f(u) dx

)2

≤ C sup
0≤s≤η

f(s)1/2.

It follows that

h =

{
f(u)[uxx − P (u)]x in {u > 0}
0 a.e. in {u = 0}

and so (29) holds.

We now need to show that u ≥ 0. This follows from the following entropy
inequality: Let Hδ be such that Hδ(s) ≥ 0 for all s and H ′′δ (s) = 1

fδ(s)
. Then a

straightforward computation yields

d

dt

∫
Ω

Hδ(uδ) dx+
∫

Ω

|uδxx|2 dx = −
∫
P ′(uδ)|uδx|2 dx. (70)

Under condition (28), we have Hδ(s) →∞ as δ → 0 for s < 0 (because n ≥ 1)
and Hδ(s) ≤ C for s ≥ 0 (because n < 2). In particular, we deduce that∫

Ω
Hδ(uδ0) dx is bounded with respect to δ, and so (using the energy inequality

to bound the right hand side in (70)):∫
Ω

Hδ(uδ(t, x)) dx < C for all t > 0,

and ∫ T

0

∫
Ω

|uδxx|2 dx dt < C(1 + T ) for all T > 0.

The first inequality (using the fact that Hδ(s)→∞ for s < 0) yields

u(x, t) ≥ 0 in [0, T ]× Ω

(see [6] for details). The second inequality gives u ∈ L2(0, T ;H2(Ω)). Together
with the Neumann boundary conditions, it also gives that uδx weakly converges
to ux in L2(0, T ;H1

0 (Ω)), which gives (30).

It only remains to study the properties of the function G and to establish
(34). We denote

Gδ = Q(uδ)− 1
2

(uδx)2 + uδuδxx − uδP (uδ)
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We recall that uδx is bounded in L2(0, T ;H1
0 (Ω)) and we can see that uδxt = −hδxx

is bounded L2(0, T ;H−2(Ω). Lions-Aubin compactness lemma thus implies that
uδx converges strongly in L2((0, T )×Ω) to ux. Since uδxx converges weakly to uxx
in L2((0, T )×Ω) and uδ converges uniformly to u, we deduce that Gδ converges
weakly in L2 to

G = Q(u)− 1
2

(ux)2 + uuxx − uP (u)

Now, a simple computation gives

Gδx = uδ[uδxx − P (uδ)]x =
uδ√
fδ(uδ)

gδ.

Condition (28) implies that s√
fδ(s)

≤ C|s| 2−n2 (with n < 2), and so the right

hand side converges weakly in L2((0, T ) × Ω) to u√
f(u)

g. Since the left hand

side converges (in D′) to Gx, we deduce

Gx =
u√
f(u)

g ∈ L2((0, T )× Ω),

and (34) follows.

Proof of Proposition 3.2. Again, we can fix ε = 1 and drop the ε dependence in
this proof. By (32) and (34), there exists a sequence tk →∞ such that∫

Ω

|Gx(x, tk)|2 dx −→ 0 as k →∞

and ∫
Ω

u(x, tk) dx =
∫

Ω

u0(x) dx,
∫

Ω

|ux(x, tk)|2 dx ≤ C for all k.

In particular u(·, tk) is bounded uniformly in C1/2(Ω) and we deduce that up
to a subsequence (still denoted tk), we have

u(x, tk) −→ u∞(x) as k →∞, uniformly w.r.t. x ∈ Ω.

for some function u∞ ∈ H1(Ω) and

G(x, tk) −→ G∞ as k →∞, uniformly w.r.t. x ∈ Ω.

for some constant G∞ ∈ R.
In view of (70), we can also assume that

u(·, tk) −→ u∞ in H2(Ω)−weak.

In particular, passing to the limit in the definition of the function G, we deduce

G∞ = Q(u∞)− 1
2

(u∞x )2 + u∞u∞xx − u∞P (u∞).
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Differentiating this equality in {u∞ > 0}, we get

u∞[u∞xx − P (u∞)]x = 0 in {u∞ > 0}

which implies that u∞ satisfies (21) for every connected component of {u∞ > 0}.
It only remains to show that u∞ satisfies the zero contact angle condition (22),
but this is an immediate consequence of the fact that u∞ ∈ H2(Ω) (and so
u∞x ∈ C1/2(Ω)).

B Proof of Lemma 5.7

Proof of Lemma 5.7. We only prove (i) since (ii) can be proved similarly, and
without loss of generality (consider the function 1

(b−a)u(a + (b − a)x)), we can
assume that [a, b] = [0, 1]. Denote m = u(1).

The polynomial
wλ(x) = (m− λ)x2 + λx

solves (for all λ):

w(0) = 0, w(1) = m, and − ww′′ + 1
2
|w′|2 =

1
2
λ2

We are going to show that

if
1
2
λ2 ≥ h, then u(x) ≤ wλ(x) in [0, 1]. (71)

Since wλ(x) ≤ λx+ Cx2, the result follows.

In order to prove (71), we first lift w by defining wδλ = wλ + δ, which solves

w(0) = δ, w(1) = m+ δ, and − ww′′ + 1
2
|w′|2 =

1
2
λ2 +O(δ). (72)

Since u is Lipschitz and wδλ(x) goes to infinity as λ goes to infinity for all
x ∈ (0, 1), it is easy to show that for λ very large, we have wδλ(x) ≥ u(x) in
[0, 1]. Let now λ∗ be the smallest λ for which wδλ(x) ≥ u(x) in [0, 1] and denote
w∗ = wδλ∗ . The boundary conditions in (72) implies that there exists x0 in (0, 1)
such that w∗(x0) = u(x0) and w∗ − u has a minimum at x0. In particular

w′∗(x0) = u′(x0) and w′′∗ (x0) ≥ u′′(x0).

So (60) and (72) imply
1
2
λ2
∗ +O(δ) ≤ h.

We deduce
if

1
2
λ2 +O(δ) ≥ h, then wδλ ≥ u in [0, 1]

and (71) follows by letting δ go to zero.
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